Galactic compact objects with eRosita

Dmitry Klochkov
IAA Tübingen

Isolated X-ray emitting neutron stars

Total number of NSs in the Galaxy: $\sim 10^{9}$

- radio pulsars: $\sim 10^{3} \quad$ (Manchester et al., 2005)
- X-ray binaries: $\sim 10^{2} \quad$ (Liu et al. 2006, 2007)

The vast majority of NSs is not observed!
Characterization of NS population:

- using radio pulsars \rightarrow obs. biases due to unknown distribution of B-filed strength and geometry, uncertain emission mechanism
- using XRBs \rightarrow obs. biases due to uncertain details of binary evolution scenario(s)

Isolated X-ray emitting neutron stars

Total number of NSs in the Galaxy: $\sim 10^{9}$

- radio pulsars: $\sim 10^{3} \quad$ (Manchester et al. , 2005)
- X-ray binaries: $\sim 10^{2} \quad$ (Liu et al. 2006, 2007)

The vast majority of NSs is not observed!
Characterization of NS population:
Isolated X -ray emitting neutron stars potentially provide an independent way to study the NS population of the Galaxy.

Not strongly affected by magnetic field or binary evolution.

Isolated X-ray emitting neutron stars

- Isolated thermally emitting NSs ("Magnificent Seven"); F. Haberl, 2007
- Magnetars (AXP/SGR), I0+4; S. Mereghetti, 2008
- Compact Central Objects (CCO) in SNRs, 8; E.V. Gotthelf \& J. P. Halpern, 2007

Isolated X-ray emitting neutron stars

- Isolated thermally emitting NSs ("Magnificent Seven'"); F. Haberl, 2007
- Magnetars (AXP/SGR), I 0+4; S. Mereghetti, 2008
- Compact Central Objects (CCO) in SNRs, 8; E.V. Gotthelf \& J. P. Halpern, 2007

Isolated thermally emitting neutron stars

X-ray emission is characterized by BB -continuum with little photo-electric absorption

Haberl, 2007:

Object	kT eV	Period s	Amplitude $\%$	Optical mag	PM mas/year
RX J0420.0-5022	44	3.45	13	$\mathrm{~B}=26.6$	
RX J0720.4-3125	$85-95$	8.39	$8-15$	$\mathrm{~B}=26.6$	97
RX J0806.4-4123	96	11.37	6	$\mathrm{~B}>24$	
RBS 1223					
RX J1605.3+3249	86	10.31	18	$\mathrm{~m}_{50 \mathrm{ccd}}=28.6$	
RX J1856.5-3754	62	$6.88 ?$	$?$	$\mathrm{~B}=27.2$	145
RBS 1774 ${ }^{(b)}$	102	9.44	4	$\mathrm{~B}=25.2$	332

Isolated thermally emitting

neutron stars

Population modeling (assuming different cooling scenarios) is difficult as ages are only determined in a few cases (Kaplan et al. 2007). To test theoretical models one needs sufficient number of sources!

Turner et al., 2010: the number of isolated thermally emitting NSs in RASS/BSC is $\mathbf{7 \div 5 0}$; eRoseta should find $\mathbf{2 4 0} \div \mathbf{1 5 0 0}$!

CCO and Magnetars

- can also be detected in eRosita survey.

CCO in HESSJ I73I-347,
Pühlhofer, Klochkov, Santangelo, in prep.

Both classes are associated with SNRs. The SNR population of the Galaxy is going to increase, also using TeVrange (recent discoveries by H.E.S.S., future observations with CTA)

Preliminary analysis of TeV data by H.E.S.S. collaboration

CCO in HESS JI73I-347

HESS J1731-347-N
Best Period: 3.86400000000000
No pulsations detected by XMM/PN

From simple BB-fit: $D_{10 \mathrm{~km}} \simeq 30 \mathrm{kpc}$
$D_{15 \mathrm{~km}} \simeq 45 \mathrm{kpc}$.
Distance to SNR:
~3.2 kpc
(Tian et al. 2008)

Modification of the spectrum by NS atmosphere gives lower limit (V. Suleimanov, priv. comm.):
D. Klochkov, IAAT

$$
\text { D ~ } 19 \text { kpc ! }
$$

Wanted!

Several compact object types not discovered yet:

- Isolated accreting NSs (Bondi-Hoyle accretion) MHD-simulations show that \dot{M} given by Bondi formula should be reduced by 10^{-3}, consistent with essentially no such sources detected by ROSAT. But eRosita might find some!
- Isolated BHs (accretion or some exotic emission) probably some unidentified EGRET sources (Punsly et al. 2000)
- Isolated NSs on the propeller stage (Blondin \& Popov 2010)
- Extragalactic magnetars.

Ultraluminous X-ray sources

- sources with $L_{\mathrm{X}} \gtrsim 10^{39}$ erg/s, Eddington luminosity for a $10 M_{\odot}$ black hole (Fabbiano 1989)

If emitting isotropically,
$\mathrm{M} \sim 20 \div 10^{3} M_{\odot}$

- "Intermediate Mass Black Holes"

Composite X-ray (red)/optical (blue \& white) image of the spiral galaxy M74 (Liu et al.)

Ultraluminous X-ray sources

ULXs in star-forming galaxies (SFG) within ~30 Mpc can in principle be resolved with eRosita: 30" corresponds to \sim I/3-I/2 of the linear size of the Galaxy

Prokopenko \& Gilfanov (2009) considered:

- galaxies within 35 kpc

$$
L_{\mathrm{X}} \simeq 10^{39} \mathrm{erg} \mathrm{~s}^{-1} \rightarrow F_{\mathrm{X}} \simeq 2 \times 10^{-14} \mathrm{erg} \mathrm{~s}^{-1} \mathrm{~cm}^{-2}
$$

- luminosity function of X-ray sources in SFGs for

$$
L_{\mathrm{X}} \simeq 10^{39} \mathrm{erg} \mathrm{~s}^{-1} \text { (Grimm et al. 2003) }
$$

- distribution of galaxies in star forming rate (Bell 2003)

$$
\text { Result: } N_{\mathrm{ULX}} \simeq 85
$$

Ultraluminous X-ray sources

M 5I (star-forming galaxy at 7.5 kpc) Chandra eRoseta (simulated)

Prokopenko \& Gilfanov 2009

ART-XC

D. Klochkov, IAAT

Table 2. Basic parameters of the ART-XC instrument

number of mirror systems	7
number of nested mirror shells	28
mirror shells and coating materials	Nickel and Iridium
focal length	2700 mm
FOV	$\varnothing 32^{\prime}$
angular resolution	$<1^{\prime}$
effective area for pointed observations	$510 \mathrm{~cm}^{2}$ at $7 \mathrm{keV}^{2}$
Grasp for survey	$45 \mathrm{deg}^{2} \mathrm{~cm}^{2}$ at 7 keV
detector type	DSSD CdTe
size	$25.6 \times 25.6 \mathrm{~mm}^{2}$
number of strips	64×64
Strip pitch	0.4 mm
Energy range	$6-30 \mathrm{keV}$
Energy resolution	$10 \% \mathrm{at} 14 \mathrm{keV}$
Time resolution	1 ms
Working temperature	$-40^{\circ} \mathrm{C}$
Total weight of instrument	350 kg
Power consumption	300 W

ART-XC

- Heavily obscured galactic XRB/SFXT discovered with INTEGRAL (see e.g. Chaty 2008 for a review) Before INTEGRAL only a few HMXBs were known to have a supergiant OB-companion. After launch of Spectrum-GR the population of obscured XRB/SFXT might grow significantly

- Study of broad band spectra of galactic $\mathrm{X}^{\circ} R B s$ (CRSFs!), AXPs, SGRs; cross-calibration with MAXI all-sky monitor

