On Learning
Function Distinguishable
Languages

Henning Fernau

WSI-2000-13

Henning Fernau

Wilhelm-Schickard-Institut fir Informatik
Unwversitat Tibingen

Sand 13

D-72076 Tubingen

Germany

E-Mail: fernau@informatik.uni-tuebingen.de
Telefon: (07071) 29-77565
Telefax: (07071) 29-5061

(© Wilhelm-Schickard-Institut fiir Informatik, 2000
ISSN 0946-3852

On Learning
Function Distinguishable Languages

Henning Fernau
Wilhelm-Schickard-Institut fir Informatik
Universitat Tibingen
Sand 13, D-72076 Tiubingen, Germany
fernau@informatik.uni-tuebingen.de

June 28, 2000

Abstract

We show how appropriately chosen functions which we call distin-
guishing can be used to make deterministic finite automata backward
deterministic. These ideas can be exploited to design regular language
classes identifiable in the limit from positive samples. Special cases
of this approach are the k-reversible and terminal distinguishable lan-
guages as discussed in [1, 7, 8, 14, 15].

1 Introduction

The learning model we use is identification in the limit from positive sam-
ples as proposed by Gold [10]. Here, a language class £ (defined via a class
of grammars or automata G) is identifiable if there is a so-called inference
machine I to which an arbitrary language L € £ may be enumerated (pos-
sibly with repetitions) in an arbitrary order, i.e., I receives an infinite input
stream of words wy, ws, ... with L = {w; | i € N}, and I reacts with an
output stream G; € G such that for all L, there is an N(L) such that for all
enumerations of L, for all corresponding response grammar sequences G; and
for all n > N(L), we have G,, = G'n(r) and, moreover, the language defined
by Gy equals L.

This model is rather weak, since Gold already has shown [10] that any
language class which contains all finite languages and one infinite language
is not identifiable in the limit from positive samples. On the other hand,
the model is very natural, since in most applications, negative samples are
not available. There are two answers to this problem: (1) One could allow
certain imprecision in the inference process; this has been done quite success-
fully within the PAC model proposed by Valiant [17] or, in another sense,
by several heuristic approaches to the learning problem (including genetic
algorithms or neural networks). (2) One could investigate how far one could
get when maintaining the original “deterministic” model. The present paper
makes some steps in the second direction.

The main point of this paper is to give a unified view on several iden-
tifiable language families through what we call f-distinguishing functions.
In particular, to our knowledge this provides the first complete correctness
proof of some published learning algorithms, as, e.g., in the case of termi-
nal distinguishable languages. Among the language families which turn out
to be special cases of our approach are the k-reversible languages [1] and
the terminal-distinguishable languages [14, 15|, which belong, according to
Gregor [11], to the most popular identifiable regular language classes.

2 Definitions

2.1 Formal language prerequisites

¥* is the set of words over the alphabet Y. ¥ (3<*) collects the words whose
lengths are equal to (less than) k. A denotes the empty word. Pref(L) is the
set of prefixes of L and uv™!L = {v € ©*|uv € L} is the quotient of L C 3*
by wu.

We assume that the reader knows that regular languages can be character-
ized either (1) by left-linear grammars G = (N, T, P, S), where N is the set of
nonterminal symbols, T is the set of terminal symbols, P C N x (NU{A})T*
is the rule set and S € N is the start symbol, or (2) by (deterministic) finite
automata A = (Q,T,0,q0,Qr), where @ is the state set, 6 C Q@ x T x @
is the transition relation, ¢ € @ is the initial state and Qr C @ is the set
of final states. As usual, 6* denotes the extension of the transition relation
to arbitrarily long input words. The language defined by a grammar G (or
an automaton A) is written L(G) (or L(A), respectively). An automaton is

called stripped iff all states are accessible from the initial state and all states
lead to some final state.

We denote the minimal deterministic automaton of the regular language
L by A(L). Recall that A(L) = (@, T, 6, gy, Qr) can be described as follows:
Q = {u'Llu € Pref(L)}, g = N''L = L; Qr = {u'Lju € L}; and
d(u™'L,a) = (ua)™'L with u,ua € Pref(L), a € T.

Furthermore, we need two automata constructions in the following:

The product automaton A = Ay x Ay of two automata A; = (Qy, T, 6;, go,i, Qri)
for i = 1,2 is defined as A = (Q,T,0,q0, Qr) with Q = Q1 X Q2, ¢ =
(90,1, 90,2), Qr = Qr1 X Qra, ((91,92), 0, (¢}, ¢3)) € ¢ iff (¢1,a,q]) € 61 and
(g, a, gb) € 0o.

A partition of a set S is a collection of pairwise disjoint nonempty subsets
of S whose union is S. If 7 is a partition of S, then, for any element s € S,
there is a unique element of 7 containing s, which we denote B(s,) and call
the block of m containing s. A partition 7 is said to refine another partition 7’
iff every block of 7’ is a union of blocks of 7. If 7 is any partition of the state
set @ of the automaton A = (Q, T, 4, gy, Qr), then the quotient automaton
YA = (r7'Q, T, 8, B(qy,), 7 'Qp) is given by 77'Q = { B(¢,7) | ¢ € Q}
(for Q C Q) and (By,a, By) € 8 iff 3¢ € By3gs € By : (1,0, ¢2) € 6.

2.2 Distinguishing functions

In order to avoid cumbersome case discussions, let us fix now the terminal
alphabet T of the left-linear grammars or automata we are going to discuss.

Definition 1 Let F' be some finite set. A mapping f : T* — F is called
distinguishing function if f(w) = f(z) implies f(wu) = f(zu) for all u,w, z €
T*.

In the literature, we can find the terminal function [15]
Ter(z) ={a €T |Ju,v €T* :uav =z}
and, more generally, the k-terminal function [8]

Tery(z) = (mk(@), p(z),0%(2)), where
() = {a €T | Ju,veT* :uav =2}

and 7 (z) [ox(x)] is the prefix [suffix] of length k of z if z ¢ T<F, and
me(x) = op(x) = z if z € T<F. The example f(z) = ox(k) leads to the k-
reversible languages, confer [1, 8] Other examples of distinguishing functions
in the context of even linear languages can be found in [7].

Observe that every regular language R induces, via its Nerode equivalence
classes a distinguishing function fgr, where fr(w) maps w to the equivalence
class containing w. In some sense, these are the only distinguishing functions,
since one can associate to every distinguishing function f a finite automaton
Ay = (F\T, 6, f(N), F) by setting 6;(g,a) = f(wa), where w € f~*(g) can
be chosen arbitrarily, since f is a distinguishing function.

Definition 2 Let G = (N, T, P, S) be a left-linear grammar with

P C(N\{S}) x (N\{SHTU{A) U{S} x (N \ {S}).

Let f : T* — F be a distinguishing function. We will say that G is f-distin-
guishable if:

1. G is backward deterministic. (B — w and C' — w implies B = C).

2. For all A€ N\ {S} and for all z,y € L(G, A)," we have f(z) = f(y)-
(In other words, for A € N\ {S}, f(A) := f(x) for some z € L(G, A)
is well-defined.)

3. If (a) S— B and S— C are in P or if (b) A — Ba and A — Ca are
in P with B # C, then f(B) # f(C).

A language is called f-distinguishable iff it can be generated by an f-distin-
guishable left-linear grammar.
The family of f-distinguishable languages is denoted by f-DL.

Remark 1 Our notation is adapted from the so-called terminal distinguish-
able languages introduced by Radhakrishnan and Nagaraja in [15]. We use
left-linear grammars, while they use right-linear grammars in their defini-
tions. This means that, e.g., the class Ter-DL coincides with the reversals
(mirror images) of the class of terminal distinguishable languages, as exhib-
ited in [7].2

'We will denote by L(G, A) the language obtained by the grammar G4 = (N, T, P, A).

2Note that their definition of terminal distinguishable right-linear grammar does not
completely coincide with ours, but in order to maintain their results, their definition should
be changed acccordingly.

Definition 3 Let A = (Q, T, J, qo, @r) be a finite automaton. Let f : T*—F
be a distinguishing function. A is called f-distinguishable if:

1. A is deterministic.

2. For all states ¢ € @ and all z,y € T* with §*(qo,) = 0*(qo,y) = ¢, we
have f(z) = f(y).

(In other words, for ¢ € @, f(q) := f(z) for some x with §*(gy,z) = ¢
is well-defined.)

3. For all ¢1, ¢ € Q, q1 # qo, with either (a) ¢1,¢2 € Qp or (b) there exist
g3 € Q and a € T with §(q1,a) = (g, a) = g3, we have f(q1) # f(g2).

We need a suitable notion of a canonical automaton in the following.

Definition 4 Let f : T* — F be a distinguishing function and let L C T™ be
a regular set. Let A(L, f) be the stripped version of the product automaton
A(L) x Ay, i.e., delete all states that are not accessible from the initial state
or does not lead to a final state of A(L) x A;. A(L, f) is called f-canonical
automaton of L.

Observe that an f-canonical automaton trivially obeys the first two re-
strictions of an f-distinguishing automaton. Clearly, L(A(L, f)) = L.

3 Characteristic Properties

In order to simplify the discussions below, we will always consider only the
case of non-empty languages.

Remark 2 Let L be f-distinguishable. If ujv,usv € L C T* and f(u
f(ug), then 6*(go, u1) = 6*(qo, uz) for any f-distinguishing automaton
(Q,T,6,q,Qr) accepting L.

Proof. Consider the final states ¢; = §*(qo, u;v) of A for 7 = 1,2. Since
f(@) = f(u;v) and since f(uy) = f(uz) implies that f(uv) = f(uqv), condi-
tion 3a. in the definition of f-distinguishing automata yields ¢; = ¢o.

By induction, and using condition 3b. in the induction step argument,
one can show that 6*(qo, u1v") = 0*(qo, ugv') for every prefix v' of v. This
yields the desired claim. O

1)
A

Theorem 5 (Characterization theorem) The following conditions are equiv-
alent for a regular language L C T and a distinguishing function f : T*—F':

1. L s f-distinguishable.

2. For all u,v,w,z € T* with f(w) = f(z), we have zu € L <= zv € L
whenever {wu, wv} C L.

3. For all u,v,w,z € T* with f(w) = f(z), we have u € 27 'L <= v €
2 'L whenever u,v € w L.

4. The f-canonical automaton of L is f-distinguishable.
5. L s accepted by an f-distinguishable automaton.

6. For all uy,us,v € T* with f(uy) = f(uy), we have uy'L = uy 'L when-
ever {uyv,usv} C L.

Proof. ‘1. — 2.7 Assume firstly that L is generated by an f-distinguish-
able left-linear grammar G = (N, T, P,S). Consider {wu,wv} C L. Since
G is backward deterministic, there will be a single nonterminal A that will
generate w, and both S=* Au and S="* Av. More specifically, let u = a, ...a;
and

S:>X0:>X1a1 :>X2a2a1:>...:>XT_1ar_1...a1:>Xra,...a1 = Au (1)

be the above-mentioned derivation. Consider now a word zu. By definition
of distinguishing functions, we have f(zu) = f(wu), since f(z) = f(w). This
means that any derivation of zu via G must start with S = X, since other-
wise the third condition (part (a)) of f-distinguishable grammars would be
violated. By repeating this argument, taking now part (b) of the definition,
we can conclude that any derivation of zu via G must start as depicted in
Equation (1). Similarly, one can argue that the derivation of zv must start as
any derivation of wv for the common suffix v. This means that any possible
derivation of zu via G leads to the nonterminal A after processing the suffix
u, and any possible derivation of zv via G leads to the nonterminal A after
processing the suffix v, as well. Therefore, zu € L iff zv € L as required.

‘2. <> 3.7 is trivial.

‘3. — 4.7 We have to consider cases 3a. and 3b. of the definition of
f-distinguishable automaton. We will prove that the f-canonical automaton

A=A(L, f)=(Q,T,0,q0,Qr) of L is indeed f-distinguishable by using two
similar contradiction arguments.

Assume firstly that there exist two different final states ¢, ¢qs of A, i.e.,
¢ = (w;'L, X;) with w;'L # wy 'L and X = X; = X,. We may assume that
X = f(w;) = f(wy). Consider two strings u,v € w; ' L. Since we may assume
property 3., we know that either u,v € wy 'L or u,v ¢ wy L. Since u= \ €
w; 'L Nw, 'L, this means that v € w; 'L implies v € w, ' L. Interchanging
the roles of w; and ws, we obtain w; 'L = w; 'L, a contradiction.

Secondly, consider two different states ¢i,gs of A such that there is a
third state g3 with 6(g1,a) = d(ge,a) = ¢g3. We have to treat the case that
¢ = (w;'L, X;) withw;'L # wy 'L and X = X; = X,. We may assume that
X = f(wy) = f(wy). Since g3 is not “useless”, there exists a suffix s such
that wias, weas € L. Since f is a distinguishing function, Y = f(wias) =
f(wsas) is the second (F-) component of the final state of A reached in this
way. In particular, as € w; 'L Nw, L. This means that v € w; 'L implies
v € w, ' L. Interchanging the roles of w; and ws, we obtain w; 'L = w, 'L, a
contradiction.

‘4. — 5.7 is trivial.

‘5. ¢+ 1.7 is easy to see via the standard proof showing the equivalence of
left-linear grammars and finite automata.

‘4. — 6.” follows immediately by using Remark 2.

‘6. — 5.t Let the regular language L C 7™ satisfy condition 6. Consider
A= A(L) x Ay = (Q,T,9,90,Qr). We have to verify condition 3. in the
definition of f-distinguishing automata for A. If uj,uy € L with f(u) =
f(uy), then u;'L = u,'L. Hence, 6*(qo,u1) = 6*(qo, us), i.e., A satisfies
condition 3a.

Consider two states uy'L, uy 'L of A(L) with f(u;) = f(ug). Assume
that (uia) 'L = (uga) 'L for some a € T. Then, there is some v' € T*
such that {ujav’, usav'} C L. Hence, 6*(qo,u1) = 0*(qo, ue), i-e., A satisfies
condition 3b. O

Observe that the characterization theorem yields new characterizations
for the special cases of both k-reversible and terminal distinguishable lan-
guages.

Lemma 6 Let f be a distinguishing function. Any subautomaton of an f-
distinguishable automaton is f-distinguishable. O

Lemma 7 Let f be a distinguishing function. The stripped version of an
f-distinguishable automaton is isomorphic to the f-canonical automaton.

Proof. Denote by A" = (Q',T,0',q, Q%) the stripped subautomaton
of some f-distinguishable automaton A = (Q,T,4d,qy, Qr). According to
Lemma 6, A" is f-distinguishable. We have to show that, for all ¢;,¢ € Q'

with f(q1) = f(g),
{veT" |§(q,v)eQr}={veT" | §(gpv) €Qr}=q =q,

since then the mapping g — (w™'L(A), f(q)) for some w € T* with 6" (go, w) =
g in A" will supply the required isomorphism.

Since A’ is stripped, there exist strings uy, us, v € T* with ¢, = 6" (qo, u1),
g2 = 0" (qo, u2) and {u1v,upv} C L(A). By Remark 2, ¢, = gy. O

4 Inferability

According to a theorem due to Angluin [12, Theorem 3.26], a language class £
is inferable if any language L € L has a characteristic sample, i.e., a finite
subset x(L) C L such that L is the smallest language from £ containing

x(L).
For the language class f-DL and some language L € f-DL, consider the
corresponding f-canonical automaton A(L, f) = (@, T, , gy, Qr) and define

x(L, f) = {ulgv(g) l¢€Q}
U {u(g)av(é(q,a)) | g€ Q,a €T},

where u(q) and v(gq) are words of minimal length with §* (g, u(q)) = ¢ and
6"(q,v(q)) € Q.

Theorem 8 For each distinguishing function f and each L € f-DL, x(L, f)
s a characteristic sample of L.

Proof. Consider an arbitrary language L' € f-DL with x(L, f) C L'. Set

A= A(L7 f) = (Q7 T7 57 9o, QF) and A" = A(LI’ f) = (le T7 51) Q(,)v QIF)7 cf.
Theorem 5. We have to show L C L'. Therefore, we will prove:

(*) for all w € Pref(L),
q = 5*(QO,w) = (wilLl,f(w)) — ((U(Q))ilLl,f(U,(q)))

(*) implies: If w € L, i.e., g = 6*(go, w) is final state of A, then, since u(qy) €
X(L, f) € L', (u(gs)) 'L is an accepting state of the minimal automaton
A(L') of L'. This means that (u(qs) 'L, f(u(gs))) is an accepting state of
A ie, w e L, since f(w) = f(u(q)). Hence, L is the smallest f-distinguish-
able language containing x(L, f).

We prove (*) by induction over the length of the prefix w we have to
consider.
If |lw| = 0, then w = u(go) = A. Hence, (*) is trivially verified.
We assume that (*) holds for all w € T<", n > 0. We discuss the case where
wa € T", w € T", a € T and wa € Pref(L). Since w € Pref(L), the
induction hypothesis yields (w L, f(q)) = ((u(q)) 'L, f(q)), where ¢ =
0" (g0, w) and f(w) = f(q) = f(u(q)). Therefore, (wa)~'L’" = (u(g)a)~'L’
and f(wa) = f(u(q)a), since f is a distinguishing function. Consider ¢’ =
d(q,a) = §*(qo, wa).

Since {u(q)av(q),u(q’)v(q)} € x(L, f) € L' and f(u(q)a) = f(u(¢)) =
f(wa), 6" (gh, u(q)a) = 6 (g4, u(q")) due to Remark 2 and, hence, (u(q¢')) 'L =
(u(g)a)*L'. The induction of (*) is finished. O

5 Inference algorithm

We sketch an algorithm which receives an input sample set I, = {wy, ..., wy}
(a finite subset of the language L € f-DL to be identified) and finds the small-
est language L' € f-DL which contains I, . In order to specify that algorithm
more precisely, we need the following notions.

The prefiz tree acceptor PTA(IL) = (Q,T,9,q,Qr) of a finite sample
set Iy = {wy,...,wy} C T* is a deterministic finite automaton which is
defined as follows: @ = Pref(I}), ¢o = A\, Qr = I, and 6(v,a) = va for
va € Pref(I,).

A simple merging state inference algorithm f-Ident for f-DL now starts
with the automaton Ay which is the stripped version of PTA(I) x A;® and
merges two arbitrily chosen states ¢ and ¢’ which cause a conflict to the first
or the third of the requirements for f-distinguishing automata. (One can
show that the second requirement won’t be violated ever when starting the
merging process with Ay which trivially satisfies that condition.) This yields
an automaton A;. Again, choose two conflicting states p, p’ and merge them

30f course, this automaton is equivalent to PT A(1.).

to obtain an automaton A; and so forth, until one comes to an automa-
ton A; which is f-distinguishable. In this way, we get a chain of automata
Ag, Ay, ..., Ay Speaking more formally, each automaton A; in this chain can
be interpreted as a quotient automaton of Ay by the partition of the state set
of Ay induced by the corresponding merging operation. Observe that each
A, is stripped, since Ay is stripped.

Completely analogous to [1, Lemma 1], one can prove:

Lemma 9 Consider a distinguishing function f and some L € f-DL. Let
I, C L CT* be a finite sample. Let m be the partition of states of Agy (the
stripped version of PTA(I1) x Ay) given by: (q1, f(q1)), (g2, f(g2)) belong
to the same block iff ;'L = q; 'L and f(q1) = f(q).* Then, the quotient
automaton w1 Ay is isomorphic to a subautomaton of A(L, f). a

Theorem 10 Let f be a distinguishing function. Consider a chain of au-
tomata Ay, A1, ..., A; obtained by applying the sketched algorithm f-Ident
on input sample I, where Ay is the stripped version of PTA(Iy)x Ay. Then,
we have:

1. L(Ag) C L(A1) C--- C L(A,).
2. A; is f-distinguishable and stripped.

3. The partition m; of the state set of Ay corresponding to Ay is the finest
partition m of the state set of Ag such that the quotient automaton
7Y Ay is f-distinguishable.

Proof. 1. is clear, since f-Ident is a merging states algorithm.

2. follows almost by definition.

3. can be shown by induction, proving that each 7; corresponding to A; refines
7. Since this proof is analogous to [1, Lemma 25], we omit it; see also [5,
Propriété 1.1]. O

Theorem 11 In the notations of the previous theorem, L(A;) is the smallest
f-distinguishable language containing I, .

Proof. The previous theorem states that L(A;) € f-DL and I, = L(A) C
L(A;). Consider now an arbitary language L containing /.. We consider

4Note that states of PTA(I,) are words over T'.

10

the quotient automaton 7 'A; defined in Lemma 9. This Lemma shows
that L(n 'Ay) C L = L(A(L, f)). By Lemma 6, 7' Ay is f-distinguishable,
because A(L, f) is f-distinguishable due to Theorem 5. Theorem 10 yields
that 7; refines 7, so that L(A;) = L(n; ' Aq) C L(n'Ap) = L. a

Theorem 12 If L € f-DL is enumerated to the algorithm f-Ident, it con-
verges to the f-canonical automaton A(L, f).

Proof. At some point N of the enumeration process, the characteristic
sample x(L, f) will have been given to f-Ident. By combining Theorems 8
and 11, for all n > N, and all automata A, output by f-Ident, we have
L(A,) = L. The argument of Theorem 11 shows that each A, is isomorphic
to a subautomaton of A(L, f) generating L = L(A(L, f)). Since each A, is
stripped, it must be isomorphic to A(L, f). a

We refrain from giving details of particular cases of f-Ident, since good
implementations of f-Ident will depend on the choice of the distinguishing
function f. We refer to [1, 8, 15] for several specific algorithms, including their
time analysis. We only remark that the performance of the general algorithm
f-Ident sketched above depends on the size of A (since the characteristic
sample x(L, f) we defined above depends on this size) and is in this sense
“scalable”, since “larger” Ay permit larger language families to be identified.
More precisely:

Remark 3 Let f and g be distinguishing functions. If Ay is a homorphic
image of Ay, then f-DL C g-DL. O

As regards the time complexity, let us mention briefly that the f-Ident
can be implemented to run in time O(«(|F|n)|F|n), where « is the inverse
Ackermann function and n is the total length of all words in I, from language
L, when L is the language presented to the learner for f-DL. This observation
follows from the fact that f-Ident can be implemented similarly to the
algorithm for O-reversible languages exhibited by Angluin [1]. Moreover, her
time analysis carries over to our situation. Observe that this leads to an
O((a(|T|*n)|T|*n) algorithm for k-reversible languages, even if we output
the deterministic minimal automaton as canonical object (instead of A(L, f)
as would be done by our algorithm), since A(L) can be obtained by A(L, f) by
computationally simple projection. On the other hand, Angluin [1] presented
an O(kn®) algorithm for the inference of k-reversible languages. When k is

11

small compared to n (as it would be in realistic applications, where &k could
be considered even as fixed), our algorithm would turn out to be superior
compared with Angluin’s. Recall that this feature is prominent in so-called
fixed-parameter algorithms, see [2, 3, 13].

We mention that f-Ident can be easily converted into an incremental
algorithm, as sketched in the case of reversible languages in [1].

6 Discussion

We have proposed a large collection of families of languages, each of which
is identifiable in the limit from positive samples, hence extending previous
works. As the main technical contribution of the paper, we see the introduc-
tion of new canonical objects, namely the automata A(L, f). This also sim-
plifies correctness proofs of inference algorithms for k-reversible languages,
k > 0, to some extent. It seems to be interesting to study these canonical
automata also in the search-space framework of Dupont and Miclet [4, 6, 5].

We feel that deterministic methods (such as the one proposed in this
paper) are quite important for practical applications, since they could be
understood more precisely than mere heuristics, so that one can prove certain
properties about the algorithms. Moreover, the approach of this paper allows
one to make the bias (which each identification algorithm necessarily has)
explicit and transparent to the user: The bias consists in (1) the restriction
to regular languages and (2) the choice of a particular distinguishing function
f.

We will provide a publicly accessible prototype learning algorithm for
each f-DL in the near future. A user can then firstly look for an appropriate
f by making learning experiments with typical languages he expects to be
representative for the languages in his particular application. After this “bias
training phase”, the user may then use the such-chosen learning algorithm
(or better, an improved implementation for the specific choice of f) for his
actual application.

If the application suggests that the languages which are to be inferred are
non-regular, methods such as those suggested in [14] can be transferred. This
is done most easily by using the concept of control languages as undertaken
in [7] or [16, Section 4] or by using the related concept of permutations,
see [9].

Acknowledgments: We gratefully aknowledge discussions with J. Alber

12

and J. M. Sempere.

References

1]

2]

3]

[4]

[5]

[6]

[7]

8]

D. Angluin. Inference of reversible languages. Journal of the Association
for Computing Machinery, 29(3):741-765, 1982.

R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer,
1999.

R. G. Downey, M. R. Fellows, and U. Stege. Parameterized complexity:
A framework for systematicall y confronting computational intractabil-
ity. In Contemporary Trends in Discrete Mathematics: From DIMACS
and DIMATIA to the Future, volume 49 of AMS-DIMACS, pages 49-99.
AMS Press, 1999.

P. Dupont. Incremental regular inference. In L. Miclet and C. de la
Hieguera, editors, Proceedings of the Third International Colloguium on

Grammatical Inference (ICGI-96): Learning Syntaz from Sentences, vol-
ume 1147 of LNCS/LNAI, pages 222-237, Springer, 1996.

P. Dupont and L. Miclet. Inférence grammaticale réguliere: fondements
théoriques et principaux algorithmes. Technical Report RR-3449, IN-
RIA, 1998.

P. Dupont, L. Miclet, and E. Vidal. What is the search space of the
regular inference? In R. C. Carrasco and J. Oncina, editors, Pro-
ceedings of the Second International Colloquium on Grammatical Infer-

ence (ICGI-94): Grammatical Inference and Applications, volume 862
of LNCS/LNAI pages 25-37, Springer, 1994.

H. Fernau. Learning of terminal distinguishable languages.
Technical ~Report ~WSI-99-23, Universitdit Tiibingen (Ger-
many), Wilhelm-Schickard-Institut fiir Informatik, 1999. Short
version published in the proceedings of AMAI 2000, see
http://rutcor.rutgers.edu/ amai/AcceptedCont.htm.

H. Fernau. k-gram extensions of terminal distinguishable languages. In
Proc. International Conference on Pattern Recognition. IEEE/TAPR,
2000. To appear.

13

[9] H. Fernau and J. M. Sempere. Permutations and control sets for learning
non-regular language families. In Proc. International Conference on
Grammatical Inference. Springer, 2000. To appear.

[10] E. M. Gold. Language identification in the limit. Information and
Control (now Information and Computation), 10:447-474, 1967.

[11] J. Gregor. Data-driven inductive inference of finite-state automata. In-
ternational Journal of Pattern Recognition and Artificial Intelligence,
8(1):305-322, 1994.

[12] S. Jain, D. Osherson, J. S. Royer, and A. Sharma. Systems That Learn.
MIT Press, 2nd edition, 1999.

[13] R. Niedermeier. Some prospects for efficent fixed parameter algorithms
(invited paper). In B. Rovan, editor, SOFSEM’98, volume 1521 of
LNCS, pages 168-185, Springer, 1998.

[14] V. Radhakrishnan. Grammatical Inference from Positive Data: An Ef-
fective Integrated Approach. PhD thesis, Department of Computer Sci-

ence and Engineering, Indian Institute of Technology, Bombay (India),
1987.

[15] V. Radhakrishnan and G. Nagaraja. Inference of regular grammars
via skeletons. IFEE Transactions on Systems, Man and Cybernetics,
17(6):982-992, 1987.

[16] Y. Takada. A hierarchy of language families learnable by regular lan-
guage learning. Information and Computation, 123:138-145, 1995.

[17] L. G. Valiant. A theory of the learnable. Communications of the ACM,
27:1134-1142, 1984.

14

