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Abstract

We sketch possible applications of grammatical inference techniques
to problems arising in the context of XML. The idea is to infer document
type definitions (DTDs) of XML documents in situations when either the
original DTD is missing or should be (re)designed or should be restricted
to a more user-oriented view on a subset of the (given) DTD. The use-
fulness of such an approach is underlined by the importance of knowing
appropriate DTDs; this knowledge can be exploited, e.g., for optimizing
database queries based on XML.

1 Introduction

XML. The expectations surrounding XML (eXtendible Markup Language) as
a universal syntax for data representation and exchange on the world wide web
continues to grow. This is underlined by the amount of effort being committed to
XML by the World Wide Web Consortium (W3C) (see www.w3.org/TR/REC-XML),
by the huge number of academics involved in the research of the backgrounds
of XML, as well as by numerous private companies. Moreover, an ever-growing
number applications arise which make use of XML, although they are not di-
rectly related to the world wide web. For example, XML plays nowadays an
important role in the integration of manufacturing and management in highly
automated fabrication processes as in car companies [12]. Further information
on XML could be found under www.oasis-open.org/cover/xmlIntro.html.

XML grammars. The syntactic part of the XML language describes the
relative position of pairs of corresponding tags. This description is done by
means of a document type definition (DTD). Ignoring attributes of tags, a DTD
is a special form of a context-free grammar. This sort of grammars has been
formalized and studied by Berstel and Boasson [7] as XML grammars.!

1 Also Behrens and Buntrock [6] investigated formal language properties of DTDs.



Grammatical inference. Our paper can also be seen as a contribution to
further promote the use of machine learning techniques within database tech-
nologies, in particular, when these are based on the XML framework. More
specifically, we discuss learnability issues for XML grammars. This question is
interesting for several reasons:

Three applications of grammatical inference. As already worked out by
Ahonen, grammatical inference (GI) techniques can be very useful for automatic
document processing, see [2, 3]. More specifically, Ahonen detailed on the fol-
lowing two applications of the inference of DTDs (of HTML documents) [1, 2]:

Firstly, GI techniques can be used to assist designing grammars for (semi-)
structured documents. This is often desirable, since either the system users are
not experts in grammar design or the grammars are rather huge and difficult
to handle. The user feds several examples of syntactically correct tagged doc-
uments into the GI system, which then suggests a grammar describing these
documents. In this application, an interaction between the human grammar de-
signer and the GI system is desirable, e.g., for coping with erroneous examples,
or when previous grammar design decisions are modified. If the given examples
are not originally tagged (e.g., if they do not stem from an XML document),
document recognition techniques can be applied in a first step, see [23, 31].
Fankhauser and Xu integrate both steps in their system [14].

Secondly, GI may be of help to create views and subdocuments. For several
applications, standard DTDs have been proposed. However, these DTDs are
usually large and designed to cover many different needs. GI may be used to
find reasonable smaller subsets of the corresponding document descriptions.

Note that Ahonen used a rather direct approach to the inference of DTDs,
by simply inferring right-hand sides of rules (as regular sets). Unfortunately, in
this way grammars might be derived which are not satisfying the requirements
of an XML grammar. Therefore, our approach is necessary and more adequate
for XML documents.

We mention a third application of the inference of DTDs for XML docu-
ments in connection with databases: The importance of making use of DTDs
—whenever known— to optimize the performance of database queries based
on XML has been stressed by various authors, see [8, 11, 27, 33, 34]. Unfortu-
nately, DTDs are not always transferred when XML documents are transmitted.
Therefore, an automatic generation of DTDs can be also useful in this case, as
well.

A contribution to the GI community. Finally, one can consider this pa-
per also as a contribution to the GI community: Many GI results are known for
regular languages, but it seems to be hard to get beyond. This has been for-
mulated as a challenge by de la Higuera in a recent survey article [22].2 Many
authors try to transfer learnability results from the regular language case to
the nonregular case by preprocessing. Some of these techniques are surveyed
in [18]. Here, we develop a similar preprocessing technique for XML grammars,
focussing on a learning model known as identification in the limit from positive
samples or exact learning from text.

2A survey of results concerning learning of (subclasses of) context-free languages can be
found in [26].



Summary of the paper. The paper is structured as follows. In Section 2, we
present XML grammars as introduced by Berstel and Boasson. Section 3 reviews
the necessary concepts from the algorithmics of identifying regular languages.
In Section 4, we show how to apply the results of Section 3 to the automatic
generation of DTDs for XML documents. Finally, we summarize our findings
and outline further aspects and prospects of GI issues in relation with XML.

2 XML grammars

Definition and Examples. Berstel and Boasson gave the following formal-
ization of an XML grammar:

Definition 1 An XML grammar is composed of a terminal alphabet T = AUA
with A = {@ | a € A}, of a set of variables V = {X, | a € A}, of a distinguished
variable called the aziom and, for each letter a € A, of a regular set R, C V*
which defines the (possibly infinite) set of productions X, — ama with m € R,
and a € A. We also write X, = aR,a for short.

An XML language is generated by some XML grammar.

Note that the syntax of document type definitions (DTDs) as used in XML
differs at first glance from the formalization of Berstel and Boasson, but the
transfer is done easily.

Example 2 For example, the (rather abstract) DTD

<!DOCTYPE a [
<!ELEMENT a ((alb), (a|b)) >
<!ELEMENT b (b) x >
1>

would be written as:

X, — a(Xale)(Xa|Xb)a
X, o b(X))'

with axiom X,.

In other words, an XML grammar corresponds to a DTD in a natural fashion
and vice versa. As to the syntax of DTDs, the axiom of the grammar is intro-
duced by DOCTYPE, and the set of rules associated to a tag by ELEMENT. Indeed,
an element is composed of a type and a content model. Here, the type is the tag
name and the content model is a regular expression for the right-hand sides of
the rules for this tag. We finally remark that entities as well as #PCDATA (i.e.,
textual) information are ignored in the definition of XML grammars. Below, we
will show that it is easy to cope with the textual information.

Example 3 Let A = {ai,...,a,}. The language Da of Dyck primes over
T = AU A, generated by

X - X,l...|Xa,, where, fora € A,
Xo = a(Xgl.--|1Xe,)a



with axiom X is not an XML language. However, each variable X, of this
grammar generates the XML language

D, :=Dana(AU A)*a.
Especially, D,; is an XML language.

Simple properties. By definition of an XML grammar, the following is
quite clear:

Lemma 4 If L C (AU A)* is an XML language, then L C D 4.

Therefore, Berstel and Boasson derived necessary and sufficient conditions
for a subset L of D4 to be an XML language.

We now give some notions we need for stating some of these conditions. We
denote by F(L) the set of factors of L C ¥*, i.e., F(L) = {z,y,2 € ¥* | zyz €
L}. For L C (AU A)*, let F,(L) = D, N F(L) be the set of those factors in L
that are also Dyck primes starting with letter a € A. Using these notions, we
may sharpen the previous lemma, as follows:

Lemma 5 If L C (AU A)* is an XML language, then L = F,(L) for some
a€ A

Characterizing XML languages via regular languages. Consider w €
D,. w is uniquely decomposable as w = auq, Uq, - - - Uq, @, With u,; € D, for
i=1,...,n. The trace of w is defined as a; ...a, € A*. The set S,(L) of all
traces of words in F,(L) is called surface of a € A in L C Dy.

Surfaces are useful for defining XML grammars. Consider a family S =
{Ss | @ € A} of regular languages over A. The standard XML grammar Gs
associated to S is defined as follows. The set of variables is V = {X, | a € A}.
For each a € A, set R, = {X,, ... X,, | a1...a, € S, } and consider the rules
X, = aR,a. By definition, Gs is indeed an XML grammar for any choice of
the axiom. Moreover, for each language L, generated from axiom X, by using
the rules of Gg, it can be shown that S,(L,) = S,.

Now, consider for a family S = {S, | a € A} of regular languages over A
and some fixed letter ag € A the family £(S,ap) of those languages languages
L C D,, such that S,(L) = S, for all a € A. Since £(S,ao) is closed under
(arbitrary) union, there is a maximal element in this family. Berstel and Boasson
derived the following nice characterization [7, Theorem 4.1]:

Theorem 6 Consider a family S = {S, | a € A} of regular languages over A
and some fixed letter a9 € A. The language generated by the standard XML
grammar Gs with axiom X,, is the maximal element of the family £(S,ag).
Moreover, this is the only XML language in £(S, ag).

Finally, [7, Proposition 3.8] yields:

Lemma 7 If L is an XML language, then there exists a standard XML grammar
generating L.

Therefore, there is a one-to-one correspondence between surfaces and XML lan-
guages. This is the key observation for transferring learnability results known
for regular languages to XML languages.
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Figure 1: Gold’s learning scenario

3 A learning scenario

Gold-style learning. When keeping in mind the possible applications of
inferring XML grammars, the typical situation is that an algorithm is needed
that, given a set of examples that should fit the sought DTD, proposes a valid
DTD. This corresponds to the learning model identification in the limit from
positive samples, also known as ezact learning from text, which was introduced
by Gold [20] and has been studied thoroughly by various authors within the
computational learning theory and the grammatical inference communities.

Definition 8 Consider a language class £ defined via a class of language de-
scribing devices D as, e.g., grammars or automata. £ is said to be identifiable
if there is a so-called inference machine IM to which as input an arbitrary lan-
guage L € £ may be enumerated (possibly with repetitions) in an arbitrary
order, i.e., IM receives an infinite input stream of words E(1), E(2), ..., where
E : N — L is an enumeration of L, i.e., a surjection, and IM reacts with an
output stream D; € D of devices such that there is an N(E) so that, for all
n > N(E), we have D, = D (g) and, moreover, the language defined by Dy (g)
equals L.

Figure 1 tries to illustrate this learning scenario for a fixed language class £
described by the device class D. Often, it is convenient viewing IM mapping a
finite sample set I, = {w1,...,wpn} to a hypothesis Dys. The aim is then to
find algorithms which, given I, produce a hypothesis D s describing a language
Ly O I such that, for any language L € £ which contains Iy, Lyy C L. In
other words, Ljs is the smallest language in £ extending I .

Already Gold [20] established:

Lemma 9 The class of regular languages is not identifiable.

This result readily transfers to XML languages:

Lemma 10 The class of all XML languages (over a fixed alphabet) is not iden-
tifiable.



Identifiable regular subclasses.  Since we think that the inference of XML
grammars has important practical applications (as detailed in the Introduction),
we show how to define identifiable subclasses of the XML languages. To this end,
we reconsider the identification of subclasses of the regular languages, because
XML grammars and regular languages are closely linked due to the one-to-one
correspondence of XML standard grammars and regular surfaces as stated in
the preceding section.

Since the regular languages are a very basic class of languages, many at-
tempts have been made to find nice identifiable subclasses of the regular lan-
guages. According to Gregor [21], among the most popular identifiable regular
language classes are the k-reversible languages [4] and the terminal-distinguish-
able languages [29, 30]. Other identifiable subclasses are surveyed in [28]. A nice
overview on the involved automata and algorithmic techniques can be found in
[13]. Recently, we developed a framework which generalizes the explicitly men-
tioned language classes in a uniform manner [15]. We will briefly introduce this
framework now.

Definition 11 Let F' be some finite set. A mapping f : T* — F'is called a dis-
tinguishing function if f(w) = f(z) implies f(wu) = f(zu) for all u,w,z € T*.
L C T* is called f-distinguishable if, for all u,v,w, z € T* with f(w) = f(z),
we have zu € L <= zv € L whenever {wu,wv} C L.
The family of f-distinguishable languages (over the alphabet T') is denoted
by (f,)-DL.

For k > 0, the example f(z) = ok(z) (where ox(z) is the suffix of length k
of z if |z| > k, and oy (z) = z if |z| < k) leads to the k-reversible languages,
and f(z) = Ter(z) = {a € T | Ju,v € T* : uav = z } yields (reversals of) the
terminal-distinguishable languages.

We derived another characterization of (f,T)-DL based on automata [15].

Definition 12 Let A = (Q,T, 6, g0, Qr) be a finite automaton. Let f : T* — F
be a distinguishing function. A is called f-distinguishable if:

1. A is deterministic.

2. For all states ¢ € Q and all z,y € T* with §*(qo,z) = 6*(go,y) = g, we
have f(z) = f(y)-
(In other words, for ¢ € Q, f(q) := f(z) for some z with §*(go,z) = ¢ is
well-defined.)

3. For all ¢1,q5 € Q, q1 # g, with either (i) ¢1,92 € QF or (ii) there exist
g3 € Q and a € T with §(q1,a) = 6(g2,a) = g3, we have f(q1) # f(q2)-

Theorem 13 A language is f-distinguishable iff it is accepted by an f-distin-
guishable automaton.

We return now to the issue of learning. In [15], we have shown the following
theorem:

Theorem 14 For each alphabet T' and each distinguishing function f : T — F,
the class (f,T)-DL is identifiable.



Moreover, there is an identification algorithm which, given the finite sam-
ple set I, C T* as input, yields a finite automaton hypothesis 4 in time
O(a(|F|n)|F|n), where a is the inverse Ackermann function® and n is the total
length of all words in I.

The language recognized by A is the smallest f-distinguishable language
containing I .

Note 15 Since, in principle, the language classes (f,T)-DL grow when the size
of the range F' of f grows, the algorithm mentioned in the preceding theorem
offers a natural trade-off between precision (i.e., getting more and more of the
regular languages) and efficiency. From another viewpoint, f can be seen as
the explicit bias or commitment one has to make when learning regular lan-
guages from text exactly. Since, due to Lemma 9, restricting the class of regular
languages towards identifiable subclasses cannot be circumvented, having an
explicit and well-formalized bias which characterizes the identifiable language
class is of natural interest.

A merging state inference algorithm. For reasons of space, we will only
sketch the inference algorithm. Note that the algorithm is a merging state algo-
rithm similar to the algorithm for inferring O-reversible languages as developed
by Angluin [4].

Consider an input sample set I, = {ws,...,wp} C T of the inference
algorithm. Let w; = a1 ... aipn,;, where a;; € T, 1 <i < M, 1< 5 <n;. We are
going to describe a simple nondeterministic automaton accepting exactly I,.
Namely, the skeletal automaton for the sample set is defined as

AS(I+) = (Q57Ta 655@07Qf)7 where

Rs = {q;|1<i<M1<j<n;},

ds U {(qi,0i541,%,41) | 1 <i <M, 1< <n;},
Qo = {g1|1<i<M} and

Qr = {an |1<i<M}.

Observe that we allow a set of initial states. The frontier string of g;; is de-
fined by FS(g;;) = aij ... ain;- The head string of ¢;; is defined by HS(g;;) =
@i - .- 045—1. In other words, HS(g;;) is the unique string leading from an initial
state into ¢;;, and FS(g;;) is the unique string leading from g;; into a final state.
Therefore, the skeletal automaton of a sample set simply spells all words of the
sample set in a trivial fashion. Since there is only one word leading to any g,
namely HS(q), f(q) = f(HS(q)) is well-defined.

Now, for qij,qke € s, define qij; =f qke iff (1) HS(qij) = HS(qM) or (2)
FS(qgij) = FS(gke) as well as f(gij) = f(qre). In general, = is not an equiva-
lence relation. Hence, define =¢:= (=y)", denoting in this way the transitive
closure of the original relation. Then, we can prove:

Lemma 16 For each distinguishing function f and each sample set I, = is
an equivalence relation on the state set of Ag(I,).

3as defined by Tarjan [32]; « is an extremely slowly growing function



The gist of the inference algorithm is to merge =j-equivalent states of
As(Iy). Formally speaking, the notion of quotient automaton construction
is needed. We briefly recall this notion:

A partition of a set S is a collection of pairwise disjoint nonempty subsets
of S whose union is S. If 7 is a partition of S, then, for any element s € S,
there is a unique element of 7 containing s, which we denote B(s,7) and call
the block of m containing s. A partition 7 is said to refine another partition
«' iff every block of 7' is a union of blocks of 7. If 7 is any partition of the
state set @ of the automaton A = (Q, T, 9, g0, QF), then the quotient automaton
77_1"4A = (W_1Q7T7 617B(q077r)77r_1QF) is given by 7T_1Q = {B(qaﬂ-) | q € Q}
(for @ C Q) and (B1,a,Bs) € ¢' iff A1 € B1dgs € Ba : (q1,a,¢2) € 6.

We consider now the automaton w;lAS(LL), where 7y is the partition in-
duced by the equivalence relation =¢. We have shown [17]:

Theorem 17 For each distinguishing function f and each sample set I, the
automaton w;lAs (I4) is an f-distinguishable automaton.

Moreover, the language accepted by 7T;1.A5(1+) is the smallest f-distin-
guishable language containing I, .

Therefore, it suffices to compute Ag(Iy), =; and finally W;IAS(Lr) in order
to obtain a correct hypothesis in the sense of Gold’s model. Observe that the no-
tion of quotient automaton formalizes the intuitive idea of “merging equivalent
states.”

4 Learning document type definitions

An XML grammar identification algorithm. We propose the following
strategy for inferring XML grammars.

Algorithm 18 (Sketch)

1. Firstly, one has to commit oneself to a distinguishing function f formal-
izing the bias of the learning algorithm.

2. Then, the sample XML document has to be transformed into sets of pos-
itive samples, one such sample set I for each surface which has to be
learned.

3. Thirdly, each I is input to an identification algorithm for f-distinguish-
able languages, yielding a family S = {S, | a € A} of regular f-distin-
guishable languages over A.

4. Finally, the corresponding XML standard grammar is output.

Note 19 Let us comment on the first step of the sketched algorithm. Due to
Lemma 10, it is impossible to identify any XML language in the limit from
positive samples. Note 15 explains the advantage of having an explicit bias in
such situations. Choosing a bias can be done in an incremental manner, starting
with the trivial distinguishing function which characterizes the O-reversible lan-
guages and integrating more and more features into the chosen distinguishing
function whenever appropriate. This is also important due to the exponential



dependence of the running time of the employed algorithm on the size of the
range of the chosen distinguishing function, see Theorem 14. Conversely, a too
simplistic commitment would entail the danger of “over-generalization” which
is a frequently discussed topic in GI. Hence, when a user encounters a situation
where the chosen algorithm generalizes too early or too much, she may choose
a more sophisticated distinguishing function.

Note 20 Of course, it is also possible to use other than f-distinguishable iden-
tifiable language classes in order to define identifiable subclasses of XML lan-
guages. For example, Ahonen [2, 3] proposed taking a variant of what is known
as k-testable languages [19] (which is basically a formalization of the empiric
k-gram approach well-known in pattern recognition, see the discussion in [16]).

Note 21 Theorem 17 immediately implies for the class XML(f, 4) of XML
languages over the tag alphabet T = A U A whose surface is f-distinguishable
is identifiable by means of Algorithm 18.

A bookstore example. Let us clarify the procedure sketched in Alg. 18 by
an extended example:

Example 22 We discuss a bookstore which would like to prepare its internet
appearance by transforming its offers into XML format. Consider the following
entry for a book:
<book>

<author><last-name>Abiteboul</last-name></author>

<author><last-name>Vercoustre</last-name></author>

<title>Research and Advanced Technology for Digital Libraries.

Third European Conference</title>

<price>b6.24 Euros</price>
</book>
Further, assume that, for f : ¥ — F, |F| = 1, i.e., we are considering the
distinguishing function f corresponding to the O-reversible languages in the
dictum of Angluin [4]. First, let us rewrite the given example in the formalism
of Berstel and Boasson. To this end, let X} correspond to the tag pair <book>
and </book>, X, correspond to <author> and </author>, X,, correspond to
<last-name> and </last-name>, X; correspond to <title> and </title> and
Xp correspond to <price> and </price>. Let us further write each tag pair
belonging to variable X as y,y as in the examples above. The given concrete
book example then reads as w = bannaannattppb. Here, we ignore an arbitrary
data text. Obviously, w € Dy. We find the decomposition w = bu,u,usu,b with
u, = ania € D, and u; = tt € D; and u, = pp € D,. The trace belonging to
w is therefore aatp. By definition, aatp belongs to the surface S, which has to
be learned.

Consider as a second input example:
<book>

<author><last-name>Thalheim</last-name></author>

<title>Entity-Relationship Modeling.

Foundations of Database Technology</title>

<price>50.10 Euros</price>

</book>



From this example, we may infer that atp belongs to S, as well. The inference
algorithm for 0-reversible languages would now yield the hypothesis S, = a™tp,
which is in fact a reasonable generalization for our purpose, since probably a
book in a bookstore will be always specified by a non-empty list of authors,
its title and its price. Incorporating arbitrary data text (#PCDATA) by means
of a place-holder 7 in a natural fashion, the following XML grammar will be
inferred:

Xy — bRbE with

R, = {XIX;X,|j>0},
X, — aR,a with

R, = {Xn}a

X, — n7rh,

Xy —  trt,

X, — pTD.

We conclude this section with a remark concerning a special application
described in the introduction.

Note 23 When creating restricted or specialized views on documents (which
is one of the possible inference tasks proposed by Ahonen), one can assume
that the large DTD is known to the inference algorithm. Then, it is of course
useless to infer regular languages which are not subsets of the already given
“maximal” surfaces S,. Therefore, it is reasonable to take as “new” hypothesis
surfaces S,NS,, where S, is the surface output by the employed regular language
inference algorithm.

5 Conclusions

Our findings. We presented a method which allows to transfer results known
from the learning of regular languages towards the learning of XML languages.
We will provide a competitive implementation of our algorithms shortly via the
WWW.

Two further applications.  The derivation of DTDs is not the only possible
application of GI techniques in XML design. Another important issue is the
design of appropriate contexts. For example, Briiggemann-Klein and Wood [9,
10] introduced so-called caterpillar expressions (and automata) which can be
used to model contexts in XML grammars. Since a caterpillar automaton is
nothing else than a finite automaton whose accepted input words are interpreted
as commands of the caterpillar (which then walks along the assumed syntax tree
induced by the XML grammar), also for the purpose of designing caterpillar
expressions describing contexts, GI techniques may assist the XML designer.
Ahonen [1, 2] mentioned another possible application of GI for DTD gener-
ation, namely, assembly of (parts of) tagged documents from different sources
(with different original DTDs). Hence, the assembled document is a transforma-
tion of one or more existing documents. The problem is to infer a common DTD.
This assembly problem has also been addressed for XML recently [5] without
referring to GI. The integration of both approaches seems to be promising.

10



Approximation. One possible objection against our approach could be to
note that not every possible XML language can be inferred, irrespectively of the
chosen distinguishing function, due to Lemma 10. We have observed [17] that,
for any distinguishing function f and for every finite subset I of an arbitrary
regular set R C ¥*, the language W;IAS(I+) proposed by our algorithm for
identifying f-distinguishable languages is the smallest language in (f, X)-DL
which contains R. This sort of approximation property was investigated before
by Kobayashi and Yokomori [24, 25]. Due to the one-to-one correspondence
between regular languages and XML languages induced by the notion of surface,
this means that our proposed method for inferring XML languages can be used
to approximate any given “spelled” XML language arbitrarily well.

Other learning models. Finally, we mention that the preprocessing tech-
nique developped in Algorithm 18 can be applied to other learning scenarios, as
well. We showed in [18] how to apply preprocessing methods to query learning
and to the morphic generator method. Also negative examples may be included.
We do not elaborate these issues here, since we are not aware of nice application
scenarios of these models in the XML framework.
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