Eurographics Symposium on Rendering 2016
E. Eisemann and E. Fiume
(Guest Editors)

Volume 35 (2016), Number 4

Product Importance Sampling for Light Transport Path Guiding

Sebastian Herholz! Oskar Elek?

I Titbingen University

8 Vorba et al--(MSE: 0.026)

Ji¥{ Vorba?:3

2Charles University Prague

Hendrik Lensch! Jaroslav Kfivanek?

3Weta Digital

Figure 1: Sampling quality for the KITCHENETTE scene containing numerous anisotropic BRDFs. Our product sampling produces a visibly
smoother image compared to Vorba et al. [VKS* 14] at 512 samples per pixel.

Abstract

The efficiency of Monte Carlo algorithms for light transport simulation is directly related to their ability to importance-sample
the product of the illumination and reflectance in the rendering equation. Since the optimal sampling strategy would require
knowledge about the transport solution itself, importance sampling most often follows only one of the known factors — BRDF or
an approximation of the incident illumination. To address this issue, we propose to represent the illumination and the reflectance
factors by the Gaussian mixture model (GMM), which we fit by using a combination of weighted expectation maximization
and non-linear optimization methods. The GMM representation then allows us to obtain the resulting product distribution for
importance sampling on-the-fly at each scene point. For its efficient evaluation and sampling we preform an up-front adaptive
decimation of both factor mixtures. In comparison to state-of-the-art sampling methods, we show that our product importance
sampling can lead to significantly better convergence in scenes with complex illumination and reflectance.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—; 1.3.3 [Computer Graphics]: Picture/Image Generation—;

1. Introduction

Importance sampling is an essential component of efficient Monte
Carlo light transport simulations. Estimating the illumination at a
scene location involves sampling the integrand of the rendering equa-
tion [Kaj86], defined by the product of the incident radiance and the
cosine-weighted reflectance function (BRDF). However, since the
incident radiance is unknown upfront—as it corresponds to the trans-
port solution itself—the traditional approach to importance sampling
is to distribute samples proportionally to the BRDF [PH10].

On the other hand, multiple approaches— [Jen95,HP02], or more
recently [VKS*14]—have shown that sampling according to even a
rough estimate of the directional distribution of incident radiance can
result in significant performance increases, especially in scenes with
strongly varying illumination. However there is still large potential
for improvement, since they do not sample proportionally to the full
integrand, i. e., the product of radiance and BRDF.
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In this paper we present a product importance sampling technique
for estimating indirect illumination (Sec. 4). Our main goal is to find
a good approximation to the illumination integrand as a whole, and
use this approximation as a sampling distribution during rendering.
With an accurate approximation, this approach ensures virtually
optimal estimator convergence, while keeping the solution unbiased.

We propose to represent the distribution factors—BRDF and inci-
dent radiance—Dby two separately obtained Gaussian mixtures (see
Fig.2). For obtaining the BRDF factor, we design a pre-processing
optimization step where all applicable BRDFs in the rendered scene
are fitted for a densely sampled set of incident directions (Sec. 4.1).
To estimate the incident radiance factor, we adapt the on-line learn-
ing framework of Vorba et al. [VKS*14] (Sec.4). This in turn en-
ables analytically calculating the product distribution as another
Gaussian mixture that can be directly used for sampling. Given that
the resulting product mixture has a quadratic number of components
with respect to the input mixtures, we propose using an adaptive
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Figure 2: Illustration of GMM fitting and our product approxima-
tion. Top row: target distributions that our method fits to. Bottom
row: fitted GMMSs and resulting product. While state-of-the-art meth-
ods (such as Vorba et al. [VKS* 14]) multiple-importance-sample
only the BRDF and/or incident radiance factors, our method sam-
ples proportionally to the full product (right). Therefore, unlike
previous work, we cannot miss features of the integrand — provided
that the factors are fitted accurately.

decimation strategy to separately reduce the number of BRDF and
radiance components (Sec. 4.2).

When used in rendering, the resulting method provides signifi-
cant efficiency and sampling improvements, especially for scenes
with strong glossy transport or difficult illumination (Fig. 1, Sec. 6).
We also demonstrate that a slow, generic non-linear optimization,
traditionally used to fit Gaussian kernels to BRDFs, can be side-
stepped by a substantially more efficient expectation-maximization
approach [DLR77,Bis06].

2. Related Work

This section gives an overview of related work on importance sam-
pling in Monte Carlo (MC) light transport and the use of Gaussians
in rendering.

Monte Carlo light transport. MC methods for light transport aim
to solve the rendering equation [Kaj86] (Eq. 1) at a given point in the
scene. They approach this problem by stochastically sampling and
evaluating the reflected incident illumination, tracing paths from
the sensor [Kaj86] or light source [Arv86]. Unlike our caching-
based approach, these MC methods do not take advantage of any
precomputed illumination approximation to improve sampling.

Markov-chain MC approaches [VG97, Vea98, KSKACO02] use
Metropolis sampling to explore the neighborhood of high-
throughput paths, once found. They attempt to achieve globally
optimal path sampling by mutating entire paths, but face the difficult
problem of balancing global exploration and local exploitation of
the path space, which can lead to uneven convergence behavior.
In contrast, our approach uses appropriate—as close to optimal as
possible—local sampling decisions at each intersection point, and
does not suffer from this issue.

BRDF and illumination importance sampling. Paths with high
contribution can be found by importance-sampling the product of
surface BRDF and incoming illumination. The BRDF can be either

represented by an analytic model or by measured data. The advan-
tage of the former representation is that for most models an analytic
way for importance sampling exists [WMLT07, HD]. Since the size
and dimensionality of measured BRDFs can be impractical, several
methods have been presented to either factorize the data [LRR04] or
fit them to analytical models to enable direct importance sampling.
Given that our method creates Gaussian mixture fits for the BRDFs,
it has the potential to represent both analytic and measured models
(albeit our results use only analytic ones).

There is a significant body of works on importance-sampling of
the incoming illumination [Jen95, W95, HP02, PH10]. We follow
the direction of Vorba et al. [VKS*14], which shows a great potential
to improve the convergence of different MC-based integrators by us-
ing Gaussian mixtures to represent incoming illumination. Still, the
methods in this category are limited by the fact that they only sample
the reflectance and the illumination separately. Multiple importance
sampling (MIS) [Vea98] can be used to weigh the contributions
from both estimates based on their probability [VKS*14], but this
still does not correspond to sampling the product directly, as is the
case in our method.

Product importance sampling for direct illumination. Several
works have addressed product importance sampling for direct illumi-
nation calculation. Unlike our setting, in this case the illumination is
known upfront since it is represented either by an environment map
or by a cloud of point lights [WA]. Some works use a projection
of the illumination and reflectance into a functional basis such as
wavelets [CJAMJ05, CAM] or spherical harmonics [JCJ09]; hier-
archical sample warping is then used to sample from the product.
Importance re-sampling methods [TCEOS, BGHOS, WA] are based
on the assumption that generating direct illumination and BRDF
samples is cheap relatively to visibility sampling. These algorithms
thus propose N samples from both domains, and use the product
information from them to draw M < N final samples. All these
methods are limited to sampling the product distribution only for
direct illumination, while our presented method targets sampling
from the product distribution of indirect illumination and BRDF.

Gaussian representations in rendering. Since the product of
Gaussians can be integrated in closed form, Gaussian representations
of individual factors of the rendering equation are useful to directly
approximate the illumination integral. In real-time rendering, repre-
sentations based on spherical Gaussians [WRG*09, XSD*13] can
be used to approximate the direct illumination of microfacet-based
materials due to distant environment maps, or point lights. The Gaus-
sian approximation for the reflectance of several microfacet BRDF
models can be derived in a closed form. Wang et al. [XCM*14]
additionally provide support for local inter-reflections. In the
context of volume rendering, Gaussian mixtures were used by
Jakob et al. [JRJ11] to efficiently store and evaluate the (spatial)
photon density inside a medium.

However, as the above methods use approximations for estimating
the illumination directly, they produce biased results. In contrast,
we only utilize the Gaussian approximation to guide importance
sampling, and therefore do not suffer from any bias.

(© 2016 The Author(s)
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3. Background

This section briefly covers the notation and several theoretical con-
cepts we build on: the rendering equation and its MC sampling,
Gaussian mixture models, and their fitting.

Rendering equation (RE). The solution to global illumination on
surfaces (i. e., in the absence of participating media) is described by
the rendering equation [Kaj86]:

L(Xvwo) = LE(X7 wo) +LR(X7('U0)

1
LR=/ p(X, w,, w;) - L(x,w;) -cos® dw;, m
fo)

where Lg is surface emittance and p is the bi-directional scattering
distribution function (BRDF) on the upper-hemispherical domain
Q. An MC estimator stochastically samples the RE. For instance,
path tracing [Kaj86] incrementally builds paths from the camera —
at each interaction point X it estimates Lg by importance-sampling a
single direction w; according to a hemispherical probability density
function (PDF) p: QO — R, and continues recursively:

~ P(X, Wy, w;) - L(x,w;) -cos O
R — .
P(wi)

The variance of such a stochastic estimator corresponds to the ability
of p to approximate the integrand; the ideal case of p matching the in-
tegrand would result in an estimator with minimal variance possible
(see Apx. C for how we determine this). The primary contribution of
our method—finding p as close to optimal as possible—is described
in Sec. 4.

(@3]

Gaussian mixture model (GMM). A d-dimensional GMM is de-
fined as a convex combination of K d-dimensional Gaussian compo-
nents [Bis06]:

K
G(yl©) =Y - Ayl Ze). A3)
k=1

where the means L, symmetric positive-definite covariance ma-
trices X, and mixing weights 7, are aggregated in the parameter
vector ©. For G to remain a valid PDF the mixing weights must
be non-negative and satisfy Zf ;. = 1. We opt for the most gen-
eral anisotropic variant of the components A’ in order to represent
anisotropic distributions frequently encountered in both BRDFs and
radiance distributions.

Given a good initial estimate, the GMM can be efficiently fitted
to discrete data by the expectation maximization (EM) algorithm
[DLR77]. This yields a GMM-represented density estimate on the
data. By considering them as sample multiplicity, particle weights
can be incorporated into the estimate (cf. [VKg* 14] and references
therein). In general, many variants of EM exist, although virtually all
of them suffer from getting stuck in local maxima [Bis06]. Generic
non-linear optimization methods can sometimes yield better fits, but
at the cost of significantly increased computational effort.

4. Product Importance Sampling

On the high level, our approach strives to obtain a sampling PDF
p for choosing a scattering direction that is as close as possible to
the integrand of the rendering equation (Eq. 1). To achieve this (also
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see Fig. 2, bottom), we first compute approximations to the product
factors defined as

Pp(wo|wivx)°< p(Xvwhwo) 4)

pL(wg|x) o< L(x, w,) cos O (5)
and then compute the resulting PDF as their product:

pe<pe=pp®@pL. (6)

The remainder of this section describes in detail how we obtain the
factor mixtures and finally evaluate the product. Please note that for
sake of a better intuition about the sampling decisions, from this
point on we use a swapped notation for the directions w; and w,,,
in comparison to Egs. 1 and 2.

Shirley and Chiu Disk (ours) Shirley and Chiu Disk (ours)

’

Vv

Figure 3: Comparison of the 2D mappings for the PDF of a
rough microfacet BRDF (x = 0.3) at two incident directions. Un-
like Shirley and Chiu, the disk mapping is shape-preserving under
azimuthal rotations.

(807,180°) (807,135°)

GMM representation. As already sketched above, we represent
the approximate sampling distributions from Eqs. 4 and 5 analyt-
ically using bi-variate Gaussian mixtures (Eq. 3). This enables us
to take full advantage of the GM model: readily available fitting
methods, closed-form sampling, trivial normalization, the ability to
represent anisotropic distributions, and simple alignment of mix-
tures with different reference frames, which then enables a direct
calculation of the product mixture (Sec.4.2). Due to these reasons
we opted for this representation over other possible models, such as
anisotropic spherical Gaussians or von-Mises-Fisher distribution.

However, p, and pp, are hemispherical distributions. To represent
them in terms of the GMM, the hemispherical domain is mapped to
a 2D Euclidean disk space using a low-distortion, area-preserving
projective transformation (Fig. 3):

y— Wiy
way”\/ l—w,

All computational steps of the algorithm—fitting, product calcula-
tion, and sampling—are then preformed in this domain.

€ Q1,1 %)

Compared to the low-distortion map by Shirley and Chiu [SC97]
used, e.g., by Vorba et al. [VKS*14], the disk mapping has the
advantage of not distorting the mapping under azimuthal rotations
(Fig. 3). We use this fact for the alignment of the BRDF and illumi-
nation mixtures during the product calculation, since they generally
occupy two different reference frames. This can be performed by
an azimuthal rotation around the local vertical axis, expressed by a
2 x 2 matrix R: the parameters p; and X for each Gaussian com-
ponent of one of the mixtures are transformed to ufc = Ry, and
I, =RLRT.
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Algorithmic overview. The pipeline of our method consists of
three distinct steps:

1. Pre-processing (Sec.4.1): for each material in the scene and a
discrete set of incident directions w;, a GMM fit of the corre-
sponding BRDF lobe is computed and stored in a BRDF cache.
This results in a database of BRDF factor mixtures p, (Eq.4).

2. Training: over a number of passes, batches of bi-directional par-
ticles (i. e., photons and importons) are traced through the scene,
being guided by the trained and cached distributions of all pre-
ceding passes. A dense illumination cache is built adaptively
on-the-fly — each cache record stores a GMM representation of
the incident radiance factor p, (Eq.5) valid for a small neighbor-
hood. The representation is fitted by the EM algorithm — upon
creation, each mixture is initialized from a KNN-estimate of
local particle density, and then made more accurate by including
traced particles from all subsequent training passes. This step
follows the work of Vorba et al. [VK§* 14]; please refer to the
original paper for a detailed exposition.

3. Rendering (Sec.4.2): paths from the sensor are guided through
the scene by importance-sampling the product mixture pgy (Eq. 6),
which is computed on-the-fly for every sampling decision from
pp and pp, by fetching the corresponding GMM caches.

4.1. BRDF Fitting

To be able to calculate the product between the illumination given in
the GMM form, and the BRDF, a GMM representation of the latter
is needed. This section describes how to obtain the BRDF GMM
representation for all possible incident directions w.

To our current knowledge no generic solution exists to represent
an arbitrary BRDF by a mixture of Gaussians. For glossy BRDFs,
such as Phong or microfacet models, Wang et al. [WRG*09] and
Xu et al. [XSD*13] present a closed-form solution to represent
normal distribution functions (NDFs) by a mixture of (anisotropic)
spherical Gaussians. This NDF representation is then warped into
the corresponding BRDF representation by rotating the mean and
adjusting the covariance of the mixture components. However, the
Fresnel and shadowing terms are considered to be constant over
each mixture component and are only evaluated at their means.
The warping of the Gaussian components also does not bound the
spherical Gaussians to the upper hemisphere, allowing samples
colliding with the surface to be created for certain configurations.

We strive to obtain as accurate and efficient product approxima-
tion as possible in this context. Consequently, the BRDF Gaussian
mixture needs to encapsulate every single component defining it
(Fresnel term, shadowing term, NDF, and hemispheric bound). We
therefore trade the ability to derive the GMM representation in a
closed form against a pre-processing step, which caches accurately
fitted GMM representations of all BRDFs contained in the scene.

The following two sub-sections describe two different methods
of fitting arbitrary BRDFs to the GMM. Since a BRDF can be a
composite of a diffuse and a glossy part, we fit both parts separately
and combine them after the fitting. A comparison of the quality of
these fits is then presented in Secs. 4.1.2 and 6. The structure of the
employed BRDF caches is explained in more detail in Sec.4.1.3.

4.1.1. Weighted Expectation Maximiztion

Expectation maximization (EM) is used in the context of machine
learning and classification to fit the GMM to distributions of ob-
served data points. The EM algorithm maximizes the log-likelihood
of the GMM parameter vector © given the observed dataset. Since
EM fits to the density of the observed data instead of their associated
values, Vorba et al. [VK§* 14] extended it by adding weights to each
observed sample representing the the observed function value.

To fit a GMM with K components to the glossy component of a
BRDF a set of N samples is drawn from the BRDF using its standard
sampling method. Weighted EM is then used to include the con-
tribution of the samples weighted by p(w)/ p(w). This weighting
also causes invalid samples not to influence the EM fit of the GMM
(such as samples from the lower hemisphere).

Since the maximization of the log-likelihood of a GMM is a non-
convex optimization problem, a good initialization of the GMM is
essential for preventing the EM from converging to a sub-optimal
local maximum. Instead of initializing the mixture parameters ran-
domly, we found that using a quasi Monte-Carlo sampler to draw K
samples using the BRDF PDF for the means, setting the component
weights to 71, = % and the covariance matrices to diagonal with
%;i = 0.0125 typically leads to near-optimal EM fits.

4.1.2. Non-linear Optimization

While the weighted EM algorithm is influenced by the BRDF values
at the sampled data points, it is still only fitting the (weighted) PDF
distribution of the BSDF, which does not correspond to the general
curve-fitting problem we face. If a more accurate representation is
needed and longer pre-processing time (e. g., one-to-two orders of
magnitude) is available, a more sophisticated method such as non-
linear optimization based on QR factorization—as implemented in
the Ceres [AMO16] framework—can be used.

In the case of an ideal importance sampling the ratio between
the BRDF p(w) and its PDF p(w) would be constant for every
sample w and the variance of these ratios would vanish (cf. Apx. C).
Consequently, to fit as-optimal-as-possible GMM for importance
sampling we choose the following objective function:

Noooobw) ]’
),:{1 Sors) ®

The parameters w; are the N directional samples drawn from the
BRDF and y are the corresponding 2D positions in the GMM space
(Eq. 7). The BRDF values for each sample are normalized (p(w ;) =

p(w;) ~ 1 vN p(w)) 3

W, where [p(w) dw ~ § ¥ p(w_,-’)) to represent a valid
sampling PDF. Our fitted GMM matches this optimal PDF when
the ratio between the normalized BRDF and the GMM is 1 at every

sampling point.

To be able to robustly fit the GMM parameters © a re-
parametrization needs to be done to ensure that the bounding condi-
tions for a valid Gaussian mixture hold. The following constraints
have to be considered: 7, > 0, Zy > 0, Xy, > 0 and |Z| > 0, where
the parameters X, and Xy, are the diagonal entries of the 2D co-
variance matrix. To enforce these, we perform the following re-
parametrization of the parameters 7, L and X; of each Gaussian

(© 2016 The Author(s)
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component with respect to the optimization parameters wy, my, Gy:

2 2
T = Wy, Loy =Gy T€
Hog, = My Ly, = Gy,
2 (2
GX)’k Gtk

My = Ny, Ly =-—F—+t¢
\/ G,

To prevent the optimization from generating a Gaussian with a
zero covariance matrix a regularization term of € = 10~ is added
to the diagonal of X. Similarly as for the weighted EM, the non-
linear optimization also needs a good initialization to avoid the
convergence to non-optimal local minima. Therefore, even if the
weighted EM does not converge to a perfect fit, it serves as a good
initialization for the non-linear optimization and we use it as such.
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Figure 4: 1D slices of the mapped GMM PDF fits using weighted
EM (blue) and Ceres (green). The fits represent a normalized rough
conductor BRDFs: (top) o« = 0.3 and (bottom) o« = 0.15. Shown for
two incident elevation angles.

Fig. 4 shows a sample result of the two presented fitting meth-
ods. The non-linear optimization can achieve a tighter fit to the
actual BRDF than the weighted EM, which—especially near grazing
angles—can cause the fitted lobe to be skewed towards the hemi-
spherical boundary. It is also visible that this effect relates to the
roughness of the BRDF. At lower roughness values the distortion of
the BRDF towards the boundary is not so significant and weighted
EM can still produce suitable fits. The quality of these fitting meth-
ods in terms of their ability to efficiently importance-sample the
BRDF is further analyzed in Sec. 6.1.

4.1.3. Caching

The caches for the GMM representations of the BRDF lobes can
be categorized into three different types: diffuse, isotropic and
anisotropic. The diffuse BRDF lobe is invariant w.r.t. incoming

(© 2016 The Author(s)
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Uncorrected Corrected  Standard

Reference

Figure 5: Sample demonstration of our approximate translation
for correcting GMM cache orientation (see Sec. 4.1.3). We compare
BRDF sampling using our cached GM mixtures without and with
the correction against the standard BRDF PDFs, in a basic path
tracer (i. e., without product sampling and next event estimation)
using 256 samples per pixel. Note that we purposely exaggerate the
issue here by using a BRDF cache with only 16 records.

directions, so only a single Gaussian mixture needs to be cached for
each diffuse BRDF. Isotropic BRDFs are invariant to azimuthal ro-
tations. To efficiently store these, only N GM mixtures for different
elevation angles in [0°,90°] need to be stored. For an arbitrary inci-
dent direction w; the stored mixture with the closest elevation angle
is used and rotated to the right azimuth using the formula from the
beginning of Sec. 4. Finally, anisotropic BRDFs are not invariant to
azimuthal rotations and therefore a cache entry for each hemispheri-
cal incident direction needs to be stored. To efficiently distribute and
access the nearest cache positions, we use the spherical Fibonacci
mapping [KISS15] to index M different cache positions on the upper
hemisphere.

Because of the discrete nature of the BRDF cache, a record
fetched for a query direction w; will generally not match it exactly.
Given the inability to effectively interpolate and extrapolate GMM
caches, we approximately correct this orientation mismatch by trans-
lating the mixture by a small offset in the 2D disk space. Note that
a similar problem occurs when there is a mismatch between the
principal axes of the illumination and BRDF caches. The translation
offset corresponds to the difference between the projected reference
and query directions. The effectiveness of this solution is shown in
Fig. 5 for the case of BRDF cache correction.

4.2. Product Calculation and Sampling

Our method bases its sampling decisions on the product distribution,
as sketched at the beginning of Sec. 4.

Since the BRDF mixture (and hence the product mixture as well)
depends on the outgoing direction, it is necessary to calculate the
product distribution every time a sampling decision is made. For a
given incident direction w; and scene location x, this procedure con-
sists of the following steps (see Fig. 2, bottom, for an illustration):

1. Query the BRDF cache (Sec. 4.1) for the mixture p, correspond-
ing to w; and the material at x.
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Figure 6: Demonstration of the reduction algorithm for synthetic data generated from a random 8-component Gaussian mixture (a). We
first perform an EM fit to the data (b) without any knowledge about the generating mixture, and then proceed to decimate it down to a single
component (c—1). The cumulative reduction cost Eq. 11 is plotted in (j) with respect to the number of removed mixture components. In this case
the reduction would stop at six components for our standard cost threshold C = 0.2, resulting in a mixture with minimal differences from the

starting one.

2. Query the illumination cache (Sec. 4, overview) for the mixture

pLatx.

Compute the resulting product mixture pg (Eq. 6).

4. Importance-sample pgy to obtain an outgoing direction w,, to
continue the path, and then evaluate pg(w,) to normalize the
obtained path contribution (Eq. 2).

w

GMM product. Crucially to our approach, a product of two Gaus-
sian mixtures is again a Gaussian mixture [Bro03]:

G1(¥): G2(¥) = (G1®G2)(y) = G12(¥), )

where we contract G(©) to G; and so on. The product mixture
parameters O » can be obtained analytically (we list the formulas
in Apx. A).

However, the size of the resulting mixture is quadratic in respect
to the factors, i. e., K| » = K| K>. While sampling a Gaussian mixture
is relatively cheap (based on the weights 7t; only a single compo-
nent is selected and sampled), the computation and evaluation of the
product mixture each require O(K] ) evaluations of the bi-variate
Gaussian distribution, corresponding to a relatively costly expo-
nential function. The quadratic complexity of this core operation
implies that it is more beneficial to decimate the number of compo-
nents in the factor mixtures upfront, since each removed component
decreases the product calculation costs linearly.

Mixture reduction. Instead of decimating the factor mixtures each
time a product mixture is evaluated, we perform this operation
only once for each factor mixture once its fitting has been finalized.
For the BRDF mixtures this is the end of the pre-processing stage

(Sec. 4.1), while for the light mixtures this happens after the train-
ing stage (Sec. 4). Note that this means the training stage uses the
full light mixtures, which is preferred since inaccuracies occurring
during the training would negatively impact the entire rendering
stage.

The naive way to perfrom mixture decimation is based solely on
the weights 7t;: keep components with weights above a certain small
quantile (i. e., ¢ = 0.1) and trim the remaining ones. Unfortunately,
this approach can unpredictably remove isolated components that
might actually correspond to salient features in the solution. A
preferred decimation method should therefore be based on merging
similar components. Such a technique might still decrease the quality
of the product sampling, but if done gracefully, will compensate for
it with a higher resulting sampling rate.

For this purpose, we have adapted the GMM reduction algorithm
by Runnalls [RunO7]. This is a greedy algorithm that proceeds as
follows:

1. Begin with a full mixture of K components.

2. For each pair of components k;,k; € 1..K, compute the cost ¢; ;
(Eq. 10) incurred by merging them.

3. Merge the two components with the lowest ¢; j, yielding a new
mixture with K’ = K — 1 components.

4. Finish if K’ reaches a desired value, else set K = K’ and go to
step 2.

Runnalls proposes to calculate the cost as an increase on the
Kullback-Leibler (KL) divergence, corresponding to an amount
of lost information expressed by the mixture. While KL divergence
has no closed-form expression for the GMM, its upper bound is

(© 2016 The Author(s)
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easily computed and in practice tends to work well [CWPS11]:
T u T
Ci,j:%log|£i,j|—5’10g\2,-|—leog|2j\, (10)

where X; ; is the covariance of the merged component (see Apx. B
for the merging formulas). An illustrative example of this algorithm
is shown in Fig. 6.

Reduction quality control. A shortcoming of Runnalls’ algorithm
is the inability to control the reduced mixture quality, since its termi-
nation is conditioned by the number of desired components. Instead,
we wish for the reduction to be adaptive, i. e., to decimate mixtures
in proportion to their component redundancy (especially because
the EM algorithm frequently creates fits with such components).
For this, we propose to calculate a cumulative reduction cost Cg:
defined as

K
CK/: erln]ncfj, (]1)
s=K "

with cfﬁ j being the KL cost of merging the components i and j in step
s. In other words, Eq. 11 accumulates the reduction cost during the
normal execution of the algorithm. We then stop the decimation as
soon as Cgr would exceed a user-defined cost threshold C in the next
merging step (cf. Fig. 6). While such threshold is only empirical, we
have experimentally found the value of C = (.2 to be robust in all
the presented scenes (Sec. 6).

Ideally, we would guide the reduction procedure by our target
metric — the normalized estimator variance (Apx. C). However, in
our case the estimator variance is a ratio distribution of two Gaussian
mixtures, which has undefined mean and variance, and is notoriously
difficult to estimate robustly. On the other hand, we have performed
a numerical analysis indicating that the KL cost tends to be well
correlated with the estimator variance and is therefore useful as
a reduction measure. In addition, any threshold on the estimator
variance would have to be determined empirically as well, since
there is no direct way to be related to the global solution quality.

5. Implementation Details

We implemented our algorithm as a plug-in for the Mitsuba [Jak10]
rendering framework. The approximation of the incoming il-
lumination is based on the online-learning code provided by
Vorba et al. [VKS*14].

BRDF Sampling Probability. The original sampling of
Vorba et al. [VKS* 14] corresponds to multiple importance sampling
between the original BRDF and the incoming illumination GMM
with a fixed probability of 0.5. This value prevents them from
becoming biased (which can be caused by an inaccurate illumination
approximation) or from strongly increasing the variance on glossy
surfaces. Since our algorithm includes the knowledge of the BRDF
via its product with the incoming radiance, we can safely lower
this threshold to a marginal safety value of 0.1 (i.e., the product
distribution will be used to make 90 % of sampling decisions).

Parallelization. In all our experiments we initially (before reduc-
tion) use 8 GMM components to fit both BRDFs and illumination.
The GMM parameters are stored in SSE vectors with a width of 4,
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Ceres

Figure 7: Comparing the glossy JEWELRY scene rendered by our
algorithm using different fitting methods for the BRDF caches. Top:
weighted EM (MSE = 0.00118), bottom: Ceres (MSE = 0.00109).

granting us a four-fold increase in the product evaluation and sam-
pling performance. The parallelized code iterates over the BRDF
components (since these tend to have a higher affinity to be reduced
to less components given a certain reduction cost threshold), pro-
cessing four illumination components at the same time. We allow
the reduction of BRDF mixtures to freely vary between 1 and 8
components, while the reduction of illumination mixtures can reach
only 4 components, or stay at 8 (since, due to our parallelization
scheme, the intermediate illumination mixture sizes would not bring
any additional speed-up).

6. Results

This sections presents some results of our algorithm. We first an-
alyze the BRDF GMM fitting, comparing the quality of fits using
weighted EM and non-linear optimization with CERES (Sec. 6.1).
We then compare the presented product sampling algorithm to
Vorba et al. [VKS*14] and other light transport algorithms, fol-
lowed by a deeper analysis of individual aspects of our method
(Sec. 6.2). All simulations were executed on consumer PCs running
Linux on Intel Xeon E5-1620 processors (8 cores at 3.6 GHz) and
16 GB RAM.

6.1. BRDF Fitting

Sec. 4.1.2 showed that the non-linear optimization can produce bet-
ter BRDF fits than the weighted EM algorithm, especially when
it comes to materials with high roughness and at grazing angles
(Fig. 4). However, if the roughness is not high then weighted EM
still produces acceptable fits to the BRDF lobe. In our experiments
we found out the there is no major difference between both meth-
ods when o < 0.2. Therefore, to be closer to a practically realistic
use-case, we used weighted EM for our main results presented in
Sec. 6.2, because it provides a near-instant fitting (cf. Table 1). Fig. 7
compares the results of the JEWELRY scene, using weighted EM
and Ceres for fitting the BRDF caches.

6.2. Product Sampling

Fig. 8 shows a comparison of our product sampling to standard meth-
ods: path tracing (PT), bi-directional path tracing (BDPT) and the
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PT

LivINGRoom

KITCHEN

Reference

JEWELRY

4335 0.0081

BDPT

277210.0036

Vorbaetal.  Ours (naive) Ours Reference

8820.0331 1089]0.0204  1128|0.0211 SPP | MSE

712 0.007 SPP | MSE

1528]0.0025 1002]0.0014  1322]0.0007 SPP | MSE

Figure 8: Equal-time (1 hour) results containing SPP and mean squared error (MSE) values for LIVINGROOM, KITCHEN and JEWELRY
scenes. Two different versions of our product sampling are used: “Ours (naive)” samples the full product while “Ours” includes the cache

reduction. Detailed analysis is provided in Sec. 6.2.

illumination-guided path tracing (GPT) of Vorba et al. [VKS*14].
The render times for all algorithms were fixed to 1 hour; this in-
cludes the illumination cache training times (see Table 1) for the
methods that require it (GPT and ours). We use identical illumina-
tion caches for GPT and our method, trained with 60M photons

and 60M importons spread across 30 training passes. The timings
for the BRDF fitting were however counted separately (we treat
this step as pre-processing) and are listed in Table 1. For isotropic
caches we use N = 512 incident elevation angles, and M = 4069
incident directions for the anisotropic caches. Reference images

(© 2016 The Author(s)
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took approximately two weeks to render with vertex connection and
merging [GKDS12]. To compare the sampling quality directly, we
also present one scene with equal sampling rates in Fig. 1.

Table 1: Timings for the cache fitting stages (in minutes).

Scene Illumination BRDF
wEM  Ceres
LivINGRoOOM 14.0 0.31 25.5
KITCHEN 20.1 0.44 42.3
JEWELRY 6.1 0.04 6.3

Memory consumption and component reduction. Since the 2D
GMMs can be stored compactly using 6 floats per Gaussian compo-
nent, the memory needed to store the BRDF mixtures is negligible
(<10 MB even for complex scenes like KITCHEN or LIVINGROOM).
We therefore always reserve the space for K = 8 components and
use the presented reduction algorithm (Sec. 4.2) only to speed up
the computation and sampling of the product mixtures. Table 2 (left
and middle) shows detailed statistics for the BRDF and illumina-
tion caching in our test scenes. On average the required number
of reduced BRDF components is quite low, and interestingly, it
varies for different incident directions. Namely, more components
(up to 5) are needed at grazing angles, since the BRDF lobe is
more distorted and skewed towards the hemispherical boundary. As
for the illumination caches, we need about 25 % less memory than
Vorba et al. [VKg* 14]: on average about half of the illumination
mixtures can be reduced from 8 to 4 components without negatively
impacting the sampling.

Sampling overhead. To compare the computational cost of our
product sampling to the illumination-only sampling [VKS*14] we
measured the average overhead per generated path segment induced
by our algorithm. Table 2 (right) summarizes these measurements.
Note that on purely diffuse surfaces the BRDF is constant and its
product with the illumination mixture is the illumination mixture
itself. We therefore switch to pure illumination sampling on diffuse
surfaces to avoid wasting computational effort. Interestingly, while
the mixture reduction decreases the per-segment sampling time,
it does not impact the overall rendering time significantly for our
tested scenes. However, given that the product calculation has a
quadratic complexity with respect to the factor mixtures, the relative
importance of reducing their sizes would increase if we used more
than 8 components to fit them.

Path length analysis. Examining the generated samples per pixel
(SPP) for the presented scenes (Fig. 8), it is apparent that they are
not directly proportional to the product-sampling overhead (Table 2,
right). Our analysis shows that this is caused by the fact that the
product sampling generates longer paths compared to the GPT of
Vorba et al. [VKS*14]. Specifically, the average path lengths in
each scene were (GPT/ours): 9.0/6.5 (LIVINGROOM), 4.9/9.8
(KITCHEN), 3.7/4.9 (JEWELRY), 6.1/17.2 (KITCHENETTE). The
main reason is the used path termination scheme (see the discussion
in Sec. 7), which culls low-throughput paths. Since our product sam-
pling generates paths with higher and more consistent throughput,
they tend to stay alive longer. One exception is the LIVINGROOM
scene, where all BRDFs have a diffuse component and consequently
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Figure 9: Comparison of gradient-domain (GD) methods (PT and
BDPT) to our product sampling, after 75 minutes of total rendering
time. While incorporating image gradients into the reconstruction
removes some variance, features not present in the base estimate
still cannot be recovered. In contrast, our product sampling can
successfully find even the more difficult paths and yields a much
more even convergence.

the paths stay alive longer even for GPT — here we actually generate
paths with lengths closer the mean contributing path length and
hence also produce more SPP.

7. Discussion

Extension for other MC algorithms. Since our implementation
treats the product sampling as a drop-in replacement for BRDF
sampling, combining it with other tracing-based algorithms such
as BDPT or gradient-domain PT/BDPT [KMA*, MKA*15] would
be relatively straightforward. Vorba et al. [VKS*14] already im-
plemented illumination-guided sampling for BDPT — while their
guided sampling increased the convergence rate, it still struggles
at sampling complex glossy-glossy interactions, which our product
sampling handles well. Similarly, while gradient-domain methods
can employ image gradients for better image reconstruction, they
rely on the underlying baseline algorithms to reliably obtain the
path contribution and therefore suffer from their inherent limita-
tions. We demonstrate this in Fig. 9 on the KITCHENETTE scene,
where significant path contributions come from multiple consecutive
glossy-glossy interactions. Our algorithm increases the robustness
of these methods and would directly produce better per-pixel ra-
diance and gradient estimates, which in turn should lead to better
reconstruction.

Spatially varying BRDFs. A current limitation of our approach is
the handling of SVBRDFs. Due to the compactness of the BRDF
GMM caches, pre-sampling a large variety of different parame-
ters for the glossy components of the SVBRDFs is still feasible.
However, an ideal solution would be to develop a direct functional
transform from the SVBRDF parameters to a GMM representation
of the BRDF lobe. We see this as an interesting direction for future
work, which could build for instance on [WA] or [XSD*13].

Russian roulette. By design, our product sampling always gener-
ates paths with significant throughput. The consequence of terminat-
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Table 2: Left and middle: BRDF and illumination caching statistics for the scenes in Fig. 8. Right: Overhead of the product sampling relative
to illumination-only sampling, without ( ‘naive’) and with the reduction of the BRDF and illumination mixtures.

Scene BRDF caching Illumination caching Sampling overhead [%]
#BRDFs  #Caches  Avg. #comp. Mem. #Caches  #Reduced Mem. Naive Reduced
LIVINGROOM 41 15k 2.5 7.7MB 82k 57 % 192.9MB 10.8 7.1
KITCHEN 72 2.5k 1.8 10MB 107k 62 % 236.9 MB 26.7 9.9
JEWELRY 6 1.5k 1.44 0.7MB 16k 33% 19.5MB 16.5 —1.1

ing paths using the weight-window RR with a low threshold (akin to
Vorba et al. [VKS*14], cf. Sec. 6.2) is that we tend to generate long
paths, even if their eventual contribution is small. Unfortunately the
low threshold is necessary to find some long but significant paths,
and making its value higher typically increases the incidence of out-
lier noise (‘fireflies’). We believe this issue could be addressed by
employing an adaptive path termination strategy (such as [VK16]),
which takes the relationship between the path throughput and its
expected contribution into account.

Quality of illumination caches and MIS weight. The illumina-
tion caches can sometimes be fitted poorly, which is manifested by
discontinuous patches of high variance (e. g., LIVINGROOM, left
wall) or different low-variance convergence rates (e. g., JEWELRY,
floor). This is a general limitation shared with Vorba et al. [VKS*14],
and we believe it holds potential for further research. For instance,
the iterative nature of their online training algorithm could possibly
be combined with a component merging and splitting strategy, so
that poorly fitted GMMs could be identified and corrected early.
Another possible optimization is to integrate the MIS weight for
sampling the BRDF into the illumination GMM by adding a spe-
cial mixture component that would represent ‘uncategorized’ back-
ground radiance. This would prevent the EM algorithm from being
distracted by background radiance or variance in the illumination
samples.

Mixture reduction. The reduction algorithm adapted from Run-
nalls [Run07] is robust, and its simplicity helps to keep the computa-
tional costs low. Also the fact that it maintains the mean and variance
of the entire mixture unchanged (Apx. B) is useful in preventing
salient parts of the directional domain from becoming critically
under-sampled. Still, more sophisticated decimation approaches
could be examined [CWPS11], or even a more general algorithm
could be employed by combining the reduction with the possibility
of splitting the components, similar to the bottom-up building of
GMMs [HHO08, SH09].

8. Conclusion

Product importance sampling can significantly improve the con-
vergence of Monte Carlo global illumination solvers, which we
have demonstrated for a guided uni-directional path tracing. This
is especially true for difficult scenes—for instance with complex
illumination, difficult visibility, or glossy materials—where ignoring
some terms of the rendering equation during importance sampling
can lead to significant increases of variance. Our main effort in the
future will be to improve the adaptivity of the algorithm to even
more difficult conditions, but, equally importantly, to recognize and
limit its use whenever it can lead to unnecessary overhead.
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Appendix A: GMM Product Calculation

Given two GMM mixtures G; and G,, the parameters ©1  of the
resulting product mixture (Eq. 9) can be calculated as follows:

K2 =K Ky (12)
S N, (5) - T, N, (¥) dy
JG1(¥)- Ga(y) dy

T Ty Nk [Py Ty + 2y (13)
LY 7, T, - N, [k > 2k, + 2k, )

Mk, = zkl (z/ﬂ + zkz)_l Kk, + Zkz (Zkl + Zkz)_l Mk, (14)
Tk =k Tk + Tay) ' Ep, (15)

where ky » = K1k + k. We contract the notation similarly to Eq. 9.

Ty

Appendix B: Merging Gaussian Components

The parameters of the Gaussian component G , created by merging
components G; and G, are calculated as follows:

T =T+ (16)
K12 =T K+ 70 (17)
Tip=mIi+mi+ M (n — ) (m —m)’  (18)
where 7; = —Z2.—. This operation in fact preserves the first two

T +7T
moments of tﬁe nzlerged components [Run07]. Consequently, the

reduced mixture produced by the algorithm described in Sec. 4.2
retains the mean and variance of the full mixture, independently on
the decimation magnitude.

Appendix C: Normalized Estimator Variance

To measure the quality of importance-sampling a given target func-
tion f using a PDF p, we introduce a discrepancy measure called
the normalized estimator variance:

N 2
NEVf_’p;fZ(f(y")n)—l) ,where (19)

n mf-,p'P(y
1 & fyn)
= 20
"= N ;P(le) 20

As the name implies, the usefulness of Eq. 20 stems from the fact
that it directly measures the variance of an estimator with N samples,
given that p is a valid PDF for f:

my , = /f(y) dy. @1
Furthermore, it has the following properties:

e NEV, ,=0iff f and p differ only by a constant factor.

e NEVy, — oo for increasing discrepancy between f and p, in
agreement with the fact that the variance of an estimator might
not have a finite or even a defined value.

e NEVy , is purposefully asymmetric, since, even if the case of
both f and p being valid PDFs, they are not interchangeable for
the purposes of sampling each other.


http://www.mitsuba-renderer.org
http://www.mitsuba-renderer.org

