Learning Tree Languages
from Text

Henning Fernau

WSI-2001-19

Henning Fernau

Wilhelm-Schickard-Institut fir Informatik
Universitat Tubingen

Sand 18

D-72076 Tubingen

Germany

E-Mail: fernau@informatik.uni-tuebingen.de
Telefon: (07071) 29-77565
Telefax: (07071) 29-5061

(© Wilhelm-Schickard-Institut fiir Informatik, 2001
ISSN 0946-3852

Learning tree languages from text

Henning Fernau

Wilhelm-Schickard-Institut fir Informatik; Universitat Tibingen
Sand 13; D-72076 Tiibingen; Germany
email: fernau@informatik.uni-tuebingen.de

Abstract. We study the problem of learning regular tree languages
from text. We show that the framework of function distinguishability
as introduced in our ALT 2000 paper is generalizable from the case
of string languages towards tree languages, hence providing a large
source of identifiable classes of regular tree languages. Each of these
classes can be characterized in various ways. Moreover, we present a
generic inference algorithm with polynomial update time and prove
its correctness. In this way, we generalize previous works of Angluin,
Sakakibara and ourselves. Moreover, we show that this way all regular
tree languages can be identified approximately.

1 Introduction

Grammatical inference mostly focussed on learning string languages, al-
though there are many practical motivations for studying formally specified
sets not being comprised of words, as well. For example, linguists are often
interested in the dependencies of different parts of a sentence. This sort of
dependencies is likely to be reflected in the derivation trees of a context-free
grammar which captures the main syntactical features of the language in
question. Therefore, tree languages are quite important for linguistic stud-
ies. Moreover, derivation trees play an important role when studying the use
of grammatical inference in connection with programming languages, see [3].
Furthermore, applications of tree languages and their inference to pattern
recognition have been reported, see [12, Chapters 3.2 and 6.4]. Finally, trees
can be interpreted equivalently as terms, so that the study of the inference of
tree languages might also contribute to the learning of term algebras, a topic
which seem to be touched only in [14, 16]. Hence, the study of the automatic
inference of tree languages is well motivated. Besides [14, 16], the classes of
regular tree languages presented in this paper are the first ones which are

characterized by well-defined restrictions on automata, an issue which is very
important in grammatical inference, see [16, 15].

In some sense, the present paper can be seen as a continuation of Sakak-
ibara’s [22] on the inference of zero-reversible tree languages and of ours on
the inference of distinguishable string languages [5, 8]: We will explore how
to learn function distinguishable regular tree languages from text, a setting
introduced by Gold [11].

In a nutshell, a function distinguishable regular tree language is given by
a bottom-up deterministic tree automaton such that any occurring backward
nondeterminism can be resolved by means of an “oracle” called distinguishing
function. The zero-reversible languages considered by Sakakibara [22] are a
special case where the oracle gives no information at all.

2 Definitions

Let N be the set of nonnegative integers and let (N*, -, \) (or simply N*) be
the free monoid generated by N. For y,z € N*, we write y < z iff there is a
z € N* with x =y - z. “y < 2” abbreviates: y < z and y # z. As usual, |z|
denotes the length of the word .

We are now giving the necessary definitions for trees and tree automata.
More details can be found, e.g., in the chapter written by Gécseg and Steinby
in [21].

A ranked alphabet V is a finite set of symbols together with a finite relation
called rank relation 7y C V X N. Define V,, :== {f € V | (f,n) € rv}.
Since elements in V}, are often considered as function symbols (standing for
functions of arity n), elements in Vj are also called constant symbols. A tree
over V is a mapping t : A; — V, where the domain A; is a finite subset of
N* such that (1) if z € Ay and y < z, then y € Ay; (2) if y-i € Ay, 7 € N,
then y -7 € Ay for 1 < j <. An element of A; is also called a node of t,
where the node A is the root of the tree. Then t(x) € V;, whenever, for i € N,
z-1€ Ayiff 1 <i<n. Ift(x) = A, Ais the label of z. Let V* denote the set
of all finite trees over V. By this definition, trees are rooted, directed, acyclic
graphs in which every node except the root has one predecessor and the direct
successors of any node are linearly ordered from left to right. Interpreting V'
as a set of function symbols, V* can be identified with the well-formed terms
over V. A frontier node in t is a node y € A; such there is no z € A; with
y < z. If y e A, is not a frontier node, it is called interior node. The depth

of a tree t is defined as depth(t) = max{|z| | x € A;}, whereas the size of ¢
is given by |A|. Letters will be viewed as trees of size one and depth zero.
We are now going to define a catenation on trees. Let $ be a new symbol,
ie,$ ¢V, of rank 0. Let V¥ denote the set of all trees over V' U {$} which
contain exactly one occurrence of label $. By definition, only frontier nodes
can carry the label §. For trees v € Vg and ¢t € (V* U V), we define an
operation # to replace the frontier node labelled with $ of u by ¢ according

to
] u(z), ifxeA,Au(z) #8,
u#t(m)_{t(y), ifr=z-yAu(z) =$Ay €A,

fUCVEandT C (VEUVE), then U#T = {uft | u € UNL € T},
For t € V* and =z € A,, the subiree of ¢t at z, denoted by t/z, is defined
by t/x(y) = t(z -y) for any y € Ay, where Ay == {y | -y € Ay}
ST(T) :={t/x |t € T Nx € A} is the set of subtrees of trees from 7" C V*.
Furthermore, for any ¢t € V* and any tree language T' C V'*, the quotient of
T and t is defined as:

_J{ueVE u#teT}, ifte Ve,
Ur(t) '_{ t, if t € Vp.

Let V be a ranked alphabet and m be the maximum rank of the symbols
in V. A (bottom-up) tree automaton over V is a quadruple A = (Q,V, 4, F)
such that @ is a finite state alphabet (disjoint with V), F' C @ is a set of final
states, and 6 = (dg,...,0,) is an m + 1-tuple of state transition functions,
where dg(a) = {a} for a € Vy and 6 : Ve x (QUVp)F =29 for k=1,...,m.
In this definition, the constant symbols at the frontier nodes are taken as
sort of initial states. Now, a transition relation (also denoted by d) can be
recursively defined on V* by letting

AL if k=0,
5(f(t]_7 ey tk)) L { Uqle(s(tz)ﬂ:l,,k 6k(f) ql, ceey qk), 1f k > 0-

A tree t is accepted by A iff 6(t) N F # (). The tree language accepted by
A is denoted by T'(A). A is deterministic if each of the functions 0, maps
each possible argument to a set of cardinality of at most one. Deterministic
tree automata can be viewed as algorithms for labelling the nodes of a tree
with states. Analogously to the case of string automata, it can be shown
that nondeterministic and deterministic finite tree automata accept the same

class of tree languages, namely the regular tree languages, at the expense of
a possibly exponential state explosion.

The notions of isomorphic automata and (state subset induced) subau-
tomata can be easily carried over from the well-known case of string process-
ing automata to tree automata. A state q of a deterministic tree automaton A
is useful iff there exists a tree t and some node x € A; such that 6(¢/z) = ¢
and §(t) € F. A deterministic automaton containing only useful states is
called stripped.

We need four special constructions of tree automata in our treatment:

Firstly, we define the analogue of the well-known prefix-tree acceptor
in the string case: Let I, be a finite tree language over V. The base
tree automaton for I, denoted by Bs(I,) = (Q,V, 9, F), is defined as fol-
lows: Q@ = ST(I)\ Vo, F = I, 0k(f,u1,--.,ux) = f(ui,...,u;) whenever
Ul -, uy € QU Vg and f(uq,-..,ux) € Q. Obviously, T'(Bs(Iy)) = I,.

Secondly, we transfer the notion of canonical automaton to the tree case:
Let T be a regular tree language over V. The canonical tree automaton for
T, denoted by C(T) = (Q,V, 6, F), is defined by: @ = {Ur(s) | s € ST(T) \
Vb}, F = {UT(t) | t € T}, 6k(f, UT(Sl), ceey UT(Sk)) = UT(f(Sl, ceey Sk))
if f(s1,...,8%) is in ST(T"). Observe that C(T) is a deterministic stripped
automaton.

As in the string case, the notion of a product automaton can be defined: if
A=(Q,V,6,F)and A" = (Q',V,d, F') are deterministic tree automata, then
Ax A= (Q x Q',V,5,F x F') is the deterministic product tree automaton
of A and A, where ¢ is defined by dy(a) = a for a € V; and

Sk(fapla s apk) = (5k(f: q1,--- ,Qk)aéllg(f: qlla .. aQI’g))

with f € Vi, q1,-..,qc € QU Vpand ¢}, ..., q, € Q" UV if p; € Vi, we have
pi = ¢; = ¢}, and otherwise, i.e., if p; € @ x @', we have p; = (¢;, ¢}).

A partition of a set S is a collection of pairwise disjoint nonempty subsets
of S whose union is S. If 7 is a partition of S, then, for any element s € S,
there is a unique element of 7 containing s, which we denote B(s,) and call
the block of m containing s. A partition 7 is said to refine another partition
7' iff every block of 7' is a union of blocks of 7. If 7 is any partition of the
state set @ of the automaton A = (Q,V, 4, F)), then the quotient automaton
7tA = (771Q,V, ', 77 F) is given by Q= {B(¢,7) | q € Q} (for
Q C Q) and, for By,...,B, € m'\QUV,, f € Vi, B € 8.(f, Bu,...,By)
whenever there exist g € Band ¢; € B;€ 7 'Qorq; = B; € Vyfor1 <i <k
such that q € 0x(f, q1,---,qx)-

3 Function Distinguishability

The main feature of the automata classes which are learnable from text seems
to be some sort of “backward determinism” or “reversibility”. In the case
of string languages, the corresponding notion of reversible languages due
to Angluin was generalized in [5] with the aid of distinguishing functions.
We will take a similar venue here for the case of tree languages in order to
generalize the learnability results of Sakakibara for reversible tree languages.

Let As = (Qs,V, 0, Qs) be some deterministic tree automaton; in fact, we
only need the functional behaviour of the state transition function § which we
also call a distinguishing function, which can be viewed as a partial mapping
Vt — Qs. A deterministic tree automaton A = (Q,V,6, F) is called §-
distinguishable if it satisfies the following two properties:

1. For all states ¢ € Q and all z,y € V* with §(x) = §(y) = ¢, we have
6(z) = d(y). (In other words, for ¢ € Q, 6(g) := 6(z) for some z with
d(z) = q is well-defined.)

2. For all ¢1,¢2 € QU Vhy, q1 # qo, with either (a) ¢1,¢2 € F or (b) there
exist 3 € Q, k>1,1<i<k,pi,...,pe—1 € QUV, and f € V}, with

Sk(fapla -y Pi—1,91,Piy - - - apk—l) = gk(fapla -y Pi—1,92,Piy5 - - - 1pk—1) = (3,
we have 6(q1) # (qa).

In some sense, A is “backward deterministic” with the aid of §. A reg-
ular tree language T over V is called 0-distinguishable if it is accepted
by a J-distinguishable tree automaton. Let 6-DT denote the class of -
distinguishable tree languages.

Observe that trees with whose domain is contained in {1}* correspond
to usual strings, and the notion of distinguishability obtained in this way is
the same as the one introduced in [5]. The trivial tree automaton with just
one state leads to a slight generalization of the zero-reversible tree automata
studied by Sakakibara [22]; in Sakakibara’s model, only one symbol oy for
each arity £ > 1 was permitted as label of the interior nodes.

As a further simple example of distinguishing function, consider the func-
tion Ter defined by Ter(a) = {a} and

k
T@'f'k(facha"'amC) = {f}U UqJ’
j=1

5

where 2V is the state set of Agp,. Ter is the natural tree-analogue of the
terminal distinguishing function basically introduced by Radhakrishnan and
Nagaraja in [19]. As exhibited in [5] in the string case, several other similar
distinguishing functions can be defined which also yield immediate analogues
in the tree case. Analogues to k-terminal distinguishable languages [6] and
to the k-reversible languages [2] can be defined by means of the notions of
k-roots, k-forks and k-subtrees as defined in [14].

If we restrict ourselves to Ter applied to derivation trees of even linear
grammars (with trivial labels for all interior nodes), we basically arrive at
a variant of the terminal distinguishable even linear languages as discussed
in [7] in more details. Speaking more generally, inference algorithms for
tree languages can be readily used for the inference of context-free string
languages, once the structure of the derivation tree is fixed.

Remark 1 Any subautomaton of a d-distinguishable tree automaton A is
0-distinguishable. a

Lemma 1 Let A = (Q,V,5, F) be a §-distinguishable tree automaton. Let
u € Vg and {t1,t2} C V*. If {udtt,, u#tta} C T(A) and if 6(t1) = 6(t2), then
d(t1) = 6(t2).
Proof.

First observe that, since 6(¢1) = 6(t2), we have §(u#t;) = d(ut,) for all
u € V¢ and ty,t, € V*.

The proof proceeds via induction on the level £ of the node with label $
in u. If £ =0, then u = $. Consider the final states ¢; = d(u#t;) of A
for i = 1,2. Since 6(q1) = 6(u#t1) = d(u#ta) = 6(¢2), condition 2a. for
0-distinguishable tree automata yields ¢; = ¢».

Assume the claim holds for ¢ < h. Consider u € Vg with label § at level
h. u can be uniquely represented as

U= ul#f(sla .. ',8i71a$7 Sy Skfl)

for some s1,...,5,-1 € V* and some «' € V& having the node labelled $ at
level h — 1. The induction hypothesis yields: if A accepts both

u#tl = u,#f(sla ceey 851, tla Sy ey Sk}—l)

and
u#t1 = u,#f(81, vy Si—1, tg, Siyeeey Sk—l);

6

then

5(f(81, ceeySi—1, tl, Siyeeey Skfl)) = 5_(f(81, ce ey Si1, tQ, Siy ey Sk,l)),

since §(t1) = d(t2) gives

6(f(s1,--, 81,11, 86, -+, 8k—1)) = 6(f(81,. .., 8i—1, 12, 845+, Sk—1)).

Hence,

gk(f, 5_(81)_, cey 5(Si__1), (5(751)_, 5(81)_, ceey 6(Sk:1))
5

= 0u(f,0(s1),...,0(5-1),0(t2),6(8:), . .., 6(sk1)),

so that condition 2b. for §-distinguishable tree automata yields ¢; = g,. O

Lemma 2 Let A = (Q,V,5, F) be a §-distinguishable tree automaton. Let
{ur,ug} C V¥ and {t,t'} C V. If {undtt, uoftt} C T(A) and if 6(t) = 6(t'),
then ui#t' € T(A) iff ue#t' € T(A).

Proof. Consider ui#t € T(A). If ui#t" € T(A), then Lemma 1 yields
d(t) = 6(t'). Hence, us#t' € T(A), because us#t € T(A) by assumption.
Symmetrically, the other part of the claim follows. O

Let T C V* be a regular tree language. Let A(T,d) denote the stripped
subautomaton of C(T) x As;. Obviously, T(A(T,d)) = T. A(T,0) is called
the d-canonical tree automaton of T'. As the following theorem shows, we can
take A(T,d) as canonical objects describing §-DT, since A(T,d) is a unique
object. Moreover, it is proved that the tree language class 6-DT can be
characterized in a number of ways.

Theorem 3 (Characterization theorem) Let 6 : V* — Qs be a distin-
gquishing function. Then, the following conditions are equivalent for a regular
tree language T C V'*:

1. T € 6-DT.

2. There is a tree automaton A = (Q,V, 6, F) with T(A) = T which sat-
isfies:

th,tg € Vt Yu € ‘/$t . ({u#tl,u#tg} g T/\d(tl) = 5(t2)) = g(tl) = 5(752) .

3. th,tg e V*E VU,U € V:%t : ({U#tl,’l)#tg} - T/\(S(tl) = 5(t2)) =
(u#t, € T < v#t, €T).

4. th,tg % VU,U € UT(tl) : 5(t1) = (5(t2) = (U € UT(tQ) <~ V€
Ur(ts)).

5. A(T,6) is 6-distinguishable.

6. th,tg eVt Vu e Vj$t : ({Ul#t, Ug#t} C T/\é(tl) = 5(t2)) = UT(tl) =
Ur(ts).

Proof. 1. — 2. due to Lemma 1. According to the proof of Lemma 2,
2. — 3. The implications 3. <> 4., 5. — 1. and 6. — 2. are trivial. 5. — 6.
follows with Lemma 1.

We are going to show 4. — 5. in the following. Consider a language T’
satisfying the condition 4. We have to show that A(T,¢) is d-distinguishable.
By definition, A(T,0) is deterministic. Since (a subautomaton of) As can be
obtained from A(T,¢) by simple projection, ¢(q) is well-defined for any state
q of A(T,0).

We now turn to the second condition of §-distinguishable automata. Let
¢1, 42 be two states of A(T,) (or constant symbols) with § := 0(q1) = d(q2)-
Hence, ¢; = (Ur(t;), §) for some t; € ST(T).

Consider first case (a), i.e., both ¢; and ¢, are final states. Then, {t1,t,} C
T. Hence, u :=$ € Ur(t;) for i = 1,2. By condition 4. of the characterization
theorem, we know that, for all v € Up(t;), v € Ur(tz). Interchanging the
roles of ¢; and ty, we can conclude that Ur(t,) = Ur(t).

Regarding case (b), assume that there are states (or constant symbols)
qs3, P1,---,Pk—1 such that

Sk(fapla -y Di—1,41, D55 - - - apk—l) == 5k(fap17 ce ey Pi—1,492, D55 - - - apk—l) =4qs3

for some f € Vj and some 1 < ¢ < k. Since A(T,0) is stripped, there are a
4 € V¢ and s1,...,s,-1 € V*® such that

{ﬁ#f(sl, ey S5, tl, Siyeeny Sk—l)a ﬁ#f(sl, ey, 81, tQ, Siyenny Sk—l)} g T.
Hence, u := u# f(s1,---, 81,9, 8, ...,51) € Ur(t;) for i = 1,2. Condition
4. of the characterization theorem shows again that Ur(t1) = Ur(ts). O

The following lemma is useful for proving the correctness of our learn-
ing algorithms and is, moreover, a simple characterization of our canonical
objects.

Lemma 4 The stripped subautomaton of a -distinguishable tree automa-
ton A is isomorphic to A(T(A),0).

Proof. According to Remark 1, the stripped subautomaton A’ of A is
d-distinguishable. Let A = (Q,V,6,F) and A" = (Q',V, ', F'). We have to
show that, for all ¢, g2 € Q" with 6(q1) = d(g2),

{ue V& |HeVi\V: & (u#tq) € F'}
={ueVy|IeV\V:d(uftq) € F'}.

implies that ¢; = g9, since then, the mapping

g = (Ura)(t),0(q))

for some ¢ € V* with §'(t) = ¢ will supply the required isomorphism.

Since A’ is stripped, there are t;,t, € V* and u € V§, ¢1 = §'(t1),
go = 0'(t2) and {u#ty, u#ts} C T(A') =T(A). Since A’ is d-distinguishable,
d(q1) = 6(ge) implies that §(t;) = (¢2). Hence, we can apply Lemma 1 to
show the result. a

4 Inferrability

The learning model we use is identification in the limit from positive samples
as proposed by Gold [11], sometimes also called learning from tect. In this
well-established model, a language class £ (defined via a class of language
describing devices D as, e.g., grammars or automata) is said to be identifi-
able if there is a so-called inference machine I to which as input an arbitrary
language L € £ may be enumerated (possibly with repetitions) in an arbi-
trary order, i.e., I receives an infinite input stream of words E(1), E(2), ...,
where F : N — L is an enumeration of L, i.e., a surjection, and I reacts
with an output device stream D; € D such that there is an N(E) so that,
for all n > N(E), we have D, = Dy(g) and, moreover, the language defined
by Dy g equals L.

In order to ensure the convergence of the hypothesis stream output by a
Gold-style learner, we need some well-defined canonical output objects. In
the case of 6-DT, this will be the J-canonical automata introduced above.

According to a theorem due to Angluin [1, Theorem 1], a language class £
is inferrable if any language L € £ has a characteristic sample, i.e., a finite
subset x(L) C L such that L is a minimal language from £ containing x(L).

9

For the tree language class 0-DT and some language T' € 6-DT, consider
the corresponding d-canonical automaton A(T,) = (Q,V, 6, F) and define

x(T,0) = {u(@)#t(q) ¢}
U {u(@k(fr - ae)F#f @), b)) | @ ar € QU Ve, f € Vi),

where u(q) € V§ and t(q) € V*\ 1§ are (arbitrary) trees each of minimal
size satisfying 6(¢(q)) = ¢ (if ¢ € Q) and d(u(q)#q) € F. If ¢ € V4, we set
t(¢) = ¢q. Naturally, a finite automaton for x (7', 6) may be computed by some
Turing machine which is given C(T') and A; as input.

Theorem 5 (Characteristic sample) For each As and each T € 6-DT,
X(T,6) is a characteristic sample of T

Proof. Clearly, x(7,5) C T. Consider some tree language 1" € 6-DT with
x(T,6) C T'. We have to show that T'C T". Let A(T,d) = (Q,V,4, F).
By induction on the height of s, we show

(+) Ur(s) =Ur(t(d(s))) and d(s) = d(¢(d(s)))

for all s € ST(T"). Note that (*) implies the following: if s € T, i.e., ¢ =
6(s) is a final state of A(T,d), then Uz (t(gs)) is a final state of C(1"),
because t(gr) € x(T,0) C T". Therefore, (Ur(t(gy)),d(t(gr)) is a final state
of A(T",6). Due to (), we conclude that s € T'. Hence, T C T".

Now, we prove (x). If the height of s is zero, then s € Vj, which means
that s = ¢(s) by definition of #(-). Assume that (*) holds for all trees of depth
at most h > 0. Consider some s € ST(T) of depth h+1,i.e., s = f(s1,---,5k)
for some f € Vi, s1,...,s, € ST(T); obviously, all s; are trees of depth at
most h. By the induction hypothesis,

Upi(s;) = Up (t(0(s:))) and 8(s;) = 0(¢(0(s:))), 1<i<k.
Therefore,

UTI(S) = [_]T’(f(sla---vsk))

10

and

0(s) = O(f(s1,-.,8) = 0(f((3(51)), - .-, 1(0(s))))-

Define ¢' = 0x(f,(s1),...,8(sx)). Since by definition of the characteristic
sample, both

u(q)#f(t(0(s1)), - -, t(0(sk)) and u(q)#t(q)

are contained in x(7,d) C 7', Lemma 1 yields

Uri(s) = Up(f(t(0(s1)),.-.,t(d(sx)))) = Ur(t(q),

because

This completes the induction. O

5 Inference Algorithms

For each Ajs, we sketch an algorithm which receives an input sample set
I, = {t1,...,txm} (a finite subset of the tree language T" € §-DT to be
identified) and finds a minimal language 7" € 6-DT which contains I,. Of
course, Theorem 5 already guarantees the existence of such an algorithm,
but the ad-hoc enumeration algorithm is not very efficient. In contrast, our
algorithms will have polynomial update time, but the number of so-called
implicit errors of prediction is not polynomially bounded, as explained by
Sakakibara for his simpler setting [22].

Our merging state inference algorithm 0-Ident for 5-DT now starts with
the automaton Ay = Bs(I,) = (Q = ST(T) \ Vo, V,6, F = I,) on receiving
I, as input. Then, it subsequently merges two states which cause a conflict
to one of the requirements for j-distinguishable automata. This way, we get
a sequence of automata Ay, Ay,..., Ay each of which can be interpreted as
a quotient automaton of Ay by the partition of the state set of Ay induced
by the corresponding merging operation. Observe that each A; is stripped,
since A is stripped. Moreover, A is d-distinguishable, as being the last

11

automaton in this chain. In terms of the partitions inducing the mentioned
quotient automata, d-Ident starts with the trivial partition 7y of () and
repeatedly merges two distinct blocks B; and B, at stage 7, =10,...,f —1
if any of the following conditions is satisfied:

final state conflict B; and B, contain both final states ¢ € By, ¢2 € B>
of Ay with 6(q1) = d(qa)-

determinism conflict There exist two states ¢; € By, ¢o € By of the form

ql:f(plv"'apk) and q2:f(p1177p;c)
such that, for all 1 < j <k, either p; = pj; € Vi or B(p;, m;) = B(p};, mi)-

backward determinism conflict There exist two states ¢, ¢; of the form

@ =f(p1,-...p) and g = f(pi,--.,0k)

with B(qi,m;) = B(ge,m;) and an integer 1 < £ < k such that, for all
1 < j < k with 4 # £, either p; = p; € Vi or B(pj,m) = B(p), m)-
Moreover, p, € By, p;, € By and 6(ps) = 0(pj)-

To be more concrete, consider the following program fragment:

Algorithm 6 (-Ident)
Input: a nonempty positive sample I, C V*.
Output: A(T,d), where T is a minimal J-distinguishable tree language contain-
ing I,.
*** Initialization
Let Ag = (Q =ST(T)\ Vo, V,d,F =1,) = Bs(I).
Let m be the trivial partition of Q.
Let LIST contain all unordered pairs {q,q'} of final states of @ such that ¢ # ¢
and é(q) = d6(¢').
Let i := 0.
k Merging
While LIST# () do begin

Remove some element {q1, g2} from LIST.

Consider the blocks By = B(q1,7;) and By = B(go, ;).

If By # Bs, then begin

Let m;+1 be m; with B; and By merged.

12

Resolve newly produced determinism conflicts and update LIST.
Resolve newly produced backward determinism conflicts and update
LIST.
Increment ¢ by one.
If : = |Q| — 1, then LIST:= (.
end *** if
end *** while

The conflict resolution can be implemented either by means of an explicit
search through all possible conflict situations, which results in an algorithm
similar to the one proposed by Sakakibara [22] or by keeping track of the for-
ward and backward transition functions of the automata A;, as detailed in [5]
in the case of string language inference. In either case, we obtain algorithms
with polynomially bounded update times, see [22] for the definitions.

Moreover, it is possible to design so-called incremental versions of the
algorithms, where basically the input sample is fed to the algorithm in an
on-line manner.

We now give the ingredients for showing the correctness of)-Ident. The
following lemma is crucial in this respect:

Lemma 7 Let I, C T € 0-DT be given. Let m be the partition of Ay =
Bs(I) described by: qi,qs belong to the same block if ' Ur(q,) = Ur(qz) and
if 6(q1) = 8(q2). Then, 7' Ay is isomorphic to a subautomaton of A(T,9).

Proof. X . B X
Let 7 'Ap = (Q,V,4,F) and A(T,6) = (Q,V,6, F). By definition, Q =
{B(t,7) |t € ST(I;) \ Vo} and the mapping

h:Q— Q,B(t,m) — (Ur(t),s())

is well-defined and injective. If By € F, then B; = BA(t, m) for some t €
I, C T, and hence, (Ur(t),6(t)) € F. Therefore, h(F) C F. 7 'A, is
deterministic, because, if

f(sla EERE Sk)7 f(sll’) S;c) € ST(I-F)a
with B(s;,m) = B(s,m) if s;,8; € ST(I;) \ Vo and s; = s if s;, s} € V), then

B(f(s1;---,8k),m) = B(f(sy, -, 5),7)
'Recall that ¢; € ST(I}) \ Vo.

13

for any f € Vj. h is an automaton morphism, since

hOk(f, a1, - ar)) = h(B(f(t, ..,), 7))

with ¢; = ¢; if ¢; € Vi and t; chosen otherwise to satisfy B(t;,) = ¢;. Hence,

h(Ok(frqu, - ak) = Ur(f(trs- -5 1) 0(f(tr, - - 1))
= 5k(f’ (UT(tl)’ 6(t1))’ LR (UT(tk)’ 5(tk)))

Thus, h is an isomorphism between 7 'A, and a tree subautomaton of
A(T,9). O

Theorem 8 Fix As. Consider a chain of automata Ao, Ay, ..., Ay obtained
by applying the sketched algorithm 6-Ident on input sample I, where Ay =
Bs(I)). Then, we have:

1. T(Ag) € T(A) C -+ C T(Ay).
2. Ay is o-distinguishable and stripped.

3. The partition 7y of the state set of Ay corresponding to Ay is the finest
partition 7w of the state set of Ay such that the quotient automaton
7 LAy is §-distinguishable. O

Proof. 1. is clear, since d-Ident is a merging states algorithm.

2. follows almost by definition.

3. can be shown by induction, proving that each m; corresponding to A;
refines 7, quite analogous to [2, Lemma 25] and [22, Lemma 13]. O

Theorem 9 In the notations of the Theorem 8, T(Ay) is a minimal §-dis-
tinguishable language containing I, .

Proof. Theorem 8 states that T(A;) € 6-DT and I, = T(Ay) C T(Ay).
Consider now an arbitrary language 1" € §-DT containing I,. We consider
the quotient automaton 7! A, defined in Lemma 7. This Lemma shows that

T(r'4g) C T = T(A(T, 5)).

14

By Remark 1, 7! Ay is d-distinguishable, because A(T, 6) is d-distinguishable
due to Theorem 3. Theorem 8 yields that 7 refines 7, so that

T(Af) =T(n;'A)) CT(n ' A) CT. O

Remark 2 Up to now, in accordance with the definition of a characteristic
sample, we always spoke about a minimal)-distinguishable language con-
taining the sample I,. Considering again the previous proof, one sees that
there is actually a unigue minimal language in 6-D'T containing I, so that we
can talk about the smallest language in §-DT containing /. in the following.

Theorem 10 (Correctness of 6-Ident) If T € 6-DT is enumerated as
input to the algorithm d-Ident, it converges to the d-canonical automaton
A(T,9).

Proof. At some point N of the enumeration process, the characteristic
sample x(7,6) will have been given to d-Ident. By combining Theorems 5
and 9, for all n > N and all automata A, output by d-Ident, we have
T(A,) = T. The argument of Theorem 9 shows that each A,, (withn > N) is
isomorphic to a subautomaton of A(7T,¢) generating T = T'(A(T,d)). Since
each A, is stripped, it must be isomorphic to A(7,d) for n > N due to
Lemma 4. O

We finally remark that the performance of the general algorithm 6-Ident
sketched above depends on the size of As (since the characteristic sample
X(T, &) we defined above depends on this size) and is in this sense “scalable”,
since “larger” A; permit larger language families to be identified. More
precisely, we can show:

Proposition 11 If A; is a homomorphic image of A, then 6-DT C v-DT.0

Appendix: Approximation

We are going to show that, for any class 6-DT, all regular tree languages may
be approximated by some language from J-DT in a certain sense. Firstly, we
give the necessary general definitions due to Kobayashi and Yokomori [17].

15

Let £ be a language class and L be a language, possibly outside £. An
upper-best approzimation LL of L with respect to L is defined to be a language
L, € L containing L such that for any L' € £ with L C L', L, C L’ holds.
If such an L, does not exist, £L is undefined.

Remark 3 If £ is closed under intersection, then £L is uniquely defined.

Consider an inference machine I to which as input an arbitrary language L
may be enumerated (possibly with repetitions) in an arbitrary order, i.e., I
receives an infinite input stream of words E(1), E(2), ..., where E: N — L
is an enumeration of L. We say that I identifies an upper-best approxrimation
of L in the limit (from positive data) by L if I reacts on an enumeration of L
with an output device stream D; € D such that there is an N(F) so that,
for all n > N(E), we have D, = Dy(g) and, moreover, the language defined
by Dn(r) equals LL € L.

Let £, and L5 be two language classes. We say that £, has the upper-best
approzimation property (u.b.a.p.) with respect to Ly iff, for every L € Lo,
L, L is defined.

A language class £, is called upper-best approzrimately identifiable in the
limit (from positive data) by Ly iff there exists an inference machine I which
identifies an upper-best approximation of each L € L£; in the limit (from
positive data) by L5. Observe that this notion of identifiability coincides
with Gold’s classical notion of learning in the limit in the case when £; = L.

Consider a language class £ and a language L from it. A finite subset
F C L is called a characteristic sample of L with respect to L iff, for any
L'e £, FF C L' implies that L C L.

Now, let us turn more specifically to the distinguishable languages. Fix
some distinguishing function §. We call a language 7" C V* pseudo-0-
distinguishable iff, for all ¢,,t, € V* with §(¢;) = 0(¢2) and for all u € V¢,
we have Ur(t1) = Ur(ty) whenever {u#t,,u#t,} C T. By our characteriza-
tion theorem, T' € §-DT iff T is a pseudo-d-distinguishable and regular tree
language.

Immediately from the definition, we may conclude:

Proposition 12 Let T} C T, C ... be any ascending sequence of pseudo-9-
distinguishable languages. Then, | J,~, T; is pseudo-0-distinguishable. a

For brevity, we write tl =716 t2 iff UT(tl) = UT(tQ) and 5(t1) = 6(t2)

16

Remark 4 If T C V* is a regular tree language and if § : V* — Qs is
some distinguishing function, then the number of equivalence classes of =7
equals the number of states of C(T") (plus one) times |Qs|, and this is just
the number of states of A(T,0) (plus |Qs]).

Let T C V* be some tree language. For any integer i, we will define
Rs(i,T) as follows:

1. Rs;(0,7) =T and

2. RJ(Z,T) = R5(Z — 1,T) U {u#tz | u#tl,u’#tl,u’#tg S RJ(Z — 1,T) AN
5(t1) = (S(tg)} for ¢ 2 1.

Furthermore, set Rs(T) = ;50 Rs(3, T).
Since Rj; turns out to be a hull operator, the following statement is obvi-
ous.

Proposition 13 For any tree language T and any distinguishing function 6,
Rs(T) is the smallest pseudo-d-distinguishable language containing T . O

Lemma 14 Let T C V*® be any tree language. If t1 and ty are subtrees of T,
then tl =T tg zmplzes that UR5(T) (tl) = URg(T) (tg)

Proof. Let ¢, and ?; be subtrees of T" with ¢; =75 2. By definition of =7,
Ur(t1) = Ur(tz) # 0. Hence, there is a tree u € V§¥ so that {u#t,, u#t,} C
T C Rs(T). Furthermore, by definition of =75, 6(t1) = 6(t2). Since Ry(T') is
pseudo-d-distinguishable due to Proposition 13, Ug,(r)(t1) = Uryr)(t2). O

Lemma 15 Let T C V*® be any tree language and let 6 be any distinguishing
function. Then, for any subtree t; of Rs(T), there exists a subtree ty of T
with Ugg(r) (t1) = Urs(r)(t2)-

Proof. Since t; is a subtree of Rs(7T) iff ¢; is a subtree of Rs(i,T’) for some
1 > 0, it suffices to show the following claim by induction:

Let ¢ > 0. Then, for any subtree ¢; of Rs(i,T), there exists a
subtree ty of T with Ug,(7)(t1) = Ugryr)(t2)-

17

Trivially, the claim is true when i = 0, since Rs(0,7) = T. As an induction
hypothesis, assume that the claim is shown for + = /. Hence, we have to
consider some t; € ST(Rs(¢ + 1,T)) in the induction step. Consider some

u#t; € Rs(0+1,T)\ Rs(¢,T).
This means that there are trees u;,up € V¢ and ¢,¢' € V* with
{ur#tt, uaftt, us#tt'} C Rs(6,T), 0(t1) = 6(t2) and ui#t' = ut.
We encounter three possible situations:

1. If t; is a subtree of ¢, then ¢; is a subtree of us#t' € Rs(¢,T), and the
claim follows by the induction hypothesis.

2. If t; is not subtree of ¢ and if ¢’ is not subtree of ¢;, then ¢; is a subtree
of u; and is, hence, a subtree of u;#t € Rs(¢,T), so that the induction
hypothesis is again applicable.

3. If ¢’ is a subtree of ¢;, then ¢; = u'#t' for some u’ € V{f. Since Rs(T) is
pseudo-d-distinguishable and {us#t, us#t'} C Rs(T) as well as 6(t)
(S(t,), UR5(T) (t) = URl;(T) (tl), which ylelds UR(;(T) (tl) = URg(T) (u'#t’)
Ug,y(ry(u'#£t). Since v’ is a subtree of u;, u'#t is a subtree of u;#t €
Rs(¢,T). By our induction hypothesis, there is a subtree ¢, of T such
that Ugy(r)(ta) = Urs(ry(wi#t) = Urs(r) (t). o

By a reasoning completely analogous to [17], we may conclude:

Theorem 16 For any distinguishing function 6, the class 0-DT has the
u.b.a.p. with respect to the class of reqular tree languages. O

Observe that the number of states of Ag;) is closely related to the
number of states of A(T,0), see Remark 4.

Theorem 17 For any distinguishing function 0, the class of reqular lan-

guages 1s upper-best approrimately identifiable in the limit from positive data
by 6-DT. |

18

In addition to the last two theorems, we remark that an upper-best ap-
proximation of a regular tree language with respect to each class -DT is
uniquely defined, since the classical product automaton construction shows
that each of these classes is closed under intersection, see Remark 3.

Given some tree automaton A and some distinguishing function J, an
automaton accepting 5-DTT(A) can be constructed as follows:

1. Compute C(T'(A)).
2. Construct A" = A(T(A),9).

3. Merge “conflicting states” in A’ as long as possible.

6 Discussion and Prospects

For a variety of regular tree language classes, we showed in which way they
can be inferred efficiently. To this end, we had to define new canonical
automata specific to each of these classes. Each of these classes can be
characterized in various ways. In the long version of this paper, we show that
every regular tree language can be approximated in a well-defined manner
by languages from §-DT for any chosen Ay, see [8, 17] for the string case.

In the future, we will try to compare our work with other works on the in-
ference of tree languages and of context-free languages, as they are contained,
e.g., in [4, 10, 12, 13, 16, 18, 25, 26, 27]. Moreover, it would be interesting
to extend the work to other, more general classes of tree languages and the
corresponding languages of yielded strings, see [24] for a short exposition.
Especially, we will employ our results for devising learning algorithms for
linear languages, which will be a complimentary approach to the ones de-
tailed in [20, 23], as well as in the long version of [7]. In order to design
string language learning algorithms based on tree learning, it seems to be
best to prescribe, for each word length n, a skeleton tree S,, which defines
how to parse strings of length n. There seem to be interesting connections to
the idea of employing permutation (families) for learning as detailed in [9].
These connections will be investigated in the near future.

Finally, we will provide an publicly accessible implementation of our tree
language inference algorithms.

Acknowledgments: We are grateful for stimulating discussions with our
colleagues S. Kobayashi and J. M. Sempere.

19

References

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

D. Angluin. Finding patterns common to a set of strings. Journal of
Computer and System Sciences, 21:46-62, 1980.

D. Angluin. Inference of reversible languages. Journal of the ACM,
29(3):741-765, 1982.

S. Crespi-Reghizzi, M. A. Melkanoff, and L. Lichten. The use of gram-
matical inference for designing programming languages. Communica-
tions of the ACM, 16:83-90, 1972.

L. F. Fass. Learning context-free languages from their structured sen-
tences. SIGACT News, 15(3):24-35, 1983.

H. Fernau. Identification of function distinguishable languages. In
H. Arimura, S. Jain, and A. Sharma, editors, Proceedings of the 11th
International Conference Algorithmic Learning Theory ALT 2000, vol-
ume 1968 of LNCS/LNAI, pages 116-130. Springer, 2000.

H. Fernau. k-gram extensions of terminal distinguishable languages.
In International Conference on Pattern Recognition (ICPR 2000), vol-
ume 2, pages 125-128. IEEE/IAPR, IEEE Press, 2000.

H. Fernau. Learning of terminal distinguishable languages. In Proc.
AMAT 2000, 2000. Available through:
http://rutcor.rutgers.edu/~amai/AcceptedCont.htm.

H. Fernau. Approximative learning of regular languages. In P. Ruzicka,
editor, SOFSEM’01, LNCS. Springer, 2001. To appear.

H. Fernau and J. M. Sempere. Permutations and control sets for learning
non-regular language families. In A. L. Oliveira, editor, Grammatical
Inference: Algorithms and Applications, 5th International Colloquium
(ICGI 2000), volume 1891 of LNCS/LNAI, pages 75-88. Springer, 2000.

C. C. Floréncio. Consistent identification in the limit of any of the
classes k-valued is NP-hard. In Proceedings of the Conference on Logi-
cal Aspects of Computational Linguistics (LACL 2001), volume 2099 of
LNCS/LNAI pages 125-138. Springer, 2001.

20

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

E. M. Gold. Language identification in the limit. Information and
Control (now Information and Computation), 10:447-474, 1967.

R. C. Gonzalez and M. G. Thomason. Syntactic Pattern Recognition;
An Introduction. Addison-Wesley, 1978.

V. M. Jiménez and A. Marzal. Computation of the n best parse trees for
weighted and stochastic context-free grammars. In F. J. Ferri et al., edi-
tors, Advances in Pattern Recognition, Joint IAPR International Work-
shops SSPR+SPR’2000, volume 1876 of LNCS, pages 183—-192, 2000.

T. Knuutila. How to invent characterizable methods for regular lan-
guages. In K. P. Jantke et al., editors, 4th Workshop on Algorithmic
Learning Theory ALT’93, volume 744 of LNCS/LNAI, pages 209-222,
1993.

T. Knuutila. Inductive inference from positive data: from heuristic to
characterizing methods. In L. Miclet and C. de la Higuera, editors,
Proceedings of the Third International Colloquium on Grammatical In-
ference (ICGI-96): Learning Syntaz from Sentences, volume 1147 of
LNCS/LNAI pages 22-47, Berlin, September25-27 1996. Springer.

T. Knuutila and M. Steinby. The inference of tree languages from finite
samples: an algebraic approach. Theoretical Computer Science, 129:337—
367, 1994.

S. Kobayashi and T. Yokomori. Learning approximately regular lan-
guages with reversible languages. Theoretical Computer Science, 174(1-
2):251-257, 1997.

D. Lépez and 1. Piniaga. Syntactic pattern recognition by error cor-
recting analysis on tree automata. In F. J. Ferri et al., editors, Ad-

vances in Pattern Recognition, Joint IAPR International Workshops
SSPR+SPR’2000, volume 1876 of LNCS, pages 133-142, 2000.

V. Radhakrishnan and G. Nagaraja. Inference of regular grammars

via skeletons. IFEE Transactions on Systems, Man and Cybernetics,
17(6):982-992, 1987.

21

[20] V. Radhakrishnan and G. Nagaraja. Inference of even linear grammars
and its application to picture description languages. Pattern Recogni-
tion, 21:55-62, 1988.

[21] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages,
Volume II1. Berlin: Springer, 1997.

[22] Y. Sakakibara. Efficient learning of context-free grammars from positive
structural examples. Information and Computation, 97(1):23-60, March
1992.

[23] J. M. Sempere and G. Nagaraja. Learning a subclass of linear languages
from positive structural information. In V. Honavar and G. Slutski, ed-
itors, Proceedings of the Fourth International Colloguium on Grammat-
ical Inference (ICGI-98), volume 1433 of LNCS/LNAI, pages 162-174,
Berlin, July 1998. Springer.

[24] H. Volger. Grammars with generalized contextfree
rules and their tree automata. In Proceedings
of CLIN °99; Selected Papers, pages 223-233. see
http://www-uilots.let.uu.nl/publications/cl1in1999/papers.html,
1999.

[25] T. Yokomori. Inductive inference of context-free languages based on
context-free expressions. International Journal of Computer Mathemat-
ics, 24:115-140, 1988.

[26] T. Yokomori. Polynomial-time learning of very simple grammars from
positive data. In Proc. 4th Annu. Workshop on Comput. Learning The-
ory, pages 213-227, San Mateo, CA, 1991. Morgan Kaufmann.

[27] T. Yokomori. On learning systolic languages. In K. P. Jantke, S. Doshita,
K. Furukawa, and T. Nishida, editors, Proceedings of the 3rd Workshop
on Algorithmic Learning Theory (ALT ’92), volume 743 of LNCS/LNAI,
pages 41-52. Springer, October 1992.

22

