
Mayday How-To Series Getting Started with RLink in Mayday

Getting Started with RLink in Mayday
Florian Battke

1 Downloading and Installing the Required Software

1.1 General outline

Installation of RLink is a bit more complicated than that of other Mayday plugins
due to need for native libraries. This section explains all the requirements for using
RLink while the next section provides a step-by-step installation tutorial. Depend-
ing on your operating system, some of these general steps may not be needed.

1. R must be installed1.

2. R must be configured to run with Java.

3. The rJava package for R must be installed. This package links Java applica-
tions to R and vice-versa. It consists of two parts: the rJava R package allowing
R to call functions inside a Java Virtual Machine (JVM) and the JRI library
allowing Java programs to start and interact with an embedded R process.
JRI consists of a native library (libjri.so or jri.dll) and Java bindings
(JRI.jar).

4. The JRI library must be placed in a directory where Java can find it. The
easiest way is to place it in the system’s default library location.

5. The JRI jar file must be in a directory where Mayday ’s plugin scanner can
find it.

6. The R HOME environment variable needs to be set to point to the R installation
directory so that Java can start R processes.

7. Download the RLink package from the Mayday website and extract it in
Mayday ’s plugin directory.

1.2 Installation in Microsoft Windows XP, 32bit

1. Installing Java
You’ll need the Java Runtime Environment which can be found at
java.sun.com

We’ll assume that you installed Java 6 into C:\Program
files\Java\jre6\bin\client. For the following steps, replace JPATH with
the path to your Java installation.

1R is available at http://www.r-project.org/

December 18, 2009 1

Mayday How-To Series Getting Started with RLink in Mayday

2. Installing R

Install R binaries from www.r-project.org. We’ll assume you installed
version 2.7.0. For the following steps, replace RPATH with the path to your
R installation, i.e. C:\Program files\R\R-2.7.0.

3. Installing the rJava binary package
Start R (via the start menu or via RGui.exe in RPATH\bin\).
> install.packages(¨rJava¨)

Close R.

4. Make sure Mayday can find the JRI jar file.
Copy the file JRI.jar from RPATH\library\rJava\jri\ to your Mayday plu-
gin directory2.

5. Set the PATH variable so that the jri libraries are found
Open System control from the Control Panel. Select the “Advanced” tab, click
on “Environment variables”. In the list “System variables”, select the variable
“Path” and click “Edit”.
To the end of the second line, add the following:
;RPATH\bin;JPATH;

6. Download the RLink package from the Mayday website and extract it in
Mayday ’s plugin directory.

1.3 Installation in Ubuntu Linux 9.04

1. Installing Java
You’ll need the Java Runtime Kit to run Mayday .
sudo apt-get install sun-java6-jre

2. Installing R and rJava/JRI
sudo apt-get install r-base-core

3. Installing the rJava package
sudo apt-get install r-cran-rjava

This will install several additional files, among others it may install the openjdk
java framework. We have to make sure that SUN Java is used as default.
sudo update-alternatives --config java

Please select java-6-sun from the list.

4. Make sure Java can find the JRI library
We will simply create a symbolic link from /usr/lib to point to the correct
path:
sudo ln -s /usr/lib/R/site-library/rJava/jri/libjri.so /usr/lib/

2The plugin directory can be changed in Mayday by clicking “Mayday”–“Preferences”–“Plugins”

December 18, 2009 2

Mayday How-To Series Getting Started with RLink in Mayday

5. Make sure Mayday can find the JRI jar file.
We create a symbolic link from Mayday ’s plugin directory3 to the original
location of JRI.jar. For the remainder of this guide, we’ll assume that your
plugin directory is set to /mayday.
ln -s /usr/lib/R/site-library/rJava/jri/JRI.jar /mayday

6. Define the R HOME environment variable
We add the definition to the system-wide bash configuration
sudo nano /etc/bash.bashrc

Add this line at the end of the file
export R HOME=¨/usr/lib/R¨

7. Download the RLink package from the Mayday website and extract it in
Mayday ’s plugin directory.

1.4 Installation from source in Ubuntu 9.04

This section gives a step-by-step guide to installing RLink on a Ubuntu Linux 9.04
system. Other Linux distributions may need slightly different package names, the
package manager (apt in Ubuntu) maybe different (e.g. yum) and some paths may
not be exactly the same. In general, installing RLink on a Linux system should
be similar. Ubuntu uses the sudo command to execute programs with root user
privileges. If this isn’t working for you, use su to get a root shell and execute the
commands without the sudo prefix.

1. Installing Java
You’ll need the Java Development Kit to compile RLink.
sudo apt-get install sun-java6-jdk

2. Installing R

sudo apt-get install r-base-core

3. Configuring R to work with Java
sudo R CMD javareconf

4. Installing the rJava package
sudo R

> install.packages(¨rJava¨)

> q()

Save workspace image? [y/n/c]: n

This step will install the rJava package and compile the JRI library
libjri.so as well as the Java bindings in JRI.jar. The compiled files
are placed in a subdirectory of the R library path.

5. Make sure Java can find the JRI library
We will simply create a symbolic link from /usr/lib to point to the correct

3The plugin directory can be changed in Mayday by clicking “Mayday”–“Preferences”–“Plugins”

December 18, 2009 3

Mayday How-To Series Getting Started with RLink in Mayday

path:
sudo ln -s /usr/local/lib/R/site-library/rJava/jri/libjri.so /usr/lib/

6. Make sure Mayday can find the JRI jar file.
We create a symbolic link from Mayday ’s plugin directory4 to the original
location of JRI.jar. For the remainder of this guide, we’ll assume that your
plugin directory is set to /mayday.
ln -s /usr/local/lib/R/site-library/rJava/jri/JRI.jar /mayday

7. Define the R HOME environment variable
We add the definition to the system-wide bash configuration
sudo nano /etc/bash.bashrc

Add this line at the end of the file
export R HOME=¨/usr/lib/R¨

8. Download the RLink package from the Mayday website and extract it in
Mayday ’s plugin directory.

1.5 Installation in Mac OS 10.5 (Leopard)

1. Installing Java
Java 6 is only available as 64 bit version for MacOS.

2. Installing R

Install R binaries from http://r.research.att.com/. Make sure to in-
stall the 64 bit version of R.

3. Installing the rJava package
Start R in 64 bit mode and install the package.
sudo R --arch x86 64

> install.packages(¨rJava¨)

> q()

Save workspace image? [y/n/c]: n

4. Make sure Java can find the JRI library
We will simply create a symbolic link from /usr/lib to point to the correct
path:
sudo ln -s /Library/Frameworks/R.framework/Versions/Current/

Resources/library/rJava/jri/libjri.jnilib /usr/lib/

5. Make sure Mayday can find the JRI jar file.
We create a symbolic link from Mayday ’s plugin directory5 to the original
location of JRI.jar. For the remainder of this guide, we’ll assume that your
plugin directory is set to /mayday.
ln -s /Library/Frameworks/R.framework/Versions/Current/

Resources/library/rJava/jri/JRI.jar /mayday

4The plugin directory can be changed in Mayday by clicking “Mayday”–“Preferences”–“Plugins”
5The plugin directory can be changed in Mayday by clicking “Mayday”–“Preferences”–“Plugins”

December 18, 2009 4

Mayday How-To Series Getting Started with RLink in Mayday

6. Define the R HOME environment variable
This can be done temporarily in a Terminal by entering
export R HOME=/Library/Frameworks/R.framework/Resources/

You can also add the definiton to the system-wide bash configuration
sudo nano /etc/bashrc

Add this line at the end of the file
export R HOME=¨/Library/Frameworks/R.framework/Resources/"

7. Download the RLink package from the Mayday website and extract it in
Mayday ’s plugin directory.

2 Using RLink

2.1 Opening and using the RLink console

Start RLink from Mayday ’s “Mayday” menu. You can use the internal console,
or start RLink in server mode (see more in section 3). The internal console works
almost like the original R console, with a few changes:

• You can enter multiline commands (use CTRL-Enter to start a new line).

• To navigate your command history, use PageUp and PageDown, respectively.

• Auto-complete is available for R functions and objects, use the Tab key once
to complete your input, twice to see a list of possible completions.

• You can not interrupt R during lengthy computations – CTRL-C does not work
here.

• While R is busy (indicated by a red border around the input field) you can enter
more commands. These will be executed as soon as R has finished whatever it
was doing.

2.2 An example

The next section introduces the RLink objects in detail. Let’s look at a very simple
example first.

1. We will create a random dataset with 100000 probes in 20 experiments, starting
from an R matrix of normally distributed values.

data <- matrix(ncol=20, nrow=100000, rnorm(2000000))

probenames <- paste("Probe No.", 1:nrow(data))

experimentnames <- paste("Experiment No.", 1:ncol(data))

rownames(data) <- probenames;

colnames(data) <- experimentnames

ds <- addDataSet("Example", data);

December 18, 2009 5

Mayday How-To Series Getting Started with RLink in Mayday

2. Now let’s add some meta information. We’ll compute the standard deviation
of each probe.

stdDevs <- apply(data, 1, sd, na.rm=T)

addProbeMIOs(getMIManager(ds), stdDevs, "Standard Deviations")

3. The 10% probes with the highest variance would make a very interesting probe
list.

stdDevOrder <- order(stdDevs, decreasing=T)

best10pc <- stdDevOrder[1:(length(stdDevs/10))]

ds[["Interesting Probes"]] <- names(stdDev)[best10pc]

2.3 Some background information

A few things need to be kept in mind when working with RLink.

1. Pointer-like objects and local copies
Usually, R hides the true nature of objects from the user. For example, if m is a
huge vector, the command k<-m copies a pointer while m[5]<-7 actually creates
a clone of m, and then replaces the fifth element. Thus, R can get around expensive
copy operations if they’re not needed (clone on modification). In RLink, all Mayday
objects can be regarded as pointers to the live data structures in the Mayday core.
To make RLink efficient, data is only copied from Mayday into the R process as
needed. It is up to you to decide when to use the pointer and when to create a local
copy of the data it points to.
Advantages of using pointers are speed, memory efficiency and the fact that they
always point to the current content of the Mayday core. Creating local copies has
the advantage that repeat access of values is a lot faster on internal R matrices than
accessing the Mayday MasterTable via the RLink pointer. Furthermore, it shields
your R program from concurrent changes in Mayday , e.g. due to other plugins
modifying core data structures at the same time.
In general, local copies of RLink objects can be obtained by using the [[]] (or
sometimes []) operator:

ds <- mayday[[1]] # get the first open dataset in mayday

ds2 <- ds # ds2 and ds point to the same core

data structure

ds3 <- ds[] # ds3 is a R matrix, a local copy of

the DataSet’s MasterTable

2. Virtual Machine Memory
Mayday displays the current usage of available memory in the Java Virtual Machine.
The JVM startup parameters6 determine how much memory Mayday can use for

6more specifically, the -Xmx switch

December 18, 2009 6

Mayday How-To Series Getting Started with RLink in Mayday

its data structures. An R process running as part of RLink does not consume
any JVM memory. R objects consume memory as part of the JVM’s total memory
consumption, but are not stored inside the memory managed by the JVM. They are
stored in the memory the operating system manages for the JVM. Thus you can use
more memory in RLink as allowed for Mayday . However, it is your responsibility
to remove R objects that you no longer need, or they will stay in memory until you
close Mayday . Use R’s rm() and gc() commands.
3. Terminating R
Currently, R running inside another applications process can not be terminated
without terminating the enclosing process. Furthermore, only one R process can be
run at any time inside an application. If you close the RLink console window, R will
remain active, consuming memory. Reopening the console will just connect to the
previous R process, not create a new one. Again this means that you are responsible
for any memory consumed by the R process.

3 RLink RMI Server

Using RLink’s server mode, you can connect any R session to a running Mayday
instance, both locally and over the network. Several parallel connections are also
possible, so that lengthy R computations do not stop you from working with your
data.

3.1 Starting the server

From Mayday ’s “Mayday” menu, start RLink and select the server mode. Make
sure the host name is correct (or remote connections won’t be possible). The
rmiregistry program must be running for the server to work. Mayday will try
to start it automatically. If this doesn’t work for you, you can start rmiregistry
manually. The CLASSPATH environment variable must be set such that it contains
the RLink classes.

3.2 Connecting as a client

• Allow Java to access remote RMI services. Create a new file in your user
home directory, called .java.policy with the following content:

December 18, 2009 7

Mayday How-To Series Getting Started with RLink in Mayday

grant {

permission java.security.AllPermission;

};

• Start R and prepare the virtual machine. We assume that you extracted the
RLink archive in /path/rlink.
R

> library(rJava);

> jinit();

> .jaddClassPath(‘‘/path/rlink’’)

• Set the host you want to connect to, either by host name or IP address7:
> mhost=‘‘192.168.1.2’’;

• Load the RLink code
> source(‘‘/path/rlink/mayday/rlink/RConnector.R ’’);

4 RLink objects

4.1 Object descriptions

4.1.1 mayday

The mayday represents the connection from R to Mayday . It provides access to all
open DataSets. New DataSets can be added. Available commands:

• print, summary provide information about the current state of Mayday

• lapply, sapply can be used to iterate over all open DataSets

• length returns the number of open DataSets

• names returns a vector of DataSet names

• mayday[[i]] returns the ith DataSet. If i is omitted, a local copy of the
DataSet list is returned.

• addDataSet(name, matrix) creates a new DataSet. If another
DataSets with the same name exists, the user is asked to enter a new name.
matrix must be a numeric matrix of probe values with rownames contain-
ing Probe names and colnames containing experiment names. Probe names
must be unique. If matrix is NULL, the resulting DataSet is empty. Other-
wise, a global ProbeList is added. The result of this function is a new DataSet
object.

7If you chose any port number n other than 1099 in the RLink server settings, you must also

supply mport=!n

December 18, 2009 8

Mayday How-To Series Getting Started with RLink in Mayday

4.1.2 dataset

Dataset objects have a dual nature, being a list of ProbeLists and a Matrix of
expression values at the same time. Due to the design of the Mayday core, access
to Probe values is only possible using Probe names as indices. Numeric indices are
not allowed.

1. Functions related to the DataSet

• print, summary provide information about the object

• getName(dataset) returns the DataSet’s name

• setName(dataset, name) changes the DataSet’s name. If another
DataSet with the same name exists, the user is asked to supply a unique
name.

• removeDataSet(dataset) closes the DataSet and removes it from
Mayday .

2. Functions related to the DataSet’s ProbeLists

• lapply, sapply can be used to iterate over all ProbeLists in that
DataSet

• length returns the number of ProbeLists

• names returns a vector of ProbeList names

• dataset[[i]] returns the ith ProbeList. If i is omitted, a local
copy of the list of ProbeLists is returned.

• dataset[[i]] <- v adds or removes ProbeLists depending on i

and v.
Removing a ProbeList: i must be the index or name of an existing
ProbeList, v==NULL.
Adding a ProbeList: i must be the name of the new ProbeList, v
must be a character vector of Probe names.
ProbeList replacement is not supported.

• addProbeList(dataset, name, content, parent) adds a
new ProbeList. name is a string containing the new ProbeList name,
content is a character vector of Probe names. parent can be omitted.
If it is given, the new ProbeList is added as a child of parent (in case
parent is a ProbeList Group) or as a sibling of parent. This function
returns the newly created ProbeList.

• addProbeListGroup(dataset, name, parent) adds a new
ProbeList group. name is a string containing the new ProbeList name.
parent can be omitted. If it is given, the new ProbeList is added as a
child of parent (in case parent is a ProbeList Group) or as a sibling of
parent. This function returns the newly created ProbeList group.

December 18, 2009 9

Mayday How-To Series Getting Started with RLink in Mayday

3. Functions related to the DataSet’s expression values (Probes)

• apply can be used to iterate over all Probes in that DataSet

• nrow returns the number of Probes

• ncol returns the number of experiments

• rownames returns the names of the Probes. Probe names can be changed
using the assignment operator (rownames(dataset) <- x). Keep
in mind that Probe names need to be unique!

• colnames returns the names of the experiment. Experi-
ment names can be changed using the assignment operator
(colnames(dataset) <- x).

• addProbes(dataset, matrix) appends new values to the expres-
sion matrix. matrix must have the same number of columns (experi-
ments) as the DataSet’s expression matrix. The rownames of matrix
must be unique and must not contain Probe names already used in the
DataSet. If Probes are added to an empty DataSet, matrix must have
a colnames attribute of experiment names.

• removeProbes(dataset, probes) removes values from the ex-
pression matrix. probes must be a vector of Probe names. Removed
Probes may still be referenced from and contained in open ProbeLists,
however.

• dataset[i, j] returns the expression value for Probe(s) i in exper-
iment(s) j. i must be a character vector of Probe names, j a numeric
vector of experiment indices. If i is omitted, all Probes are returned, if j
is omitted, all experiment values are returned. dataset[] returns the
whole expression matrix.

• update(dataset, matrix) replaces the expression values in the
dataset with those in the matrix. Matrix row names are used to find the
probes to modify. New probes are added when no probe of the respective
name exists.

December 18, 2009 10

Mayday How-To Series Getting Started with RLink in Mayday

4. Functions related to Meta Information Objects (MIOs)

• getMIManager(dataset) returns the Meta Information Manager
instance for this DataSet.

5. Functions related to Mayday Plugins

• callPlugin(dataset , PlumaID, ProbeLists) calls the plu-
gin identified by PlumaID on ProbeLists in this DataSet. The result
is a list of (new) ProbeLists that are not automatically added to the
DataSet.

4.1.3 probelist

ProbeList objects behave just like character vectors of Probe names.

1. Functions related to the ProbeList

• print, summary provide information about the object

• getName(probelist) returns the ProbeList’s name

• setName(probelist, name) changes the ProbeList’s name. Pro-
beList names need not be unique.

• removeProbeList(probelist) closes the ProbeList and removes
it from the DataSet. Probes that are not contained in any other ProbeList
are also removed from the expression matrix.

• getParent(probelist) returns the ProbeList group that is this
ProbeLists parent.

2. Functions related to the ProbeList content

• lapply, sapply can be used to iterate over the Probe names

• length returns the size of the ProbeList

• addProbes(probelist, probes) includes Probes in the Pro-
beList. probes must be a vector of Probe names.

• removeProbes(probelist, probes) removes Probes from the
ProbeList. probes must be a vector of Probe names.

• probelist[i] returns the ith Probe name. If i is omitted, a local
copy of the ProbeList is returned.

• probelist[i , v] returns the columns v for the probes i. Set v=T
to get all columns or use any other indexing method. Omitting i returns
the values for all probes in the probelist.

December 18, 2009 11

Mayday How-To Series Getting Started with RLink in Mayday

4.1.4 mimanager

This object refers to a DataSet’s meta information manager and can be used to add
and remove meta information groups (MIGroups).

1. Functions related to the MIManager

• print, summary provide information about the object

2. Functions related to the MIGroups contained in the DataSet

• lapply, sapply can be used to iterate over the MIGroups

• length returns the number of MIGroups

• names returns the names of all MIGroups

• mimanager[[i]] returns the ith MIGroup. If i is omitted, a local
copy of the list of MIGroups is returned.

• addMIGroup (mimanager, name, plumatype, path) adds a
new MIGroup with the given name. Naming conflicts are resolved by the
Mayday core. The data type of the MIGroup has to be supplied as a
valid Mayday plugin id (defaults to PAS.MIO.Double). Optionally, the
path of the new MIGroup in the MIGroup hierarchy can be provided as
a string (defaults to the root path). If successful, the function returns
the new MIGroup object.

• addProbeMIOs(mimanager, values, groupname, plumatype,

path, stepping) is a fast convenience method to create a new
MIGroup and add a large number of Probe MIOs. The groupname,
plumatype and path arguments are passed to addMIGroup with the
same defaults as described there. values must be a vector the new
MIO values with a names attribute containing unique Probe names of
the Probes to attach the values to. stepping is an optional parameter
defining how many values should be passed to Mayday in one function
call. Defaulting to 1000, larger values can greatly speed up the function
while consuming more memory for the transfer. See the description of
createMIO in section 4.1.5 for details the values object.

4.1.5 migroup

A MIGroup attaches meta information to objects (Probes, ProbeLists or DataSets).
It is implemented as a list mapping objects to values. However, list iteration and
access to the full list is not possible.

1. Functions related to the MIGroup

• print, summary provide information about the object

• length returns the number of contained MIOs

• getName(migroup) returns the MIGroup’s name

December 18, 2009 12

Mayday How-To Series Getting Started with RLink in Mayday

• setName(migroup, name) changes the MIGroup’s name. Name
clashes are resolved by Mayday .

• getType(migroup) returns the Mayday plugin identifier for the MI-
Group’s content type

• getPath(migroup) returns the path of this MIGroup in Mayday ’s
MIGroup hierarchy

• removeMIGroup(migroup) completely removes the MIGroup from
the DataSet

2. Functions related to the MIOs

• migroup[object, extractValue] returns the MIO value for the
given object(s). object can either be a character vector of Probe names
or a single ProbeList or DataSet object. If extractValue is set to
TRUE, RLink will try to return R objects instead of Java objects subclass-
ing class MIType. Extracting values only works for MIOs implementing
the GenericMIO<T> interface where the Java type T corresponds to
a native R type (Double→numeric, Integer→integer, String→character,
Boolean→logical, ...).

• addMIO(migroup, object, mio) adds meta information to an
object. object can be a Probe name, or a ProbeList or DataSet object.
mio must be a Java object obtained by createMIO, the type of the MIO
must correspond to the type of the MIGroup.

• removeMIO(migroup, object) removes the meta information for
object from this MIGroup. See addMIO for valid object values.

• createMIO(type, value) creates a new MIO object. type must
be a valid Mayday plugin id (e.g. PAS.MIO.Double). value will be
cast to a string and must contain the desired MIO value in serialized form
(as produced by MIType.serialize(SERIAL_TEXT)).

December 18, 2009 13

Mayday How-To Series Getting Started with RLink in Mayday

4.2 Command matrix

This matrix gives an overview over all RLink commands. Abbreviations are
DS=DataSet, PL=ProbeList, MG=MIGroup, Pb=Probe, EM=Expression Matrix

Mayday DataSet ProbeList MIManager MIGroup

print, summary X X X X X
getName — X X — X
setName — X X — X
getPath — — — — X
getParent — — X — —

getType — — — — X

length no. DS no. PL no. Pb no. MG —

names DS names PL names — MG names —

lapply, sapply over DS over PL over Pb over MG —

[[DS PL — MG —

[[<- — add/remove PL — — —

apply — over EM — — —

[sublist DS EM values Probes sublist MG —

nrow,ncol,dim — EM size — — —

colnames — Experiments — — —

rownames — Probes — — —

addProbes — X X — —

removeProbes — X X — —

update — X — — —

adding objects addDataSet addProbeList addMIGroup addMIO

addProbeListGroup addProbeMIOs

removing objects removeDataSet removeProbeList removeMIGroup

removeMIO

getMIManager createMIO

using plugins callPlugin

This Mayday How-To was written and edited by Florian Battke. If you have comments or questions

please contact the author via email, battke@informatik.uni-tuebingen.de. The latest version of this

document can be found at http://www.zbit.uni-tuebingen.de/pas/mayday.

December 18, 2009 14

