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Abstract

This paper presents a new method for efficient radiosity calculation
in dynamic environments. The method is intended for animation se-
quences in which the motion and mutation of the objects is known
in advance. The algorithm is based on Wallace’s progressive refine-
ment algorithm. Progressive refinement iterations are performed
simultaneously for all frames of the animation. Being precise, we
give a proof of the convergence of our algorithm to the correct so-
lution. Using our technique, a smooth non flickering illumination
is guaranteed during the animation sequence.

CR Categories: I.3.7 [Three-Dimensional Graphics and Realism]:
Radiosity; I.3.7 [Three-Dimensional Graphics and Realism]: Ani-
mation

Keywords: Global illumination, Radiosity, Dynamic environ-
ment, Progressive Refinement

1 Introduction

Physically correct illumination in three-dimensional scenes is of es-
sential importance for realistic image synthesis. Radiosity [13, 7,
16] is an efficient and well known method to obtain solutions in
diffuse static environments. Realistic animations and interactive
applications, however, require illumination techniques in dynamic
environments, i.e. environments where the appearance, location or
shape of objects may change.

The Radiosity method calculates an equilibrium of energy trans-
fer between the surfaces in the scene. This equilibrium is based on
visibility and form factors [9] between pairs of surfaces. All form
factors may possibly be affected by any change of the scene geom-
etry. The visibility of two surfaces may be blocked by a moving
object, or surfaces may become visible when the occluding object
is removed. Also the radiosity values of all surfaces may change
due to direct or indirect effects of the geometrical change.

In practice however, particular changes in the scene will result
in only inconsiderable changes of the radiosity solution in distant
parts of the scene. If someone for example moves a book on the
desk in an office room, the illumination of the floor, the ceiling and
most of the walls will not change noticably. Only a few form factors
and only the visibility between a few surfaces will change.

Therefore a great amount of computation can be saved by the use
of algorithms which avoid the recomputation of those visibilities
and form factors which do not change during particular intervals of
time.

We may distinguish two types of algorithms for radiosity in dy-
namic environments: Algorithms that need to know all changes in
the scene already at the beginning of the radiosity calculation, and
algorithms that start their calculation with an initial scene and get
the solutions for subsequent frames by updating the solution of the
previous frame. Algorithms that need to know all changes in ad-
vance are suitable for the calculation of video animations, while
interactive applications require algorithms that are able to update
an existing solution after modifications of the environment. In gen-
eral, the latter algorithms are also suitable to perform the calcula-
tions of video animations. But we will see in section 3 that update
algorithms that are based on progressive refinement lead to artifacts
unless a very high amount of computational effort is used.

In this paper we present a method that calculates a radiosity
solution in dynamic environments simultaneously for all frames.
Therefore the changes in the scene must be known in advance. The
method is based on Wallace’s progressive refinement algorithm [18]
and can deal with changes of geometry, materials and light emis-
sion.

In section 2 we describe previous work related to radiosity in
dynamic environments. In section 3 problems particular about pro-

gressive refinement for video animations are discussed. And finally
our algorithm is described in section 4 followed by some results
presented in section 5.

2 Previous Work

The first algorithm dealing with radiosity in dynamic environments
was presented by Baum et. al. already in 1986 [1], just two years
after the first paper on radiosity [13] has been published. This al-
gorithm is based on a full matrix solution using hemicube form
factors [6]. Swept volumes restricting the part of space affected by
moving objects are used to predict visibility changes between the
different frames. A first pass of the algorithm calculates and stores
hemicubes around all static patches of the scene. All static patches
and the volume swepts of all dynamic patches are projected onto
these hemicubes, which are used in a second pass to calculate a ra-
diosity solution for each frame of the animation. Obviously, a very
high amount of memory and computation power is required by this
algorithm which is therefore not suitable for complex environments.

Other approaches are based on the progressive refinement
method introduced in [5]. In [4] and [12] the authors present meth-
ods which incrementally update the radiosity solution after modi-
fications of the scene. Corrections are propagated through the en-
vironment by some additional progressive refinement iterations. In
[15] we find an algorithm which uses a Shadow-Form-Factor-List.
During initial progressive refinement calculation, the form factors
and shadowing objects are stored in this list for every progressive
refinement step. After modifications of the scene, the previously
performed progressive refinement iterations can be matched to the
new environment with the use of this list. If a surface which has
not previously been selected as a secondary light source becomes
highly illuminated due to modifications of the scene, some addi-
tional progressive refinement steps need to be performed. If the
modifications of the scene are known in advance, those additional
steps can be avoided by manipulating the progressive refinement
sequence of the initial calculation by hand.

In [10] a solution based on hierarchical radiosity is obtained by
updating links between surfaces dependent on the motion of ob-
jects. In [8] the authors present an update algorithm in the con-
text of clustering for hierarchical radiosity using a line-space hier-
archy. Links between hierarchical elements are updated when the
scene geometry changes, and additional bounces may need to be
performed. This algorithm provides a control mechanism allowing
for the regulation between image quality and frame rate.

All the progressive refinement algorithms cited above are de-
signed to work in interactive applications. But for video animations
they have to deal with problems described in the following section.

A method that is based on global Monte Carlo radiosity can be
found in [2]. Intersections of global lines [2] with the environment
are calculated in this approach with a scene that is merged together
from all frames. This algorithm suffers from the fact that global
Monte Carlo radiosity needs a high amount of computation power.

3 Progressive Refinement in Animations

The progressive refinement algorithm ensures that in every itera-
tion the most powerful surface will shoot. Thus convergence of the
radiosity solution is very fast for the first few iterations. But as
the solution approaches the exact solution the rate of convergence
is decreasing rapidly. Good visual results are usually obtained al-
ready after a few iterations of progressive refinement, even though
the absolute error is still very high.

The progressive refinement method is suitable to achieve good
results for photo-realistic image synthesis in complex environ-
ments. Only a few surfaces need to propagate their energy through



the scene; thus only a few columns of the form factor matrix have
to be calculated. But there will remain a relatively high absolute
error.

In order to get a solution of a modified scene by updating the
original solution, it might not be sufficient to do updates of the pre-
viously performed iterations. Surfaces which have not been prop-
agating their energy through the scene in the previous calculation
might become highly illuminated in the modified environment. Im-
portant global illumination effects may be caused by indirect light
leaving those surfaces. Therefore we need to perform some addi-
tional progressive refinement steps.

But on the other hand, if the sequence of progressive refinement
steps is not the same in all frames, the remaining error will be dis-
tributed differently in the scene in subsequent frames. This will
result in a flickering animation, which is surely no problem for in-
teractive applications, but unacceptable for video animations.

If all changes in the scene are known in advance, a sequence of
progressive refinement steps which is suitable for all frames can
be found; and all frames can be calculated with the same sequence
resulting in a smooth, non flickering animation. An algorithm to
achieve this will be described in the following.

4 Simultaneous Progressive Refinement

Next we will describe our algorithm for simultaneous progressive
refinement and give a proof of the convergence of this algorithm.

4.1 The Algorithm

The algorithm is based on a scene description where every object
in the scene is aware of its motion and mutation during the anima-
tion sequence. The progressive refinement procedure is performed
simultaneously for all frames.

Let Fi; i = 1; : : : ; n denote the faces in the scene andPi;f the
unshot power of faceFi in framef; f = 1; : : : ;m. FaceFi is said
to bea most powerful face, if

max
f=1;:::;m

Pi;f � max
f=1;:::;m
j=1;:::;n

Pj;f : (1)

For a progressive refinement step a most powerful faceL is se-
lected with the use of the above definition. This face is used to
propagate its unshot radiosity through the environment simultane-
ously for all frames.

If faceL is a dynamic face (i.e the face changes position or shape
during the animation sequence), visibility detections and form fac-
tor calculations to receiving faces have to be done for every frame.
However, if faceL is static (i.e. the face does not change posi-
tion or shape during the animation sequence), form factors to static
receiver faces remain constant during the complete animation se-
quence. Also visibility detection to static receiver faces can be done
simultaneously for all frames by tracing rays starting at receiver
vertices and ending at emitter samples through the environment.
Starting points and end points of these rays remain constant for all
frames.

Our progressive refinement algorithm can be stated in C-like
pseudo-code as shown in figure 1:
The radiosity propagation in the first case whereL is dynamic can
be formulated as described in figure 2:
For the second case whereL is static, the radiosity propagation is
performed as shown in figure 3:

In the case where the emitting faceL and the receiving faceF
are both static, raysR : v ! s have to be traced through the
environment to detect visibility simultaneously for all frames.

while (more iterations to be performed)f
select a most powerful face L
if (L is dynamic)

propagate radiosity separately for each frame
else // L is static

propagate radiosity simultaneously for all frames
g

Figure 1: Simultaneous Progressive Refinement

for (all frames f, faces F, vertices v of F and samples s of L)f

trace ray v!s through scene
if (visible)f

calculate form factor
transfer radiosity from s to v

g

g

Figure 2: Radiosity Propagation for Dynamic Light Sources

For this purpose every rayR : v ! s is equipped with a visi-
bility mask containing a flag for each frame. These flags are used
to mark visibility or occlusion for the particular frames. Initially all
frames are marked to have visibility. As rayR is traced through the
environment, intersection tests with static objects have to be done
only once. If rayR hits a static object, all frames can be marked oc-
cluded. Intersection tests with dynamic objects have to be done for
those frames which are not already marked occluded. The tracing
process can be aborted as soon as all frames are marked occluded.

In the example shown in figure 4 a rayR starting at a static re-
ceiver vertexv and ending at a static emitter samples is traced
through a dynamic environment. The animation sequence consists
of five frames. The visibility mask of the ray is initialized with 1 for
each frame (a) meaning that we have visibility in all frames. The
intersection test with the static objectO1 has to be performed only
once leading to the result that the object does not occlude the ray in
any frame (b). The intersection test with the rectangular dynamic
objectO2 gives occlusion in frame two and three which is marked
in the visibility mask of the ray by setting the flags of frame two and
three to 0 (c). The intersection test with the oval dynamic object
O3 can ignore frame two and three since these frames are already
marked occluded. Frame four is marked occluded due to this ob-
ject (d). The visibility mask at the end of the tracing procedure (e)
shows that we have visibility in frame one and five and occlusion in
the frames two, three and four.

Then the form factor is calculated and the radiosity of the emitter
is transfered to the receiver for frame one and five.

4.2 Convergence of Simultaneous Progressive
Refinement

In the first subsection we will briefly present the concept of relax-
ation since it will be used in the following to prove convergence
of the algorithm. The proof is similar to the one in [14] given for
progressive refinement in static environments. For more detailed
information about relaxation see also [3] and [11].

4.2.1 Relaxation

Let us consider the linear system

Mx = b

whereM is ann � n matrix andx; b 2 IRn. To solve this linear
system forx we want to use an iterative method, starting with an
approximate solutionx(0). For the approximate solutionx(k) =



for (all faces F)f
if (F is dynamic)f

for (all frames f, all vertices v of F and all samples s of L)f
trace ray v!s through scene
if (visible)f

calculate form factor
transfer radiosity from s to v

g

g

g elsef // F is static
for (all vertices v of F and all samples s of L)f

trace ray v!s through scene
if (visible in at least one frame)f

calculate form factor
for (all frames in which we have visibility)

transfer radiosity from s to v
g

g

g

g

Figure 3: Radiosity Propagation for Static Light Sources
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Figure 4: Simultaneous Ray Tracing using Visibility Masks. (a)–
(e): progression of the visibility status for ray R

(x
(k)

1 ; : : : ; x
(k)
n ) obtained after thekth step, we define thekth error

e
(k) and thekth residualr(k) as

e
(k) := x� x

(k)
and r

(k) := b�Mx
(k) =Me

(k)
:

If the residualsr(k) = (r
(k)

1 ; : : : ; r
(k)
n ) converge to zero, then the

x
(k) converge to the correct solution. Relaxation is a method that

attempts to achieve this. The idea is torelax one variablex(k)i in
every iteration, i.e. change this variable in such a way thatr

(k+1)

i =

0. Of course otherr(k)j may increase thereby. But if the variables to
be relaxed are chosen properly, convergence can be achieved (see
below and 4.2.2).
If the variablex(k)i is to be relaxed, we need to set

x
(k+1)

i :=
bi �

P
j 6=i

Mijx
(k)

j

Mii

:

Using the definition ofr(k), i.e.

r
(k)

i = bi �
X
j

Mijx
(k)

j ; (2)

we obtain

x
(k+1)

i = x
(k)

i +
r
(k)

i

Mii

:

Applying equation (2) tor(k)j andr(k+1)j , we get for the new resid-
ual

r
(k+1)

j =

(
r
(k)

j �
Mji

Mii
r
(k)

i for j 6= i;

0 for j = i:

(3)

If we relax thex(k)i in order, we get the well known Gauss-Seidel
iteration algorithm, which converges for diagonally dominant ma-
trices. If in every iteration step that variablex(k)i with the greatest
residualr(k)i is relaxed, then the method is calledSouthwell Re-
laxation. In [14] the authors prove that this method converges for
strictly column diagonally dominant matrices by showing that the
total residual decreases by some constant factor in every iteration
step.

4.2.2 Proof of Convergence

The radiosity solution in a static environment is obtained by solving
the system of linear equations given by

Bi = Ei + �i

nX
j=1

BjFji
Aj

Ai

; i = 1; : : : ; n

where the scene consists ofn patches and

Bi = the radiosity of patchi
Ei = the emission of patchi
Ai = the area of patchi
�i = the reflectivity of patchi
Fij = the form factor from patchi to patchj.

With the use of the reciprocity relationshipFjiAj = FijAi, we
obtain

Bi = Ei + �i

nX
j=1

BjFij ; i = 1; : : : ; n: (4)

Instead of solving system (4) we can, again with the use of the
reciprocity relationship, equivalently solve the system

BiAi = EiAi + �i

nX
j=1

BjAjFji; i = 1; : : : ; n (5)

or in matrix form

M B = ~E

where



M =

2
664

A1 � �1A1F11 : : : ��1AnFn1

��2A1F12 A2 � �2A2F22

...
...

��nA1F1n : : : An � �nAnFnn

3
775 ;

B =

2
664

B1

B2

...
Bn

3
775 and ~E =

2
664

E1A1

E2A2

...
EnAn

3
775 ;

which is a strictly column diagonally dominant system sinceP
j=1;:::;n

Fij < 1 and�i < 1 for all i = 1; : : : ; n.
In [14] the authors show that performing a progressive refine-

ment iteration to equation (4) where the most powerful patch is
shooting is equivalent to performing a Southwell Relaxation step
to equation (5) where the variable with the greatest residuum is re-
laxed and the output is the variables added to their residuals. The
convergence of the progressive refinement method for the radiosity
equation (4) is therefore equivalent to the convergence of Southwell
Relaxation for equation (5).

To obtain a radiosity solution for a dynamic environment, we
have to solve equation (4) for each frame. For an animation se-
quence consisting ofm frames, we have to solve

B
f

i = E
f

i + �
f

i

nX
j=1

B
f

j F
f

ij ; i = 1; : : : ; n; f = 1; : : : ;m (6)

or the equivalent system in matrix form2
6664

M
1 0 : : : 0

0 M
2

...
...

.. . 0
0 : : : 0 M

m

3
7775
2
664

B
1

B
2

...
B
m

3
775 =

2
664

~E1

~E2

...
~Em

3
775 ; (7)

which is still a strictly column diagonally dominant system. The
matrix is a block matrix consisting of one block for each frame of
the animation. The values in the particular frames are denoted by
the superscript index.

Performing one simultaneous progressive refinement step as de-
scribed above is now equivalent to performingm relaxation steps
to equation (7). Thesem relaxation steps relax exactly one variable
in every block of the matrix and are therefore independent of each
other in the sense that the residuals of a relaxed variable will not
become nonzero due to the other relaxation steps. That is,m vari-
ables are relaxed simultaneously in one simultaneous progressive
refinement step.

In the following, we will show that the total residual decreases by
some constant factor in each simultaneous progressive refinement
step. For convenience we use thel1 norm:

krk :=
X
i

jrij:

Let us suppose, patchFi is propagating its unshot radiosity
through the scene in the(k + 1)th iteration step. Since equation
(3) applies to every block of our matrix, we have

kr(k+1)k = kr(k)k �

mX
f=1

jr
f (k)

i j+

mX
f=1

X
j 6=i

�����M
f

ji

M
f
ii

r
f (k)

i

�����

= kr
(k)
k �

mX
f=1

jr
f (k)

i j+

mX
f=1

jr
f (k)

i j
X
j 6=i

�����M
f

ji

M
f

ii

����� :
Since our matrix is strictly column diagonally dominant, we get

p := max
i;f

X
j 6=i

�����M
f

ji

M
f

ii

����� < 1

and therefore

kr(k+1)k � kr(k)k � (1� p)

mX
f=1

jr
f (k)

i j: (8)

In our algorithm we always choose a most powerful face (see
(1)) as shooting patch. WithP f

j = B
f

j A
f

j , we therefore achieve
that the shooting patchFi is chosen such, that

jr
~f (k)

i j � max
j;f

jr
f (k)

j j for some~f 2 f1; : : : ; mg

and thus

mX
f=1

jr
f (k)

i j � jr
~f (k)

i j �
kr(k)k

n m
:

With the use of (8), we now get

kr(k+1)k � kr(k)k �
(1� p)

n m
kr(k)k = q kr(k)k;

where

q = 1�
1� p

n m
< 1:

It follows that

kr(k)k � q
k kr(0)k;

which converges to zero ask goes to infinity.

5 Implementation and Results

In this section we present some results to evaluate the efficiency of
our algorithm.

The new algorithm has been integrated in the object oriented
global illumination system RadioLab [17]. The implementa-
tion has been done in C++. All results are computed on a Silicon
GraphicsO2 with an 180 MHz R5000 processor.

The example scene shown in figure 5 contains 20,139 patches.
This scene is composed of an office room, which is brightly illu-
minated by three light sources, and a living room, which is only
illuminated by a television screen. During the animation sequence,
a door between these two rooms is being opened and a movie on the
television screen is shown. The illumination effects of the opening
door as well as the changing color in the room due to the color
bleeding caused by the changing images of the movie on the screen
can be seen clearly in figure 5.



Figure 5: Example scene

We calculated an animation sequence consisting of 40 frames.
For acceleration of ray tracing, which is used for visibility detec-
tion, a 3D grid with a resolution of 40 times 16 times 11 voxels was
used. Highly occupied voxels were subdivided recursively.

The simultaneous progressive refinement calculation resulting in
the images shown in figure 5 took 224 seconds for all 40 frames,
whereat 4,309,573 intersection calculations had to be performed.
For the same iterations for one single frame, 95 seconds and
3,475,145 intersection calculations were needed. The average time
needed for an additional frame therefore is 3.3 seconds or 3.5% of
the time needed for a single frame. The average number of intersec-
tion calculations needed for an additional frame is 21,396 or 0.6%
of those needed for a single frame.

6 Conclusion and Future Work

We have presented a new method for radiosity calculation in dy-
namic environments based on Wallace’s progressive refinement al-
gorithm. The calculation is done simultaneously for all frames. The
effort for visibility detection and form factor calculation between
static surfaces has to be taken only once for the complete animation
sequence. The fact that the sequence of progressive refinement iter-
ations is the same for all frames of the animation ensures a smooth
non flickering illumination of the environment. The method seems

to be a practical technique for photo-realistic animations. But, since
the changes of the scene have to be known in advance, it is not us-
able for interactive applications.

Our future research will include improvements of performance
and storage costs of the algorithm and the quality of the result-
ing images. The use of space-time coherence of dynamic objects
should result in a significant improvement of the performance of
the algorithm. In order to reduce storage costs, a proper dynamic
representation of the radiosity function on the surfaces has to be
developed, which is an important issue for longer video animations
in complex environments. And finally dynamic meshing strategies
are needed as discontinuities can change during the animation se-
quence.
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