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Abstract

We study the parameterized complexity of the problem to reconstruct a binary (evolu-
tionary) tree from a complete set of quartet topologies in the case of a limited number
of errors. More precisely, we are given n taxa, exactly one topology for every subset of
4 taxa, and a positive integer k (the parameter). Then, the Minimum Quartet Inconsis-
tency (MQI) problem is the question whether we can find an evolutionary tree inducing
a set of quartet topologies that differs from the given set in only k quartet topologies.
The more general version of the problem where we are not necessarily given a topology
for every subset of four taxa appears to be fixed parameter intractable. For the MQI
problem, however, which is also NP-complete, we can compute the required tree in time
O(4F -n +n*). This means that the problem is fixed parameter tractable and that in the
case of a small number k of “errors” the tree reconstruction can be done efficiently. In
particular, our algorithm can produce all solutions that resolve at most k errors. To this
end, we point out some nice combinatorial properties of the problem, e.g., that “global”
conflicts can be always led back to “local” ones. Additionally, we discuss fixed parameter
tractability of variations of the problem and significant heuristic improvements. Experi-
ments underline the practical relevance of our solutions. E.g., they show that in practice
a much smaller exponential growth can be achieved than the upper bound predicts.

1 Introduction

In recent years, quartet methods for reconstructing evolutionary trees have received consid-
erable attention in the computational biology community [10, 17]. In comparison with other
phylogenetic methods, an advantage of quartet methods is, e.g., that they can overcome the
data disparity problem (see [10] for details). This approach is based on the fact that an evolu-

tionary tree is uniquely characterized by its set of induced quartet topologies [9]. Herein, we
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Figure 1: Possible quartet topologies for quartet {a,b,c,d}, which are (from left to right)
[ab|cd], [ac|bd], and [ad|bc].

consider an evolutionary tree to be a binary tree 7' in which the leaves are bijectively labeled
by a set of taxa S. A quartet, then, is a size four subset {a,b,c,d} of S and the topology
for {a, b, c,d} induced by T' simply is the four leaves subtree of 7" induced by {a,b,c,d}. The
three possible quartet topologies for {a,b,c,d} are [ab|cd], [ac|bd], and [ad|bc] and are shown
in Figure 1.! The fundamental goal of quartet methods is, given a set of quartet topologies, to
reconstruct the corresponding evolutionary tree. The computational interest in this paradigm
derives from the fact that the given set of quartet topologies usually is incomplete, contains
errors or more than one topology for one quartet. Hence, to reconstruct (a good estimation
of) the original evolutionary tree becomes an optimization problem, which generally turns
out to be NP-hard.

In this paper, we focus on the following, perhaps most often studied optimization prob-
lem in the context of quartet methods. (In Section 2, we will survey other problems and
results concerning the quartet paradigm.) The MINIMUM QUARTET INCONSISTENCY (MQI)

problem is defined as follows.

MINIMUM QUARTET INCONSISTENCY (MQI)

Input: A set S of n taxa and a set Qs of quartet topologies such that there
is exactly one topology for every quartet set corresponding to S.2

Question: Is there an evolutionary tree 1" where the leaves are bijectively
labeled by the elements from S such that the set of quartet topologies induced
by T differs from Qg in at most k quartet topologies?

MQI is NP-complete [18]. Concerning the approximability of MQI, it is known that it is
polynomial time approximable with a factor n? [6, 7, 17]. It is an open question of [17]
whether M QI can be approximated with a factor at most n or even with a constant factor.
The parameterized complexity [12] of MQI, however, so far, has apparently been neglected—
we close this gap here. Assuming that the number k of “wrong” quartet topologies is small

in comparison with the total number of given quartet topologies, we show that MQI is fized

!The fourth possible topology would be the star topology which is not considered here because it is not
binary.
*Note that given n species, there are (Z) = O(n") corresponding quartet topologies.



parameter tractable; that is, MQI can be solved exactly in worst case time O(4Fn + n?).
Observe that the input size is O(n*). It is worth noting here that the variant of MQI where
the set Qg is not required to contain a topology for every quartet (subsequently referred
to as SPARSE MQI) is NP-complete even if £ = 0 [23]. Hence, this excludes parameterized
complexity studies and also implies inapproximability (with any factor).

To establish the correctness and the running time of our algorithm, we exhibit some nice
combinatorial properties of MQI. For instance, loosely speaking, we point out that “global
conflicts” due to erroneous quartet topologies in fact can be led back to “local conflicts.”
The basis for this was laid by Bandelt and Dress [3]. This forms the basic observation
in order to show fixed parameter tractability of MQI. Moreover, our approach makes it
possible to construct all evolutionary trees that can be (uniquely) obtained from the given
input by changing at most k& quartet topologies. This puts the user of the algorithm in
the position to select (e.g., based on additional biological knowledge) the probably best,
most reasonable solution. Our method also generalizes to weighted quartets. We consider
further parameterizations of the base problems and fixed parameter results for them, and we
discuss some heuristic improvements to reduce the running time of the algorithm in practice
significantly.

We performed several experiments on artificial and real (fungi) data and, thereby, showed
that our algorithm (due to several tuning tricks) in practice runs much faster than its the-
oretical (worst case) analysis predicts. For instance, with a small k£ (e.g., & = 100), we can
solve relatively large (n = 50 taxa) instances optimally in around 40 minutes on a LINUX
PC with a Pentium IIT 750 MHz processor and 192 MB main memory.

Our work is structured as follows. In Section 2, we provide some more motivation and
background from computational biology and parameterized complexity theory. Afterwards,
in Section 3 and 4, we develop some combinatorial properties of the M QI problem that lead to
its fixed parameter algorithm in Section 5. Section 6 gives some practical improvements of the
algorithm. In Section 7, we present extensions of our main result, dealing with generalizations
of the problem. Section 8 describes our experiments. We conclude the paper with prospects

for future research.

2 Preliminaries

In this section, we give more background on quartet methods (in particular from the viewpoint
of computational biology) and parameterized complexity and we introduce notation that is

used throughout the paper.



2.1 From quartets to evolutionary trees

For a given a set of n taxa, it is an important goal to determine the evolutionary relationship
of the taxa, e.g., based on DNA or protein sequence data. This relationship is often displayed
as a binary tree with a 1:1 labelling of the tree’s leaves with the taxa. A variety of models
and methods has been proposed for solving this question [10]. Most of the problems being
considered to produce practically relevant results are, however, NP-hard and computationally
expensive, allowing a solution only for a limited number of taxa.

The quartet method infers the evolutionary tree only for four taxa, called a quartet, at
a time. Once having determined the evolutionary tree for every quartet of taxa, the quartet
method tries to combine these evolutionary trees involving four taxa, called quartet topologies,
in order to obtain a tree containing all taxa. Summarizing, we can distinguish two steps in

quartet methods:
o Infer the quartet topologies for all quartets of given taxa.

e Recombine the quartet topologies to build an evolutionary tree for the whole set of

taxa.

There are several reasons why the quartet method is widely used in practice. 2 Its moti-
vation is the fact that an evolutionary tree is uniquely characterized by the quartet topologies
for its size four sets of taxa [9]. From this set of topologies, we can efficiently compute the
tree in polynomial time O(n*) [5], as will be explained in more detail in one of the following
paragraphs. Besides this, the quartet method clearly divides the tree construction process
in two stages—we can use an arbitrary, even computationally expensive, tree construction
method for inferring the quartet topologies, while the recombination of topologies can be
handled independently of the method chosen for inference. Another reason to use the quar-
tet methods is data disparity as discussed by Chor [10]: In practice, we often do not have the
same amount of data for all considered taxa, e.g., not the same set of sequenced proteins. In
general, tree construction methods cannot take advantage of information available only for
a subset of taxa. The quartet method, however, allows us to use the maximum amount of
information available for the four taxa of a quartet when we compute its quartet topology.

Besides its advantages, the potential of the quartet method has its limitations, caused by
the fact that it is not possible to build a tree from every set of topologies. Since the process
of inferring the quartet topologies can be erroneous, we cannot be sure that there exists a
tree inducing the inferred set of quartet topologies. Assuming that the number of errors is

small compared to the number of correct topologies, it is desirable to to find an optimal tree

3Note that St. John et al. [22] give a rather critical exposition of the practical performance of quartet
methods (in particular, quartet puzzling) in comparison with the neighbor joining method. We believe,
however, that the arguments given here show that the study of quartet methods still makes sense.



that matches the inferred topologies as “close” as possible. One approach is to detect and
correct erroneous quartet topologies if their number is locally bounded, e.g., as it is done in
quartet cleaning [7], explained in one of the following paragraphs. Another approach is to
minimize the overall number of changes necessary to obtain a set of quartet topologies for
which it is possible to construct a tree. The latter is exactly the question of minimum quartet
inconsistency we address here.
Inferring quartet topologies. Quartet topologies can be computed directly from the
sequence data or from a distance matrix given for the involved taxa. We can use every
method proposed for building evolutionary trees, and even methods that are, in general,
very time-consuming, can be practicable when processing only four taxa at a time. Methods
especially proposed for inferring quartets include, e.g., using the four-point condition [3], the
short quartet method [14], the ordinal quartet method [19], and the maximum likelihood
approach used in quartet puzzling [24].
Recombination of quartet topologies. Given exactly one quartet topology for every
quartet of taxa, it is possible to decide in polynomial time whether there is a binary tree
inducing all of the given quartet topologies, and, if so, to actually construct the tree [5].
There are, however, situations, in which there is no such binary tree. In the following,
we mention three methods to handle these situations by producing trees that are not fully
resolved, i.e., that are not binary. Non-binary branchings remain in the tree where a binary
branching cannot be obtained due to conflicts in the given topologies. For these approaches,
we deal with completely supported [5] edges: Given a tree with its leaves bijectively labeled by
the given set S of taxa, an edge in the tree defines a bipartition of S into sets A and B, each
of them containing the taxa in the subtree rooted at one end of the edge. We call the edge
completely supported if, for every a,a’ € A and b, b € B, the given quartet topology for a, a’,
b, b’ separates a and o’ from b and b'. An approach due to Buneman [9] is to construct a tree
which contains every fully supported bipartition. Berry and Gascuel [5] present an algorithm
doing this in running time O(n®) and an improved and more involved solution having running
time O(n?) for n being the number of taxa. Bryant and Steel [8] consider the case that, for
each quartet, we are given either one or two topologies. Their approach is even considering
the topologies to be weighted. For a given weight A, they are then looking for a tree inducing
a subset of the given topologies such that the added weights of the induced topologies are at
least A. In time O(n®), their algorithm computes such a tree or tells us, when no such tree
exists.

The mentioned algorithms by Berry and Gascuel [5] and by Bryant and Steel [8] rely on
the fact that the given set of topologies is complete. In the more general situation that we
are not necessarily given a topology for every quartet, the problem of deciding whether there

is a binary tree inducing all the given topologies is NP-complete [23].



Quartet cleaning. To overcome errors made when inferring the quartet topologies, methods
have been proposed to correct these quartet errors if their number is bounded [7, 16, 18]. This
way is called quartet cleaning and Berry et al. [7] present two algorithms, one working in the
situation that the number of errors across an edge is bounded, and another working in the
case that the number of errors across a verter is bounded. In the previous paragraph, we
have shown how an edge e in the tree yields a bipartition of the involved taxa. Let us call
the resulting sets A, and Be. Then a quartet whose topology is [aa’|bV] is called to be across
an edge e iff a,a’ € A, and b,b' € B,. Tt is called to be across a vertex v iff it is across
an edge e and v is one of the endpoints of e. The first of the two proposed algorithms
corrects in time O(n4) the erroneous quartet topologies if, for each edge e in the tree to be
constructed, their number is bounded by 3(|Ae| — 1)(|Be| — 1). For the algorithm to work,
this condition has to apply for every edge, and, therefore, the algorithm is called global. The
second algorithm is called local as it corrects errors where the condition applies, and leaves the
tree unresolved where the condition does not apply. It corrects in time O(n%) the erroneous
quartet topologies across a vertex in the tree to be constructed if their number is bounded
by i('Ae‘ - 1)(|Be| - 1)'

Minimum quartet inconsistency. In order to find the “best” binary tree for a given set
of quartet topologies, we can ask for a tree that violates a minimum number of topologies. In
case we are given exactly one quartet topology for every set of four taxa, this question gives
the MQI problem. If there is not a quartet topology for necessarily every set of four taxa, the
question is referred to as SPARSE MQI. To solve the SPARSE M QI problem, Ben-Dor et al. [4]
propose two solutions, namely, a heuristic approach and an exact algorithm. The heuristic
solution is based on semidefinite programming, and does not guarantee the optimal solution,
but has a polynomial running time. The exact algorithm uses dynamic programming for
finding the optimal solution. For every subset of ¢ taxa, it computes the optimal tree for
these taxa based on the optimal trees for the subsets of ¢ — 1 taxa, with ¢ running up to
the total number n of species. The running time of this approach, however, even with some
further optimizations, is exponential, namely, O(m3"), where n is the number of species and
m is the number of given quartet topologies. Ben-Dor et al. ran all their experiments on
MQI instances, i.e., there was exactly one quartet topology for every set of four taxa. In
that case, we have m = O(n*). The memory requirement is ©(2"). According to Jiang et
al. [17] there is a factor n-approximation, at the same time asking for better approximation
results. Note that the complement problem of MQI, where one tries to maximize |Qr N Q)|
(Qr being the set of quartet topologies induced by a tree T'), possesses a polynomial time

approximation scheme [16, 18].



2.2 Some notation.

Assume that we are given a set of n taxa S. For a quartet {a,b,c,d} C S, we refer to
its possible quartet topologies by [ablcd], [ac|bd], and [ad|bc]. These are the only possible
topologies up to isomorphism, since, e.g., a topology [ab|cd] is (under isomorphism) the same
as topologies [abldc], [ba|cd], [ba|dc], [cd|ab], [cd|ba], [dc|ab], and [dc|ba]. A set of quartet
topologies is complete if it contains exactly one topology for every quartet of S. A complete
set of quartet topologies for the quartets over S we denote by Q5. A set of quartet topologies
Q is tree-consistent 3] if the there exists a tree T" such that for the set Q7 of quartet topologies
induced by T we have Q@ C Qp. Set Q is tree-like [3] if there exists a tree with Q@ = Q7.
Since an evolutionary tree is uniquely characterized by the topologies for all its quartets [9],
a complete set of topologies is tree-consistent if and only if it is tree-like. Intuitively, a set of
topologies has a “conflict” whenever it is not tree-consistent. We will call a conflict “global,”
when a complete set of topologies is not tree-consistent. In contrary, we call it “local,” when
a size three set of topologies, which necessarily is incomplete, is not tree-consistent.

2.3 Parameterized complexity

The theory of parameterized complexity has been chiefly developed by Downey and Fellows
and some of their co-authors [12]. The leitmotif of parameterized complexity is that “not all
forms of computational intractability are created equal.” That is, sometimes the combinato-
rial explosion seemingly inherent in solutions to complex (e.g., NP-hard) problems often can
be restricted to a “small” part of the input, the parameter. Computational biology is con-
sidered to be one of the (future) core fields of problems that deserve intensive parameterized
complexity studies [2, 12, 13].

As an example of a parameterized problem, consider the NP-complete DOMINATING
SET problem* for planar graphs with n vertices. This problem can be solved in time
O(11%n) [11, 12] or, alternatively, in time O(c\/En) for ¢ = 2%6V3% [1]. Ongoing work is
trying to improve both the constants in the bases of the exponential terms. To put it in more
computational complexity-theoretic terms, consider the class of parameterized problems that
can be solved in deterministic time f(k)n®®), called FPT. Herein, f may be an arbitrary
(usually exponential or worse) function only depending on k, but not depending on the input
size n. The complexity class FPT is the set of fized parameter tractable problems. Thus,
in a sense, FPT comprises the “good” parameterized problems. As to the “bad” parame-
terized problems (as, for instance, CLIQUE) which do not allow for FPT-algorithms, we only

mention in passing that there is an intricate completeness program with a whole hierarchy

“For a graph G = (V,E) a set S C V is called dominating if every vertex v € V — S has at least one
neighbor in §. The DOMINATING SET problem is, given a graph G and a positive integer k, the question
whether the graph has a dominating set of size < k.



of complexity classes (so-called W-hierarchy) classifying these problems according to their
growing “degree of parameterized intractability.” We refer to the monograph of Downey and
Fellows [12] for any details.

It is strongly hoped that the concept of fixed parameter tractability opens a new, prac-
tical possibility how to deal with the computational intractability of hard problems in many
applications. In particular, this approach is aiming at finding optimal solutions efficiently

whenever the parameter k (i.e., “the size of the optimum”) is relatively small.

3 Global conflicts are local

In this section, we show, intuitively speaking, that a “global” conflict in a set of quartet
topologies can be led back to a “local” one. Recall that a local conflict is a set of three
quartet topologies that is not tree-consistent. Given a complete set of quartet topologies
which is not tree-consistent, the results of Bandelt and Dress [3] imply that there already
is a subset of only three quartet topologies which is not tree-consistent. Proposition 1 and
Theorem 1 following later in this section will make this precise. This is the key to develop
a fixed parameter solution for the problem: It is sufficient to examine the size three sets of
quartet topologies and to recursively branch on these local conflicts, as will be explained in

Section 5.

Proposition 1. (Proposition 2 in [3]) Given a set of taza S and a complete set of quartet
topologies Qs over these taza, Qs is tree-like iff the following so-called substitution property
property holds for every five distinct taza a,b,c,d,e € S':

[ablcd] € Qg implies [ab|ce] € Qg or [aelcd] € Q5.

The proof for Proposition 1 (given in [3]) relies on the “denseness” given in a complete set
of topologies.

In the following, we show that in Proposition 1, we can replace the substitution property
introduced by Bandelt and Dress with the more common term of tree-consistency. This is
because, for an incomplete set of only three topologies, the substitution property is tightly
connected to the tree-consistency of the topologies. We will state this in the following tech-
nical Lemmas 1 and 2 and later use it to give, in Theorem 1, another interpretation of
Proposition 1.

The substitution property is stated for three topologies involving exactly five taxa. To put
it, in Lemma 2, in relation to tree consistency, we first show that three topologies involving

more than five taxa are tree-consistent.

Lemma 1. Three topologies involving more than five taza are tree-consistent.



Proof. Assume we have topologies 1, %2, and t3 involving more than five taxa. We distinguish

two cases:

Case (1) A topology t € t1,t2, and t3 contains a taxon occurring in none of the other
topologies. Assume, w.l.o.g., that ¢ = ¢; = [ab|ed] and that a is the taxon occurring
only in #; and not in ¢5, and t3. We can certainly find a tree T inducing t,, and t3,

since the topologies for only two different quartets are always tree-consistent.

In the case that b does also occur in t9 and t3, we replace in T' the leaf b by an inner
node having two leaves as its children, one labeled as a and the other as b. In the case
that b does not occur in t9 and ¢3, we also create a new inner node with children a

and b, and insert it at some arbitrary edge of T

The modified tree induces t1,%2, and t3, hence showing that %1,%2, and t3 are tree-

consistent.

Case (2) will cover those t1,t2,t3 such that for each pair of topologies, there are exactly two
taxa occurring in both topologies. Counting arguments make sure that one of these two cases
has to apply. Assume that Case (1) does not apply: Then, we choose three quartets, each
time choosing four from the > 6 given taxa, and every taxon has to occur in at least two of
the three quartets. This is only possible for exactly six taxa, when Case (2) applies. With
more than six taxa one would necessarily have a taxon occurring in only one of the topologies
which is handled in Case (1).

Case (2) For each pair of topologies from t1,t2, and t3, there are exactly two taxa occur-
ring in both topologies. W.lLo.g., we can assume that topology t1 is given for quartet
{a, b, c,d}, topology t2 is given for quartet {a, b, e, f}, and topology t3 is given for quar-
tet {c,d,e, f}. Checking all possible combinations of topologies for t1,t2, and t3 (we

omit the details here), we find that we always can find a tree inducing ¢, t2, and 3. 0

When searching for local conflicts, Lemma 1 makes it possible to focus on the case of three
topologies involving only five taxa. If the substitution property as given in Proposition 1 is
not satisfied, we say that the topologies for the quartets {a, b, c,d}, {a,b,c, e}, and {a,c,d, e}

contradict the substitution property.

Lemma 2. For a given a set of taxa S, three topologies consisting of taxa from S are tree-

consistent iff they do not contradict the substitution property.

Proof. First, we note that with three topologies involving more than five taxa, on the one
hand, we can build a tree inducing these taxa (according to Lemma 1) and, on the other

hand, these taxa cannot contradict the substitution property (the substitution property is



formulated over five taxa only). Therefore, we can in the following focus on the case of three
topologies involving only five taxa.

(=) As the three topologies are tree-consistent, we can find a tree inducing the topologies.
The set of induced topologies is tree-like. With Proposition 1 the substitution property holds,
i.e., there are no three topologies contradicting the substitution property.

(<) We are given three topologies which do not contradict the substitution property and
which involve five taxa {a,b,c,d,e}.

First, we want to reduce the number of cases we have to consider. For three topologies
over five taxa which do not contradict the substitution property, we show that it is, w.l.o.g.,
possible to assume that two of them are [ablcd] and [ab|ce]. This means that two of the
topologies have to be equal on one side. Assuming that this is not true leads to a contradiction.
To see this, we take two topologies t; = [ab|cd] and to = [ac|de], and show that there is no
topology t3 with the properties that (1) t1,%2, and ¢3 do not contradict the substitution
property and (2) that no side of t3 equals a side of ¢; or t5. Topology t3 cannot be a topology
for quartets {a,b,c,e} or {a,b,d,e}. The reason is that, given topology t; = [ab|cd], the
substitution property would require either topology [ae|cd] (and [be|cd]) or topology [ab|ce]
(and [ab|de]). Since [ae|cd] would contradict 2, we necessarily would have that the topology
is [ab|ce] or [ablde]. These, however, would contradict property (2), because they equal ¢; in
the ab side. Analogously, t3 cannot be a topology for quartet {b,c,d,e}—the substitution
property would require that the topology is [bc|de], which would contradict property (2), since
it equals to in the de side. Since there are no quartets over {a, b, ¢, d, e} remaining, there are
no choices left for t3. Therefore, our assumption was wrong. Thus, for three topologies which
do not contradict the substitution property, this justifies that two of the topologies have to
be equal on one side.

With the preceding considerations, we can, w.l.o.g., assume that two of the given topolo-
gies are t; = [ab|cd] and t2 = [ab|ce]. We are given a third topology t3. There remain three
quartets over {a, b, c,d, e} whose topology can take this place. These quartets are {a,b,d, e},
{a,c,d,e}, and {b,c,d,e}.

In Table 1, we list the three quartets and, for each of these three quartets, the three
possible topologies it can take. In case the resulting triple of topologies does not contradict
the substitution property, we complete them to a set of tree-like topologies, as shown in the
last column of Table 1. For these choices of t3 we, thereby, show that %1, ¢, and ¢3 are tree-
consistent. In two of the listed cases, we cannot complete the three topologies to a tree-like set.
We find, however, that those triples of topologies contradict the substitution property. With
the choice of t3 = [ad|be], the substitution property requires that we have either topology
[ad|be] or topology [ac|be], in contradiction to topologies ¢; and 2. Analogously, the topologies
contradict the substitution property with the choice of t3 = [ae|bd]. O

10



Topology Topology Topology Contradict Completion

t1 ta t3 the subst. prop. | to tree-like set

[ab]cd) [ab|ce] [ab|de] no [ae|cd], [be|cd)
[ad|be] yes
[ae|bd] yes

[ac|de] no [ab|de], [be|de]

[ad|ce] no [ab|de], [bd|ce]

[ae|cd] no [ab|de], [be|cd]

[be|de] no [ab|de], [ac|de]

[bd|ce] no [ab|de], [ad|ce]

[be|cd] no [ab]de], [ae|cd)

Table 1: For the proof of Lemma 2, we list the possible topologies t1, to, and t3 over five taxa
{a,b,c,d,e}, when t; = [ab|cd] and to = [ac|de]. This table shows that whenever 1,2, and t3
do not contradict the substitution property they are tree consistent, i.e, we can complete

them to a tree-like complete set of topologies.

Note that Lemma 2 involving a necessarily incomplete set of three topologies does not
generalize from size three to an incomplete set of arbitrary size, as exhibited in the following
example. For taxa {a,b,c,d,e, f}, consider the incomplete set of topologies [ab|cd], [ablce],
[bc|de], [cd|ef], and [af|de]. Without going into the details, we only state here that these
topologies are not tree-consistent, although there are no three topologies which contradict
the substitution property.

With Lemma 2 we can now give another interpretation of Proposition 1. This will make
clearer that “global” tree-consistency of a complete set of topologies reflects in “local” tree-

consistency of every three topologies taken from this set.

Theorem 1. Given a set of taxa S and a complete set of quartet topologies Qg over S, Qg is

tree-like (and, thus, tree-consistent) iff every set of three topologies from Qs is tree-consistent.

Proof. Due to Lemma 2 we may replace the substitution property in Proposition 1 with tree

constistency. This gives the result. U

When we have a complete set of topologies Qg for a set of taxa S, we do not necessarily
know whether the set is tree-like or not. If it is not, we can, according to Theorem 1, track
down a subset of three topologies that is not tree-consistent. Our goal will be to detect
all these local conflicts. This will be the preprocessing stage of the algorithm that will be
described in Section 5, in order to (try to) “repair” the conflicts in a succeeding stage of the
algorithm. We can find all these local conflicts in time O(n%) as follows. Since, following

Lemma 1, only three topologies involving five taxa can form a local conflict, it suffices to
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counsider all size five sets of taxa {a,b,c,d,e} C S. There are five quartets over this size
five set of taxa, namely, {a,b,c,d}, {a,b,c,e}, {a,b,d, e}, {a,c,d,e}, and {b,c,d,e}. For the
topologies of these quartets, we can test, in constant time, whether there are three among
them that are not tree-consistent. Doing so for every size five set, we will, if Qg is not tree-
consistent, certainly obtain a size three subsets of Qs which is not tree-consistent. Moreover,
from Lemma 2 we know that we find all these local conflicts, in, namely, time O(n®).

We can improve this time bound for the preprocessing stage of the algorithm to be de-
scribed in Section 5 with the following observation by Bandelt and Dress [3]. They show
that, for our purpose, it is sufficient to restrict our attention to the size five sets containing

some arbitrarily fixed taxon f.

Proposition 2. (Proposition 6 in [3]) Given a set of taza S and a set of quartet topologies Qg
and some tazon f € S, then Qg is tree-like iff every size five set of taza that contains f

satisfies the substitution property.

This statement may not seem intuitive. It tells us that, in the search for possible conflicts
between three topologies, we do not need to look at all size five sets of taxa, but only on
those involving the arbitrarily chosen f. This is caused by the denseness in a complete set
of topologies. Therefore, a local conflict between three arbitrary topologies reflects in the
topologies involving the chosen f. If there is a local conflict in our set of topologies, then we
also will necessarily find one by looking only at this restricted set of topologies.

Following Proposition 2, we can select some arbitrary f € S and examine only the size five
sets involving f. Similar to our proceeding described above, we consider every such size five
set containing f separately. Among the topologies over this size five set, we search the size
three sets which are not tree-consistent. In case the set of quartet topologies Qs is not tree-
consistent, we will find a size three set of quartet topologies which is not tree-consistent. It
will be sufficient to “repair” these conflicts when trying to make the set of quartet topologies

tree-consistent. Therefore, finding the local conflicts involving f can be done in time O(n?).

4 Combinatorial characterization of local conflicts

Given three topologies, we need to decide whether they are tree-consistent or not. Directly
using the definition of tree-consistency turns out to be a rather technical, troublesome task,
since we have to reason whether or not a tree topology exists that induces the topologies.
Similarly, it can be difficult to test, for the topologies, whether or not they contradict the
substitution property. To make things less technical and easier to grasp, we subsequently
give a useful combinatorial characterization of local conflicts. To this end, we introduce the
notion of a signature of a set of topologies, which is easy to compute and which will help us

to recognize a local conflict. Note that in the following definition we distinguish two possible
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Figure 2: Trees inducing non-conflicting topologies in the proof of Theorem 2.

orientations of a quartet topology [ab|cd], namely [ab|cd], with a,b on its left hand side and

¢,d on its right hand side, and [cd|ab], with the sides interchanged.

Definition 1. Given a set of topologies where each of the topologies is assigned an orienta-

tion, let | be the number of different taxa occurring in the left hand sides of the topologies

and let v be the number of different taxa occurring in the right hand sides of the topologies.
The signature of the set of topologies, then, is the pair (I,r) that, over all possible orien-

tations for these topologies, minimizes .

Using signatures, we now show a way how to characterize three topologies which are not

tree-consistent.

Theorem 2. Three quartet topologies are mot tree-consistent iff they involve five taxa and
their signature is (3,4) or (4,4).

Proof. (=) We show that, given three topologies t1, t2, t3 which are not tree-consistent, they
involve five taxa and have signature (3,4) or (4,4). From Lemma 2 we know that three
topologies are not tree-consistent iff they contradict the substitution property. To recall,
three topologies contradict the substitution property if for one of these topologies, w.l.o.g.,
t1 = [ab|cd], neither the topology to for quartet {a,b,c,e} is [ab|ce] nor the topology t3 for
quartet {a,c,d,e} is [ae|cd]. Therefore, the topology to is either [ac|be] or [ae|bc|, and the
topology t3 is either [ac|de] or [ad|ce]. By exhaustively checking the possible combinations, we
can find that the topologies involve five taxa and their signature is (3,4) (e.g., for t2 = [ac|be]
and t3 = [ac|de]) or (4,4) (e.g., for to = [ac|be] and t3 = [ad|ce]).

(<) We are given three topologies t1, t2, and ¢3 involving five taxa and having signa-
ture (3,4) or (4,4). Assume that they are tree-consistent. Showing that this implies signa-
ture (2,3) or (3,3), we prove that the assumption is wrong. For tree-consistent ¢1, 2, and t3,
we can find a tree inducing them. With, w.l.o.g., taxa {a, b, ¢,d, e} and t; = [ab|cd], we mainly
have two possibilities: we can attach the leaf e on the middle edge of topology #; as shown in
Figure 2(a), or we can attach e on one of the four side branches of ¢; as exemplarily shown

in Figure 2(b). Considering the sets of quartet topologies induced by these trees, we find in
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each case that the set has signature (3, 3). For instance, the topologies induced by the tree in
Figure 2(a) are, besides t1, [ab|ce], [ab|de], [ae|cd], and [be|cd]. Three topologies selected from
these, have signature (3,3) (e.g., [ablcd], [ab|ce], and [ae|cd]) or (2,3) (e.g., [ablcd], [ab|ce],
and [ab|de]). O

Using Theorem 2, we can determine whether three topologies are conflicting by simply count-

ing the involved taxa and computing their signature.

5 Fixed parameter algorithm for MQI

We show that MQI is fixed parameter tractable by giving a simple version of a recursive
procedure resolve () (to be improved later in this section) in Figure 3. Inputs are a complete
set of quartet topologies () and a positive integer k. Before calling the procedure for the first
time, one has to build the list C' of local conflicts. In fact, we only need to build a list of local
conflicts containing some designated taxon, which can be chosen arbitrarily. The reason for
this and the resulting preparation of this conflict list is explained in Section 3. Having done
that, we call resolve(Q, k, C). The subroutine called by update (C', t), with a conflict
list C and a topology t as arguments, searches, after ¢t has been changed, the “neighborhood”
of ¢, and updates the conflict list: It (1) removes the three-sets of quartets in the list whose
topologies are now tree-consistent, and (2) adds the size three sets of quartets not in the list
whose topologies now form a local conflict. The procedure resolve() will, if possible, output
a complete set of quartet topologies that is tree-like and that can be obtained by altering at
most k topologies in T'. From this tree-like set of quartet topologies it is, then, possible to
derive the evolutionary tree in time O(n?) [5].

For the biological application it is desirable to know not only one solution, but all evolu-
tionary trees that we can obtain by altering at most k topologies in T'. They can be taken as
candidate solutions to be further evaluated, e.g., by human experts. To obtain all solutions,
we can modify procedure resolve() by omitting the stop command in instruction (AO).
Thus, the algorithm will browse the entire search tree and output all solutions requiring at
most k alternations of quartet topologies.

Correctness. To obtain a non-conflicting set of quartet topologies, we have, following
Theorem 1, to resolve all local conflicts. Such a local conflict can be removed by altering
(at least) one of the three involved quartet topologies. The recursive procedure tries every
possibility to alter one of the three topologies. If there is a solution, we will, thereby, find
it. If for none of the three topologies we can find a solution while altering the topology, the
conflict cannot be removed, and there is no solution at all.

Running time. For each of the three quartet topologies there are two alternative topologies.

Therefore, in the worst case, we branch into at most six subcases. In every subcase, we
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resolve(complete set of quartet topologies @,
integer k,
conflict list C) {

(A0) if C is empty then: We are done! Output the current set of quartet
topologies and stop;

(A1) if (k <=0) then return; /* more than k recursions */

(A2) Take c € C, with c¢= {t1,t2,t3}:

for every alternative topology t| of ¢; do
Chew = Update(C, t1);

resolve(Q-t1+t), k—1, Cprew);
for every alternative topology t, of iy do

Chrew = Update(C, t9);

resolve (Q-tot+t, k—1, Crew);
for every alternative topology t of t3 do

Chew = Update(C, t3);
resolve(Q-t3+th, k—1, Chew);

return; /* no success in current branch

-> step one level up in recursion */

Figure 3: Simple version in pseudocode of a recursive procedure for eliminating conflicts by

changing at most k quartet topologies (if possible). Explanations in Section 5.
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decrease the parameter k by one. This yields a search tree of height at most k£ in which each
inner node has at most six children, meaning an upper bound of 6% on the size of the search
tree.

With n species, updating the list of conflicting size three sets can be done in time O(n):
Following Lemma 1, local conflicts can only occur among three topologies consisting of no
more than five taxa. Therefore, having changed the topology of one quartet {a,b,c,d}, we
only have to examine the “neighborhood” of the quartet, i.e., those sets of five taxa containing
a, b, c,d. For every such set of five taxa it can be examined in constant time whether for three
topologies over the five taxa a new conflict emerged or whether an existing conflict has been
resolved. Given taxa a, b, c,d, we have n —4 choices for a fifth taxon. Thus, O(n) is an upper
bound for the update procedure.’

Initially building the conflict list, however, takes time O(n?*), as explained in Section 3.

These considerations are summarized in the following proposition.

Proposition 3. With the simple version of procedure resolve(), we can solve the MQI
problem in time O(6F - n +n*).

Note that this running time is not only true for the algorithm reporting one solution, but also
for its modified version reporting all binary trees satisfying the requirement. Our algorithm
has only O(kn*) memory requirement, where the input size is already O(n*).
Decreasing the search tree size. We can lower the upper bound on the exponential growth
of the search tree. Assume a triple of quartets whose topologies t1, to, t3 are conflicting. Then,
an improvement can be achieved by not altering t1, %2, t3 separately, but branching into every
possibility to alter exactly one, exactly two, and exactly three topologies from %1, t2,t3. Every
quartet having three possible topologies and not considering the current topologies, we would
have to branch into 3-3-3 —1 = 26 subcases. This, however, is not necessary, since not every
of the proposed changes will eliminate the current conflict. Changing topologies t1,t2,13
into t,th,t%, respectively, we can test whether ¢/,},¢} are conflicting. Only if they are not
conflicting, we fiz topologies t},t),,t5 and branch into this subcase. By fixing the topologies
we mean that we mark the three topologies, altered or not, to avoid that the topologies are
unnecessarily altered in some following level of the recursion.

For the new analysis, we can take into account that parameter k£ will not always be
decreased by only one. Changing exactly two topologies, we decrease k by two, changing

exactly three topologies, we decrease k by three. For instance, Table 2 displays all possible

®In fact, as explained in Section 3, we only consider sets of five species containing a designated taxon f.
Therefore, if we change the topology of a quartet {a,b,¢,d} which does not contain the designated taxon f,
then we only have to consider one set of five topologies, namely {a, b, c,d, f}. In this special case, the update
procedure can be done in time O(1).
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ways to alter topologies of the conflicting three topologies [ab|cd], [ac|be], and [ac|de] (the last

column in Table 2 will be considered later). We see that
e we have three ways to resolve the conflict by changing exactly one topology,
e we have five ways to resolve the conflict by changing exactly two topologies, and
e we have five ways to resolve the conflict by changing exactly three topologies.

This holds for all three topologies which are not tree-consistent. We can find this by checking
all possible combinations of three topologies which are not tree-consistent.

Therefore, an bound on the search tree size is given by the recurrence
Sp<14+3-Sk_1+5-Sx_9+5-5k_3

. Clearly, Sy, S1,S2 = O(1). The analysis of this recursion yields a bound of 4.397% on the

search tree size.
Proposition 4. The MQI problem can be solved in time O(4.397% - n + n*).

We can, however, improve the upper bound on the search tree size even further, and,
thereby, arrive at an algorithm having an upper bound of 4¥ on the search tree size. By a
better selection of subcases to branch into we can find a way to make at most four recursive
calls. In the following, we show that such a good branching can be obtained for every three
topologies which are not tree-consistent. Let %1, fo, and t3 be three topologies which are
not tree-consistent, w.l.o.g., t1 = [ablcd]. Following Lemma 1, the topologies involve one
additional taxon, say e. Following Lemma 2, t,%2,t3 contradict the substitution property.
Given t; = [ab|cd], the substitution property requires topology [ab|ce] or topology [ae|cd].
Therefore, we can, w.l.o.g., assume the following setting for three quartets contradicting
the substitution property: Topology t; = [ab|ed], topology t, is the topology for quartet
{a,b,c,e} different from [ab|ce], and topology t3 is a topology for quartet {a,c,d, e} different
from [ae|cd]. In order to change the three topologies to satisfy the substitution property, we
have the following possibilities. We can change ¢1, either (1) we change ¢; to [ac|bd], or (2)
we change t1 to [ad|bc]. Otherwise, we can assume that t; is not changed. Then, we have
to (3) change t2 to [ab|ce] or (4) change t3 to [ae|cd], because these are the only remaining
possibilities to satisfy the substitution property.

To clarify the improved branching, we revisit the example displayed in Table 2. We are
given topologies [ab|cd], [ac|be], and [ac|de], which are not tree-consistent and contradict
the substitution property. Table 2 gives all possible ways to alter one, two, or three of the
given topologies. In this example, the four subcases listed above are (1) Topology 1 set to
[ac|bd], (2) Topology 1 set to [ad|bc], (3) Topology 1 fixed and Topology 2 set to [ab|ce], and
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Topology 1 Topology 2 Topology 3 ‘ Conflict? ‘ Subcases

[ablcd] [ac|be] [ac|de] conflicting

* * [ad|ce] conflicting

* * [ae|cd] ok (4)

* [ablce] * ok (3)

* [ab|ce] [ad|ce] ok (3)

* [ab|ce] [ae|cd] ok (3), (4)

* [ae|cb] * conflicting

* [ae|cb] [ad|ce] conflicting

* [ae|cb] [ae|cd] ok (4)
[ac|bd] * * ok (1)
[ac|bd] * [ad|ce] conflicting | (1)
[ac|bd] * [ae|cd] conflicting | (1)
[ac|bd] [ab|ce] * conflicting | (1)
[ac|bd] [ab|ce] [ad|ce] ok (1)
[ac|bd] [ab|ce] [ae|cd] conflicting | (1)
[ac|bd] [ae|cb] * conflicting | (1)
[ac|bd] [ae|cb] [ad|ce] conflicting | (1)
[ac|bd] [ae|cb] [ae|cd] ok (1)
[ad|bc] * * conflicting | (2)
[ad|bc] * [ad|ce] ok (2)
[ad|bc] * [ae|cd] conflicting | (2)
[ad|bc] [ab|ce] * conflicting | (2)
[ad|bc] [ab|ce] [ad|ce] ok (2)
[ad|bc] [ab|ce] [ae|cd] conflicting | (2)
[ad|bc] [ae|cb] * ok (2)
[ad|bc] [ae|cb] [ad|ce] ok (2)
[ad|bc] [ae|cb] [ae|cd] ok (2)

Table 2: The set of three quartet topologies [ab|cd], [ac|be], and [ac|de] is conflicting and has
signature (3,4). Above, we list all possible ways to change one, two, or three of the topologies.
We show which changes resolve the conflict between these three topologies. The first three
columns give the new topologies, x denoting no change compared to the original topology
given in the first line. The fourth column indicates whether the combination of topologies is
conflicting or not (“ok”). The fifth column indicates which subcases of the last algorithm in

this section (having a size 4% search tree) cover the combination.
(4) Topology 1 fixed, Topology 3 set to [ae|cd]. In the last column in Table 2, we can see
by which of these subcases the respective combination is covered. It is necessary to cover

all prospective combinations which resolve the current conflict, the combinations not able to
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resolve the conflict can be neglected. As we can read from the last column in Table 2, we cover
all ways to resolve the conflict by branching into these four subcases. Considering the number
of topologies altered in these subcases, we find that all subcases alter only one topology each,
and decrease parameter k by one. The preceding considerations justify an upper bound of 4%

on the exponential growth and prove the following theorem, which summarizes our findings.
Theorem 3. The MQI problem can be solved in time O(4 - n + n*).

The reason that we also introduced the worse time bound given in Proposition 4 is the
following. Given a local conflict, the underlying algorithm branches only in those subcases
that resolve this conflict and only into those. In contrary to this, the algorithm underlying
Proposition 3, however, contains some redundancy. In the above considerations, we resolve
the conflict by altering t2 to [ab|ce] or by altering ¢3 to [ae|cd]. We can, however, also resolve
the conflict by altering both ¢ and ¢3. We will encounter this case in both subcases (3)
and (4).

6 Improving the running time in practice

Besides improving the worst case bounds on the algorithm’s running time, we can also extend
the algorithm in order to improve the running time in practice without affecting the upper
bounds. In this section, we collect some ideas for such heuristic improvements.

Fixing topologies. It does not make sense to change a topology that, at some previous
level of recursion, has been altered or for that we explicitly decided not to alter it. If we
decide not to alter a topology in a later stage of recursion, we call this firing the topology.
This will avoid redundant branchings in the search tree.

Forcing topologies to change. In contrary to the fixing of topologies, we show in this
paragraph that it might be possible to identify topologies which necessarily have to be altered
in order to find a solution. We call this forcing a topology to change. The ideas described
here are similar to those used in the so-called reduction to problem kernel of the 3-Hitting
Set problem [20]. The observations described in this paragraph, however, will not yield a
reduction to problem kernel (opposite to the case in [20]) for our problem. Nevertheless, they
are likely to result in a better performance of the algorithm, since they allow recognizing
situations in which we cannot find a solution and they also allow a better branching, both of

which we discuss in the succeeding paragraphs.

Lemma 3. Consider an instance of the MQI problem in which quartet q has topology t. If
there are more than 3k distinct local conflicts which contain t, then in a solution for this

instance the topology for q is different from t.
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Proof. We have shown in Section 3 that three topologies only can form a local conflict, if
there are not more than five taxa occurring in them, as was stated in Lemma 1. For five
taxa, there are five quartets consisting of these taxa, e.g., for taxa {a,b,c,d, e} the quartets
are {a,b,c,d}, {a,b,c, e}, {a,b,d, e}, {a,c,d, e}, and {b,c,d,e}. Therefore, when we are given
two quartet topologies t1 and %o, we make the following observations. If there are more than
five taxa occurring in #; and %9, they cannot form a conflict with a third topology. If there
are exactly five taxa occurring in ¢; and ¢y, then there are five quartets consisting of these
five taxa, two of which are the quartets for ¢; and t,. The remaining three topologies are the
only possibilities for a topology t3 that could form a conflict with ¢; and ¢o.

Now, consider the situation in which, for a quartet topology ¢, we have more than 3k
distinct local conflicts which contain ¢. From the preceding discussion, we know that for
any t', there are at most three topologies such that ¢ and #' can form a conflict with it.
Consequently, there must be more than k distinct topologies ¢’ that occur in a local conflict
with £. We show by contradiction that we have to alter topology ¢ to find a solution. Assume
that we can find a solution while not altering ¢. By changing a topology #', we can cover at
most three conflicts, since there are at most three local conflicts containing both ¢ and ¢'.
Therefore, by changing k topologies, we can resolve at most 3k local conflicts. This contradicts

our assumption and shows that we have to alter ¢ to find a solution. O

Lemma 3 can help us to identify topologies that have to be changed. We call these topologies
“forced to change,” and mark them appropriately in order to take them into consideration in
the next branching situation.

Recognizing hopeless situations. In this paragraph, we describe situations in which, at
some level in the search tree where we are allowed to alter at most k topologies, we cannot
find a solution. This will allow us to avoid branching into further (useless) subcases. Thereby,
we can “cut off,” i.e., omit, complete subtrees of the search tree.

We discussed fixing topologies which are supposed not to be changed in the following
levels of recursion. Having a local conflict consisting only of fixed topologies, we obviously
cannot resolve this conflict while not changing one of the fixed topologies.

In the preceding paragraph, we discussed how to recognize topologies which are forced to
change. We know that for a solution, we have to change these topologies. If, after identifying
these topologies forced to change, there are more than k of them, it is obvious that a solution
is not possible—already by changing these topologies we would change more topologies than
we are allowed to.

The following two lemmas contain more involved observations. If a local conflict does not

contain a topology which is forced to change, then we call it an unforced local conflict.

Lemma 4. Let us have an instance of the MQI problem in which we have identified p con-

flicts which are forced to change. If the number of unforced local conflicts is greater than
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3(k — p)k, then the instance has no solution.

Proof. We have to change the p topologies that are forced to change. We, therefore, decrease
the parameter by p and have the possibility to resolve all local conflicts containing such a
topology. The conflicts which certainly remain to be resolved are the unforced conflicts.
From the preceding paragraph we know that, by changing a topology, we can resolve at most
3k distinct local conflicts. Therefore, by altering (k — p) topologies, we can resolve at most
3(k — p)k distinct local conflicts. O

Lemma 5. An instance of the MQI problem in which the number of local conflicts is greater
than 6(n — 4)k has no solution.

Proof. As described in Section 3, we have shown that local conflicts can only arise between
three topologies that do not involve more than five taxa. Thus, given a quartet ¢ = {a, b, ¢, d}
with topology ¢, a local conflict can arise with other quartets involving taxa from {a, b, ¢, d, e}
for some e. Since e has to be different from a,b, ¢, and d, there are n — 4 choices for this
taxon e. There are five quartets over {a,b,c,d, e} and four of them excluding the given g.
We have (%) = 6 ways to choose two from these four quartets, in order to form size three
sets containing g that can form a local conflict. Therefore, by altering & topologies, we can

resolve at most 6(n — 4)k distinct local conflicts. O

Clever branching. Applying the rules described above will also significantly improve our
situation when branching. Having to select a conflict to branch on, we can take advantage
from topologies which are forced to change and from topologies which are fixed. For the
general branching situation on a local conflict, we have shown in Section 5 that it is sufficient
to branch into four subcases. Regarding topologies forced to change, we can, however, reduce
the number of subcases. When we have identified a topology ¢ which is forced to change, it is
sufficient to branch into two subcases: one for each alternative topology of t. Regarding fixed
topologies, we can take advantage of local conflicts which contain fixed topologies. Having
a local conflict with one or two fixed topologies, we omit the subcases which change a fixed
topology. This will reduce the number of subcases to three, two, or even to one subcase. For
instance, suppose topologies t1 = [ablcd], t2 = [ac|be], and t3 = [ac|de] which are not tree-
consistent. The general branching would branch into four subcases (1) [ac|bd], (2) [ad|bc],
(3) [ab|ce], and (4) [ae|cd]. In case topologies t; and t, are fixed, it only remains to consider
subcase (4).

Preprocessing by the Q*-method. The algorithmic improvements described above do not
sacrifice the guarantee to find the optimal solutions. Using these improvements, we will find
every solution that we would find without them. This is not true for the following idea. We

propose to use the Q*-method described by Berry and Gascuel [5] as a preprocessing for our
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algorithm. The Q*-method produces the maximum subset of the given quartet topologies that
is tree-like. In the combined use with our algorithm, we fix these quartet topologies from the
beginning. Therefore, our algorithm will compute the minimum number of quartet topologies
we have to change in order to obtain a tree-like set of topologies that contains the topologies
fixed by the Q*-method. The tree we obtain will be a refinement of the tree reported by the
Q*-method, which may contain unresolved branches. Thus, we cannot guarantee that the
reported tree is the optimal solution for the MQI problem. On real data, however, it is the
optimal tree with high certainty: Suppose it is not. Then there are three taxa a, b, c that are
arranged in another way by the Q*-method as they would be arranged in the optimal solution
for the MQI problem. As we are working on a complete set of topologies, this would imply
that there are n — 3 quartets, namely {a,b,c,d} for all d € S — {a,b,c}, that would make
the same wrong prediction for the arrangement of a,b,c. On real data, this is very unlikely.
Our experiments described in Section 8 support the conjecture that with the preprocessing
by the Q*-method we find every solution that the MQI algorithm would find. Moreover, the
experiments show that this enhancement allows us to process much larger instances than we

could without using it.

7 Related problems

We now come to some variants and generalizations of the basic MQI problem and their fixed
parameter tractability. These variations arise in practice due to the fact that often quartet
inference methods cannot non-ambiguously and with high certainty predict one topology for
every quartet. Note, however, that the fixed parameter tractability of the problems heavily
depends on the choice of parameters. Perhaps the most natural generalization of MQI is to
consider weighted quartet topologies.

Weighted MQI. Weights arise since a quartet inference method can predict the topology
for a quartet with more or less certainty. Therefore, we can assign weights to the quartet
topologies reflecting the certainty they are predicted with. Given a complete set of weighted

topologies Q)s and a positive integer k, we distinguish two different questions.

1. Assume that we are given a complete set of weighted topologies (Qg, with positive real
weights, and a positive integer k. A binary tree is a candidate for a solution if the set
of quartet topologies induced by this tree differs from )g in the topologies for at most
k quartets. Can we, among all candidate trees satisfying this property, find the one
such that the topologies in Qg which are not induced by the tree have minimum total

weight?

The algorithm presented in Section 5 is capable to compute all solution trees. Therefore,

we can, without sacrificing the given time bounds, find this tree among the solution
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trees for which the “wrong” quartet topologies have minimal total weight.

2. Assume that we are given a complete set of weighted topologies (s, each topology
having a real weight > 1, and a positive real K. Is there a binary tree such that
the quartet topologies induced by the tree differ from the given topologies only for
topologies having total weight less than K?

Again, we can use the algorithm presented in Section 5. When branching into different
subcases, the time analysis of the algorithm relied on the fact that in each subcase
at least one quartet topology is changed, i.e., added to the “wrong” topologies. In
the current situation of weighted topologies with weights > 1, each subcase changes
quartet topologies having total weight at least 1. The time analysis of our algorithm

is, therefore, still valid and the time bounds remain the same.

When allowing in Question 2 arbitrarily small weights, then the problem cannot be fixed

parameter tractable, unless P = NP. To see this, take an instance of unweighted MQI
with parameter k. We can turn this instance into an instance of weighted MQI by assign-
ing all topologies weight 1/k and setting the parameter to 1. A fixed parameter algorithm
for the problem with arbitrary weights > 0 would thus give a polynomial time solution for
MQI, which contradicts the NP-completeness of MQI unless P = NP. Having, however,
weights > € for some positive real €, the problem is fixed parameter tractable as we de-
scribed here for the special case that € = 1. These observations were analogously made for
WEIGHTED VERTEX COVER [21].
Underspecified MQI. Due to lack of information or due to ambiguous results, a quartet
inference method may not be able to compute a topology for every quartet, such that there
can be quartets for which no topology is given. Let us assume that the number of quartets
which do not have a topology is bounded: Given a set S of taxa, a set of topologies g, and a
positive integer k. The set Q5 contains quartet topologies for all quartets over S except for k'
many for which no topology is given. Is there a binary tree such that the quartet topologies
induced by the tree differ from the given topologies only for k topologies?

The set of topologies is “underspecified” by k' topologies. Having three possible topologies
for each quartet, we can, for a quartet having no given topology, branch into three subcases,
one for each of its three possible topologies. Having selected a topology for each such quartet,
we run the algorithm from Section 5. The resulting algorithm has time complexity 0(3’“' .
4% . +n3) and shows that the problem is fixed parameter tractable for parameters k and &’.

Note that for unbounded &’ this problem is the SPARSE MQI problem and, therefore, is
not fixed parameter tractable, as mentioned in Section 2.

Overspecified MQI. This case arises when the quartet inference method cannot definitely

resolve a quartet topology and proposes two different topologies which it considers to be
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equally good. Note that we do not consider the case that we are given three different topolo-
gies for a quartet as this would be as much information as giving no topology at all. Hence,
let us assume that the number of quartets for which we are given two topologies is bounded:
Given a set S of taxa, a set of topologies Qg, and a positive integer k. The set Qg contains a
quartet topology for every quartet over S and contains two different topologies for k" many.
Is there a binary tree such that the quartet topologies induced by the tree differ from the
given topologies only for k topologies?

The set of topologies is “overspecified” by k" topologies. If we are given two topologies
for a quartet, this means that we can choose one topology from these. Having two topologies
for a quartet, we can branch into two subcases, each choosing one of the two given topologies.
When we have selected a topology for each such quartet, we run the algorithm from Section 5.
The resulting algorithm has time complexity O(2¥" - 4% . n 4+ n®) and shows that the problem
is fixed parameter tractable for parameters k and k”.

It is straightforward that we can combine the case of underspecified and overspecified
MQI. This leads to a fixed parameter tractable solution for MQI with parameters k', k"

and k when k' is the number of underspecified and k" is the number of overspecified quartets.

8 Experimental evaluation

To investigate the usefulness and practical relevance of the algorithm, we performed experi-
ments on artificial as well as on real data from fungi. The implementation of the algorithm
was done using the programming language C. The algorithm contains the enhancements de-
scribed in Section 6. The combined use with the Q*-method is, however, only applied when
processing the fungi data, not when processing the artificial data. The reported tests are
done on a LINUX PC with a Pentium III 750 MHz processor and 192 MB main memory.

8.1 Artificial data

We performed experiments on artificially generated data in order to find out which kind
of data sets our algorithm can be especially useful for. For a given number of taxa n and
parameter k, we produce a data file as follows. We generate a evolutionary tree by recursively
joining randomly selected subtrees. The subtrees are selected from a set which, initially,
contains only the one-node subtrees corresponding to the taxa. When two subtrees are
joined, we replace them in the set by the newly generated subtree. This procedure, finally,
yields a tree for n taxa and we derive the quartet topologies from that tree. Then, we change
k distinct, arbitrarily selected topologies in a randomly chosen way. This results in a MQI
instance that certainly can be solved with parameter k. For each pair of values for n and &,

ten different data sets were created. The reported results are the average for test runs on ten
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(a)

(b)

Figure 4: Table (a) displays the results of our algorithm on MQI instances for different
values of n and k. We give processing time and the size of the scanned search tree. Figure
(b) displays the difference of the theoretical 4* bound (dashed) and the real search tree size
(solid lines). Each solid line shows, for a fixed number of taxa n, how the search tree size

increases for increasing values of k.

data sets.

We experimented with different values of n and k. As a measure of performance, we use
two values: We report the processing time and, since processing time is heavily influenced by
system conditions, e.g., memory access time in case of cache faults, also the search tree size.
The search tree size is the number of the search trees nodes, both inner nodes and leaves,
and it is a measure of the exponential growth of the algorithm’s running time.

Figure 4(a) gives a table of results for different values of n and k. Regarding the processing
time, we note, on the one hand, the increasing time for fixed a n and growing k. On the
other hand, we observe that for moderate values of k, we can process large instances of the
problem, e.g., n = 50 and k£ = 100 in 40 minutes. Ben-Dor et al. [4] do only report on
processing up to 20 taxa. Regarding the search tree size, we compare in Figure 4(b), on a
logarithmic scale, the theoretical upper bound of 4* to the real size of the search tree. For
each fixed number of taxa n, we give a graph displaying the growth of search tree size for

increasing k. We note that the search trees are, by far, smaller than the 4 bound. This is
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Figure 5: (a) Speed-up when using the Q* method as preprocessing. (b) Optimal tree found

for a set of 21 Amanita species and one outgroup taxon.

mainly due to the practical improvements of the algorithm (see Section 6). We also note that

for equal value of k, a higher number of taxa n often results in a smaller search tree.

8.2 Real data

Using our algorithm, we analyzed the evolutionary relationship of the Amanita species. The
underlying data are DNA sequences of length 576 from Amanita species and one outgroup
taxon, as they are used by Weif} et al. [25, 26]. We inferred the quartet topologies by using
dnadist taken from the Phylip package [15], and distquart taken from the Phyloquart
package [5].

The analysis was done by a preprocessing of the data using the Q*-method, also taken
from the Phyloquart package. Experiments on small instances, e.g., 10 taxa, show that all
solutions we find without using the Q*-method are also found when using it. Using the
Q*-method, however, results in a significant speed-up of the processing. Figure 5(a) shows
this impact for small numbers of Amanita taxa. Note, however, that the speed-up heavily
depends on the data. In Figure 5(a) and in the following, we neglect the time needed for the
preprocessing by the Q*-method, which is, e.g., 0.11 seconds for n = 12.

To give an example for the algorithm’s performance, we processed a set of n = 22 taxa
in 35 minutes. The resulting tree was rooted using the outgroup taxon and is displayed in
Figure 5(b). We found the best solution for k£ = 979 for the given 7315 quartet topologies. The
Q*-method had fixed 41 percent of the quartet topologies in advance. Considering the tree,

the grouping of taxa is consistent with the grouping into seven sections shown in the results by
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Weif et al. [26], who used, e.g., heuristic maximum parsimony methods. The relations among
the sections and within the sections differ in single cases from the results obtained by Weif}
et al. Thus, we can suggest our tree as a new hypothesis on the evolutionary relationship.
Another reason for these differences may, however, be that these relations cannot be resolved
on the basis of the used data. For comparison of the performance of the algorithm, consider
the results reported by Ben-Dor et al. [4], who solve a MQI instance giving a guaranteed
optimal result. They list a running time of 128 hours for a set of 20 taxa (on a SUN Ultra-4
with 300 MHz).

Note that our experiments were performed on closely related taxa. We suppose that this
is a reason for the high value of k in this case and that quartet inference can be performed
with higher quality for more divergent taxa which have a less close relationship. One might
also expect that quality of quartet inference techniques will improve in the future. This would

lead to instances requiring a smaller value of k.

9 Conclusion

In this paper, we showed that the Minimum Quartet Inconsistency problem can be solved in
worst case time O(4%n + n*), meaning that the problem is fixed parameter tractable when
parameter k is the number of faulty quartet topologies. Several ideas for tuning the algorithm
show that the practical performance of the algorithm is much better that the theoretical
bound given above (in particular, concerning the size of the search tree, 4¥). This is clearly
expressed by our experimental results in Section 8.

Concerning future work, we want to extend our experiments to weighted quartet topologies
and to other (non-fungi) taxa, in particular more divergent data which might enable better
solutions. Also, the fact that we can obtain all optimal and near-optimal solutions and the
usefulness of this deserves further investigation. From a parameterized complexity point of
view, it remains open to find a so-called reduction to problem kernel, which is a kind of
preprocessing that shrinks the input the search tree has to deal with in advance (see [12] for
details). In addition, the further reduction of the tree size concerning theoretical, as well as

experimental bounds, is a worthwhile future challenge.
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