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Abstract

In this thesis, a laser system for the generation of many arbitrary positionable, tightly
confining optical dipole traps for 39K is implemented. The traps are generated using a
liquid crystal spatial light modulator in the Fourier plane of an objective. The loading
of single atoms into the generated trap array in a deterministic fashion is investigated.
To overcome arising limitations in the apparatus a second setup for generating optical
dipole traps using an acousto-optic deflector is planned and characterized. This will
complement the first setup in the future.
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CHAPTER 1

Introduction

In the past decades, experiments outperformed the vaguest dreams of the early pi-
oneers of quantum mechanics [1] and answered a variety of fundamental questions.
Advances in laser technology and detection techniques lead to the proof of viola-
tion of Bell’s inequality [2], the demonstration of the quantum statistical nature of
light [3], the first implementation of quantum state teleportation [4] and many more
astonishing breakthroughs. In 1995, first Eric Cornell and Carl Wieman and later
that year Wolfgang Ketterle produced the first Bose-Einstein condensates by apply-
ing laser cooling techniques to a cloud of atoms[5, 6]. This milestone triggered an
impressive development in the field of cold and ultracold quantum gases. The rapid
progress in isolating, controlling and observing these fragile quantum systems soon
allowed for studies of quantum phenomena inherent to solid-state systems with un-
precedented parameter control, for example, the quantum phase transition from a
superfluid to a Mott insulator [7]. The enthusiasm for driving this progression was
not limited to atomic systems but spread over a magnitude of fundamentally different
systems. Techniques to manipulate and interrogate quantum many-body systems on
a single particle level on a whole zoo of platforms [8] are available today and allow
to study systems including exotic quantum matter [9], out of equilibrium dynamics
[10], gauge field models [11, 12] and many more.
All these groundbreaking works can be taken as examples of quantum simulators.
The concept to simulate a real quantum system with the aid of another better-controlled
quantum system was brought up by Richard Feynman in 1982 as an answer to the in-
compatibility of the exponential growth of the Hilbert space with the size of a quan-
tum system and the effort to understand the details of large quantum systems [13].
While a classical computer always suffers from this exponential scaling, a quantum
simulator can be designed such that it only exhibits a polynomial resource scaling
with the system size [14]. Two types of quantum simulators are to be distinguished.
The first uses a universal set of quantum gates which are well-defined, unitary op-
erations applied to a subsystem of the simulator’s inherent quantum system. By
assembling the execution of multiple of these gates after one another any quantum
algorithm can be implemented. Paralleled to the working principle of classical digital
computers, this is called a digital quantum simulator. A different approach is pursued
by the so-called analog quantum simulation. The dynamics of the quantum system,
hosted by the simulator, is governed by an intrinsic time evolution with tunable pa-
rameters. By a suitable choice of observables and parameters the quantum simulator
can emulate a system of interest. Both approaches require an efficient mapping be-
tween a Hilbert space of the system or problem in question and the quantum system
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of the simulator
Hreal ⊃ H → Hsim

entailing an adequate mapping between the Hamiltonians of both

Hreal → Hsim.

In recent years the concept of combining a quantum simulator with a classical com-
puter attracted a lot of attention as this allows leveraging the potential of near term
quantum simulators. An example for such an approach are Quantum Approximate
Optimization Algorithms (QAOAs) [15, 16].
Rydberg atoms, with there exaggerating and well tunable interaction properties re-
cently emerged as a promising candidate for the realization of digital [17] and analog
quantum simulators [18]. However, the lifetime of the Rydberg states being several
microseconds limited experiments to either very few atoms or the so-called frozen
gas regime where all the relevant dynamics occur on a much longer time scale than
the coherence time of the system [19]. Pulsed Rydberg excitation [20] or off-resonant
coupling to Rydberg states [21, 22] , the so-called "Rydberg dressing", had proven to
be promising approaches to overcome this limitation. The later is grounded on the
coupling of the ground state to a Rydberg state to yield a new eigenstate, inheriting
the long lifetime of the ground state and the interaction properties of the Rydberg
state to an extend adjustable by the coupling parameters [23]. Extending this idea to
more complex couplings involving multiple Rydberg states holds the great promise
for enriching the toolbox of superexchange interactions and paving the way to under-
stand new exotic forms of matter [24].
The long-range interaction properties of the Rydberg atoms allow for novel approaches
to prepare many body systems. Much pioneering and groundbreaking work on Ry-
dberg physics was done by trapping atoms in large optical dipole traps or optical
lattices [25] and coupling the atoms to the Rydberg manifold by means of global light
fields. It had also been demonstrated that it is possible to excite atoms in a magneto-
optical trap to Rydberg states at well-defined and programmable positions [26]. An-
other approach, which attracted a lot of attention in recent years, is the trapping of in-
dividual atoms in a multitude of close, highly confining optical dipole traps, known
as optical tweezers, arranged in arbitrary one-, two- and three-dimensional geome-
tries [27–29]. Combined with Rydberg mediated interactions it had been possible
for example to realize Greenberger-Horne-Zeilinger states with up to 20 qubits [30] ,
demonstrate spin-orbit coupling and an emerging Peierls phase [31], implement sym-
metry protected topological phases [32] and many more.
This thesis is concerned with the experimental and algorithmic implementation and
preparation of atoms in arbitrary arranged optical tweezers in two dimensions. This
involves the integration of a liquid crystal spatial light modulator in an existing ex-
perimental setup and the in-situ characterization of the generated traps. To increase
the versatility and usability of the apparatus an extension based on an acousto-optic
deflector to generate movable traps is considered.
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Outline

Chapter 2 presents all the foundations this thesis project is built upon. It introduces
the theoretical background for confining the motion of atoms to a small region in
space by using their dipole moments and uses the so found relations to estimate
experimental parameters. It also gives an overview of the experimental techniques
implemented prior to the described project and essential for its success. Chapter 3
introduces the spatial light modulator based setup for generating the trap arrays. Af-
ter introducing the working principle of the device the integration in the setup is
presented. A detailed picture of the emerging wavefront reconstruction problem for
the case of multiple diffraction-limited spots is provided and evolved to its solution
used in the context of this thesis. Thereafter, the procedure to trap individual atoms
is discussed and experimentally obtained results are presented. Based on this, mul-
tiple in-situ measurements to characterize the traps are presented. In Chapter 4 the
emerging problem of the limited probability to load an atom in each dipole trap is
discussed and a solution to this is experimentally investigated. Chapter 5 introduces
the planned extension of the setup with the use of an acousto-optic deflector opening
new experimental prospects, which will also be discussed. Finally, Chapter 6 contains
a summary of the obtained results and achievements and an outlook on what is soon
to come to improve and extend the experiment.
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CHAPTER 2

Optical Trapping and Cooling of Potassium

The majority of manipulation of internal and motional degrees of freedom of the
Potassium-39 atoms used in this project is done with lasers, which provide coher-
ent light at a single frequency. In this chapter, the theoretical foundation will be laid
to understand the subsequent chapters. First, a classical model will be discussed,
capturing all the features of atom-light interactions essential for optical dipole traps.
Then, a quantum perturbative approach will be used to treat multi-level atoms anal-
ogous to the classical model. The discussion of the relevant atom-light interactions
will be concluded by a section on heating effects in the traps. After this general treat-
ment, the optical properties of Potassium-39 will be introduced and subsequently, the
characteristics of this atomic species at the wavelengths considered for trapping will
be listed. The chapter is concluded by a brief listing of the required tools to go from a
block of Potassium-39 to single atoms trapped in optical tweezers.

2.1 Optical Dipole Potentials in a Classical Model

The center of mass motion of an atom and its internal level structure can be coupled
by an electromagnetic field. How this can be used to confine the motion of an atom
to a small region in space will be discussed here. Especially coherent electromagnetic
waves at optical wavelengths produced by lasers are appealing to experimentalists,
as they allow for precise control over the electromagnetic field in a small spacial re-
gion with the emitter being potentially meters away. This opens a large and flexible
toolbox for the manipulation of atomic ensembles. The valence electrons of an atom,
which are especially weak bound to the core, are sensitive to the environment of the
atom. They are the predominant contributor in chemical reactions and they also react
to optical fields which leave the rest of the electrons undisturbed. In the following, a
closer look will be taken on the coupling of atomic motion to the internal structure in-
duced by the presence of far-detuned monochromatic laser light in a classical model.
A variety of phenomena in the weak excitation limit of atom-light interactions are
well described by a classical model of the atom interacting with classical light. The
model used is known as the Lorentz model [33]. It describes the motion of an electron
bound to a core by a classical damped harmonic oscillator. The equation of motion of
the electron is

me~̈x + meγ~̇x + meω
2
0~x = −ε̂eE0e−iωt

with the light field E(t) = ε̂E0e−iωt introduced as the driving of the oscillator. Note
that the linearity of the differential equation was used to split it into two equivalent
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equations valid in the complex plane. This allows for the complex laser field descrip-
tion used. The equation of motion is easily solved for example by the use of a Laplace
transformation [34]. This yields

~x(t) =
eE(t)/m

ω2 −ω2
0 − iγω

.

The electric dipole moment of the system is given as ~d = −e~x(t), and from the defini-
tion of the polarizability ~d = α(ω)E(t) one finds that

α(ω) =
e2/m

ω2
0 −ω2 − iγω

With this it is easy to derive the adiabatic dipole potential. The interaction energy of
a dipole with an electric field is given as [35]

Vdipole = −
1
2
〈~d · ~E〉t

where 〈·〉t denotes a time averaging chosen such that terms oscillating fast compared
to the frequency of the damped harmonic oscillator are dropped. Inserting the ex-
pression of the polarizability yields

Vdipole = −
1

2ε0c
<(α)I

where I = 2ε0c|E0|2 is the intensity of the light and <(·) denotes the real part. ε0 is
the vacuum permittivity. A similar expression can be found for the scattering rate of
photons. The scattered photons can be thought of as quanta of the power absorbed
by the damped harmonic oscillator Pabs = 〈~̇d · ~E〉t

Γsc =
Pabs
h̄ω

=
1

h̄ε0c
=(α)I.

Here =(·) is the imaginary part. Putting all of this together one finds the following
explicit expressions for the dipole potential and the scattering rate

Vdipole(r) = −
3πc2

2ω3
0

(
Γ

ω0 −ω
+

Γ
ω0 + ω

)
I(r) (2.1)

Γsc(r) =
3πc2

2h̄ω3
0

ω3

ω3
0

(
Γ

ω0 −ω
+

Γ
ω0 + ω

)2

I(r) (2.2)

where the light intensity was now made position dependent. Note that here the decay
rate was assumed to be dominated by the optical frequency terms. From comparing
the results to the weak field limit of the optical Bloch-equations of a two level system
one finds that γ = (ω/ω0)

2Γ, with Γ the spontaneous decay rate of the transition.
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From the Weisskopf-Wigner theory [36] the spontaneous decay rate can be related to
the dipole matrix element 〈e| d̂ |g〉of the transition by

Γ =
ω3

0
3πε0h̄c3 | 〈e| d̂ |g〉 |

2.

The first term in the bracket of Equation 2.1 and Equation 2.2 gives rise to the well
known AC-Stark shift and is typically the dominating factor. The second term is a
so-called counter-rotating term. While this is typically neglected in the rotating wave
approximation it gives rise to the Bloch-Siegert shift in strong fields tuned very far
off-resonant. For the wavelength 1064 nm, which is used in all experiments related to
this thesis, the ratio of Bloch-Siegert shift to AC-Stark shift is ≈ 0.16. Therefore, all
the light shifts and scattering rates specified include both contributions.

2.2 Far Detuned Optical Dipole Potentials

To treat a multi-level atom quantum mechanically in a radiation field far off-resonant
to any transition a perturbative analysis is sufficient and captures the relevant effects.
To first order the eigenenergies Ei of the unperturbed atomic Hamiltonian are shifted
by

∆Ei = ∑
j 6=i

〈i| Hint |j〉 〈j| Hint |i〉
h̄δij

+ ∑
j 6=i

〈i| Hint |j〉 〈j| Hint |i〉
−h̄(ωij + ω)

(2.3)

where ωij = (Ei − Ej)/h̄ is the angular frequency of the transition i → j and δij =
ωij − ω is the detuning of the angular light frequency ω to it. For atom light interac-
tions the interaction Hamiltonian is given as Hint = −d̂ · E with d̂ the electric dipole
operator and E(r, t) = eẼ(r)exp(−iωt) + c.c. the monochromatic electric field. Ẽ(r)
denotes the amplitude and e the unit polarization vector of the field. The second term
in Equation 2.3 is again often hidden in the rotating wave approximation. However,
in this approach it is intuitive to include it. Both terms describe the interference via
an energetically off-shell intermediate state.
It is worth noting that this perturbative treatment breaks down when e does not rep-
resent a pure linear or circular polarization and the considered atoms have degenerate
ground states. A mixture of polarizations might lead to Raman transitions in the mag-
netic substructure of the level scheme. This can be accounted for by introducing an
effective magnetic field [37] . In the present experimental apparatus this effect can
have treacherous consequences, because even if the light of the dipole traps is linear
polarized before being focussed, the focussing with objectives of a NA = 0.6 is on the
edge of overstraining the paraxial approximation and position dependent admixtures
of circular polarized light in the diffraction limited spot is expected. This gives raise
to an effective magnetic field gradient as discussed in [38, 39].
To apply formula (2.3) the dipole matrix elements dij = 〈i| d̂ |j〉 need to be known. For
the most transitions between low lying states they can be deduced from very precisely
measured spectroscopical quantities using again the result of the Wiegner-Weisskopf
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theory

Ai←j =
ω3

0
3πε0h̄c3 |dij|2. (2.4)

Here Ai←j denotes the "Einstein A-coefficient" of the i← j dipole transition. A collec-
tion of those coefficients can be found in the NIST data base [40]. They were used for
all calculations carried out here. For rather exotic transitions, for example in the Ryd-
berg manifold, no experimental data is available and one has to rely on sophisticated
numerical algorithms [41].
By inserting Equation 2.4 in Equation 2.3 and interpreting the light shift as a position
dependent adiabatic potential for an atom in state i we find

Ui(r) =
3πc2

2ω3
0

I(r) ·
(

∑
i 6=j

Ai←j

δij
−∑

i 6=j

Ai←j

ωij + ω

)

where I(r) = 2ε0c|E(r)|2 is the position dependent intensity. Usually the trapped
alkali atoms can be assumed to rest in the ground state and we can calculate some
characteristics of the trapping potential for that case. Assuming a Gaussian beam of
the form

I(r, z) = I0
1

1 + ( z
zR
)2 exp

(
− 2r2

w2
0(1 + ( z

zR
)2)

)
with I0 the peak intensity, w0 the beam waist and zR = πw2

0/λ the Rayleigh length
[42]. The profile is given in polar coordinates. The trap depth can easily be identified
to be

Umin =
3πc2

2ω3
0

I0

(
∑
i 6=j

Ai←j

δij
−∑

i 6=j

Ai←j

ωij + ω

)
.

A Taylor expansion around the center of the Gaussian beam to second order yields a
harmonic trapping potential with a radial trap frequency of

ωr =

√
4Umin

mw2
0

and a longitudinal trapping frequency of

ωz = ωr
w0

zR
√

2
. (2.5)

2.3 Off-resonant Heating

The effect of heating due to the trap light is another aspect of vital importance. In
alkali atoms only one valence electron is present, which has to perform spontaneous
decays in all single atom cooling processes to remove entropy from the system [43].
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At the same time, in most schemes considered for exploring quantum many body dy-
namics the quantum information is stored in the electronic state of the atom using the
same electron. Therefore simultaneous cooling and performing a quantum simula-
tion experiment is undesirable as the cooling leads to a rapid loss of coherence in the
system. This means any heating process needs to be avoided.
There are two major heating processes to be considered in far-detuned optical traps.
The first one is known as parametric heating. When the geometry of the trap is prone
to noise the frequency component of the noise resonant with a multiple of the trap
frequency can be absorbed and emitted from the spatial wave function of the atom in
the trap. Therefore this can lead to heating. This heating does only have a small effect
on the quantum state of the atom by slightly wiggling the hyperfine splitting of the
ground state [44], but it can lead to significant thermal broadening of lines or, in the
worst, case to a loss of the atom from the trap. A rigorous treatment of this can be
found in [45, 46].
The second relevant heating effect is the spontaneous scattering of photons from the
trapping light. In the far-detuned regime this process reduces to a two photon process
with one photon coming from the trapping light and the other one a vacuum photon,
which triggers the emission.

This two cases are to be distinguished. In the first case, the atom ends up in the
same state as prior to the scattering. This elastic collision between photon and atom
is the well-known Rayleigh-scattering. In the second case, the atom changes its hy-
perfine ground state. This makes the scattering event inelastic. This process, known
as Raman-scattering, can lead to decoherence as well but is reduced by a factor ∼ 1/δ2

with the δ the detuning of the trapping light field. Typically this decoherence process
is much slower then the one due to noise in the trap geometry.
Due to the anisotropic nature of the photons coming from the light field the heating is
also anisotropic but the different axis of the trap are typically coupled with a coupling
constant exceeding the usually very small scattering rate. Therefore one can consider
the trap to be thermalized along all axis in this treatment. The overall heating power
can then be written as

Pheat = 2ErecΓsc = 2kBTrecΓsc

where Γsc denotes the off resonant scattering rate and Erec = kBTrec is the recoil energy
and temperature respectively for the absorption of a single photon. The scattering rate
is given by

Γsc =
3πc2

2ω3
0

I(r) ∑
j 6=g

(
Ag←j

δij

)2

.

This heating process depends on the positional distribution of the atoms in the trap,
as they experience different intensities at different positions. In the following the
scattering rates are always calculated using the peak intensity of the trap.
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2.4 Optical Properties of Potassium-39

Property symbol value
Frequency ν 389.286058716(62) THz

Wavelength λ 770.108385049(123) nm
Wavenumber k/2π 12985.1851928(21)cm−1

Lifetime τ 26.72(5) ns
Natural linewidth Γ/2π 5.956(11) MHz

Recoil velocity vrec 1.329825973(7) cm/s
Recoil temperature Trec 0.41436702 µK

Doppler temperature TD 145 µK

Table 2.1 – Optical properties of the D1 line [47]

Property symbol value
Frequency ν 391.01617003(12) THz

Wavelength λ 766.700921822(24) nm
Wavenumber k/2π 13042.8954964(4)cm−1

Lifetime τ 26.37(5) ns
Natural linewidth Γ/2π 6.035(11) MHz

Recoil velocity vrec 1.335736144(7) cm/s
Recoil temperature Trec 0.41805837 µK

Doppler temperature TD 145 µK
Saturation intensity Is 1.75 mW/cm2

Table 2.2 – Optical properties of the D2 line [47]

As all alkali atoms, Potassium-39 only has one valence electron, which is the only one
participating in atom light interactions in the optical domain. The potential it sees is
a coulomb like potential from the nucleus and the core electrons. While for the lower
energy levels the valence electrons wave function has a significant overlap with the
wave functions of the core electrons and the nucleus, for Rydberg states the overlap
becomes more and more negligible with increasing principal quantum number n. In
the later case the level structure is well captured by an empirical state dependent
quantum defect δnlj and a modified Rydberg constant Ry∗ which are introduced in
the well known Rydberg formula for the hydrogen problem [48]

Enlj = E∞ −
Ry∗

(n− δnlj)2

where E∞ is the ionization energy of Potassium-39. For lower lying states the overlap
of the electronic wave functions prohibits such a simple treatment and the level struc-
ture is strongly modified compared to that of a hydrogen like atom. The for cooling
and trapping most relevant lines in all alkali atoms are the lowest lying optical transi-
tions in the fine structure spectrum, called D lines. The D1 line is the transition from
the 42S1/2 to the 42P1/2 state and the D2 line from the 42S1/2 to the 42P3/2 state. The
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2S1/2
F=2 (173.1)

F=1 (-288.6)

2P1/2 F’=2 (20.8)

F’=1 (-34.7)

2P3/2
F’=2 (-6.7)
F’=3 (14.4)

F’=1 (-16.1)
F’=0 (-19.4)

TRAP
1064nm

GMC GMR

MOTC MOTR

TRAP
795nm

770.108nm

766.701nm

Figure 2.1 – D-line level structure of Potassium-39 Optical transitions from
D1 and D2 line. On the left the fine structure and hyper fine structure is shown.
The hyper fine structure is given in units of MHz. In the middle of the figure
the lasers relevant for the projects related to this thesis are shown. On the right
the full magnetic substructure at zero field is shown.

properties of the D1 and D2 line of Potassium-39 are listed in Table 2.1 and Table 2.2
respectively. Figure 2.1 shows the level structure of the D lines together with the lasers
used in this project. The ground state is the 42S1/2 state. The fine structure coupling
of the spin S and angular momentum L of the valence electron lifts the degeneracy of
the 42P1/2 and 42P3/2. The total electronic angular momentum is given as

J = L + S.

As in all alkali atoms the nuclear spin I, with a magnitude of I = 3/2 for Potassium-
39, couples to the electonic angular momentum J.

F = J + I

This lifts the degeneracy between levels with different F quantum numbers and re-
sults in the hyper fine structure. Especially important in the presented experimental
apparatus is the hyper fine splitting in the 42S1/2 ground state. It is split in two hy-
per fine states individually addressable with lasers and particularly long-lived, which
makes it well suited to model a spin–1/2 degree of freedom.



12 Chapter 2. Optical Trapping and Cooling of Potassium

750 800 850 900 950 1000 1050 1100 1150
Wavelength [nm]

1.0

0.5

0.0

0.5

1.0

Lig
ht

sh
ift

 [a
rb

.]

795nm 1064nm

2P1/2
2S1/2
2P3/2

Figure 2.2 – D-line fine structure light shifts. The light shifts for linear polar-
ized light in arbitrary linear units are shown for the three lowest fine structure
states for different wavelength. The horizontal line marks the zero lightshift.
The vertical lines indicate the wavelengths used or planned to be used in the
experiment for creating tightly confining optical dipole traps for single atoms.

2.5 Calculated Trap Properties for the Experimental Setup

In this section a closer look will be taken upon the wavelength used for creating the
tightly confining optical dipole traps in the experiment. As argued before most of
the optical manipulation is done on the D1 and D2 line. Besides the shift of the fine
structure ground state 42S1/2, which determines the trapping potential, the shifts of
the 42P1/2 and 42P3/2 are therefore of particular importance. In Figure 2.2 the light
shifts for those states for different wavelengths are shown. The black lines indicate
the experimentally considered wavelengths.
The main work done in the context of this thesis uses 1064 nm light, which is detuned
from the D1-line by ∆D1(1064 nm) = 107.5 THz and from the D2-line by ∆D2(1064 nm) =
109.3 THz. The ground state is shifted by δgs(1064 nm) = −17.5 MHz µm2 mW−1,
while the D1 and D2 lines are shifted by δD1(1064 nm) = −5.66× δgs(1064 nm) and
δD2(1064 nm) ≈ 5× δgs(1064 nm) respectively for linear light polarization. While dif-
ferent light shifts in the mF-states are negligible in the ground state they are of the
order of δgs(1064 nm) for the excited state. The ground state scattering rate is calcu-
lated to be Γgs(1064 nm) = 5 · 10−8 × δgs(1064 nm) and typically on the order of 1 Hz
.
In a second tweezers setup a wavelength of 795 nm and again linear polarization is
considered. The light is red-detuned from the D1-line by ∆D1(795 nm) = 12.2 THz
and from the D2-line by ∆D2(795 nm) = 13.9 THz. The ground state is shifted by
δgs(795 nm) = −125.4 MHz µm2 mW−1. The D1 and D2 lines are shifted by δD1(795 nm) =
−0.5× δgs(795 nm) and δD2(795 nm) ≈ −0.5× δgs(795 nm). The ground state scatter-
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ing rate is Γgs(795 nm) = 4.5 · 10−7 × δgs(795 nm) and therefore by about a factor 10
higher then for the same trap depth at 1064 nm.

2.6 Experimental Apparatus

This section provides an overview of the experimental setup to evaporate atoms from
solid chunks of Potassium-39, trap them in ultra high vacuum, and cool them suffi-
ciently such that they can be trapped in the dipole trap arrays, which are the main
subject of this thesis. An in-depth discussion on the setup can be found in [49–51].

• The atomic oven: To provide the experiment with Potassium-39 atoms an oven
is used. It heats a block of Potassium up to about 80 ◦C to slowly evaporate it.
The evaporated atoms are then collimated by a nozzle of 3 mm aperture. A cold-
finger is used to decrease the vapor pressure A differential pumping stage helps
to decouple the vacuum in the experimental chamber from the one of the oven.

• Zeeman slower: The still hot and fast moving atoms need to be slowed down
to capture them in the experimental chamber. This is achieved using a spin-flip
Zeeman slower, which consists of a tube where the atomic beam travels through.
Around this tube a coil with a position dependent winding number is wrapped.
The winding number is chosen such that the traversing atoms are always in
resonance with a laser beam on the D2-line shown through the tube from the
side opposing the oven. With that the atoms see a friction force which slows
them down below the capture velocity of the subsequent MOT.

• Magneto Optical Trap: To capture and further cool the atoms leaving the Zee-
man slower a magneto optical trap (MOT) is used. A magnetic quadrupole field
is created by two coils in anti-Helmholtz configuration. This field shifts the
m f 6= 0 states of a hyper fine level in the 2P3/2 manifold such that they get closer
to resonance to red detuned counter propagating circular polarized laser beams
on the D2-line. In doing so they experience a conservative restoring force and
a friction force towards the zero field region. This confines the atoms and cools
them to the Doppler limit of that transition.

• Gray Molasses: Potassium-39 suffers from a narrow hyperfine structure in the
D2 excited state wich prevents efficient sub-Doppler cooling by using light, far
red detuned from a cycling transition, on this line. However, a different scheme
called gray molasses can be realized on the D1 line. It exploits the presence of
a dark state, which is motionally coupled to bright states. This means an atom
which moves transitions to a bright state, while a still standing atom remains in
the dark state. With a σ+-σ− configuration of blue detuned counter propagat-
ing beams a landscape of potential hills for the bright state is created. A moving
atom in the dark state will be motionally transferred into a bright state and be-
fore it is pumped back into the dark state it looses kinetic energy by climbing
a hill. This cools the atomic cloud from the Doppler limited temperature of the
MOT to the recoil limit.
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• Red Molasses: Although not capable of efficiently cooling the atomic sample
from the Doppler to the recoil temperature, a red molasses keeps the atoms in
place and cools them enough such that they get trapped in the tightly confined
optical dipole traps, which are conservative in nature. Another advantage of the
red molasses is its brightness. While atoms in the light field of a gray molasses
barely scatter photons, the atoms cooled by a red molasses fluoresce much more
light. This allows to image the atoms and maintain cooling at the same time.

With these tools the stage is prepared for the optical tweezers arrays, discussed in the
next chapter.



CHAPTER 3

Large Arrays of Optical Dipole Traps

In order to study many body physics with individual atoms in optical dipole traps a
large number of tightly focused beams needs to be realized. As it is experimentally
undesirable to have an individual laser for each trap, schemes had been implemented
over the last years which produce tens to hundreds of traps out of a single Gaussian
beam. With tools ranging over micro lens arrays [52] and acousto-optic deflectors
(AOD)[53] to digital mirror devices [54] and spatial light modulators (SLM)[55] sev-
eral experiments succeeded in producing arbitrarily arranged optical tweezers for
atoms.
In this chapter the use of a liquid crystal spatial light modulator is described to ma-
nipulate the wave front of a Gaussian beam. When the right manipulation is applied,
the beam produces every desirable periodic and non-periodic geometry of traps when
it is focused, only constrained by the number of traps and the minimal trap spacing.
This high flexibility in realizable geometries distinguishes the use of a spacial light
modulator from other approaches. In the following first the working principle of the
used SLM as well as the experimental setup for exposing the atoms to the created
optical potentials will be introduced. Then a naive approach to deduce the shape of
the wave front leading to a given tweezers configuration will be discussed, followed
by the introduction of the implemented Gerchberg-Saxton based phase retrieval al-
gorithm to account for inaccuracies in the naive approach. Subsequently a typical
experimental sequence to load atoms in the produced array will be described and the
results of an in-situ trap characterisation will be discussed. Thereafter the observation
of an effect similar to the well-known Talbot effect will be presented. The chapter will
be concluded by a discussion on the current limitations and an outlook on how the
setup can be improved.

3.1 Liquid Crystal Spatial Light Modulator

SLMs have seen a wide range of applications in the past. They have been used, for
instance, in femtosecond pulse shaping [56], trapping of polarizable particles [57] or
generation of angular momentum states of light [58]. Furthermore they led to ad-
vances in different microscopic schemes [59] and found applications in astronomy
[60]. The possibility to produce taylored intensity patterns also attracted attention in
the quantum gas community as a tool to generate exotic trap potentials [61, 62].
In order to produce arbitrary shaped arrays of tightly confining optical dipole po-
tentials to trap single atoms, a liquid crystal SLM (LC-SLM) was used in this project.
The high light utilization, the ability to realize any geometry and the possibility to
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Figure 3.1 – Schematic diagram of the liquid crystal spatial light modulator
chip. The orientation of the liquid crystal is controlled by applying a spacial
varying electric field across it. This is generated using a matrix of electrodes be-
neath it, where each can be addressed individually, and a transparent electrode
above it. The refractive index for light polarized perpendicular to the liquid
crystals axis depends on this orientation. When light passes through the liquid
crystal it travels a position dependent optical path length, allowing for arbitrary
modifications of the wave front.

compensate for aberrations and optical imperfections makes this device well suited
for our application. Here a water cooled Hamamatsu X10468-3 was used, due to its
outstanding precision in the applied phase and low noise characteristics [63] and the
ability to handle several Watts of light power. The architecture of the chip is illus-
trated in Figure 3.1. It consists of multiple layers [64]. These allow to locally modify
a liquid crystal for taylored changes on the shape of an incident wave front. The first
layer is formed by a glass substrate followed by a transparent electrode which serves
the purpose of applying electric fields. Below that a liquid crystal is sandwiched be-
tween two alignment films, which ensure its proper orientation. In the present device
the liquid crystal is oriented such that phase modulation is only possible for linear po-
larized light oriented in parallel to it. Other polarization components are unaffected.
Beneath that the light is reflected by a dielectric mirror. The last layer is formed by
a silicon substrate which has an active pixel matrix on its top consisting of 792× 600
tiny electrodes each having a size of 20 µm× 20 µm, referred to as pixels. A CMOS
based circuit structure is buried underneath them. With the CMOS structure an in-
dividual voltage level can be applied to each pixel. The electric field which builds
up between the pixel electrode and the common transparent electrode modifies the
orientation of the liquid crystal and therefore the refractive index at that position on
the chip. With that the incident light travels an optical path through the liquid crystal
with a position dependent length. Consequently the wave front is modified by an
position dependent phase shift while the intensity distribution is maintained. There-
fore such a SLM type is also referred to as a phase only SLM. The local phase can be
modified by the full range of 2π with a 8 bit discretization. The interface to the SLM
is done by a controller box from the manufacturer, which in turns accepts a gray scale
picture over a DVI interface. The most important characteristics of the used SLM are
summarized in table 3.1.
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Figure 3.2 – Setup for the creation of trap arrays. For generating arbitrary ar-
ranged trap arrays we use a phase only LC-SLM, which is placed in the imaged
Fourier plane of the objective. Before this setup the laser is intensity stabilized
and switched using an AOM. The beam is magnified, to match the chip size of
the SLM, to a 1/e2-diameter of 12mm and afterwards expanded to fit the aper-
ture of the objective of 40mm. The diagram is not to scale

Parameter Value
Resolution 792× 600
Pixel pitch 20µm

Effective area 16mm× 12mm
Phase levels 256 (8 bit)

Fill factor 98%
Light utilization 97%

Refresh rate 60Hz

Table 3.1 – Hamamatsu X10468-3 Properties

3.2 The Experimental Setup

The setup used for generating the arrays of tightly confining optical dipole traps is
depicted in Figure 3.2. It starts of with an 1064 nm laser from Azur Light Systems
which can provide a power of up to 40 W. The power is stabilized and controlled
in a PI loop using an acousto-optic modulator (AOM) connected to a home build
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stabilization circuit which receives an input from a photo diode. Afterwards the beam
is passed through two telescopes to magnify its 1/e2 diameter to 12 mm, matching the
chip size of the SLM. The first one is formed by two 1-inch lenses with focal lengths
f = 75 mm and f = 150 mm respectively. The second telescope is made up by a 1-
inch lens with a focal length of f = 50 mm and a 2-inch lens with a focal length of
f = 300 mm. Before the beam is shown onto the LC-SLM it is apertured by a circular
iris of 12 mm diameter. The path after the SLM is split using a flip mirror. With this the
light can be redirected onto a diagnostic path, where a camera can be placed. On the
main path the SLM and the objective, focusing the light onto the atoms, are arranged
together with two lenses in a 4-f setup. The two lenses, of which one is a 2-inch lens
with a focal length of f = 250 mm and the other one a 3-inch lens with a focal length
of f = 800 mm, form a telescope to magnify the beam in the SLM plane to the size of
the objective of 40 mm. In the focus of the first lens the trap pattern is replicated. To
block all light except for that used in the tweezers a rectangular aperture is placed in
that plane. After the telescope the light is superimposed to the imaging path using an
dichroic mirror with a custom coating from Lens Optics, highly reflective at 950 nm to
1100 nm and transmissive at 670 nm to 810 nm. The path is then split again by another
flip mirror. It reflects the light either into another diagnostic path or onto a mirror
which guides the light into the vertically mounted objective. This images the traps
onto the atoms. To detect the atoms, scattered light is collected by the same objective
and is split of from the trapping light by the dichroic again. It is then focused onto
an scientific CMOS camera using a lens with focal length of f = 250 mm to spatially
resolved image the atoms.

3.2.1 The in-Vacuum Objective

The objective used is custom made by Special Optics for in vacuum use. It has an
effective focal length of 33.1815 mm, an entrance aperture of 40 mm diameter and an
NA of 0.6. Furthermore it has a centered hole of 8 mm diameter to gain optical access
along this axis. To let the SLM only utilize light which is diffracted by the objective
and to avoid scattering of non-diffracted light in the vacuum chamber, the center
of the beam on the SLM is guided such that it hits the aperture placed in the last
telescope. This is achieved by displaying a blazed grating with 2π amplitude in the
center of the SLM, which resembles a tilted mirror at this position.

3.2.2 Alignment

The alignment of beams on lenses with large diameter as used in this project is chal-
lenging and very critical at the same time. Small misalignments lead to significant
aberrations and spoil the shape of the diffraction limited tweezers. To make the align-
ment significantly easier a trick with the SLM can be used. By displaying a phase
pattern on it, which has strong phase discontinuities along certain lines, one can im-
print those lines onto the collimated beam. The phase is not well defined any more
at the points of the discontinuity and as consequence the beam shows no intensity at
these positions. We used that method to imprint the shape of a target on the beam.
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(c) Compensation coefficients

Figure 3.3 – Aberration correction with a doughnut mode. (a) The dough-
nut mode before adding a compensation pattern to the SLM. (b) The doughnut
mode after adding a compensation pattern to the SLM. (c) The Zernike coeffi-
cients in wave lengths used in the compensation to go from (a) to (b).

This made it significantly easier to hit all the optical components centered.

3.2.3 Aberration Correction on the SLM

Even with the above described alignment trick, the beam passing the optical setup
can acquire undesired distortions of the wave front. This can significantly worsen the
point spread function and therefore in our case the shape of the trap. Those errors
in the wave front are typically expanded in the basis of Zernike polynomials which
is a good choice as the lower order polynomials can directly be related to typical
lens errors or misalignment effects. Therefore the coefficients of the first few Zernike
polynomials, referred to as Zernike coefficients, already capture the distortions in the
wave front very well.
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Figure 3.4 – Pattern construction. The parts of a phase image which is to be
displayed on the SLM. In the top row from left to right a Fresnel lens pattern,
a displacement pattern, a surface correction pattern provided by the manufac-
turer, an aberration correction pattern and the pattern for the specific trap array
are shown. Those patterns are added together. In the bottom row a mask is
shown which deflects all parts of the beam which do not hit the objective. Com-
bining all the components properly results in the pattern after the equal sign,
which is then displayed on the SLM.

To characterize and counteract the aberrations of the optical elements before the SLM
and potentially residual deformations of the SLM itself, a scheme similar to the one
described in [65] was used. A phase vortex where the phase is wrapped one time
around the center is displayed on the SLM. In the focus of a lens this results in a
doughnut shaped mode which is particularly sensitive to aberrations. By superim-
posing a phase pattern on the SLM which contains the lowest order Zernike polyno-
mials the Zernike coefficients can be tuned such that the doughnut shaped mode is
as symmetric as possible. The so found compensation pattern can now be used as a
general compensation pattern for the aberrations.
For this characterization the first diagnostic path in the setup was used. Any addi-
tional lens in the beam before the camera changes the aberrations. To avoid this a
Fresnel lens pattern with a focal length of 3 m was superimposed on the SLM instead
to focus the beam onto the camera. The results are shown in Figure 3.3.
Unfortunately this method is infeasible for characterizing the aberrations after the
last telescope. Due to the pixelation of the SLM the focal length, which is reliably pro-
ducible with an Fresnel lens pattern, is very limited. This results in a minimal focal
length after the telescope of several meters. In subsection 5.3.2 another method for
measuring aberrations directly on the atoms is proposed for this setup.

3.2.4 Experimental Use

In order to use the described setup for imposing a trap array on the atoms a spe-
cific pattern needs to be shown on the SLM. Figure 3.4 illustrates how such a pattern
is constructed. To modify the position of the whole array in the vertical direction a
Fresnel lens pattern is used. A phase gradient is superimposed to position it in the
horizontal plane. Due to the fabrication process of the SLM the surface has large scale
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irregularities. Those were already characterized by the manufacturer and a compen-
sation pattern for this is supplied with the device. To compensate for the aberrations
originating in the optical setup as described in the previous section another compen-
sation pattern is added. Finally the actual pattern for a given trap arrangement is
superimposed. How this is constructed is the main matter of the next section. To only
utilize the light which hits the objective in the appropriate positions, as discussed in
subsection 3.2.1, a mask is applied which diffracts undesired light to be blocked by an
aperture. The so obtained pattern is then sent to the SLM.

3.3 Generation of Arbitrary 2D Arrays of Optical Dipole
Traps

With the above described setup the experimental foundation is laid to show arbitrary
arranged optical dipole traps to the atoms. Now we will turn to the question which
phase pattern needs to be displayed on the SLM such that a certain arrangement of
traps is generated. Before the actually used algorithm is introduced it is instructive to
understand why this problem is highly non-trivial even for traps well separated from
each other. With the insights gained we can immediately come up with an algorithmic
approach to solve this problem. The so derived algorithm will be expanded in the next
section to the well-known Gerchberg-Saxton algorithm [66] which is the basis of the
actually implemented algorithm in the experiment.

3.3.1 The Phase Retrieval Problem for Separated Spots

When all distances between the tweezers are significantly bigger then their sizes one
can approximate all tweezers to be independent, diffraction limited spots in the focal
plane. This allows to ignore the particular shape of the traps for now. Each individual
trap is then fully characterized by a relative phase of the light field with respect to
some reference oscillating at the same frequency and the field amplitude in the center
(θi, Ai), where i identifies the trap. In typical experiments carried out we want all
the traps to have the same depth, but unfortunately even though the traps are non
overlapping the amplitudes and the phases of the traps are not independent when a
phase only SLM is used.
According to Fourier optics each diffraction limited trap is related to a single plane
wave entering the objective. Therefore a whole array of traps is given by to a super-
position of plane waves coming from different directions. In the Fourier plane of the
objective this superposition is an intensity distribution with a particular shaped wave
front, which is given by the Fourier transformation of the array of traps, each approx-
imated by a delta distribution. With the use of a phase only SLM, this wave front can
be mimicked and imprinted on a Gaussian beam, but the intensity pattern resulting
from the interference of the plane waves can not be imitated. This problem is made
more concrete by the following expression, which describes the light field T of the
optical traps when only the wave front is adjusted but the intensity is left untouched.
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Figure 3.5 – Dependence of homogeneity on trap phase. (a) In the trap plane
the calculated trap pattern when all traps are required to have the same phase.
Very strong amplitude variation among the traps and significant ghost traps can
be seen. The inset shows the originally desired pattern. In the SLM plane on the
bottom the phase pattern which is to be given to the SLM to produce the trap
pattern is shown. Above, the ideal input amplitude pattern which would lead
together with the phase distribution below to the ideal tweezers pattern. The
overlap with an almost flat Gaussian beam is apparently small. (b) The same
as (a) but now the traps are chosen to have random relative phases among each
other. The tweezers pattern is way better reassembled with an Gaussian input
beam on the SLM. Still ghost traps appear and the non-uniformity among the
trap intensities is in the order of 20%. The overlap of the intensity distribution
in the SLM plane which would lead to a perfectly homogeneous trap pattern
has a seemingly higher overlap with almost flat Gaussian beam.

T = FT
(

B(x, y)
|∑i P(θi,Ai)

(x, y)|∑i
P(θi,Ai)

(x, y)

)
(3.1)

Here FT denotes the Fourier transformation to which the relation between the light
field in the diffraction plane and the real plane of the objective reduces in the Fourier
optics limit. B(x, y) is the field amplitude of the incoming beam on which the new
wave front is imprinted. P(θi,Ai)

(x, y) denotes the plane wave associated with a single
tweezers with amplitude Ai and phase θi. The term under the Fourier transform
keeps the wave front of the super positions of plane waves but replaces the amplitude
by the amplitude of the beam incident on the SLM. To see how this deviates from
the intensity distribution of uniform traps one can rearrange this expression. By just
adding and subtracting a term in Equation 3.1 we arrive at the following expression

T = Tideal +FT
((

B(x, y)
|∑i P(θi,Ai)

(x, y)| − 1

)
∑

i
P(θi,Ai)

(x, y)

)
= Tideal + Terror
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where Tideal = FT (∑i Pθi,Ai(x, y)) is the originally desired optical field for a specific
configuration of tweezers. The Terror after the second equal sign represents the second
summand after the first equal sign. It contains how the ideal field amplitude Tideal
is modified by the change to the beam on the SLM. We assume that B(x, y) repre-
sents a large scale beam, meaning it only has spatial frequency components smaller
then the inverse objective size, as is the case in most SLM applications. The term in
the Fourier transformation of Terror has the same short scale periodicity as the term
in the Fourier transformation of Tideal. This means when the ideal tweezers pattern
has a periodicity, Terror will also show spots with the same periodicity. It will there-
fore create spots which are interfering with the ones created by Tideal and spoil there
amplitudes and phases. Furthermore it will create spots outside the pattern follow-
ing the same periodicity which will be referred to as ghost traps. This can be seen in
Figure 3.5 where a 5 by 5 array of homogeneous spots was first Fourier transformed
then the field amplitude was replaced by the field amplitude of large scale Gaussian
beam incident on the SLM and a Fourier transformation back was performed. This is
exactly the expected result when one would just mimic the phase distribution but not
the intensity distribution. Notably in both shown cases the originally homogeneous
intensity distribution among the tweezers is lost and around the array one can see the
appearance of ghost traps
By Parseval’s theorem and the triangle inequality the L2-norm, denoted as | · |2, of
Terror, which is proportional to its total power, is always smaller then or equal to the
L2-norm of the deviation between B(x, y) and |∑i P(θi,Ai)

(x, y)|

|Terror|2 ≤
∣∣∣|∑

i
Pθi,Ai(x, y)| − B(x, y)

∣∣∣
2
. (3.2)

Therefore the discrepancy between the intensity distribution of the incident beam and
the intensity distribution one finds by Fourier transforming the trap array yields an
upper bound for the deviation from having homogeneous tweezers. It turns out that
this also provides one with a good heuristic measure on the homogeneity. This is il-
lustrated in Figure 3.5 as well. For the case of all tweezers having the same phase,
the overlap between the amplitude pattern coming from the superposition of plane
waves and the almost flat Gaussian input amplitude is small. This leads to a large
Terror and shows up in large corrections of the amplitudes in the pattern and strong
ghost traps. In case of the tweezers having random phases one can already tell by eye
that the overlap between the incident beam and the amplitude of the Fourier trans-
formation is significantly bigger and one sees a huge reduction of amplitudes in the
ghost traps and the tweezers are significantly more homogeneous compared to the
other case.

3.3.2 A Toy Algorithm for Homogenous Tweezers Arrays

Even in the case of random phases there are significant deviations on the order of
20% from the desired pattern. This raises the need for a clever way to optimize for the
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Figure 3.6 – Phasor domain of toy algorithm. The toy algorithm described in
the main text. One starts at the left with an initial guess of the phasors with
the desired amplitude. Then one goes to the plane wave domain, replaces the
amplitude distribution with that of the incident beam and goes back to the pha-
sors domain. This results in a modification of I1 by a new phasor E1 yielding J1.
Subsequently J1 is rescaled to the desired amplitude by adding C1. This results
in the new phasor Ĩ1. To start the next iteration I1 is replaced by Ĩ1.

minimal non-uniformity by choosing the relative phases of the traps appropriately.
Various different approaches had been realized in the past. Here we take the way of an
iterative Fourier transformation algorithm (IFTA) and discuss how such an algorithm
indeed can seek for a maximal homogeneity among the traps.
As said right in the beginning of the previous section each spot can be described by the
tuple (θi, Ai). In the following it is instructive to represent this by a so called phasor,
which can be understood as a vector in the complex plane, enclosing the angle θi with
the real axis and having a magnitude of Ai. To not lose track of the ghost traps, which
only appear at initially known positions as argued before, we include traps at those
positions with a desired amplitude Ai = 0 in our algorithm. This is not required for
the algorithm to work, but will make the subsequent argument for its convergence
easier to follow. We start from an initial guess of the tweezers phase θi and a desired
amplitude Ai for each trap, described by the phasor Ii. The index again denotes the
chosen trap. To simplify notations we will only look at the phasor I1. Transforming
all traps to the plane wave superposition, replacing the amplitude by the incoming
beam amplitude and transforming back adds a correction phasor E1 to I1. The sum
of both phasors is denoted as J1. This was already described above stated in terms of
phasors. Now we will add another correction phasor C1 by hand which brings J1 back
to the desired amplitude but keep its orientation. With the so found new phasor Ĩ1 the
procedure is repeated. The Ĩ1 together with all the other Ĩi, found in the same manner,
substitute the Ii of the previous step. This procedure is depicted in Figure 3.6.
To see that this converges to a desired solution one notes that |C1|2 ≤ |E1|2, with
| · |2 denoting the squared length of the phasors. This is obvious from geometrical
considerations. Furthermore the relation |Terr|2 = ∑i |Ei|2, where it was used that
all traps are modeled by delta distributions, holds and allows for the application of
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Parseval’s theorem in the phasor picture. We find that

|Terr|2 = ∑
i
|Ei|2 ≥∑

i
|Ci|2 = |∑

i
PCi(x, y)|2

where ∑i PCi(x, y) denotes the plane wave superposition for all the tweezers charac-
terized by the phasors Ci. Note that this is nothing but a Fourier expansion. In the last
equal sign the adopted Parseval’s theorem was applied. Using |∑i PJi(x, y)| = B(x, y),
which is true by construction, we find

|∑
i

PCi(x, y)|2 = |∑
i

PJi(x, y)−∑
i

PĨi
(x, y)|2 ≥

∣∣∣B(x, y)− |∑
i

PĨi
(x, y)|

∣∣∣
2

where the triangular inequality was used. All together and by applying Equation 3.2
we find

|Terr|2 ≥
∣∣∣B(x, y)− |∑

i
PĨi

(x, y)|
∣∣∣
2
≥ |T̃err|2

where T̃err is associated to Ĩi. With that it is shown that the corrections Terr reduce or
stay the same after each iteration. This makes the algorithm converging.

3.4 The Gerchberg-Saxton Phase Retrieval Algorithm and
Modifications

The algorithm described in the previous section only works in the case of well sep-
arated tweezers and it can only leverage the potential of the fast Fourier transform
algorithm (FFT) introduces by Cooley and Tukey [67] in special cases. Fortunately, it
is just a version of the Gerchberg-Saxton algorithm, which will be introduced in the
following, boiled down to the specific problem of septerated tweezers.

3.4.1 Phase Retrieval Using the Gerchberg-Saxton Algorithm

The Gerchberg-Saxton algorithm, analog to the algorithm described above, relies on
back and forth propagation between the real plane and the diffraction plane using a
suitable and cost-efficient propagator. Most commonly the fast Fourier transforma-
tion is used for this as for most systems the corresponding approximations hold. The
following discussion will focus on this case. To improve the accuracy other propa-
gators have been utilized in the past with the drawback of being significantly more
costly in computation time, but achieving improved results especially for large scale
potential landscapes [68].
The input to the algorithm are two amplitude distributions of which one corresponds
to the incident beam profile in the plane where the SLM sits, referred from now on
as SLM plane, and the other one to the desired amplitude distribution in the Fourier
plane, wich we will refer to from now on as tweezers or trap plane. Both are evaluated
on a two dimensional grid of the same dimension Nx × Ny , which are interlinked in
their length scales by the Fourier transformation [69]. The physical dimension of a
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Figure 3.7 – Modified Gerchberg-Saxton algorithm. case (1)© closed and (2)©
open: The usual Gerchberg-Saxton (GS) algorithm to find a phase pattern for
the SLM. The starting point is the upper left box. The initial phase φ(x) is cho-
sen at random. (1)© closed and (2)© closed: The weighted Gerchberg-Saxton (WGS)
algorithm. Same as the GS, but now the individual traps are attenuated or am-
plified depending on the outcome of the FFT. The exact form of this is discussed
in the main text. (1)© open and (2)© closed: The Gerchberg-Saxton algorithm with
fixed phase (FixPhaseGS). The phase is not put forward any more in the trap
plane. Instead always the phase profile of the first iteration is used. The only
way the SLM phase pattern can evolve is via to the feedback mechanism of the
weighted Gerchberg-Saxton algorithm(WGS). All those cases are combined to
give a high performing algorithm for finding the SLM pattern.

unit in the tweezers plane ∆̃x × ∆̃y is related to the dimension of a unit in the SLM
plane ∆x × ∆y by

∆̃x × ∆̃y =
λ f

Nx∆x
× λ f

Ny∆y

and vice versa. A single iteration of the algorithm looks as follows:

step 0: preparation for first iteration. In case of the iteration step to be the first one,
the amplitude distribution of the incident beam is combined with either a ran-
dom or initially guessed phase distribution. This is considered to be light field
in the SLM plane.

step 1: propagate to trap plane. The light field with the incident beam profile as am-
plitude and the phases from the previous step is propagated to the trap plane
using the fast Fourier transformation.

step 2: manipulate in trap plane. In the trap plane we keep the calculated phase dis-
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tribution but replace the amplitude distribution by the desired amplitude distri-
bution.

step 3: propagate back to the SLM plane. The newly obtained light field is propa-
gated back to the SLM plane using the inverse fast Fourier transformation.

step 4: manipulate in SLM plane. Analogous to the manipulation in the trap plane
we keep the phase information of the calculated light field but replace the am-
plitudes by the amplitude distribution of the incident beam.

step 5: repeat or stop. The algorithm is either continued repeating from step1 again
or stopped. We typically stop the algorithm after a view tens of iterations as
the convergence rate to the desired tweezers amplitudes gets very small and we
recycle the output as the initial guess for a modified version of the Gerchberg-
Saxton algorithm.

The algorithm is depicted in Figure 3.7. An argument for the convergence goes along
the same lines as for the toy algorithm introduced in the previous section. One just
needs to replace the phasor of the traps by the phasor of the individual pixels in the
tweezers plane.

3.4.2 Modifications to the Gerchberg-Saxton Algorithm

The Gerchberg-Saxton algorithm as introduced in the preceding section is not guar-
anteed to converge within a realistic number of iterations and indeed the convergence
to the desired amplitudes in the tweezers stops after a view tens of iterations with a
rather unsatisfying result. Fortunately, the algorithm can be used as a starting point
for more efficient algorithms by making small adjustments to it, of which the MRAF
[70] and OMRAF [68] are examples. In the case of generating multiple diffraction lim-
ited dipole traps more specific modifications can be made. A first improved version
uses the amplitudes of the calculated traps in the above introduced step 1 and feeds
them forward to step 2. For this modification it is required that step 1 already pro-
duces tweezers at the right position, but with potentially wrong amplitudes. This is
sometime called weighted Gerchberg-Saxton algorithm (WGS) [71]. Within this, step
2 is replaced by the following:

step 2’: manipulate in trap plane. The amplitudes An
i , with n denoting the tweezers

and i indexing the iterations of the algorithm, of the tweezers array in the cal-
culated pattern are extracted. The phases of the calculated pattern are kept and
the amplitude is replaced by an amplitude distribution where the individual
tweezers are weighted with the factors

gn
i =

An
goal

An
i
· gn

i−1 (3.3)

where An
goal is the desired amplitude for the trap n.
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A second modification follows along the line of the first modification and requires
that step 1 already produces trap amplitudes close to the desired ones [72] .

step 2”: manipulate in trap plane On the iteration the phase distribution of the cal-
culated light field φ1 in the trap plane is saved. From that iteration step on the
calculated intensity distribution is used to calculate the weighting factors as in
Equation 3.3. The amplitude of the light field is replaced by the desired am-
plitude distribution with each trap weighted with the corresponding weighting
factor. The phase distribution is replaced by the phase distribution φ1. This
implementation will be referred to as fixed phase Gerchberg-Saxton algorithm
(FixPhaseGS).

How both modifications influence the convergence of the algorithm will be discussed
in the next section.
As optical systems always incorporate imperfections like aberrations, the Fourier
transformation might be an insufficient propagator and the trap pattern might still
show deviations from the desired trap depth exceeding those of the calculation. In-
stead of using the calculated amplitude distributions one can use a camera placed in
the trap plane or in-situ measurements of the trap depth with the atoms to find the
weighting factors gn

i [73].

3.5 Numerical Results and Stability Analysis

The algorithm used to obtain the phase distribution, which is to be displayed on the
SLM, is a combination of the GS, the WGS and the FixPhaseGS. In this section the
concrete implementation is explained and the convergence of the algorithm as well as
the stability of the result are discussed.

3.5.1 Implementation of the Algorithm

As input to the algorithm the positions and intensities of the desired traps as well as
the array dimension Nx × Ny and dimension of a unit in the SLM plane ∆x × ∆y, as
introduced in subsection 3.4.1, need to be supplied. For the first step 10 iterations
with the GS are performed. Therefore the traps are modeled as Gaussians with a
waist given by the width of the point spread function of the objective used in the
experiment. These are summed together and evaluated on the grid in the trap plane.
The resulting matrix will be referred to as Tarray. The intensity distribution of the
beam in the SLM plane is modeled as well as a Gaussian beam which is cut by an
outer aperture with the radius of the objective and an inner aperture with the radius
of the hole of the objective. This is evaluated on the grid in the SLM plane and the
result will be referred to as Sbeam. Tarray and Sbeam are then used as the amplitude
distributions to run the GS. To incorporate the discrete nature of the phase shifts on
the SLM, the propagator from the trap plane to the SLM plane is extended to yield
only discretized phase values.
The second step runs 10 iterations with the WGS on the result obtained in the previous



3.5 Numerical Results and Stability Analysis 29

step. To be able to do the weighting the amplitude distributions of the traps are now
individually evaluated on the trap plane grid and referred to as T n

trap where n indicate
the trap. Note that Tarray = ∑n T n

trap. The weighting factor gn
i for each trap is evaluated

using

an
i =
|T̃i ×el T n

trap|1
|T n

trap|1

gn
i =

∑n an
i

an
i

gn
i−1

where T̃i denotes the resulting amplitude distribution matrix from the propagation to
the trap plane, ×el is the elementwise multiplication of matrices and | · |1 is the matrix
1-norm or respectively the sum over all absolute values of the matrix entries. The new
Ti, which is the substitute of T̃i , is given as

Ti = ∑
n

gn
i T n

trap.

The propagators are identical to those of the first step.
The third step runs 20 iterations with the FixPhaseGS starting with the result of the
previous step. Also the gn

10 are handed over to this step and used as a starting point
for weighting factors. The implementation is similar to the one of the WGS with the
only difference that the phase distribution θ̃i after the propagation to the trap plane is
replaced by θ̃1. The so obtained phase pattern is then used in the experiment.
In the subsequent two section the algorithm and the results will be characterized.

3.5.2 Numerical Results

To investigate the convergence behavior of the algorithm introduced in the previous
section, it was run as described. In each iteration step the field amplitude was ex-
tracted using the same method as for the calculation of the weighting factor in the im-
plementation of the WGS and FixPhaseGS. The power distribution among the tweez-
ers is found by squaring this result. To compare the used algorithm to algorithms just
using GS or GS together with WGS the evaluation was branched whenever the algo-
rithm changed from one GS derivate to the next and the previously used algorithm
was continued in parallel. For a single exemplified run of the algorithm, which gener-
ated a 5× 5 square array, the results are illustrated in Figure 3.8. While the GS reaches
10% standard deviation in the intensities among the tweezers the modified versions
of the GS outperform this by 2 and 4 orders of magnitude after 100 iterations, where
all the algorithms have settled. One notes that while the GS algorithm only saturates
the other algorithms eventually go up again. The strict convergence derived for the
Gerchberg-Saxton algorithm does not hold with the same rigor for the other derivates.
The intensity and phase deviations of the individual traps from their final value are
also shown in Figure 3.8. While there is a clear kink visible in the behavior of the
intensity when the switching from the GS to the WGS happens, the qualitatively be-
havior of the phase is only weakly effected.
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Figure 3.8 – Convergence characteristics of the algorithm. The top panel
shows how the relative deviation of the phase from its final value evolves with
the iteration number. A randomly chosen trap is highlighted in red for demon-
stration. The middle panel shows the same as the top panel for the relative de-
viation of the final intensity. The lower panel shows how the algorithm used in
this work (red) compares to other algorithms not involving all the modifications
of the GS. The data was generated by a single run of the algorithm. Whenever
the algorithm changed, the original algorithm was branched of and continued
to 100 iterations. All graphs share their horizontal axis.
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Figure 3.9 – Convergence and result of the algorithm used in our experiments.
(a) The resulting trap uniformity of the algorithm for different numbers of dis-
crete phase steps (gray dots). The phase discretization of the Hamamatsu SLM
is shown in red. (b) The result of the algorithm in the tweezers plane. (c) The re-
sulting phase pattern of the algorithm which is used on the SLM. (d) The ideal
input beam which, together with the phase pattern, would result in the ideal
trap array.
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Figure 3.10 – Stability against variations of beam parameters. A calculated
pattern was numerically exposed to different input beams and the homogene-
ity of the resulting arrays is shown. (a) The resulting uniformities of the pattern
for different beam diameters. The pattern was calculated for a 1/e2-diameter of
12 mm on the SLM. The upper horizontal axis shows the diameter the consid-
ered beam has on the SLM and the lower horizontal axis shows the diameter on
the objective. 1 mm deviation in the beam diameter results in an non-uniformity
of 1%. A 10% non-uniformity is reached when the beam diameter deviates by
5 mm on the SLM. (b) The same as in (a), but with varying displacement of the
beam. At a 1 mm deviation the non-uniformity reaches about 10%.

Figure 3.9 illustrates the final uniformity of the traps depending on the discretiza-
tion of the phase in the SLM plane as well as the final result of a single run of the
algorithm. One can observe a linear increase in the homogeneity with an increasing
number of discrete steps to sample the phase. When no phase discretization is ap-
plied an exponential decrease in the uniformity with iteration number, which does
not saturate, was observed. This can be understood from a linear scaling behavior of
the FixPhaseGS with the deviations in the trap depth and the correction for this. This
scaling is a result of the linearity of the Fourier transformation, Parseval’s theorem
and the linearity of the weighting factor with deviations from the desired field am-
plitude. That hints towards that the algorithm is getting close to a uniformity limit
imposed by the discretization of the phase.
The amplitude distribution in the SLM plane which would lead, together with the
obtained phase distribution, to a perfectly homogeneous power distribution among
the tweezers qualitatively has an envelope resembling that of the incoming Gaus-
sian beam. But one also notes that the amplitude distribution strongly fluctuates on
shorter scale. This does not necessarily influence the uniformity in the pattern, but
leads to the appearance of ghosts traps. Therefore this limits the efficiency of the con-
version from incident power on the SLM to the power add up over all desired traps.
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3.5.3 Sensitivity to Beam Misalignment

Another important benchmark is the sensitivity of the generated pattern to typical
experimental imperfections. Even the best algorithm with the best result is not us-
able if a slight deviation from the assumed input beam in the experiment spoils the
uniformity. Therefore the sensitivity to displacements and deviations in the waist of
beam incident on the SLM of the uniformity where evaluated. The results are shown
in Figure 3.10. While a mismatch of the beam waist of 2 mm on the SLM only lead to
a non-uniformity of about 1%, a displacement of the beam of 1 mm on the SLM leads
to about 10% non-uniformity.

3.6 Experimental Results

In this section a typical sequence to load atoms into the optical tweezers as well as a
way of imaging the atoms will be described. Following that, an in-situ characteriza-
tion of trap frequency, trap depth and a thermometry will be carried out.

3.6.1 Sequence to Load Atoms in the Optical Tweezers

Several conditions need to be fulfilled to be able to load atoms into the optical tweez-
ers. The optical dipole traps are conservative in character, meaning a single atom
coming form free space would just pass through the potential without ever being
bound to it. To be able to trap the atom it needs to be sufficiently cold and sufficiently
coupled to a thermal bath to dissipate enough kinetic energy to not be able to climb
out of the trap again. This can either be achieved with a sufficiently dense cloud of
atoms which allows for evaporation into the traps [74] or by coupling to a photonic
bath in form of laser cooling, as typically done and also done in this thesis [55]. Un-
fortunately, neither a red molasses on the D2-line nor a gray molasses on the D1-line
in Potassium-39 has a working region, in terms of their detuning, large enough to
work properly inside and outside the 1064 nm trap at the same time. This is not only
due to the ground state light shift but critically worsened by the large light shift of
the excited states of the D-lines in the presence of the 1064 nm trapping light. To cir-
cumvent this problem the approach taken in the present experiment is to intertwine
trapping and cooling in the time domain, meaning that the trapping and cooling light
are never on at the same time but interchange their on-times in a rapid succession. In
doing so, the light shift from the trap is effectively eliminated [75]. This fast switching
of the light will be referred to as chopping. As long as the rate with which the switch-
ing happens is sufficiently above the trap frequency and high enough to prevent the
atoms in the traps from leaving it while it is off, this approach had proven to work
very well with the red molasses. With the gray molasses this approach failed which is
most probable due to the fact that the gray molasses relies on the mapping of atoms
in dark states to be cold. When the cooling light is switched off and on again the dark
state had evolved partially into bright states with a rate of the hyper fine structure
splitting of the ground state of 461 MHz. When the switching frequency is not much
faster than this, saying that cold atoms are the one in dark state fails and the gray
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Figure 3.11 – Loading and imaging single atoms in optical tweezers. (a) The
on/off timing of lasers for the Zeeman slower (ZS), the magneto optical trap
(MOT), the gray molasses (GM) and the dipole trap array (TRAP) as well as the
timing of the imaging camera (CAM) are depicted. The time axis is not to scale.
The purpose of the sequence is to load atoms in the traps and to image them
immediately afterwards. (b) A typical histogram of the signal from the camera,
when only regions of interest containing a few pixels are considered. The re-
gions of interest are placed at the positions where a signal from a trapped atom
is expected. The black dashed line is placed at a typical threshold. When a re-
gion of interest shows a signal above this the trap is considered as occupied. (c)
Camera picture after a single run of the sequence depicted in (a). (d) averaged
camera signal over many sequence runs.
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molasses is subject to heating. This requirement on the switching however exceeds
the constraints imposed by the trap with a trapping frequency 3 orders of magnitude
lower.
In addition to that, to achieve a sufficient loading rate into the tweezers, one wants
as much atoms as possible in the neighborhood of the trap in a velocity class which
can be cooled fast enough, when the atoms are passing through the trap, to not eject
them again. For that, one wants a sufficiently cold and dense cloud of atoms to load
the tweezers from.
An experimental timing sequence which takes all these considerations into account
is shown in Figure 3.11. It starts with a MOT which is loaded for 250 ms from a Zee-
man slower. When the Zeeman slower is switched off the MOT is held for 20 ms
and optically compressed by ramping the beam powers and detunings within 50 ms.
Subsequently the MOT is switched of and the atom cloud is further cooled by a gray
molasses for 20 ms. To load the atoms in the tweezers the MOT light, which is now
tuned to a red molasses configuration, as well as the tweezers light are chopped
with 1.4 MHz as described before. After 40 ms of tweezers loading the MOT light is
switched off again. A delay of 30 ms allows the residual atoms which are not trapped
to escape. As now potentially multiple atoms reside in the individual traps one has to
make sure to eject all but one of them in the next step. This is done by again turning
on the chopped MOT light. It is close enough red detuned to lead to light assisted
collisions which in the majority of cases leads to a loss of both atoms, which had par-
ticipated in the collision, from the trap. Thus it projects an even number of atoms to no
atoms left in the trap and an odd number of atoms to a single atom left. This is known
as parity projection. One notes that this procedure achieves the goal in a rather poor
fashion since it limits the loading probability of a single trap to roughly 50%. In the
sequence this mechanism is exploited for 10 ms. With this the goal of loading single
atoms in the trap is achieved and one can take this as the starting point for all kind of
experiments. However in most cases it is desirable to at least know which of the traps
are loaded and which are not. For this purpose the chopped MOT light is switched
on again and the fluorescence signal of the atoms is spatially resolved detected with
the imaging path described in section 3.2. The camera is exposed for 10 ms.
Results of this imaging are shown in Figure 3.11. On the shown histogram one can
clearly distinguish two peaks, one coming from the background signal of the camera
and the other one from a single atom in the trap. The absence of higher peaks proofs
that the MOT light indeed only leaves one or zero atoms in the traps. The strongly
reduced probability of occurrence for count numbers between the peaks allows the
conclusion that losses of atoms during the imaging are small. The picture taken in
a single run of the experiment indeed shows that only about 50% of the traps are
loaded. An analysis of about 8500 shots yielded the loading probability to be 54%
with a standard deviation of 3% between the different tweezers. The average picture
shown is taken from the same 8500 shots.
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Figure 3.12 – Spectroscopy on the D1-line of trapped atoms. (a) Shown is
the loss probability of an atom in a single trap when light on the D1 line with
varied detuning is incident on it. The experimental data is represented by the
round markers. The statistical error bars are below the marker size. Two well
separated peaks can be resolved. The one lower in frequency corresponds to a
transition to the 4P F = 1 hyper fine state and the other one to the 4P F = 2 state.
The offset frequency is set to resonance on the free space 4P F = 2 resonance.
Two Gaussians where fitted to the data represented by the gray curve. The
position of the resonances where extracted from the fit and represented by the
vertical lines. Above the resonance frequencies in MHz are written. The width
of the measured lines is 10 MHz which is 4 MHz above the natural line width.
(b) Shown are the line shifts of the 4P F = 2 transition of all traps in a 5 by 5
array with a spacing of 10 µm. The vertical dark gray line indicates the mean
shift among all traps and the light gray region the standard deviation from it.

3.6.2 In-situ Characterization of the Traps

To characterize the shape of the traps a direct characterization with the atoms is car-
ried out. Therefore the response of the loading probability to scanable parameters of
the experiment is measured. This allows to deduce the trap depth, the trap frequen-
cies and the temperature of the trapped atoms.

Light Shift Measurement

To determine the peak intensity in each trap the different light shifts of the 2S1/2 and
2P1/2 as found in section 2.5 are exploited. They lead to a shift in the D1-line which
can be probed by a near resonant laser on this transition. Therefore the detuning with
respect to the free space D1 transition is scanned within several runs of the experi-
ment. When the laser gets resonant to the line shifted by the trap the atom experi-
ences strong recoil heating and gets expelled from the trap. The sequence used for
this measurement extends the sequence discussed in the previous section. After tak-
ing the image the trap light is switched from the chopping mode to the continuous
mode of operation. Subsequently the gray molasses light, which is put at a certain
detuning, is switched on for 1 ms. This time was chosen for good contrast but no
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saturation. After that, another picture is taken the same way as the first picture.To
extract the probability of keeping the atom for a certain detuning multiple runs for
each detuning are performed.
The results obtained from a single trap, which is part of a 5× 5 rectangular pattern
with 10 µm spacing, are shown in Figure 3.12. One can clearly see two resolved lines
which originate from the hyper fine structure of the 2P1/2 level. A function with two
Gaussians is fitted to the data to extract the resonance frequency. Using a Gaussian
as a model for the line is justified by the Doppler broadening and a Gaussian type
of broadening, which comes from different light shifts at different positions inside a
single trap. The same type of analysis is carried out for all the traps in the pattern
and is shown in Figure A.1. The extracted resonance shifts of the F′ = 2 transitions
for all the traps in the pattern are shown in Figure 3.12. From this we find the mean
ground state shift and therefore the trap depth to be Ūtrap = h × 15.5 MHz with a
relative standard deviation of 9% among the tweezers. The largest shift exceeds the
mean by 12% and the smallest shift is 18% below the mean. This error is consistent
with possible alignment errors of the trap beam on the SLM and possible aberrations
which are not accounted for in the compensation pattern.

Parametric Heating Measurement

To measure the trap frequency a so-called parametric heating measurement was per-
formed [76]. For this the power of the tweezers was periodically modulated with
different frequencies. When the modulation frequency hits twice the trap frequency a
strong heating effect can be observed. A rigorous derivation is carried out for example
in reference [45, 46]. The sequence used to measure this effect again begins with the
sequence described in subsection 3.6.1. After that a function generator is triggered to
add a sinusoidal modulation onto the trap beam intensity. This is done by exploiting
the AOM used for the intensity stabilization. The modulation is kept on for 75 ms.
Afterwards the chopping is turned off and to increase the contrast of this measure-
ment the trap light power is rapidly switched to 7.5% of its original value and slowly
ramped up again to 25% within 5 ms. This allows atoms, which where subject to para-
metric heating but did not quite make it to escape during the modulation phase, to
also escape their traps. Note that this also allows to decrease the modulation time and
to probe predominantly the harmonic region of the trap. After this the chopping of
the trap is turned back on and another picture is taken.
The results of this measurement are shown in Figure 3.13. In subfigure (a) the modula-
tion spectrum of a single trap is shown. One can clearly see three separated peaks. The
lowest in frequency is attributed to the axial direction while the other ones are to be
ascribed to the radial directions. The spectra of all the traps are shown in Figure A.2.
The two separated peaks for the radial directions could not always be resolved but
the fact that the radial axis are resolvable in some measurements hints towards signif-
icant aberrations in our system. In the subfigure (b) the radial trap frequencies, which
are the halved resonance frequencies, are shown. From the measurement on the trap
depth and the diffraction limit of the objective one would expect a trapping frequency
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Figure 3.13 – Parametric heating spectroscopy. The results of a modulation
spectroscopy for a rectangular 5× 5 pattern with 5 µm lattice constant. (a) A
typical parametric heating spectrum of a single trap. Shown is the measured
probability for a trapped atom to survive the modulation at different frequen-
cies (circles). The red line connecting the points is a guide to the eye. The
lowest measured points in the resonance dips are taken to be the resonance
frequencies (squares). On this a conservative hand adjusted confidence inter-
val is assumed (light gray regions). On top of the graph the extracted res-
onance frequencies are shown. (b) The radial trap frequencies are extracted
by taking the higher two resonances for each trap halved (circles). The mean
of ω̄r = 2π × 138(2) kHz is indicated by a gray line. The standard devi-
ation around that mean of 2π × 10(2) kHz is indicated as a horizontal light
gray bar. (c) Same as (b) but for the axial direction. The mean is found to
be ω̄z = 2π × 19(1) kHz and the standard deviation among the tweezers is
2π× 1 kHz. (d) The ratio of the two radial trapping frequencies is shown in the
same way as the trapping frequencies. The mean of it is calculated to be 0.9 and
its standard deviation among the tweezers is 0.1. Note that all values are below
one because it is not possible to distinguish the axes of the traps in the measure-
ment. Therefore the smaller value is always divided by the bigger one. Note
also that when not two upper resonances where resolved in the measurement
the frequencies were taken to be equal.
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of
ωideal

r = 2π × 253 kHz.

Compared with the mean measured trapping frequency of

ω̄r = 2π × 138 kHz

and the maximal measured trap frequency of

ωmax
r = 2π × 160 kHz

there is a significant deviation which can probably also be attributed to aberrations.
Note that the comparison to the highest trap frequency is meaningful as the ideal
frequency is an upper bound, which can not be exceeded.
From formula 2.5 we find that

ωideal
z

ωideal
r

=
λ

πw0
√

2
≈ 0.22

which also deviates from the experimental value of ω̄z/ω̄r = 0.14, consistent with
what one could expect from aberrations resulting in less tight focussing.

In-situ Thermometry

The temperature is rather unrelated to the trap geometry and depends more on the
loading and imaging procedure. Nonetheless it can provide important insights into
the loading and is important for temperature related effects like the Doppler shift
which can lead to a decrease in the coherence time in Rydberg experiments.
In the case of a single atom in a trap the temperature T is related to the statistical
distribution of the population p(En) of the motional energy levels by the Boltzmann
distribution.

p(En) =
1
Z

e−
En

kBT

where Z is chosen to normalize the probability distribution. To measure the temper-
ature of the atoms in the trap one needs to probe this distribution by some means.
To this end the following method was applied. Starting with atoms in some thermal
state in the trap the potential is then suddenly switched down to a fraction of its initial
depth. The switching needs to be faster then the inverse trap frequency to make this
process diabatic. After this the populations of levels with energies exceeding the new
trap depth are mapped to the unbound continuum. Only atoms which were occupy-
ing energy levels below this value remain trapped. With that the loss statistics after
such a sudden change is fully determined by the population distribution among the
energy levels before it. One can probe the full distribution by switching to different
trap depths in subsequent experimental runs.
We can derive a simple model for loss probability ploss depending on the trap depth
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Figure 3.14 – Thermometric in-situ measurement. The result of the tempera-
ture measurement procedure introduced in the main text. (a) The experimental
results (circles) obtained on a single trap. The survival probability is plottet
against the trap depth after the rapid switch down of the traps. The model
developed in the main text is fitted to this data (solid line). The so obtained
temperature is written next to the graph. The statistical error bars are mostly
smaller then the marker. The error on the temperature is extracted from the
fitting error. (b) The temperature of all traps is shown (circles) and the mean is
indicated by a gray line and found to be Tmean = 23 µK. The light gray region
shows the standard deviation of ∆Tmean = 1 µK.

Eprobe after the sudden switch. By means of a simple integration we find

ploss(Eprobe) = 1− 1
Z

∫ Eprob

E0

e−
E

kBT dE = 1 +
kBT

Z

(
e−

E0
kBT − e−

Eprob
kBT

)

where E0 is the initial trap depth. Here the spectrum was assumed to be continuous,
which is justified as deviations from this can be absorbed in Z which is a fitting pa-
rameter of the model.
To experimentally probe ploss the following sequence was used. Starting with the
loading sequence of subsection 3.6.1 the traps are rapidly switched to a fraction of
its initial depth while still maintaining the chopping. After 1 ms holding time at this
value the trap depth is ramped up again to its initial value within 5 ms. 45 ms after-
wards the second picture is taken. This is done for different fractions of the lowered
trap depth.
The results obtained are shown in Figure 3.14 and Figure A.3 . The absolute trap
depth is taken from the light shift measurement of section 3.6.2 which was done on
the same pattern. The function fitted to the data is given as

p f it(Eprob) = ao f f + aZe−
Eprob

aT
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where ao f f , aZ and aT are fitting parameters. The temperature is extracted using T =
aT/kB. Note that this fitting parameter is largely decoupled from systematic errors. The
so found mean temperature is Tmean = 23 µK. This is clearly below the Doppler limit
on the D-lines and comparable to another state-of-the-art quantum gas experiment
with a comparable cooling sequence for Potassium [77].

3.6.3 A Talbot-like Effect

One degree of freedom which is challenging to control in the experiment is the inten-
sity pattern away from the trap plane. It is known that intensity patterns consisting of
sports arranged in a rectangular periodic structure replicate themselves after a propa-
gation distance of zT = 2a2/λ, with a being the patterns periode. For fractions of this
distance fractional replications of the pattern build up. This effect was first observed
by Talbot and later theoretically explained by Rayleigh [78]. It can be generalized to
the claim that periodic arrays of spots reproduce themselves after a certain near field
distance. Today the Talbot effect still attracts considerable attention and schemes to
produce exotic lattice geometries for ultra cold atom experiments based on it have
been proposed [79]. In [80] it has been observed and utilized for the realization of
large-scale multi layer systems in the context of single atom tweezers. In the here pre-
sented experiment we can not expect the Talbot effect to appear in such a clean form,
as the random relative phases of the light field in the tweezers break the required pe-
riodicity. Nonetheless we will see in the next section by means of a simulation that
indeed also in that case considerable intensity maxima build up outside the tweezers
plane at a near field distance, which are potentially strong enough to trap atoms. Af-
ter this analysis we will turn to an experiment carried out to verify if atom trapping
outside the tweezers plane can be observed.

Calculation of Light Intensity Distribution in Axial Direction

To check for the other intensity maxima in the axial direction one has to find a method
to propagate the light field to an arbitrary plane in the propagation direction of the
light, here chosen to be the z axis. This can be achieved by means of the propagation of
the angular spectrum of the light field in some plane perpendicular to the propagation
direction [81]. The angular spectrum associated to the light field Uz(x, y) in the plane
at position z is given as

Az(a/λ, b/λ) = FT [Uz(x, y)](a/λ, b/λ).

From requiring that Uz(x, y) fulfills the Helmholtz equation ∆Uz(x, y) + k2Uz(x, y) =
0 one finds that Az(a/λ, b/λ) has to satisfy

d2

dz2 Az(a/λ, b/λ) +

(
2π

λ

)2

· (1− a2 − b2) · Az(a/λ, b/λ) = 0.
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Figure 3.15 – Calculated intensity distribution along the vertical axis. In the
lower picture the intensity distribution of a 5 by 5 pattern along a horizontal axis
(y-axis) and the axis in light propagation direction (z-axis) is shown. The zero
of the z-axis is the tweezers plane. Over the x-axis the maximum is taken. This
makes it possible to identify potential intensity maxima away from the tweez-
ers plane which can trap atoms. The first vertical line is placed at the tweezers
plane and the horizontal intensity distribution is shown. The trap pattern is
nicely visible. The second vertical line is placed where a potentially atom trap-
ping maximum in the main picture is identified. In the associated picture above
again the corresponding horizontal plane is shown. One can clearly see that a
very localized spot appears here with 50% of the power of a desired tweezers.
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Figure 3.16 – Talbot-like effect in the Experiment. Shown are experimentally
obtained averaged pictures of the atoms trapped by the SLM beam. The axial
position of the traps was changed using the Fresnel lens pattern on the SLM.
Thereby effectively the imaging plane is shifted relative to the trap plane. With
that it was possible to scan for planes outside the tweezers plane which trap
atoms. Indeed a very localized signal at 26 µm away from the trap plane is a
clear indication that atoms are trapped also in this plane.

An elementary solution can be found to be

Az(a/λ, b/λ) = A0(a/λ, b/λ) · exp
(

i
2π

λ

√
1− a2 − b2z

)
.

With that a way which is easy and cost efficient to implement on a computer is
found. Starting from an light field in one plane one takes the Fourier transforma-
tion to find the corresponding angular spectrum, multiplies it by H f reespace

z (a, b) =

exp(i2π
√

1− a2 − b2z/λ) and takes the inverse Fourier transformation.
Our goal is to calculate the whole intensity distribution around the tweezers plane for
a calculated phase pattern on the SLM. Therefore the second ingredient one needs is
the lens which focuses the beam down. In the thin lens approximation the propaga-
tion of the light through a lens is assumed to just result in a local phase shift in the
plane of the lens. This is modeled by multiplying the light field by

Hlens
f (x, y) = exp

(
i
2π

λ
(x2 + y2)

1
2 f

)
where f is the focal length. To calculate the intensity distribution around the focus of
the lens both manipulations are subsequently applied. The results for a phase pattern
associated to a 5× 5 rectangular lattice with a lattice constant of 5µm are shown in
Figure 3.15. From this, one sees that indeed the regular structures expected from the
Talbot effect do not show up, but still significant intensity maxima outside the trap
plane can appear at distances which do not only disturb the imaging but might also
effect the Rydberg mediated interactions in the trap plane.
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Experimental Observation of the Talbot-like Effect

The flexibility of the SLM allows to directly observe trapping of atoms out of the
plane. For this the usual sequence to load and image atoms described in subsec-
tion 3.6.1 was used. To scan different distances from the trap plane a Fresnel lens
pattern with varying focal length was superimposed on the SLM. The focal lengths
of the Fresnel lens was of several meters and therefore well in the range where the
pixelation of the SLM can be neglected. The results of this measurement are shown in
Figure 3.16. One can clearly see that the signal from atoms trapped in the trap plane
washes out after a view µm. After some more distance localized signals seem to ap-
pear again and at a distance of 26 µm three clearly localized signals can be identified.
This distance lies in the same order of magnitude as the Talbot distance of≈ 50 µm for
this pattern. The signal can also not be attributed to light scattered by atoms trapped
in the shifted trap plane, as the scattered light is incoherent and can not interfere to
such well localized spots away from the focus. This leads to the conclusion that this
is a signal from atoms which are trapped outside the intended trap plane.
While the measurement provides clear evidence that at 26 µm atoms are trapped with
a high probability also some features in the planes in between shown in Figure 3.16
might be due to atoms trapped there with a low probability. This trapping in only
a few Rayleigh ranges zr ≈ 4 µm away from the tweezers plane results in a signif-
icant background signal in the imaging. While for 5 µm spacing trapped atoms can
still be identified at 3 µm inter-trap spacing the signal from trapped atoms can not be
distinguished any more from the background.

3.7 Conclusion and Outlook

In this chapter the implementation of arbitrarily arranged tightly confining optical
dipole traps was discussed. The setup as well as the algorithmic implementation of
an SLM based setup to generate the traps was presented and experimental results
were obtained and analyzed. From this it is evident that the loading of atoms into the
array works with the expected fidelity. However, the in-situ measurements carried
out to obtain the trap parameters show strong signs of residual inhomogeneities and
aberrations in the tweezers arrays. The homogeneity problem can to a large extend
be overcome with the implementation of a feedback loop from the experiment or a
camera imaging the traps to the Gerchberg-Saxton algorithm. The compensation of
aberrations was demonstrated and in subsection 5.3.2 a method for characterizing the
aberrations using light shift measurements on trapped atoms will be discussed.
It was furthermore demonstrated, that atoms get trapped out of plane. This leads to
a serious imaging problems for small spaced two dimensional tweezers arrays and
needs to be overcome in the future. Promising approaches involve the loading from
an elliptical dipole trap or light sheet or the use of a resonant push out technique. An-
other option involves the use of an AOD, which will be presented in subsection 5.3.5.
It is worth mentioning, that during the work on this project also a Raman-sideband
cooling scheme for the traps was successfully implemented and the setup is in use to
probe interactions between Rydberg atoms.



CHAPTER 4

Deterministic Loading of Dipole Traps

In this chapter we will take a closer look at light assisted collisions in the dipole traps.
In the previous experiments we were only concerned with the specific properties of
the single traps. They where carried out by loading some number of atoms and us-
ing red detuned light assisted collisions to project this distribution of loaded atoms
to the subspace of only having none or a single atom loaded. The procedure funda-
mentally limited the probability to find a single atom in a trap to ≈ 50%. As already
mentioned in the introduction, a crucial requirement for a quantum simulator is a
non-exponential resource scaling when adding more degrees of freedom to the simu-
lated quantum system. For the quantum simulator under consideration here, adding
a degree of freedom means adding a trap with an atom loaded. When each new trap
only loads in every second run, the time resources scale exponentially in a fashion
comparable to the resource scaling of quantum simulations on classical computers.
Therefore one would not expect that this approach could significantly outperform
classical simulations. Note that any loading probability away from unity leads to an
exponential resource scaling making this an achilles’ heel of the present approach. It
is crucial to find a way to increase the loading probability. One possibility is the use
of blue detuned light assisted collisions. While the kinetic energy gain in red detuned
light assisted collisions almost always suffices to expel both atoms from the trap the
kinetic energy gain in blue detuned light assisted collisions is in principle tunable
and can be adjusted such that only one atom leaves while the other one remains in
the trap. This has been realized in several systems [82–84].
In the following, first an introduction to light assisted collision of two particles in free
space is provided. Then some characteristic numbers are given taking the experimen-
tal parameters into account. Finally experimental results are presented.

4.1 Two Colliding Atoms

The profound question on how two atoms interact attracted a lot of attention in the
past and led to a very involved theoretical framework. Fortunately, the regime of
interest in the present analysis allows for some significant simplifications. First, we
assume that the inter-atomic distance R is smaller then the wavelength of any tran-
sition involved in the interaction. That justifies to neglect retardation effects. Sec-
ondly, we assume R to be larger then the Le Roy radius RLR = 2(r1 + r2), with
ri =

√
〈ni JiFi| r̂2 |ni JiFi〉 the size of the atom i [41]. This allows to treat the atoms

as well-separated charge distributions coupled via electrostatic interaction, without
electronic exchange interactions. Furthermore, this allows to treat the interaction with
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a multipole expansion

Hint(R) = ∑
n

Cn

Rn

with Cn coefficients to be determined. For two colliding alkali atoms in the ground
state the interaction is dominated at large inter atomic distances by the C6 term in
the expansion. This is known as the van-der-Waals interaction. It is connected to the
single atom polarizability α by means of the Casimir-Polder integral [85]

C6 =
3

π(4πε0)2

∫ ∞

0
dω[α(iω)]2

where α(iω) is the polarizability of a state |v〉 at a complex frequency given by the
expression

α(iω) =
2
3 ∑

k 6=v

Ek − Ev

(Ek − Ev)2 + h̄2ω2
| 〈v| d̂ |k〉 |2

where Ei is the energy of the atomic state |i〉 and the sum runs over all states except
v. Intuitively the van-der-Waals interaction arises due to the coupling of the induced
dipole momenta of both atoms in the form of a second order dipole-dipole process
and is in relation to the Casimir effect [86, 87].
A different situation emerges when two atoms a and b are considered, of which one
is excited to a P-state. In this case, for large inter atomic distances the van-der-Waals
term is dominated by a resonant dipole-dipole interaction captured by the C3 coef-
ficient. Intuitively the two atoms start to exchange virtual photons along the inter
atomic axis which leads to a back and forth swapping of the excitation. Loosely speak-
ing, the new eigenstates of this system can be thought of as each atom being dressed
by the virtual exchange light field and this dressing depends on the dipole coupling
strength to the virtual light field and the inter-atomic distance.
As the polarizabilities as well as the level structure of atoms are only accurately cap-
tured in the framework of quantum mechanics, it is reasonable to treat also the inter-
action in a quantum mechanical fashion. The electro-static interaction Hamiltonian
Hint takes the form [88]

Hint =
1

4πε0

d̂a · d̂b − 3d̂az′ d̂bz′

R3

where d̂a/b is the full vectorial dipole operator acting on atom a or b respectively and
d̂az′/bz′ the projected dipole operator on the inter-atomic axis z′. By the symmetry of
the individual atomic Hamiltonians we are free to choose their angular quantization
axis along z′. The electronic wave function of both atoms is then expressed by

|laλa, lbλb〉 = |laλa〉 |lbλb〉

where la/b are the respective angular momenta of the electronic wave function and
λa/b the corresponding projections on the z′ axis. As the interaction Hamiltonian
has a cylindrical symmetry along this axis, the resulting quantum numbers of this
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quantization axis choice are also good quantum numbers in the coupled problem. On
this basis one finds that

Hint |00, 1λb〉 ∝ |1λb, 00〉
which allows to identify the eigenvectors and therefore the eigenvalues, which are
[89]

CΠ±
3 = ± 1

4πε0
| 〈10| dbz′ |00〉 |2 = ±C′3

and
CΣ±

3 = ± 2
4πε0

| 〈10| dbz′ |00〉 |2 = ±2C′3

where the superscript symbols of C3 label the states. The capital greek letters are in-
spired by the common labeling of the potentials in the Hund’s case (a), to which the
individual potential curves are connected to. It was used, that both atoms are inter-
changeable to state this in terms of single atom properties. These eigenvalues of the
interaction give the adiabatic potential curves in Born-Oppenheimer approximation.
The single atom transition amplitude appearing in the expressions also appears in the
decay rate Γ of the P state. Using this we find the useful relation

C′3 =
3h̄c3

4ω3 Γ.

Many lifetimesu in alkali atoms are measured using this relation. The C3 coefficients
can be very precisely determined by means of photo association spectroscopy, which
is supported by a well developed theory.
For the particular configuration of two colliding Potassium-39 atoms the multipole co-
efficients are experimentally determined to be C′3 = h̄ · 51.68(7) kHz µm3 for P-S-state
collisions [90] and C6 = h̄ · 0.567 µHz µm3 for S-S-state collisions [91]. This justifies
to neglect the ground state van-der-Waals potential for the light assisted collisions
treated hereafter.

4.2 Light Assisted Collisions

In the previous section we derived the shape of the potential curves of two atoms at a
distance R for the cases of both atoms being in the S-state and for one atom being ex-
cited to a P-state. Under the conditions, present in the experiments carried out here,
the two atoms colliding can always be considered to be asymptotically, meaning at
R → ∞, in the S-state. However, if two colliding ground state atoms encounter a de-
tuned optical field, the probability to get excited to a state where one atom is asymp-
totically in a P-state, peaks around the Condon point Rc. At this distance the light
field frequency matches the difference in the potential curves. When the two atoms
are approaching each other this coupling give raise to a Landau-Zener-transition to
the excited state branch. This is reversed when the constituents of the collision move
apart again. While the atoms are in the excited branch they experience large attractive
or repulsive forces determined by the sign of the C3/R3 potentials and acquire kinetic
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Figure 4.1 – Red-detuned light assisted collision. The schematic model of red-
detuned light assisted collisions. In black the involved Born-Oppenheimer po-
tentials are shown while the potential curves not involved are shown in gray.
On the right the asymptotic uncoupled states are shown. δred denotes the de-
tuning of the external laser from the free space line. When two ground state
atoms are approaching, the curves are brought to resonance with the light at
R = Rc and the two atom system is transferred to the excited potential curve.
The attractive molecular potential lets the atoms accelerate towards each other
and on a spontaneous decay event to the ground sate Ekin is realized as gained
kinetic energy in that inelastic collision.

energy which, in the case of a spontaneous decay to the ground state, is realized as
kinetic energy of the atoms after the collision. Already in the early days of cooling
and trapping atoms by optical means this loss process was identified to be a limiting
factor [92].
In the following we will separately discuss the two distinct cases of red- and blue-
detuned light encountered in the collision.

4.2.1 Red Detuned Collisions

The situation of two atoms colliding in the presence of a red-detuned light field is
illustrated in Figure 4.1. The atoms approach each other until the Condon point is
reached. At this point the originally free collision can be photoexcited by means of
a Landau-Zener transition to a molecular dimer. Note that the excitation to discrete
molecular states leads to resonances which need to be taken into account in a proper
treatment of this process [93]. Here, we are only interested in its qualitative nature
and will therefore ignore the discretized nature of the excited dimer states. After
some time Tcoupled the atoms, after they have traversed the molecular potential, can
be thought of as passing the Condon point again and being dissociated. As the cou-
pling processes are happening at the same Condon point and the final state asymptote
is the same as for the initial state of the collision, this collision is elastic. On the tem-
perature scales of cold atom experiments Tcoupled becomes much longer then the decay
rate of the excited state and a spontaneous decay with a photon, lower in energy then
the previously absorbed one, can lead to a large gain of kinetic energy for both atoms.
In the context of the atom trapping, as carried out in this work, this leads to a high
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probability of both atoms to leave the trap after the collision. In the previous chapter
this process was exploited for the parity projection, which limited the loading proba-
bility of a single atom to 50%.
In a real alkali atom the level structure is much richer and several other mechanisms
like predissociation or interference of multiple Condon points from cooling and re-
pumping light might occure but the qualitative expectation is not altered by that.

4.2.2 Blue Detuned Collisions

On the blue detuned side of the resonance much better control over the collision pro-
cess can be expected. Because the branch to which the two atoms are excited is re-
pulsive the turning point is close to the Condon point and the constituents stay at
distances above the Le Roy radius, which makes the dynamics well predictable. Fur-
thermore, it is possible to experimentally control the upper bound of the kinetic en-
ergy gained during the collision. This blue detuned collision can even be exploited
in a mechanism called blue shielding to almost eliminate the above described red-
detuned light assisted losses [94].
In Figure 4.2 the blue detuned collision process is depicted. Again the atoms in the
ground state pass the Condon point and are excited to the repulsive branch in a
Landau-Zener like transition. After some time they pass the Condon point again.
In doing so they either get deexcited and leave the collision elastically in the S + S
asymptote or they stay in the excited branch and decay at some later point. The for-
mer case is the desired one in the concept of blue shielding. By placing the Condon
point of blue-detuned light before a red-detuned Condon point can be reached, col-
liding atoms are prevented from ever seeing the red-detuned Condon point. In the
later case the collision is inelastic and the atoms gain an amount of kinetic energy
which is bounded from above by the detuning to the transition. This allows to control
the energy gain of the atoms in the collision and therefore provides a handle for trap
losses. The following will focus on this process.
The applicability of a simple Landau-Zener approach depends on three time scales
[89]: (1) the spontaneous decay time τγ (2) the time it takes a wavepacket to travel
from the Condon point to the turning point τtp ≈ µv/α, where µ is the effective mass,
v the velocity and α the slope of the difference potential at the Condon point. (3)
the time it takes the wavepacket to traverse half the Landau-Zener interaction region
τΩ ≈ h̄Ω/2αv, where Ω is the coupling at RC. When τγ is large compared to τtp
and τΩ the process is well described by passing a Landau-Zener region twice without
modifications. The probability to leave the collision in the S + P asymptote is then
given by

Pe = (1− PD)PD

where PD is the probability to diabatically cross the Landau-Zener region:

PD = exp(−4πτΩΩ).



50 Chapter 4. Deterministic Loading of Dipole Traps

R

En
er

gy S + P

S + S

δblue

Ekin

Rc

(a) Born-Oppenheimer potential curves

R

En
er

gy

S + P

(S + S) + γ

Rc

(b) Dressed state picture

Figure 4.2 – Blue-detuned light assisted collisions. (a) Illustrated are the Born-
Oppenheimer potential curves of two approaching atoms. In the presence of
blue-detuned light two atoms in there respective ground state approaching each
other are shifted to resonance to the repulsive collision branch at R = Rc of the
asymptotic S + P state.The two atom system is excited to that branch and the
travel along this curve until they reach the turning point determined by their
relative kinetic energy. Traveling back on this potential curve they pass the
Condon point Rc again. There they are either transferred back to the ground
state branch in a adiabatic fashion or they are diabatically passing the Condon
point and stay in the excited state. After a while they spontaneously decay to
the ground state. The former process describes the blue shielding while the later
is the process allowing for a controlled maximal kinetic energy of h× δblue which
is exploited in the deterministic loading. (b) The same process as in (a) but in a
dressed state picture. The gray curves are the Born-Oppenheimer curves with
the absorbed photon γ taken into account. In black are the adiabatic curves
when both Born-Oppenheimer curves are coupled.

When τtp becomes comparable to τγ potential decays before entering the Landau-
Zener region the second time need to be taken into account. This yields

Pe = (1− PD) exp(−τtp/τγ)PD. (4.1)
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When τγ becomes of the order of τΩ the simple Landau-Zener approach is expected
to fail. However, in [95] this regime was investigated using quantum Monte-Carlo
simulations and the so-called Landau-Zener model with delayed decay was found to
reproduce the results. This justifies the following modification of Equation 4.1.

Pe = (1− PD) exp(−(τtp − τΩ)/τγ)PD (4.2)

4.2.3 Deterministic Trap Loading

The above described control over the inelastic collision of two atoms encountering
blue detuned light can be utilized to outperform the 50% limit imposed by red de-
tuned light assisted collisions. The detuning is tuned such that in each collision only
kinetic energy on the order of the trap depth can be gained. By that the energy is just
enough that one atom can leave the trap while the other one remains trapped. This
procedure had proven to increase the atom loading probability in a single trap to up
to 91% with Rubidium-85 [96] and in trap arrays to 80% in Rubidium-87 experiments
[97].e However, there are some caveats to this simple picture. First note that PD > Pe,
meaning that if one uses the blue light assisted collisions for controlled ejection from
the trap, one can not fully rely on the same light for blue shielding. The probability to
diabatically stay in the S+S asymptotic state and being subject to a red detuned light
assisted collision is similar to Pe. This would impose a new upper limit on the load-
ing efficiency clearly below 100% and depending on the red detuned light. Therefore,
it is still undesirable to have red-detuned light on while using the above described
procedure. Another complexity arises from the fact that the atoms are not in the mo-
tional ground state when they collide but are in thermal motion. When the energy
of the constituents of a collision is above half the trap depth again both atoms can
be lost from the trap. This means that deep traps are favorable, as the ratio of atom
temperature to trap depth is to be minimized.

4.3 Enhance Loading Experiment

In this section the application of the above described method is adapted for the present
experimental apparatus. The idea is to use the gray molasses for cooling and deter-
ministic loading at the same time as done in [97].

4.3.1 Gray Molasses Cooling in the Traps

To take full advantage of the blue detuned light assisted collisions already in the load-
ing process any red detuned light needs to be eliminated. Therefore the cooling into
the tweezers needs to be done with the gray molasses. To test this cooling the fol-
lowing experiment was carried out: After loading the atoms with the sequence intro-
duced in subsection 3.6.1 60 µW resonant light on the D2-line was shown to the atoms
for 30 ms. With this the atoms were heated by a well controlled amount. Using the
same thermometry as carried out in section 3.6.2 we found the temperature after the
heating pulse to be ≈ 85 µK. To deduce the cooling rate a pulse of gray molasses light
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Figure 4.3 – Gray molasses in-trap cooling rate. The temperature after a de-
fined time of cooling with the gray molasses. The atoms in the traps were inten-
tionally heated before the cooling was applied. An exponential decay was fitted
which yields a 1/e-time of ≈ 0.3 ms and a steady state temperature of ≈ 40 µK.

of variable length and tuned to the expected working region with the trap light shift
taken into account was applied. While the gray molasses cooling the chopping of the
traps was switched off.
The results of this measurement are shown in Figure 4.3. From the fit and the assump-
tion of a cooling rate linearly depending on the temperature one finds γcool(T) ≈
T · 4 ms−1 and a heating rate of γheat ≈ 150 µK ms−1. Note that all the measurements
were again done on a 5× 5 trap array with the same powers in the traps as in the
measurements of the previous chapter. With this it is shown that the gray molasses
indeed cools inside the traps.

4.3.2 Collision Parameter Estimates

To determine in which regime and with which probability one can expect the blue
detuned light assisted collisions to happen the parameters introduced in section sub-
section 4.2.2 are to be estimated. The spontaneous decay lifetime can be assumed to
be the same as for the free space decay τγ ≈ 26 ns. To calculate τtp, the mean velocity
at which the particles approach each other is to be calculated from the temperature of
the particles in the trap. The actual temperature during the loading process is hard to
determine experimentally. We therefore assume the lower bound on this temperature
given by the steady state temperature measured in the previous section. By using the
Viral theorem and the mean velocity of a thermal Boltzmann distribution one finds
vth(40 µK) = 0.2 m s−1. By assuming the detuning of the gray molasses lasers to be
the trap depth measured in section 3.6.2 one finds that α ≈ 250 kHz nm−1. From this
τtp ≈ 30 ns. With a Rabi frequency of Ω ≈ 0.7 GHz one finds τΩ ≈ 1 µs. With this hi-
erarchy of timescales we are in the regime where Equation 4.2 applies. However, the
PD ≈ 1 to a very high accuracy, which spoils the above described deterministic load-
ing process. Instead another process is expected to become dominant for the inelastic
collisions. The approaching ground state atoms pass Rc region for the first time and
decay to the ground state branch afterwards. Then they approach the Condon point
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Figure 4.4 – Gray molasses loading. Loading probability for loading from the
gray molasses dependent on the trap depth and the detuning of the gray mo-
lasses ∆GM. The white solid line indicates where ∆GM is the sum of trap depth
and light shifts of upper and lower states. It therefore indicates where the max-
imal kinetic energy gain in a collision is the trap depth. The gray solid line in-
dicates were the maximal kinetic energy gain is twice the trap depth. (a) Shows
the averaged loading probability over all traps in the 5× 5 array. (b) Shows the
results of a single trap in the array. The results of all the individual traps are
shown in Figure A.4

again coming from R < Rc and get excited again to the repulsive S + P-branch. A
spontaneous decay then realizes the kinetic energy given by the blue detuning. In
this process a similar control over the kinetic energy gain can be expected.

4.3.3 The Experimental Sequence

In order to only have the blue detuned gray molasses light on while the traps are load-
ing the sequence presented in subsection 3.6.1 was changed as follows: After the gray
molasses cooling the MOT lasers are switched on again with parameters to realize a
red molasses, which helps to keep the atoms in place. While the red molasses is on,
the gray molasses beams are switched of and ramped to the detuning desired for the
deterministic loading. This takes 25 ms. Subsequently the MOT beams are switched
off and the gray molasses beams are switched on again together with the trap array.
After 30 ms of loading the tweezer in that configuration, the gray molasses lasers are
switched off again. To probe the single atom loading fidelity a pulse of red detuned
parity projection is shown to the traps for 20 ms. In case of a properly working single
atom loading from the gray molasses, this should not have an effect and the loading
probability remains over the parity projection limit.
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4.3.4 Results and Discussion

This sequence is used to scan the trap depth and the detuning of the GM beams from
the average trap depth of Utrap = h × 15.5 MHz to Utrap = 1.5 · h × 15.5 MHz. The
detuning of the GM laser ∆GM is scanned over a range of 90 MHz added to an offset
of 90 MHz. The results as an average over all tweezers and of a single selected trap
are shown in Figure 4.4.
First one notes that below the detuning corresponding to the limit where a single
atom can be ejected, the loading probability is very low. In this region the fast atom
from the collision can not escape and thermalizes again with the other atoms in the
trap. This leads to a very pronounced heating which results in a loss of almost all
atoms. On the other end, where the detuning is chosen such that the gained kinetic
energy is enough to kick both atoms from the trap, one recovers the parity projection
regime with a loading probability limit of ≈ 50%. Inbetween these limits one indeed
sees an increase in loading probability exceeding this limit. The maximal average
tweezers loading probability is 61% at Utrap = h × 18 MHz and ∆GM = 42 MHz.
For the single tweezers shown in Figure 4.4 the peak loading probability is 64% at
Utrap = h× 22.5 MHz and ∆GM = 48 MHz. The average loading value is expected to
be smaller than the one from the single trap, as all the traps are unequal in power as
found in the previous chapter. Therefore all the profiles of the mapped out loading
probabilities are shifted and the average is subject to a slight blurring.
We attribute the fact that we do not reach the same values as reported previously
to the strong light shift of the excited state of the D1-line in 1064 nm laser light. As
the atoms thermally move around in the trap they experience different light shifts at
different positions, which in the present case, is exaggerated by the strong light shift
in the 2P1/2 state. Consequently the atoms also collide in different positions in the
traps and the chosen detuning for the deterministic loading suffers from broadening
due to that. Assuming again an in-trap temperature of 40 µK one finds that this shift
is about 7 MHz on average. Note however that the in-situ temperature during the
process of ejecting atoms might be significantly higher, as the collisions inevitable
yield another heating process. That shift smears out the region of proper working
deterministic loading. In doing so, it reduces the peak loading probability.

4.4 Alternative: Deterministic Loading via Rydberg Block-
ade

An alternative approach, which recently came to our knowledge, utilizes the so called
Rydberg blockade [23]. After initial loading of many atoms in the F = 1 ground state,
an adiabatic passage involving a Rydberg state, as described in [83], can be performed.
This induces a single F = 2 atom in the system. To understand this, we first assume
a light field coupling the F = 1 ground states to a single Rydberg state. Each atom is
then well-described by a two-level atom. Depending on the Rydberg state the inter-
action between Rydberg states effectively truncates the Hilbert space of the multiple
two-level atoms within the so called Blockade radius to that of a single two-level sys-
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tem. The two states of the new system are described by all atoms in the F = 1 state
and a state where a single Rydberg excitation is shared among all the atoms. This
is known as a Rydberg super-atom. The effective coupling between these two states
due to the light field is given by Ωsuper =

√
nΩ, where n is the number of atoms in

the blockade radius and Ω is the single atom coupling. Introducing now the F = 2
ground state and another light field, which couples this to the same Rydberg state, al-
lows for the realization of Raman-π pulses. This has been realized in a similar manner
in [98]. However, the

√
n proportionality of the coupling makes the pulse dependent

on the atom number, which is unwanted for a statistical number of loaded atoms. To
overcome this, the above mentioned adiabatic passage scheme was proposed.
With the ability to deterministically transfere a single atom in each trap to the F = 2
state the only thing left to do is to get rid of all the other atoms. This can be achieved
by using a tune-out wavelength or by light on a D-line resonant only to the F = 1
ground state.

4.5 Conclusion and Outlook

To overcome the very constraining limit of the party projection, we implemented a
deterministic loading scheme which has been utilized in the past. Realizing that the
gray molasses works in the same regime as needed for this scheme made the imple-
mentation of another beam path superfluous. An outperformance of the previous
limit was indeed observed, but the disadvantageous light shifts in the excited states
of the D-lines made a significant improvement impossible.
In order to reach higher loading probabilities multiple options exist. The obvious one
is to choose another wavelength for the trapping with less severe light shifts. This will
be elaborated on in the next chapter. Another option is to use a different transition
which is less effected by the light shift. Here the transition to the 5P-state would be
an option, as a laser system will soon be available to the setup. A third option is to
use an adiabatic passage via a Rydberg state, which will also be investigated in the
future.
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CHAPTER 5

AOD-based Tweezers Arrays

In this chapter another method to generate tweezers arrays is described, which com-
plements the existing SLM based platform. While the trap arrays generated by the
SLM are difficult to be manipulated dynamically during the experimental sequence
an AOD approach provides this flexibility. However, a platform solely based on an
AOD is limited in other regards like the lack of aberration compensation, the limited
realizable geometries and a fundamental limit on the minimal trap separation. How
both techniques can be combined to compensate their individual weaknesses will be
discussed in this chapter. First the working principle of the used AOD will be intro-
duced. Then the planned extension to the existing experimental apparatus will be
presented, followed by a discussion of the possibilities opened by this new setup.

5.1 Acousto-optic Deflector

The interaction between acoustic vibrations in a medium and light traversing this
medium is known as the acousto-optic effect. The acoustic vibrations, which are by
definition a dynamical strain in the system, modify the local refractive index of the
material. These variations of the refractive index lead to reflections inside the crystal,
similar to the reflections on the intersection of two materials of different refractive
index [42]. In the case of an acousto-optical deflector a well controlled acoustical
disturbance is introduced in the crystal by the use of a high frequency piezoelectric
transducer. This allows for a controlled deflection of a single beam, traversing the
crystal, into potentially multiple beams in an angular range given by the specific AOD
used. In the following we will take a closer look at this mechanism.

5.1.1 Bragg Diffraction on Sound Waves

Considering an acoustic plane wave traversing the optical medium, the refractive
index n of the medium is altered in a periodic fashion. The exact shape depends on
the acoustic frequency fac and the characteristic speed of sound of the medium vs.
The local change of n is given by the following expression

∆n(x, t) = −
√

1
2
MIs · cos(2π fac(t− x/vs))

where x is the spatial coordinate parallel to the propagation direction of the sound
wave and Is is the acoustic intensity. M is a figure of merit for the strength of the
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Figure 5.1 – Schematic diagram of an acousto-optic deflector. A transducer
implements a traveling sound wave in an optical medium. The local refractive
index depends on the strain of the material at that position and an incident
light beam sees a periodic modulation of the refractive index induced by the
sound wave. This leads to a diffraction under the Bragg angle θB. By tuning the
frequency of the induced sound wave in the material, this angle can be changed
in a limited range.

coupling between acoustic and optic waves in the material given by

M =
p2n6

ρv2
s

with p a coefficient known as photoelastic constant and ρ the mass density of the
medium.
This periodic modulation of the refractive index gives raise to the well-known effect
of Bragg diffraction. A beam traveling through the medium experiences reflections
at the wave fronts of the acoustic wave. When the beam is incident under an angle
known as the Bragg angle θB all the reflections constructively interfere and give birth
to a new diffracted plane wave which exits the crystal again under the angle θ. This
is illustrated in Figure 5.1. From the constructive interference condition one finds the
Bragg angle to be given by

sin(θB) =
λ fac

2vs

where λ is the wavelength of the optical incident plane wave. For small sound inten-
sities Is, the diffracted optical intensity is directly proportional to Is, while for higher
Is the efficiency of the diffraction saturates.

As the acoustic wave moves through the optical medium with vs the diffraction is
accompanied by a Doppler shift and the frequency of the diffracted light is shifted by
the acoustic frequency fac.
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5.1.2 Tricking the Bragg Condition

In order to use the acousto-optical effect, described in the previous section, to deflect
an incoming beam at different angles the Bragg condition needs to be overcome. It
imposes the condition on the incidence angle of the beam to be θB. This raises two
difficulties. First an incident beam is a superposition of plane waves coming from
different angles. In order to have a well-shaped diffracted beam all of these plane
wave components must be diffracted, but only one exactly fulfills the Bragg condition.
The second difficulty occurs when one wants to deflect the incident beam with an
angle chosen by the driving frequency. Changing the driving frequency changes θB
and the Bragg condition is not satisfied anymore by the beam. To overcome these
limitations the transducer does not implement a plane wave in the crystal but an
acoustic beam which features a superposition of plane waves as well. With this, each
plane wave component of the optical beam finds a plane wave component of the
acoustical beam which together fulfill the Bragg condition. The same trick is used to
overcome the problem of different modulation frequencies and deflection angles.
This opens a range of frequencies around a central driving frequency fc, known as
the bandwidth of the AOD, where the Bragg condition is satisfied and consequently
an angular range which can be addressed, being the well-known scan angle. The
bandwidth B and the scan angle ∆θ are connected by

∆θ =
λ

vs
B. (5.1)

In Figure 5.1 such an acoustical beam is illustrated.

5.1.3 Shear Mode Configuration

In AODs a large scan angle ∆θ is desired and from Equation 5.1 it is evident that this
can be achieved by minimizing the speed of sound. Two modes of sound waves are
typically used for acousto-optical interactions [99]. One is known as the longitudinal
mode and the other as the shear mode. While both modes offer their advantages and
find application in acousto-optic applications for the AOD the significantly slower
velocity of sound in the shear mode makes it the best choice. A major disadvantage of
the shear mode is that it effects the light polarization. By a proper choice of the crystal
axis and the polarization direction of the transversal acoustic wave the AOD behaves
like a half-wave plate with its optical axis oriented 45◦ to the acoustic propagation
direction, but the input beam polarization is fixed by the geometry.

5.1.4 A Two-Dimensional AOD

To be able to address the full trap plane in the experiment a crossed AOD configura-
tion is used. Two AODs right after each other and perpendicular oriented allow to
deflect light in a solid angle given by the product of the individual angular ranges
of both AODs. The crossed AOD used in the present experiment is the DTSXY-400-
800.860 from AA Opto-electronic. The AODs are already aligned and calibrated to
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Figure 5.2 – Extension to the setup for the creation of trap arrays with an AOD.
The schematic diagram shows the optical setup. The 795 nm beam coming from
an optical fiber is sent through a crossed AOD and through a telescope. It is
then sampled into the existing path to the objective by a custom coated dichroic
mirror. After the fiber collimator a beam sampler (BS) sends about 10% of the
light onto a photo diode (PD) which is used for intensity stabilization. to extend
the existing setup with an AOD.

each other by the manufacturer. Their properties are listed in Table 5.1. It has an
electrical impedance of 50 Ω and is interfaced with an SMA connector on each AOD.

Property Value
Central drive frequnecy at 795 nm [ fc] 102(4)MHz

Bandwidth [B] 36 MHz
Max optical power density 5 W mm−2

Max RF Power 2 W
Laser Beam Diameter [D] 500 µm < D < 6 mm

Material (speed of sound [vs]) TeO2 (650 m s−1)
Scan angle (44mrad )2

Table 5.1 – Crossed AOD (AA DTSXY-400-800.860) properties
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5.2 Extension to the Apparatus

The setup of the optics to extend the existing beam paths for supporting the movable
traps generated by the AOD is shown in Figure 5.2. For this setup a DFB diode from
Eagleyard EYP-DFB-0795-00080-1500-BFW01-0005, held in a Thorlabs butter fly diode
mount LM14S2, is used as a light source. It provides the setup with up to 80 mW of
optical power at a wavelength of 795 nm. This is passed through an acousto-optic
modulator for intensity stabilization.
The setup near the experimental chamber starts out with a beam coming from a sin-
gle mode, polarization maintaining optical fiber. A Schaefter and Kirchhoff fiber col-
limator 60FC-4-M12-10 is used to attain a 1/e2 diameter of 2 mm. The collimator is
oriented such that the beam polarization is vertical to the table, matching the require-
ment of the AOD. A beam sampler after the collimator is placed to direct the light
onto a photodiode, used for the intensity stabilization. The majority of the light pass-
ing the beam sampler is sent through the crossed AOD introduced before. A telescope
with a magnification factor of 15 is used to convert the 1/e2 diameter to 30 mm. This
diameter is chosen as a compromise between losing power due to the hole in the ob-
jective and matching the diffraction limited geometries of the 1064 nm traps with the
795 nm traps. The hole cuts of 44% of the power in this configuration. As there is no
possibility to compensate for aberrations with the AOD only a single telescope with a
large magnification is used to avoid unneeded optical components in the setup. The
telescope is made up by a 1-inch achromatic lens with a focal length of f = 75 mm
and a 2-inch achromatic lens of f = 1000 mm focal length.
The beam will be sampled in into the existing beam path to the objective with a cus-
tom coated 3-inch beam sampler between the imaging camera and the beam sampler
for the 1064 nm SLM traps.
The crossed AOD is driven by an arbitrary waveform generator, implemented as a
PCI express card, from Spectrum Instrumentation, which provides two independent
outputs. It has a sampling rate of 1.25 GS s−1. This allows to use the AOD directly con-
nected to the arbitrary waveform generator, enabling to directly sample a waveform
with multiple frequency components to produce multiple tweezers moving arbitrar-
ily in the two dimensional plane. The arbitrary waveform generator provides up to
14 dBm output power. This is amplified to the 2 W maximal input power of the AOD
by an attenuation of−21 dB and a subsequent amplification by 40 dB using an RF Bay
MPA-40-40 amplifier for each AOD.

5.2.1 Characterization

The diffraction efficiency of the crossed AOD was measured for the whole frequency
and RF power range. The results are shown in Figure 5.3. A peak efficiency of 86%
was obtained.

The chosen telescope configuration, introduced in the preceding section, together
with the scan angle of the AOD determine the region where the traps can be posi-
tioned. This region has a size of 100 µm× 100 µm. Another important characteriz-
ing quantity is the displacement of the trap with the RF frequency. It is found to be
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Figure 5.3 – AOD diffraction efficiency measurement. The diffraction effi-
ciency of the AOD, which was measured in the setup as described in the main
text is shown. (a) The left panel shows the measured diffraction efficiency for
different RF powers. The X frequency was fixed to 100 MHz. The right one
shows the efficiency scanned over both axis of the AOD. The RF power was
fixed to 2 W. The peak diffraction efficiency was measure to be 86%. (b) The
left panel shows the diffraction efficiency with varying power. The frequencies
for both axis were 100 MHz. The right panel shows the efficiency for different
Y-frequencies. The X-frequency was fixed to 100 MHz. The vertical line (dark
gray) indicates the central driving frequency as specified by the manufacturer
and the marked region (light gray) illustrates the specified bandwidth.
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2.7 µm MHz−1. This number is to be compared to the trap frequency and determines
the minimal distance between tweezers generated by the AOD. The deflection by the
AOD is accompanied by a frequency Doppler shift, as pointed out before, which is
exactly the driving frequency. Two closely spaced tweezers overlap slightly and this
overlap leads to an interference oscillating with the frequency difference between the
light fields of the traps. This oscillation can lead to a strong parametric heating ef-
fect when it is close to the trap frequency. Therefore the oscillation needs to be much
faster then the trapping frequency and henceforth this limits the tweezers spacing
form below. In this setup a minimal spacing of about 2 µm is expected.

5.3 Enabled Improvements

The setup extension introduced in the previous section opens many routes to improve
the current experiment. In this section a few concrete applications will be discussed.

5.3.1 Rearranging Atoms Between Traps

As already mentioned in chapter 4, the loading efficiency is a major obstacle to over-
come. The AOD enables us to move an atom loaded in one trap into another trap
within a few µs [76]. This allows to generate a trap pattern using the SLM which
has traps at the positions desired for the experiment to be carried out and additional
auxiliary traps around it. After an initial loading of the traps a picture is taken reveal-
ing which of the traps is loaded with an atom and which is not. The traps which are
needed for the experiment but are not loaded can subsequently be filled by moving
an atom from an auxiliary trap into it. As potentially many required traps are not
filled this yields an assignment problem which needs to be solved very fast. A typical
algorithm to solve this is the Hungarian algorithm. For the relevant problem size, this
can be run within a few ms [100].
It needs to be remarked that it is possible to move atoms in a tweezers with an SLM
as well, as have been shown in [101]. However, the SLM setup used in the present
experiment is not suited for this approach. Approaches for reshuffling atoms, close
to the one described, have been implemented in [102]. Similar procedures have been
utilized in setups with tweezers exclusively generated by an AOD [97, 103].

5.3.2 Aberration Characterization

Aberrations, as introduced in subsection 3.2.3, are essentially undesired position de-
pendent phase shifts in the Fourier plane. To measure the relative phase between two
points of a wave front they need to be brought to interference. This can be done with
the aid of an aperture in the Fourier plane which has two holes at the positions to be
compared in phase. The light rays passing the holes are brought to interference by
placing a lens. The result are interference fringes at the focus of the lens whose posi-
tions are determined by the relative light phase between the two holes. By scanning
all different positions of the two holes, all the relative phases can be mapped out and
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the aberrations can be back calculated. In the present apparatus the aperture in the
Fourier plane can be mimicked, using the SLM, by deflecting all except for two spots
to hit a beam block. To measure the resulting interference pattern in the experimental
chamber an atom trapped in an AOD tweezers can be used as a detector by means of
a light shift measurement as done in section 3.6.2. For a total power of 5 W incident
on the SLM and mimicked aperture holes of 1 mm diameter a contrast of tens of MHz
can be expected in the light shifted D1-line.
A similar method was applied in [104] with a digital mirror device and atoms trapped
in an optical lattice.

5.3.3 Optical Addressing

To study the dynamical evolution of a system it is often required that an initial state
can be prepared in a reproducible fashion. This can be and has been done by means
of magnetic field gradients or apertures or a digital mirror device imaged onto the
atomic system. However, a much more versatile approach is to use an addressing
beam which can be focussed down to a single atom. With the AOD traps, an AC-
stark shift can be applied to shift only a few well-chosen atoms to resonance with
globally applied light. This allows to drive only these atoms to a state different from
there initial state. This approach has been utilized in [105].

5.3.4 Deterministic Loading

In chapter 4 the light shift in the excited state of the D1-line was identified to spoil the
deterministic loading. For 795 nm trapping light the excited state is only shifted by a
factor of −0.37 with respect to the trap depth. Therefore the broadening due to the
light shift is expected to be significantly less severe and comparable to the sucessfull
Rubidium experiments. An experimental sequence to exploit this would involve the
loading into tweezers generated by the AOD and a subsequent transfere to the SLM
traps.

5.3.5 Eliminating the Talbot-like Effect

The Talbot effect as well as the Talbot-like effect introduced in 3.6.3 base on a fixed
phase relation between the traps. In a trap array generated by the AOD each trap has
a slightly different frequency due to the Doppler shift. Therefore no time constant and
well localized constructive interference between the tweezers outside the trap plane
can build up. Hence no trapping outside the plane is expected. This can be used to
avoid the observed out of plane trapping for SLM tweezers with the aid of the same
experimental sequence described in the preceding section.
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5.4 Conclusion and Outlook

To make the full potential of the SLM based tweezers setup available for experiments
it will be accompanied by an AOD setup. The working principle of an AOD was
discussed in detail and a carefully planned optical system and the surrounding com-
ponents were presented. The impacts on currently limiting factors of the system was
exemplified. The implementation of the AOD setup will be a crucial step to overcome
limitations of all kind and ultimately make the quantum many body regime accessible
for the apparatus.
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CHAPTER 6

Conclusion and Outlook

6.1 Conclusion

This thesis has reported on the planing, construction, characterization and integration
of setups related to the generation of freely positionable tweezers for Potassium-39.
The theoretical background for trapping atoms by using their dipole moment has
been introduced and the found relations where used to estimate the experimental rel-
evant parameters. An overview of the existing experimental apparatus, in which the
new tweezers setup is implemented, was provided.
The working principle of a liquid crystal spatial light modulator was discussed and
a setup to integrate this into the experiment has been presented. Subsequently the
arising phase retrieval problem in the context of diffraction limited spots has been
discussed in detail. The so produced arrays of traps were characterized and a loading
probability close to the theoretical limit was found. However, the measurements un-
covered the presence of inhomogeneities and aberrations in the system. The trapping
of atoms outside the desired plane has been observed and identified as the currently
limiting factor in the imaging when going to closer spaced tweezers.
The fundamental limit on the loading probability of atoms in the traps was identi-
fied as a major obstacle to overcome. To do so, a scheme based on well-tunable blue
detuned collisions has been implemented. The results show clear evidence of the suc-
cess of this technique, but other factors were identified to be limiting.
The extension of the existing apparatus with an AOD based setup to generate mov-
able tweezers has been evaluated and an integration has been planned. This holds
the prospect of overcoming several current limitations in the future, enabling new
experiments.

6.2 Outlook

The main future application of the setup is to investigate new few- and many-body
systems with exotic features. With the parameters reported in this thesis the few-
body regime is already accessible and currently under investigation. The limited
loading probability currently hinders the setup from exploring many-body physics.
Several ideas have been mentioned already to overcome this limitation. With enter-
ing the many-body regime a wealth of possibilities opens up and even observables,
new to the neutral atom community, will be acquirable , like for instance out-of-time-
order correlation functions [106] . Especially the fast cycling times of the experiment,
exceeding those of lattice experiments by an order of magnitude, makes new mea-
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surements possible. This will allow to directly investigate entanglement spreading
and information scrambling [107]. By the freedom in positioning the tweezers new
parameters to map out phase diagrams will be accessible. One example is the im-
plementation of a tunable curvature strain potentially yielding landau levels and a
emergent supersymmertry [108].
Another setup worth mentioning, which is currently under construction, is a spin se-
lective tweezers setup using the same path as the AOD setup presented here. This
will allow to separate spin species from each other. Besides the advantages due to
spin selective imaging this will also enable another way of actively introducing en-
tanglement in the system.



APPENDIX A

Measurements on all Individual Traps

This appendix contains all the measurements done on the atoms for characterizing
the traps and the deterministic loading procedure. All measurements were done with
the same phase pattern on the SLM pattern and under the same experimental condi-
tions. In Figure A.1, Figure A.2, and Figure A.3 the lightshifts, parametric heating,
and termometry measurements of all traps in a 5× 5 array are shown. The measure-
ments were done as described in the main text.
Figure A.4 shows the individual results of the deterministic loading for all the traps.
The measurement procedure is as well described in the main text.
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Figure A.1 – Light shift measurements of all traps. Each graph shows the
measurement on a single trap on a 5× 5 tweezers array. See Figure 2.2 for how
to read these plots.
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Figure A.2 – Parametric heating measurements of all traps. Each graph shows
the measurement on a single trap on a 5× 5 tweezers array. See Figure 3.13 for
how to read these plots.
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Figure A.3 – In-situ temperature measurements of all traps. Each graph shows
the measurement on a single trap on a 5× 5 tweezers array. See Figure 3.14 for
how to read these plots.
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Figure A.4 – Deterministic loading measurement of all traps. Each panel
shows the result of the deterministic loading measurement introduced in the
main text. For a description of what is shown see Figure 4.4.
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