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ABSTRACT

We present an OpenGL-assisted visibility culling algorithm to improve the
rendering performance of large polygonal models. Using a combination of
OpenGL-assisted frustum culling, hierarchical model-space partitioning, and
OpenGL based occlusion culling, we achieve a significant better performance
on general polygonal models than previous approaches. In contrast to these
approaches, we only exploit common OpenGL features and therefore, our
algorithm is also well suited for low-end OpenGL hardware.

Furthermore, we propose a small addition to the OpenGL rendering pipeline,
to enhance the framebuffer’s ability for faster visibility queries.

CR Categories:
I.3.5 [Computer Graphics]: Visibility Culling, Occlusion Culling
I.3.7 [Three-Dimensional Graphics and Realism]:

Hidden Line/Surface Removal

Keywords:
Occlusion culling, hierarchical data structures, OpenGL, sloppy n-ary space
partitioning tree



1 Introduction

Hidden-line-removal and visibility are among the classic topics in
computer graphics [7]. A large variety of algorithms are known to
solve these visibility problems, including the z-buffer approach [3],
the painter algorithm [7], and many more.

Recently, visibility has been of special interest for walkthroughs
of architectural scenes [1, 22, 18] and rendering of large polygonal
models [16, 9]. Unfortunately, these approaches are limited to cave-
like scenes [16, 23], or require special hardware support [14].

In this paper, we present an algorithm for general visibility
queries. This algorithm exploits several OpenGL features in order
to obtain faster results for large polygonal models. To show the ap-
plicability of our algorithm even on low-end graphics workstations,
we performed all measurements on a SGI O2/R10000 workstation.
Furthermore, we propose an extension to the OpenGL rendering
pipeline to add features for improved general visibility culling.

In a pre-process, the model is subdivided into a sloppy n-
ary space-partitioning-tree (snSP-tree). In contrast to ordinary
partitioning-trees, like the BSP-tree [8], our subdivision is not a
precise one; snSP-tree sibling nodes may not be disjunct. This is
to prevent large numbers of small fractured polygons, which can
cause numerical problems and increase the rendering load.

During the actual visibility culling, the OpenGL selection buffer
is used to implement a view-frustum culling of the nodes of our sub-
division tree. Thereafter, the remaining nodes of our snSP-tree are
rendered into our implementation of avirtual occlusion bufferto de-
termine the non-occluded nodes. Finally, the polygons of the snSP-
nodes [24] considered non-occluded are rendered into the frame-
buffer.

Overall, our algorithm features:

� Portability: Only basic OpenGL-functionality is used for
the implementation of the algorithm. No additional hard-
ware support for texture-mapping or special visibility queries
is necessary. Even low-end OpenGL supporting PC graphic
hardware is able to use our visibility culling scheme.

� Adaptability: Due to the use of the OpenGL rendering
pipeline, the presented algorithm adapts easily to any OpenGL
graphics card. Features that are not supported in hardware can
be disabled, or are realized in software by the OpenGL imple-
mentation.

� Generality: No assumption of the scene topology or restric-
tion on the scene polygons are made.

� Significant Culling: Although high culling performance is
always a trade-off between culling efficiency and speed effi-
ciency, our algorithm obtains high culling performance, while
keeping good rendering performance.

� Well-balanced Culling: Different computer systems intro-
duce different graphics and cpu performance. The presented
algorithm provides an adaptive balancing scheme for culling
and rendering load.

Our paper is organized as follows: In Section 2, we briefly
outline previous work that has been done in the field of visibility
culling. Section 3 presents details of our algorithm. Section 4 anal-
yses the results of our algorithm and provides some comparison to
related algorithms. Finally, we state our conclusion and briefly de-
scribe future work.

2 Related Work

There are several papers which provide a survey of visibility al-
gorithms. In [24], Zhang provides a brief recent overview with

some comparison. Brechner surveys methods for interactive walk-
throughs [2]. Visibility algorithms for flight simulation are sur-
veyed in [19].

Early approaches are based on culling hierarchical subdivision
blocks of scenes to the view-frustum [9]. Although this is a sim-
ple but effective scheme for close-ups, this approach is less suited
for scenes that are densely occluded, but lie completely within the
view-frustum.

In architectural model databases, the scene is usually subdivided
into cells, where each cell is associated with a room of the building.
For each potential view point of the cells, the potential visible set
(PVS) is computed to determine the visibility. Several approaches
have been proposed in [1, 22, 18]. However, it appears that the
cell subdivision scheme is not suitable for general polygonal scenes
without room-like subdivision. Therefore, these approaches are of
no apparent importance for general visibility problems.

Several algorithms have been proposed in computational geom-
etry. A brief overview can be found in [10]. Coorg and Teller pro-
posed two object space culling algorithms. In [5], a conservative
and simplified version of the aspect graph is presented. By estab-
lishing visibility changes in the neighborhood of single occluders
using hierarchical data structures, the number of events in the as-
pect graph is significantly reduced.

Secondly, by combining a shadow-frustum-like visibility test of
hierarchical subdivision blocks (e.g. octree blocks), the number
of visibility queries is reduced [6]. However, both algorithms are
neither suited for dense occluded scenes with rather small occluders
(resulting in a large increase of queries), nor for dynamic scenes.

Cohen-Or proposed an�-Visibility-Culling for distributed
client/server walkthroughs [4]. Computing the shadow-frusta for a
series of local view points and an occluder permits visibility queries
on the local client. However, the algorithm does not seem to scale
for very highly occluded scenes. Moreover, only two-dimensional
visibility queries are possible in the current implementation.

In [17], an occluder database - a subset of the scene database - is
selected. During the visibility culling, the shadow-frusta of the oc-
cluders are computed and a scene hierarchy is culled against these
shadow-frusta. Overall, the surveyed computational geometry-
based visibility approaches only deal with convex occluders, which
limits their practical use severely.

In 1993, Greene et. al. proposed the hierarchical z-buffer algo-
rithm [14, 13, 11], where a simplified version for anti-aliasing is
used in [13]. After subdividing the scene into an octree, each of the
octants is culled to the view-frustum as proposed in [9]. Thereafter,
the silhouettes of the remaining octants are scan-converted into the
framebuffer to check if these blocks are visible. If they are visible,
their content is assumed to be visible too; if they are not visible,
nothing of their content can be visible. The visibility query itself is
performed by checking a z-value-image-pyramid for changes. Un-
fortunately, this query is not supported by common graphics hard-
ware and therefore, becomes an expensive operation. However, we
consider this algorithm as the parent for our approach, presented in
Section 3.

In [12], Greene presents a hierarchical polygon tiling approach
using coverage masks. This algorithm improves the visibility query
of a hierarchical z-buffer, due to the two-dimensional character of
the tiling. However, the main contribution of this algorithm is an
anti-aliasing method, as the algorithm has advantages for very high-
resolution images. The strict front-to-back order traversal of the
polygons - necessary for the coverage masks - needs some data
structure overhead. Building a hierarchy of an octree of BSP-trees
limits the application of this algorithm to static scenes.

Naylor presented an algorithm, based on a 3D BSP-tree for the
representation of the scene, a 2D BSP-tree as image representation,
and an algorithm to project the 3D BSP-tree subdivided scene into
the 2D BSP-tree image [20]. This approach can be considered as a



generalization of Greene’s hierarchical z-buffer algorithm [14].
Hong et. al. proposed a fusion between the hierarchical z-buffer

algorithm [14] and the PVS-algorithm in [18]. In this z-buffer-
assisted visibility algorithm, a human colon is first subdivided into
a tube of cells in a pre-process. Thereafter, the visibility is deter-
mined on-the-fly by checking the connecting portals between these
colon cells, exploiting the z-buffer and temporal coherence to ob-
tain high culling performance [16]. Unfortunately, this approach is
closely connected to the special tube-like topology of the colon and
therefore, is not suited for general visibility problems.

In [23], a voxel-based visibility algorithm is presented. After
classifying the scene on a grid of samples of the dataset as void-
cells, solid-cells and data-cells, the visibility is determined in a pre-
process for each potential view point. We expect good results for
cave-like scenes, but a high memory and processing overhead for
sparse scenes like the forest scene of Section 4. Therefore, this
algorithm is not suited for a general visibility algorithm.

Last year, occlusion culling using hierarchical occlusion maps
was presented [24]. Similar to [17], an occluder database is se-
lected from the scene database. Using these occluders, bounding
boxes of the potential occludees of the scene database are tested
for overlaps, using the image hierarchy of the projected occluders.
Further discussion of this very interesting approach can be found in
Section 4.

Strategies for dynamic scenes are presented in [21] and [24]. Su-
darsky and Gotsman propose a fast update of the hierarchical data
structure, as the octree block of the hierarchical z-buffer. Zhang
[24] et. al. suggest using each object of a scene as an occluder in
the hierarchical occlusion maps algorithm.

3 OpenGL-assisted Visibility Culling

In this Section we present a novel technique to the visibility prob-
lem. Our algorithm is based on core OpenGL functionality and
utilizes the available capabilities of OpenGL to check for occlu-
sion. The basic strategy is to use a hierarchical spatial subdivision
of the model and cull all not visible subdivision nodes. As a hi-
erarchical representation of a scene, we use a sloppy n-ary Space
Partitioning tree (snSP-tree), which is generated once per scene as
a pre-processing step.

For each frame to be rendered, we perform view-frustum culling
and occlusion culling. Figure 1 schematically illustrates the
pipeline of our culling algorithm.

3.1 snSP-Tree

Our sloppy n-ary Space Partitioning tree stores the polygons of the
model in its leaves. Each node within the tree hierarchy has a vari-
able number of children (n-ary). The individual nodes represent a
bounding volume being the superset of the bounding volumes of its
child nodes. The sloppiness is given by the sloppy partitioning of
the model, where the bounding volumes of sibling nodes may not
be disjunct. Therefore, any given model can be stored in such a tree.
No re-triangulation is necessary, due to a missing strict subdivision
border for the polygons. Nevertheless, polygons which expand over
the entire model, such as floors, should be subdivided into smaller
polygons to ensure a well balanced tree. In general, leaves contain
the polygons, branch nodes represent a hierarchy of bounding vol-
umes, and the root node reflects the bounding volume of the entire
model.

3.2 View-Frustum Culling

In contrast to other approaches, we use OpenGL to perform the
view-frustum culling step. In detail, we use theOpenGL selec-
tion modeto detect whether a bounding volume interferes with the
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Figure 1: Survey of the basic algorithm.

view-frustum. Therefore, the bounding volume, as convex hull, is
transformed and clipped. Once a bounding volume intersects the
view-frustum, we test whether the bounding volume resides entirely
within the view-frustum. In this case, all subtrees of the bounding
volume can be marked visible. Again, this test is performed using
the selection mode of OpenGL, testing whether all vertices are still
visible after transformation and clipping. As a result of the view-
frustum culling step, leaves are taggedpossibly visibleor definitely
not visible.

3.3 Occlusion Culling

The task of an occlusion culling algorithm is to determine occlu-
sion of objects in a model. We use avirtual occlusion buffer, being
mapped onto the OpenGL framebuffer to detect possible contribu-
tion of any object to the framebuffer. In our implementation of the
algorithm on a SGI O2, we used the stencil buffer for this purpose1.
Intentionally, the stencil buffer is used for advanced rendering tech-
niques, like multi-pass rendering.

To test occlusion of a node, we send the triangles of its bounding
volume to the OpenGL pipeline, use the z-buffer test while scan-
converting the triangles, and redirect the output into the virtual oc-
clusion buffer. Occluded bounding volumes will not contribute to
the z-buffer and hence, will not cause any footprint in the virtual
occlusion buffer.

Although reading the virtual occlusion buffer is fairly fast, it is a
costly part of our algorithm. This is due to the time consumed dur-
ing conversion of values inside the OpenGL pipeline, before they
are finally returned to the user. For models subdivided into thou-
sands of bounding volumes, this can lead to a less efficient oper-
ation. Furthermore, large bounding boxes require many read op-
erations. Therefore, we implemented a progressive occlusion test,
which reads spans of pixels from the virtual occlusion buffer using
a double interleaving scheme, as illustrated in Figure 2. Although,
the setup time for sampling small spans of the virtual occlusion
buffer increases the time per sample, spans of ten pixels achieved

1Other buffers could be used as well but the stencil buffer is the least
used buffer and has an empirically measured better read performance than
the other buffers.



an almost similar speed-up as sampling entire lines of the virtual
occlusion buffer. We assume that the compromised setup time for
sampling small spans is amortized by the higher probability to find
footprints, due to the additionally in Y interleaved scheme.

Samplingreflects the number of iterations needed to fully read
the entire bounding box. By default, each frame performs only
one iteration and hence, reads a 1

Sampling
th of each bounding box.

During motion, this feature enables low culling cost without pro-
ducing visible artifacts. Once the movement stops, the buffer will
be read progressively until all values are tested. Basically, ev-
ery samplingth horizontal line is read from the buffer, where the
y-offset is incremented bysampling

2
for every second column of

spans.
For the purpose of illustration, Figure 2 uses a smaller sampling

factor as our actual implementation. However, it turned out that
a sampling factor of ten is sufficient without compromising image
quality. The sampling value can be adjusted adaptively.

Span read from the buffer
Span not read from the buffer

Figure 2: Progressive sampling of the virtual occlusion buffer using
a sampling value of four hence, only a fourth of the buffer is read.

3.4 Adaptive Culling

For complex models with deep visibility, i.e., a forest scene, many
almost occluded objects contribute only small parts to the final im-
age. Knowing whether an object is visible does not introduce a
measure of the quantity of contribution. To cull objects which are
almost occluded and therefore, are barely noticeable, we introduce
adaptive culling as our alternative to approximate culling [24].

Each object which generates a footprint on the virtual oc-
clusion buffer needs to be evaluated. Therefore, we count
the number of footprints of the object on the virtual occlu-
sion buffer. We consider the depth of the object, the size
of its 2D bounding box relative to the view plane, and the
number of footprints. In other words, we calculate the percent-
age of footprints relative to the depth and size of the object.

Adapcull(Obj) =
SizeOf2DBoundingBox(Obj)

SizeOfV iewplane

�

Dist(Eye) +Dist(Obj)

Dist(Eye)
(1)

where Dist(Obj) returns the minimal distance between
theObj and the view plane.

For each potentially visible object we evaluate Equation 1.
If Adapcull(Obj) is smaller than the user defined threshold
Thresadap, we consider the object as occluded, even though it has
a small contribution to the image.

Figure 3 shows some results of our adaptive culling mode, com-
pared to the usual occlusion culling mode of our algorithm.

3.5 Further Optimizations

Interleaved Culling: It is obvious that a tree representing a model

(a) (b)

Figure 3: Alley of trees - bounding volumes of culled objects are
marked yellow: (a) Adaptive culling. (b) Occlusion culling.

can be too deep to possibly test every bounding volume for occlu-
sion. In the worst case, each leave could contain a single poly-
gon. This is circumvented by generating well balanced trees, hold-
ing sufficient polygons in each leaf. Additionally, the view-frustum
culling step and occlusion culling step are dynamically interleaved
to exploit culling coherence - an already occluded bounding volume
of a tree node does not require any further culling test for its child
nodes.

Cost-adaptive Culling: To obtain a good ratio between time
spent for rendering and time spent for culling, we need to ensure
that only a reasonable fraction of the rendering time is spent on
culling. Fgraphics, the factor which represents this ratio, is hard-
ware dependent and needs to be determined empirically. On the
SGI O2, we determinedFgraphics = 1

3
as a good factor.

The cull depth adapts dynamically in order to meet the time bud-
get. This budget is calculated using Equation 2, whereTrender is
the absolute amount of time spent for rendering the previous frame.

Tbudget = Trender � Fgraphics (2)

Once our algorithm consumes more time thanTbudget, the remain-
ing nodes are simply culled against the view-frustum and sent to the
rendering pipeline. Furthermore, once a node is detected to be en-
tirely within the view-frustum, all leaves of this node can directly be
sent to the rendering pipeline without further view-frustum culling
the nodes inbetween.

Depth Ordered Culling: Front-to-back, or depth sorted order
of the visibility tests produces an optimal filling of the virtual oc-
clusion buffer. Therefore, it is important to process objects in depth
sorted order. Thezmin andzmax values for each bounding volume
are returned by the view-frustum test for free. The bounding vol-
umes interfering within the view-frustum are sorted by theirzmin

value into aDepth-List.
Our occlusion culling step tags each node asvisibleor possibly

occluded. During motion, those tags have to be generated for ev-
ery frame. As soon as the camera stops, only bounding volumes, in
the previous iteration determined as possibly occluded are progres-
sively refined. Nodes earlier marked visible will stay visible and
can therefore be skipped, except for leaves - their polygons are di-
rectly sent to the rendering pipeline. This scheme changes once we
determine a bounding volume to be visible, which has previously
been marked as possibly occluded. In this case, we have to perform
occlusion culling for all following nodes in the Depth-List, due to
the changed visibility in the image.

Overall Refined Algorithm: To integrate these additional fea-
tures, the basic algorithm is modified. The Depth-List is initialized
with the visible child nodes of the uppermost visible node in the
snSP-Tree. Unless the time budget is not entirely consumed, the
head element of the Depth-List is transferred to our cull test. In an



interleaved manner, view-frustum culling and occlusion culling for
a single frame are performed as described in the following pseudo-
code.

InitDepthList();

while (UsedTime < Budget)
Node = DepthList->getHead();
if (OccTest(Node) == VISIBLE)

if (node == LEAF)
render(Node->polygons);
continue;

forall children(Node)
if (ViewFrustumTest(child) == VISIBLE)

DepthList->add(child);

One advantage of this interleaved culling scheme is the reduced
cost for sorting. For a well balanced snSP-Tree of depth twelve, we
measured for the cathedral scene an average list length of eight and
a maximum of 17.

4 Analysis

We examined our algorithm by processing four different scenes.
One architectural scene of an array of gothic cathedrals, a city
scene, a forest scene to demonstrate adaptive culling, and - sim-
ilar to [24] - the content of a virtual garbage can of rather small
objects.

In this Section, we discuss the performance of our algorithm on
the test scenes described in Table 1. Note, the achieved percentage
of model culled depends on the granularity of the snSP-tree. The
more the individual objects of a scene are subdivided, the higher
is the potential culling performance. Nevertheless, a higher culling
performance does not imply a higher rendering performance. While
culling up to 99% of many scenes is possible, the overall rendering
performance would drop in most cases.

All measurements were performed rendering 650�650 images
on a SGI O2 workstation with 256 MB of memory and one 175
MHz R10000 CPU.

scene #triangles #objects #triangles/object
cathedrals 3,334,104 8 416,763
city 1,056,280 300 3521
forest 452,981 12 + 1 28,500 + 110,981
garbage 5,331,146 2,500 about 2,100

Table 1: Model sizes.

4.1 Performance of the Algorithm

4.1.1 Cathedral Scene

Cathedral Scene

(a) (b)

Figure 4: (a) Interior view of cathedral. (b) Bounding volumes of
culled objects are marked in red.
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Figure 5: Frame rate and percentage of model culled: V+O denotes
view-frustum culling and occlusion culling, VFC denotes view-
frustum culling only, and DR denotes direct rendering without any
culling.



In this scene, eight gothic cathedrals are aligned on a2�2�2 grid,
where each cathedral consists of 416,763 polygons (Figure 11).

According to Section 3, we perform two different cull phases:
First, a view-frustum culling (VFC); second, an occlusion culling.
Figure 5 shows frame rate and percentage of model culled of our al-
gorithm on the cathedral scene for a sequence of about 100 frames.
For our performance tests, we measured three different modes:di-
rect rendering (DR) - without any culling,view-frustum culling
only (VFC), andview-frustum and occlusion culling(V+O).

The view-frustum-only mode culls only small portions of the
eight cathedral model, because for most view points the other cathe-
drals are still within the view-frustum. However, occlusion culling
is far more successful. Up to 65% of the model are culled away.
Due to the visibility culling, we obtained an average speed-up of
seven.

4.1.2 City Model

The city model is constructed out of three-hundred buildings. Each
building contains some interior furniture.

City Model

(a) (b)

Figure 6: City model is rendered using V+O culling: (a) Visitor’s
perspective. (b) Bird’s perspective of visitor’s view - all yellow
bounding volumes are not rendered due to visibility culling. Only
0.2% of the geometry is actually rendered at an average frame rate
of two frames per second, if the view point is near the ground.
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Figure 7: Frame rate and percentage of model culled: V+O denotes
view-frustum culling and occlusion culling, VFC denotes view-
frustum culling only, and DR denotes direct rendering without any
culling.

Figure 7 shows frame rate and percentage of model culled of
the city model. Three culling modes were measured while render-
ing a sequence of 100 frames:direct rendering (DR) - no culling,
view-frustum culling only (VFC), andview-frustum and occlu-
sion culling (V+O).

4.1.3 Forest Scene

The forest scene compounds of 12 leaf tree objects - each consists
of 28,500 polygons - and one ”Castle del Monte” of 110,981 poly-
gons behind the trees (Figure 8). The scattered, yet dense occluded
structure of the leaf trees has special demands for a visibility al-
gorithm. Depending on the subdivision of those trees, we achieve
higher additional culling, due to adaptive culling; Figure 9 shows an
average additional reduction of 11% of the geometry using adaptive
culling (AC), compared to the usual V+O culling of our algorithm.

Forest Scene

(a) (b)

(c) (d)

Figure 8: The forest scene is rendered using adaptive culling which
culled 88% of the structure: (a) Front view. (b) Overview - all
culled bounding volumes are marked yellow. (c) The forest scene
is rendered using V+O culling which culled 77% of the structure.
(d) Overview - all culled bounding volumes are marked yellow.
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Figure 9: Frame rate and percentage of model culled: V+O denotes
view-frustum culling and occlusion culling, VFC denotes view-
frustum culling only, and AC denotes adaptive culling.



4.1.4 Virtual Garbage Can Scene

To cull dynamic scenes, a special mode can be used. Only the leaf
level of the snSP-tree is used to check the visibility. We show the
performance of this mode on a scene of the content of a virtual
garbage can (Figure 10). 2,500 independent, potentially moving
objects of an average size of about 2,100 polygons are contained
in the scene. 96% of the total 5,331,146 polygons are culled. The
average obtained speed-up is still larger than seven.

Virtual Garbage Can Scene

(a) (b)

Figure 10: (a) Front view. (b) Bird’s perspective of front view -
all red bounding volumes are not rendered due to visibility culling.
Direct rendering took more than 28 seconds, while rendering using
our algorithm took less than four seconds.

scene #triangles culling speed-up
cathedrals 3,334,104 91.3% 4.2
city 1,056,280 99.8% 4.8
forest AC 452,981 89.0% 3.8
V+C 452,981 84.7% 2.6
garbage 5,331,146 96.0% 7

Table 2: Average performance of OVC-algorithm compared to
view-frustum only culling. The forest scene reflects comparison
of adaptive culling (AC) and V+O culling to view-frustum culling.

4.2 Discussion and Comparison

In this Section, the pros and cons of our algorithm are discussed.
In particular, we compare our OpenGL-assisted Visibility Culling
algorithm (OVC) with three approaches for general visibility2.

4.2.1 Hierarchical Z-buffer (HZB)

The HZB-algorithm combines a view-frustum culling of the octree
block cubes with a z-value image pyramid for visibility queries
[14]. In detail, each octree block cube is scan-converted into the
z-buffer. Thereafter, all z-values that have changed are propa-
gated through the image hierarchy. By checking the appropriate

2We encountered several problems comparing the numerous approaches.
A serious, yet simple problem is the use of proprietary models to demon-
strate the performance of the individual algorithms. Defining and providing
a set of standard models would allow a better comparison of different algo-
rithms.

z-pyramid level, the visibility of the cube can be determined. If the
cube is not visible, all the octree blocks which are children of the
block associated with this cube, are not visible too. If the cube is
visible, the children are recursively checked, until all children are
either not visible or their associated polygons are rendered.

As mentioned before, we consider the basic idea of this algo-
rithm as parent of our approach. However, we vary some of the
ideas. In contrast to the HZB, we use a sloppy nSP-tree as object-
space subdivision scheme. Furthermore, we use the OpenGL-
framebuffer as virtual occlusion buffer to determine the occlusion
of the tree elements; no image-space hierarchy is used to speed-up
the queries.

The occlusion query is a weak point of the HZB-algorithm. Al-
though it is tuned using a z-pyramid, basically an expensive array
search through several pyramid levels is performed. Our OVC-
algorithm only checks portions of the virtual occlusion buffer for
the footprints of our subdivision nodes. This operation is fast, while
achieving an equal culling performance.

Greene proposed the use of a ”Z-query” feature to speed-up the
performance of the occlusion test [14]. Unfortunately, this feature
is not implemented on common graphics hardware.

To summarize, the close relationship to the HZB-algorithm en-
ables the OVC-algorithm to combine many advantages of the HZB
(i.e. temporal coherence, high model reduction due to culling) with
our more efficient occlusion query on common OpenGL-graphics
hardware.

4.2.2 Hierarchical Tiling using Coverage Masks (HT)

The hierarchical tiling approach [12] basically differs from HZB in
two ways. While the HZB-algorithm uses a z-pyramid to establish
the visibility stage of a particular subdivision block, this algorithm
uses a hierarchical tiling algorithm. After tiling the silhouette of
a subdivision block using pre-computed coverage-masks, the sil-
houette is tested against the current coverage pyramid of already
rendered (and tiled) scene polygons of visible blocks. If the current
block is visible, all its polygonal content is tiled into the coverage
pyramid. This occlusion test requires a strict front-to-back traversal
of the scene. To obtain this order, the spatial subdivision hierarchy
is an octree of BSP-trees, which contain the front-to-back sorted
scene polygons.

Although Greene pointed out some strategies for dynamic scenes
[12], the previously mentioned strict front-to-back order limits the
applicability for dynamic scenes.

Performance comparison of the HT visibility algorithm to our
algorithm is difficult, because only a 4096�4096 image of a really
large dataset (167 million quadrilaterals) in a non-interactive envi-
ronment was presented. Our models are much smaller, yet can be
treated with a frame rate which enables some interactivity. How-
ever, we believe that the initial overhead filling the coverage pyra-
mid is significant, especially for smaller scenes. Furthermore, the
OVC-algorithm does not require a front-to-back order to establish
the visibility, though it would produce better occluders. The render-
ing of high-resolution images is the domain of the hierarchical tiling
algorithm. The occlusion query of our algorithm depends strongly
on the size of the virtual occlusion buffer; hence, it performs less
efficient generating high-resolution images.

4.2.3 Hierarchical Occlusion Maps (HOM)

The HOM-algorithm uses objects with high occlusion potential to
generate a hierarchical occlusion map. For each frame, a bounding
volume hierarchy of the remaining scene is checked against this
occlusion map for overlap. If they do not overlap, the geometry of
the volume is visible. If they do overlap, occlusion is determined in
a conservative depth test [24].



In contrast, our OVC-algorithm does not use an occluder selec-
tion to initiate occlusion. Instead, the bounding volumes of the sub-
division nodes are tested directly against the relevant parts of the
virtual occlusion buffer, which represents the current visible ob-
jects. Effectively, this leads to a dynamic occluder selection from
the complete scene database.

To compute the image hierarchy of occlusion maps, texture map-
ping hardware of high-end graphics workstations is exploited to
speed-up the necessary filter-operation. For the OVC-algorithm, no
image hierarchy is necessary. In addition, we do not use any special
graphics hardware, besides the basic OpenGL-supported features3.

The OVC-algorithm is closely related to the HZB-algorithm
[14]. Therefore, the advantages of this algorithm compared to the
HOM-algorithm are valid for our algorithm too, like the less con-
servative culling and possible exploitation of temporal coherence.

For approximate culling, Zhang et. al. claim to increase the
culling performance of the algorithm [24]. Unfortunately, no data
was presented to support that claim. Adaptive culling, our alterna-
tive to approximate culling, obtains on average an additional reduc-
tion of 5% of the geometry. On our test scene for adaptive culling,
the forest scene, the average frame rate was increased by a quarter
of a frame per second.

A drawback of our algorithm is its inability to treat non-
polygonal objects, like textures. The algorithm is strictly polygon
oriented; therefore, only textures closely associated with a polygon
can be treated.

To compare the performance, note that the performance mea-
surements of the HOM-algorithm were performed on a SGI Infinite-
Reality graphics, which is about ten times more powerful than the
O2, and on a SGI MaximumImpact graphics, which is about three
times more powerful than the O2.

Additionally, our models are of significant higher polygon count
than the HOM-algorithm models. Considering these different
modalities, we are approximately two times faster for the city
model. All other models can not fairly be compared, due to dif-
ferent topology and motion (garbage model).

4.3 Extending OpenGL

There are many limiting factors of current OpenGL to visibility
culling. Probably most important is the lack of a distinctive visi-
bility culling stage in the rendering pipeline.

The way we determine whether a subdivision node is visible, de-
pends very much on the actual implementation of the virtual occlu-
sion buffer, in our case the stencil buffer. Right now, we check the
relevant part of the stencil buffer in a special interleaved mode for
the identifier of this node. In many cases, this node is not visible.
Therefore, it takes a long time to establish its visibility state.

We propose an extension to OpenGL to implement the virtual
occlusion buffer in basically three ways:

� Occlusion buffer. Reading the framebuffer is a costly oper-
ation hence, we need a buffer query which is faster than the
standard framebuffer read operation.

� Footprint flag. Most effort is spent checking the buffer for a
modification, since the last action. Adding a modification flag
to the virtual occlusion buffer would improve the performance
tremendously.

� Footprint counter. Adaptive culling requires a measure how
much of an object is visible, i.e. a building through a hole
in a wall. The number of modified footprints of the virtual
occlusion buffer could be such a measure. Extending OpenGL
by this feature would simplify this task greatly.

3Currently, we use the stencil buffer as implementation of the virtual
occlusion buffer.

The extension proposed in this Section is very simple and easy to
implement in hardware. We hope that the members of the OpenGL
Architecture Review Board are aware of the importance of the prob-
lem and consider a reasonable extension to OpenGL.

Recently, HP proposed an extension to OpenGL for visibility
queries [15]. Although only a preliminary version without any de-
tails of the proposal is available, it underlines the growing impor-
tance of visibility culling for high-performance rendering of large
models.

5 Conclusion and Future Work

In this paper we have presented a visibility culling algorithm based
on core OpenGL functionality. By combining different framebuffer
features and sloppy n-ary Space Partitioning-trees - as model-space
subdivision - significant culling performance and reasonable frame
rates were obtained. On average, the culling performance exceeded
90%, while a rendering speed-up factor of almost five - compared
to view-frustum culling - was achieved.

Furthermore, we proposed to add features for visibility culling to
the OpenGL rendering pipeline. Specifically, we suggest to add an
occlusion buffer, including a footprint flag, and a footprint counter.

There are quite a few areas for future work on this algorithm.
Among the most important are

� Multi-resolution: Large model databases usually use multi-
resolution methods to represent different levels of detail. In-
corporating these level-of-detail functionality is important for
the rendering of large-scale scenes.

� Parallelization: Using a multi-threaded implementation for
the visibility queries promises faster traversal of our model-
space snSP-tree. However, using multiple threads for the pro-
cessing of OpenGL primitives adds a potential bottleneck into
our visibility stage.

� Optimization of the subdivision scheme:Different scenes
of different topology require subdivision schemes of different
topology and depth. However, optimizing these structures is
not a trivial task and needs further investigation.

Besides these areas for future work, it seems promising to ex-
ploit the presented selection-buffer-based frustum culling for visi-
bility queries based on shadow-frusta. Unfortunately, not all pos-
sible frusta can be specified by the projection matrix of OpenGL.
However, shadow-frusta of less suited occluders could be approxi-
mated by assembling square footprints which can be specified using
the matrix stack of OpenGL.
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Figure 11: Overview of the cathedral scene.

Figure 12: ”Suddenly, the old castle appeared behind the branches
of the trees .....”


