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Abstract.
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paribus effects and the interaction effects of an arbitrary number of factors. The decomposition addresses

the issue of interaction effects between factors which has been neglected in the decomposition literature.

It has the additional advantage of being path-independent and aggregation consistent. A number of

examples clarify the issues involved and demonstrate that interaction effects may be a feature of reality

that is of particular interest.
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1 Introduction

A typical question asked in distributional analysis is: what percentage of a change in inequality

is due to factor 1, what percentage due to factor 2, and so on. However, if part of an overall

effect is the genuine result of the joint presence of two or more factors, the idea of splitting

up this total effect into disjunct parts contributed by each factor may appear questionable.

Representative applications of this methodology include Juhn et al. (1993), DiNardo et al.

(1996), and Daly/Valetta (2006), among many others. For example, in Juhn et al. (1993),

the change in US wage inequality is decomposed into the effects due to changes in observable

characteristics, changes in observable prices, and changes in unobservable characteristics and/or

unobservable prices. In the seminal contribution by DiNardo et al. (1996), changes in the US wage

distribution are decomposed into the parts contributed by changes in individual attributes, changes

in unionization, changes in the minimum wage, changes in supply and demand, and a contribution

due to other changes in the conditional wage structure. In a similar vein, Daly/Valetta (2006)

decompose the increase in poverty and inequality in the US into parts contributed by the changes

in the earnings distribution of men, changes in the labor force participation of women, and changes

in family structures.

A common method used in these approaches in order to arrive at an exact decomposition of an

overall effect into the parts contributed by different factors is to sequentially add the changes of

the different factors until all factors have been accounted for. The incremental changes defined

in this way provide an exact additive decomposition of the overall effect into parts contributed by

each factor. This widely used method has two drawbacks. The first one is that the result of the

decomposition may be path-dependent, i.e. it may depend on the order in which the different

factors are added. The path-dependence of sequential decompositions may be easily remedied by

averaging decomposition results over all possible decomposition sequences. This was originally

proposed by Shorrocks (1999) and Chantreuil/Trannoy (1999), and is usually called ‘Shapley

decomposition’ (due to its formal resemblance to the Shapley value from game theory). However,

the Shapley decomposition does not address another disadvantage of sequential decompositions,

namely that the decomposition forces an answer to the question of disentangling an overall effect

into disjunct parts even if such an answer may be undesirable because part of the overall effect

is the genuine result of the joint presence of more than one factor. As an example, consider the

case where (among other things) the contributions of changes in unionization and shifts in the

industry structure to changes in the wage distribution are of interest. It will not be possible to
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completely separate the influence of changes in unionization from those in the industry structure

because part of the effect of the changes in unionization will only materialize because the industry

structure shifts towards or away from industries with high levels of unionization.2

It is not that the authors of the studies cited have not recognized the challenges posed to

their decomposition schemes by the existence of interaction effects (e.g., Juhn et al., p. 429).

However, to our best knowledge, no attempt has been made to explicitly address these challenges

in a general and systematic way. The aim of this paper is therefore to propose an alternative

decomposition scheme that i) takes seriously the existence of interaction effects and therefore does

not try to separate the influence of different factors where this may be questionable, ii) provides

an exact decomposition of an overall effect into different contributions, and iii) is independent of

the ordering of the factors under consideration. The proposed alternative decomposition scheme

is generally applicable and may be used to detect lower and higher order interaction effects and

thus display the part of an outcome that is the genuine result of the interplay between two or

more factors.

The rest of this paper is organized as follows. Section 2 revisits decomposition schemes based on

sequential orderings including the Shapley decomposition. Section 3 introduces the alternative

decomposition scheme involving interaction effects and examines its relationship to sequential

decompositions and the Shapley decomposition. Section 4 provides a number of examples in

order to clarify some of the issues involved and in order to demonstrate that interaction effects

may be a feature of reality that is of particular interest.

2 Sequential decompositions and Shapley decomposition

This section reviews the sequential decomposition schemes that are widely used in the literature

as well as the Shapley decomposition which is defined as the average over all possible sequential

decompositions. First, consider the case where the change in an object f is thought to be caused

by the change of two factors. The overall change in the object can be written as f11− f00 where

f11 is the outcome that results if both factors are changed, while f00 denotes the outcome that

2This example is taken from Fortin et al. (2011) who provide a comprehensive treatment of the various

decomposition methods used in the literature including a discussion of many of the issues considered here. The

focus of Fortin et al. (2011) is on aspects such as identification which are largely independent of the point made

here.
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results if both factors remain in their original state. The object f may be any outcome of interest,

for example, a wage, a distribution of wages, a functional of a distribution such as an inequality

index, or any other object of interest. In order to decompose the overall change into changes

contributed by individual factors, one has to introduce counterfactual outcomes f10, f01 which

describe what the outcome would be if only one of the factors was changed in isolation.

In the two factor case, a possible sequential decomposition of the total change is

f11 − f00 = (f10 − f00) (1)

+ (f11 − f10). (2)

Here, (1) measures the contribution of factor one, while (2) measures that of factor two. A

severe drawback of sequential decompositions is that they are path-dependent. The result of the

decomposition depends on the order in which the two factors are introduced. The sequential

decomposition in which the two factors are treated in the reverse order is given by

f11 − f00 = (f01 − f00) (3)

+ (f11 − f01). (4)

Here, the contribution of factor two (3) is measured first, while that of factor one (4) is measured

second.

In the m factor case, the simplest sequential decomposition is defined by

f11111...1 − f00000...0 = (f10000...0 − f00000...0) (5)

+ (f11000...0 − f10000...0) (6)

+ (f11100...0 − f11000...0) (7)

+ (f11110...0 − f11100...0) (8)

+ . . . (9)

+ (f11111...1 − f11111...0) (10)

in obvious notation. Here, (5) measures the contribution of factor one, (6) measures that of

factor two, and, finally, (10) that of factor m. Alternative sequential decompositions in the m-

factor case are obtained by permutating the order in which the different factors are introduced.

In total, there are m · (m− 1) · . . . 2 · 1 = m! possible sequential decompositions in the m-factor

case.

3



The Shapley decomposition as proposed by Shorrocks (1999) and Chantreuil/Trannoy (1999)

computes the contributions of them factors by averaging over all possiblem! sequential orderings.

It has a number of desirable properties. Apart from the fact that it provides an exact break-down of

the overall effect into m contributions, it is path-independent and it suggests an interpretation of

the different contributions as the marginal effect of each factor averaged over all possible situations

(Shorrocks, 1999). A disadvantage of the decomposition is that it is uninformative about possible

interaction effects between different factors. A further disadvantage is that it is generally not

aggregation consistent implying that if one factor is broken up in a number of subfactors, this

may change the contributions of the other factors (Shorrocks, 1999, Chantreuil/Trannoy, 1999).

The Shapley decomposition is now widely used in many different areas, see e.g. Sastre/Trannoy

(2002), Israeli (2007),3 Bargain/Callan (2010), Devicienti (2010), and Okamoto (2011). As will

become clear below, the Shapley decomposition provides a summary measure of the direct and

the interaction effects of the different factors involved.

3 Additive decomposition with interaction effects

This section presents the alternative decomposition scheme involving interaction effects. In the

two factor case, the decomposition of the difference f11 − f00 is given by

f11 − f00 = (f10 − f00) (11)

+ (f01 − f00) (12)

+ [(f11 − f00)− (f10 − f00)− (f01 − f00)] . (13)

Here, (11) represents the ceteris paribus effect of factor one, (12) the ceteris paribus effect of

factor two, and (13) the interaction effect between the two factors. The ceteris paribus effects

describe the effects that occur if each of the factors is changed in isolation. If the two separate

changes do not add up to the overall change, this necessarily implies that the two factors interact

in their effect on the outcome, i.e. the interaction effect is the part of the overall change that

cannot be explained by changing both of the factors in isolation. The interaction effect (13) has

other, more intuitive interpretations:

[(f11 − f00)− (f10 − f00)− (f01 − f00)] (14)

= (f11 − f01)− (f10 − f00) (15)

3Israeli (2007) also addresses the issue of interaction but in a slightly different context.
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= (f11 − f10)− (f01 − f00) (16)

It can be seen that the interaction effect is equal to both the effect of factor one varied by whether

or not factor two is present (15), and to the effect of factor two varied by whether or not factor

one is present (16) (this is similar to a cross derivative in an infinitesimal setting).

In the three factor case, the proposed decomposition is given by

f111 − f000 = (f100 − f000) (17)

+ (f010 − f000) (18)

+ (f001 − f000) (19)

+ [(f110 − f000)− (f100 − f000)− (f010 − f000)] (20)

+ [(f101 − f000)− (f100 − f000)− (f001 − f000)] (21)

+ [(f011 − f000)− (f010 − f000)− (f001 − f000)] (22)

+ [(f111 − f000)− (17)− (18)− (19)− (20)− (21)− (22)] . (23)

Again, (17) - (19) represent the ceteris paribus effects of factors one to three. In general, the

ceteris paribus effect comes closest to what one has in mind when talking about ‘the effect’

of a factor, i.e. it describes how much of the change in the outcome can be explained by

changing just this factor and holding everything else constant. The ceteris paribus effects of

the different factors thus deserve a special role in the decomposition. Contribution (20) is the

two-way interaction effect between factor one and factor two. Contributions (21), (22) are the

corresponding two-way interaction effects between factors one and three, and between factors two

and three, respectively. Everything that cannot be accounted for by the ceteris paribus and the

two-way interaction effects has to be due to a three-way interaction effect between all the three

factors. The three-way interaction effect is therefore given by (23). The three-way interaction

effect int3 is defined as

int3 = total3 −

3∑

i=1

cpi −
∑

k∈P2

int2k, (24)

where total3 denotes the total change when all the three factors are changed, cpi the ceteris

paribus effect of factor i, and int2k the two-way interaction effects (over the set P2 of all possible

combinations of two factors out of the three).

This decomposition idea easily generalizes to an arbitrary number of factors m. For this, note
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that in the case of m = 4 factors, the four-way interaction effect results as

int4 = total4 −

4∑

i=1

cpi −
∑

k∈P2

int2k −
∑

k∈P3

int3k, (25)

where the last term stands for all possible three-way interaction effects between three factors

chosen out of the four. In the general case with m factors,

intm = totalm −

m∑

i=1

cpi −
∑

k∈P2

int2k −
∑

k∈P3

int3k − . . .−
∑

k∈Pm−1

intm−1
k , (26)

yielding the general decomposition formula

totalm =

m∑

i=1

cpi +
∑

k∈P2

int2k +
∑

k∈P3

int3k + . . .+
∑

k∈Pm−1

intm−1
k + intm. (27)

Apart from incorporating interaction effects, decomposition (27) has number of desirable prop-

erties.4 First, it is path-independent because all factors are treated symmetrically. A second

advantage is that the decomposition not only contains the ceteris paribus effects of changing

one factor in isolation but also the ceteris paribus effects of changing any subset of factors at

the same time. For example, the ceteris paribus effect of changing factors 1 and 2 at the same

time is given by cp1 + cp2 + int2{1,2}. In general, the ceteris paribus effect of changing a subset

S of factors at the same time is given by the sum of all individual ceteris paribus effects and all

possible interaction effects between the factors in S. Third, the decomposition is aggregation

consistent in the sense that the decompositions of the joint influence of a subset of factors appear

as a part of the larger decomposition involving all factors. More precisely, if two or more factors

are combined, the contributions in the aggregated decomposition result by summing elements of

the disaggregated decomposition. This is evident from the generic case of three factors (17) to

(23), in which one may combine two of the factors in order to form an aggregated factor. For

example, if one combines factors one and two, then the ceteris paribus effect of the combined

factor one/two is given by cp1 + cp2 + int2{1,2}, the ceteris paribus effect of the other factor

by cp3, and the interaction effect between the combined factor one/two and factor three by

4It seems that a recent paper by Rothe (2012) introduced (independently from this paper) a similar definition

of interaction effects in the context of decomposing the composition effect in between-group decompositions.

Note however, that the factors are defined somewhat differently in Rothe’s paper. An important further difference

is that Rothe specifically considers the composition effect in a between-group decomposition, while the formula

given here is formulated in terms of general and unspecified counterfactual outcomes, independently of how they

are generated (e.g., they may be generated by simulation, see empirical example below).
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int2{13}+ int2{23}+ int3{123}. A final advantage of the decomposition is that it is comprehensive in

the sense that it involves all counterfactual states of the world.5 This property is shared by the

Shapley decomposition but not by individual sequential decompositions which will be insensitive

to changes in counterfactuals that do not appear in the decomposition. The property of com-

prehensiveness appears to be desirable as the decomposition should, in some way, reflect all the

different counterfactuals of the problem under investigation.

It has to be stressed that the objective of this paper is not to claim that the Shapley decomposition

is wrong or unreasonable. The aim here is rather to show that explicitly considering interaction

effects may lead to a more informative analysis than averaging over possibly heterogenous decom-

position sequences. Note that the decomposition with interaction effects is also more informative

in a formal sense than any given sequential decomposition and than the Shapley decomposition.

This holds in the sense that the contributions of any sequential decomposition and (therefore

of the Shapley decomposition) may be computed from the elements of the decomposition with

interaction effects because the latter allows one to compute the effects of jointly changing any

subset of factors together on which all sequential decompositions (and therefore the Shapley

decomposition) are based (see (5) to (10)).

In order to give further justification to the specific definition of interaction effects provided

above, it is helpful to note that the contributions of a sequential decomposition scheme are path-

independent if and only if they are equal to the ceteris paribus effects for all possible decomposition

orders, and that the contributions of a sequential decomposition scheme are path-independent

if and only if all interaction effects as defined above are zero.6 This validates the definition

of the interaction effects given above, as it reproduces the intuition that path-independence is

equivalent to the absence of interaction effects. Notice that the above statement is rather strong

as it requires that all interaction effects (i.e. also the ones of a higher order) have to be zero for

path independence.

A likely consequence is that the larger and more prevalent interaction effects are, the more

5This property can be seen as follows. A decomposition with two factors involves all possible counterfactuals

for these two factors (see equations (11) to (13)). The decomposition involving three factors implicitly contains

all possible two factor decompositions (i.e. all possible counterfactuals for any pair of factors) and adds as a last

step the state of the world in which all the three factors are present (see equation (23)). The decomposition

involving four factors implicitly contains all lower order decompositions and adds as a last step the state of the

world in which all four factors are present, and so on.

6See Appendix.
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problems with path-dependence in a sequential decomposition may occur. The two statements

also make clear that computing a sequential decomposition is not better than computing ceteris

paribus effects: if the results of the sequential decomposition are not identical (or similar to)

the ceteris paribus effects, the sequential decomposition is necessarily path-dependent and there-

fore potentially questionable. This justifies the practice of trying out different factor orderings

when computing sequential decompositions, see DiNardo et al. (1996), Hyslop/Mare (2005) or

Daly/Valetta (2006). Examples where the contribution of individual factors may be quite depen-

dent on the order in which the different factors are introduced can be found in Biewen (2001) and

Biewen/Juhasz (2012). This is then indicative of interaction effects. Biewen (2001) provides an

extreme example of path dependence (or interaction effects, respectively). The article examines

distributional change in East Germany following the reunification of the country in 1990 which

led both to a drastic rise in unemployment and to a change in the conditional income structure

(i.e. income conditional on household characteristics such as employment, unemployment, family

composition etc.) in the sense that income differentials between employed and unemployed indi-

viduals grew in a drastic way. This leads to the situation that introducing higher unemployment in

the (near-socialist) base situation of 1990 has almost no effect (because there were no big income

differentials between employed and unemployed individuals), while it has an extreme effect under

the new (capitalist) conditional income structure which followed a couple of years later and in

which the income differences between employed and unemployed individuals were huge.

4 Examples

The purpose of this section is to apply the above framework to a number of examples in order to

highlight some of the issues involved and to demonstrate that explicitly considering interaction

effects may lead to a more informative analysis than considering sequential decompositions or

averaging over potentially heterogenous paths (as done in the Shapley decomposition).

4.1 The Oaxaca-Blinder decomposition

In the following, it will be shown that the variant of the famous Oaxaca-Blinder decomposition that

involves an interaction term is a special case of the general decomposition scheme described above.

Starting with Oaxaca (1973) and Blinder (1973), economists have been asking the question of
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how to decompose differences between groups or over time into a ‘characteristics’ and a ‘returns’

effects.7 Oaxaca and Blinder’s decomposition has been applied and generalized to a variety of

different settings (see Gomoulka/Stern, 1990, Fairlie, 2005, Yun, 2004, Machado/Mata, 2005,

Biewen/Jenkins, 2005, Bauer/Sinnig, 2007, among many others). The following remarks also

apply to these extensions.

The Oaxaca-Blinder decomposition is a two-factor scenario (‘characteristics’ and ‘returns’). To

fit the decomposition into the framework defined above, define

f11 = xMβM , f10 = xMβF , f01 = xFβM , f00 = xFβF , (28)

where xM , xF denote the vector of average characteristics of men and women, and βM , βF the

regression coefficients of male and female wage regressions. There are two standard variants of the

Oaxaca-Blinder decomposition which correspond to the two possible sequential decompositions

shown in (1) to (4):

f11 − f00 = (f10 − f00) + (f11 − f10)

= xMβM − xFβF = (xM − xF )βF + xM(βM − βF ) (29)

f11 − f00 = (f01 − f00) + (f11 − f01)

= xMβM − xFβF = xF (βM − βF ) + (xM − xF )βM (30)

In the original context considered by Oaxaca and Blinder, the term involving the differences in

coefficients was attributed to ‘discrimination’.

The corresponding decomposition with interaction effect (equations (11) to (13)) is given by

f11 − f00 = (f10 − f00) + (f01 − f00) + [(f11 − f00)− (f10 − f00)− (f01 − f00)]

= (xM − xF )βF + xF (βM − βF ) + (xM − xF )(βM − βF ) (31)

= ∆xβF + xF∆β +∆x∆β. (32)

This is the variant of the Oaxaca-Blinder decomposition involving an interaction term (see Wins-

borough/Dickenson, 1971, and Blinder, 1973, footnote 3). Surprisingly, this variant of the

Oaxaca-Blinder decomposition is rarely used in economics.8 Its validity is obvious from figure 1.

7See Fortin et al. (2011) for a comprehensive overview.

8An exception is Daymont/Andrisani (1984).
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— Figure 1 about here —

Decomposition (31) asks why area ACGI = xMβM is larger than area DEGH = xFβF . It

is easily seen that the difference between the two is composed of ABDE = ∆xβF , EFHI =

xF∆β, and BCEF = ∆x∆β. Why do women have lower average wages than men? One

part of the difference is due to their less favorable characteristics (= ∆xβF ), another one due

to their lower returns (= xF∆β), and a third part can only explained by both of these factors

together (= ∆x∆β). This latter part would be zero if either ∆x = 0 or ∆β = 0. It may be

questionable to assign this interaction term to either the ‘characteristics’ or the ‘returns’ effect as

it is done in sequential decompositions (29) and (30).9 The question of whether or not to treat

the interaction effect as a separate contribution touches subtle issues when the framework is used

in order to measure ‘discrimination’ (see Jones/Kelley, 1984). Generally, it seems hard to find

reasons to allocate the interaction effect either in whole or in part to either the ‘characteristics’

or the ‘returns’ effect. Instead, it seems to make more sense to report it separately as the part

of the difference that only arises if both factors change together.

Figure 1 also shows that the complications created by the interaction effect are the smaller,

the smaller the differences ∆x and ∆β are. This is the reason why in infinitesimal settings

(where ∆x,∆β → 0), interaction effects are small of a higher order and therefore vanish (with

the consequence that the decomposition is only valid locally). This is true, for example, of

decompositions such as those underlying the growth accounting approach (Solow (1957)). In a

more discrete setting in which changes are large in relation to levels, interaction effects may also

become relevant for these kind of decompositions. Note that decomposition (32) can also be

seen as a general way to decompose changes in aggregate value (= prices × quantities) into price

changes, quantity changes and an interaction term involving both price and quantity changes.

In this context, it also appears questionable to ask what percentage of the overall change is due

to price and what percentage due to quantity changes because there is a third component that

cannot be exclusively assigned to either price or quantity changes. This argument may be relevant

to the concept of constructing price indices.

9The comparison between (29) and (31) implies that in (29), the interaction term is assigned to the ‘returns’

effect. Similarly, the comparison between (30) and (31) implies that in (30), the interaction effect is assigned to

the ‘characteristics’ effect.
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4.2 An example with three-way interactions

Following up on the arguments given in the previous section, the next example further illustrates

the differences between sequential decompositions and the idea of explicitly considering interaction

effects. The example is shown in figure 2. Why is block x1y1z1 larger than block x0y0z0? The

difference between the two blocks can be written as

x1y1z1 − x0y0z0 = [(x1y0z0 − x0y0z0)] (33)

+ [(x0y1z0 − x0y0z0)] (34)

+ [(x0y0z1 − x0y0z0)] (35)

+ [(x1y1z0 − x0y0z0)− (x1y0z0 − x0y0z0)− (x0y1z0 − x0y0z0)] (36)

+ [(x1y0z1 − x0y0z0)− (x1y0z0 − x0y0z0)− (x0y0z1 − x0y0z0)] (37)

+ [(x0y1z1 − x0y0z0)− (x0y1z0 − x0y0z0)− (x0y0z1 − x0y0z0)] (38)

+ [(x1y1z1 − x0y0z0)− (33)− (34)− (35)− (36)− (37)− (38)] , (39)

which is just decomposition (17) to (23). Figure 2 nicely illustrates that the difference between

blocks x1y1z1 and x0y0z0 is composed of a number of smaller blocks that represent the different

two-way and the three-way interaction effects. It also illustrates that any sequential decomposition

will involve a probably arbitrary assignment of these interaction effects to one of the ceteris paribus

effects (x1y0z0−x0y0z0), (x0y1z0−x0y0z0), and (x0y0z1−x0y0z0). The Shapley decomposition

will then average over all possible assignments of interaction effects to one of the ceteris paribus

effects.

— Figure 2 about here —

It should be noted that decomposition formula (27) is more general than the example given

in figure 2. Formula (27) applies to any mechanism generating counterfactual outcomes. The

specific mechanism xyz is restrictive in the sense that necessarily all two-way and three-way

interactions have to be present (provided that ∆x,∆y,∆z 6= 0). In a general mechanism, any

kind of interaction effect could be present or absent. For example, there could be three-way

interactions but no two-way interactions, it could be a mechanism without interaction effects at

all, or one with negative interaction effects.
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4.3 Wage differentials between the services sector and other sectors

of the economy

The following example illustrates the empirical relevance of an interaction effect in a Oaxaca-

Blinder type decomposition. In the example, wage differences between the services sector and

other sectors of the economy are decomposed into a characteristics, a coefficient, and an inter-

action effect as in decomposition (31).10 The decomposition considered is based on a standard

wage regression explaining log hourly wages by years of education, experience, experience squared,

tenure, and a female dummy. According to the results shown in table 1, the difference of mean

log wages between the services sector and other sectors of the economy (= 0.1454) is accounted

for by differences in the endowment with wage relevant characteristics (resulting in a contribution

of 0.0834), by differences in returns to characteristics (contributing 0.0830 of the difference), and

a negative interaction effect of characteristics and returns (contributing -0.211 of the difference).

— Tables 1 and 2 about here —

A closer look at the more detailed results in table 2 reveals that the negative interaction effect

is driven by the fact that female workers earn less in the services sector but their share there is

higher than in the other sectors, and by the fact that the return to tenure is higher in the services

sector but the average tenure there is lower than in other sectors. As argued above it does not

seem adequate to attribute these effects to either the characteristics or the returns effect as they

only materialize because both coefficients and characteristics differ between the sectors.

4.4 Decomposition of distributional change

The following example illustrates how the decomposition formula described above may be used to

trace out possible interaction effects between different factors. The example considers three fac-

tors explaining changes in the distribution of equivalized incomes in Germany between 1999/2000

(= period 0) and 2005/2006 (= period 1). The three factors are: changes due to shifts in the

labor market returns to household characteristics (= factor 1), changes in the tax system (=

factor 2), and all other changes (= factor 3). The dependent variable of the analysis is personal

equivalized disposable income, i.e. household income from all sources minus taxes and social

10The data of this example and the example in the next section come from the German Socio-Economic Panel.
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security contributions, divided by an equivalence scale in order to arrive at a measure of personal

income for each household member.11

Changes in labor market returns are modeled by regressions of log household labor market income

ylab on household characteristics z which include information on household employment outcomes

and the composition of the household with respect to variables such as age, gender, educational

qualifications, disability status, marital status, region, and nationality. All regressions are carried

out separately for six different household types (single and multi-adult pensioner households,

single and multi-adult households with or without children). From the perspective of period 0, the

expected change in household labor income that results if labor market returns are counterfactually

set to their period 1 level but household characteristics are kept at their period 0 level is given by

∆̂y01lab = z0
′β̂1 − z0

′β̂0 (40)

where β̂0, β̂1 are the labor market returns to household characteristics in periods 0 and 1, re-

spectively, and z0 are the characteristics of the household in period 0. From the perspective of

period 1, the expected shift that results if labor market returns are counterfactually set to their

period 0 levels is defined by

∆̂y10lab = z1
′β̂0 − z1

′β̂1. (41)

As an example, the counterfactual household income y110 of period 0 that would result if labor

market returns and the tax system tax(·) were set to their period 1 level but everything else was

kept as in period 0 is given by

y110 = ygross,0 + ∆̂y01lab + ytransf,0 − ysscontr,0 − tax1(ygross,0 + ∆̂y01lab), (42)

where ygross,0 are period 0 market incomes from all sources, ytransf,0 period 0 government trans-

fers, ysscontr,0 period 0 household social security contributions, and tax1(·) is the counterfactual

tax system of period 1. In the notation y110, the first subscript refers to labor market returns,

the second to the tax system, and the third to all other factors.

Using this notation, all remaining factual or counterfactual incomes are given by

y000 = ygross,0 + ytransf,0 − ysscontr,0 − tax0(ygross,0) (43)

y001 = ygross,1 + ∆̂y10lab + ytransf,1 − ysscontr,1 − tax0(ygross,1 + ∆̂y10lab) (44)

y010 = ygross,0 + ytransf,0 − ysscontr,0 − tax1(ygross,0) (45)

11The setup for this example is the same as in Biewen/Juhasz (2012). See the more detailed descriptions there.
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y011 = ygross,1 + ∆̂y10lab + ytransf,1 − ysscontr,1 − tax1(ygross,1 + ∆̂y10lab) (46)

y100 = ygross,0 + ∆̂y01lab + ytransf,0 − ysscontr,0 − tax0(ygross,0 + ∆̂y01lab) (47)

y101 = ygross,1 + ytransf,1 − ysscontr,1 − tax0(ygross,1) (48)

y111 = ygross,1 + ytransf,1 − ysscontr,1 − tax1(ygross,1). (49)

We are interested in decomposing the change in inequality in equivalized income between periods

0 and 1, i.e. I(y111) − I(y000), into the contributions by the three different factors and their

interactions. The results are shown in table 3 for the case of the Theil coefficient.12 According

to these results, changing the labor market returns to their period 1 levels but keeping everything

else constant accounts for around 35 percent of the overall inequality change. Changing the tax

system in isolation accounts for around 25 percent of the overall change. Changing all other

factors (but keeping returns and the tax system at their period 0 level) accounts for around 49

percent of the overall change. There is a substantial negative interaction effect between the

changes in labor market returns and the changes in the tax system, amounting to some minus 12

percent of the overall inequality change. This means that, although the isolated contribution of

changes in returns and changes in the tax system add up to some 35 + 25 = 60 percent of the

overall change, their combined effect is only 35 + 25 - 12 = 48 percent. The decomposition also

shows that all other interaction effects, i.e. those with the other unmeasured factors as well as

the three-way interaction effect are economically and statistically insignificant. For comparison,

table 4 shows all possible sequential decompositions along with the Shapley decomposition. As a

result of the interaction effect, the sequential decomposition results are quite path-dependent for

the given case. The effect of the changes in labor market returns on increasing inequality varies

between 22.24 and 35.09 percent, while that of changes in the tax system varies between 13.02

and 28.33 percent. The Shapley decomposition provides a summary measure of the different

paths amounting to 29.08 percent the changes in labor market returns, and to 19.83 percent for

those in the tax system.

— Table 3 about here —

The source of the negative interaction effect between changes in labor market returns and changes

in the tax system becomes evident from figures 3 and 4. Figure 3 shows that the ceteris paribus

effect of changes in labor market returns was inequality increasing because these changes implied

12Results for other inequality indices are very similar.
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a shift of distributional mass from the upper half to the lower half of the (log) income distribution.

On the other hand, figure 4 confirms that the ceteris paribus effect of the changes in the German

tax system between 1999/2000 and 2005/2006 was also inequality increasing as it stretched the

middle and the top of the distribution to the right (the reason is that the changes in the German

tax system between 1999/2000 and 2005/2006 consisted of a series of reforms that reduced

marginal tax rates across the whole range of pre-tax incomes with reductions being somewhat

higher at the top). The bottom of the distribution was unaffected by changes in the tax system.

Individuals in the bottom of the distribution usually do not pay taxes at all because their pre-tax

income is below the sum of basic tax allowances for their household. The fact that changes in

labor market returns increased the share of individuals in the bottom of the distribution then

implies a negative interaction effect: the scope for effects coming from changes in the tax system

is smaller after changes in labor market returns have been accounted for because, after these

changes, fewer individuals are affected by the tax system.

— Figures 3 and 4 about here —

As argued above, an account of the rise in inequality between 1999/2000 and 2005/2006 that

does not mention the interaction between changes in the tax system and changes in labor market

returns may be seen as being incomplete. For example, for policy makers it will be of considerable

interest to know that and to what extent the distributional effects of their tax reforms depended

on how much remunerations in the labor market changed. Similarly, as a description of what

‘caused’ the inequality increase between the two periods, the summary information provided by

the Shapley decomposition may be misleading because the ‘average impact’ of a given factor

assumes that other factors are also changed to a certain effect (because interactions are partly

included). This may not be what one has in mind when asking for ‘the effect’ of a given factor.

By contrast, the decomposition with interaction effects leaves it to the reader to decide what

precise effect she is interested in.

— Table 4 about here —

5 Conclusion

This note has explored the challenges posed to sequential decomposition schemes by the existence

of interaction effects. It has been argued that, instead of attributing interaction effects in some
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specific manner to individual factors or averaging over possibly heterogenous sequences, they

can be reported separately and receive their own contribution in an additive decomposition. An

example analyzing distributional change has shown that interaction effects may be an interesting

feature of reality, e.g., because the effect of a policy may depend on how other factors have

changed, or because they allow one to better understand the precise mechanics of distributional

change.
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7 Appendix

Proposition 1. The contributions of a sequential decomposition scheme are path-independent

if and only if they are equal to the ceteris paribus effects for all possible decomposition orders.

Proof. If the contributions of the sequential decomposition scheme are path-independent, then

they are equal to the ceteris paribus effects because there is always a sequential decomposition

in which a given factor appears first, implying that its contribution is equal to the ceteris paribus

effect. On the other hand, if the contributions of a sequential decomposition scheme are equal

to the ceteris paribus effects for all possible decomposition orders, then they are independent of

the decomposition order and thus path-independent.

Proposition 2. The contributions of a sequential decomposition scheme are path-independent

if and only if all interaction effects as defined above are zero.

Proof. If the contributions of a sequential decomposition scheme are path-independent, then

they are equal to the ceteris paribus effects (Proposition 1). Then, all two-way interactions have

to be zero because, if the decomposition is path-independent, it does not make a difference
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whether a given factor appears in the first or the second position of the corresponding sequential

decomposition, i.e.

f1,1,(0,...,0) − f0,1,(0,...0) = f1,0,(0,...,0) − f0,0,(0,...0) (50)

(here the first position of the subscript refers to the given factor, the second position to another

factor, and the rest to all remaining factors). Equation (50) means that the two-way interactions

between the given factor and any other factor are equal to zero (see (15)). This holds for all

factors and all two-way interactions. Then, for any three-way interaction

int3 = total3 −

3∑

i=1

cpi −
∑

k∈P2

int2k = total3 −

3∑

i=1

cpi = 0 (51)

because, if the sequential decomposition of the m factors is path-independent, also the sequen-

tial decomposition involving only the three factors under consideration is path-independent, i.e.

total3 =
∑3

i=1 cpi (in any path-independent sequential decomposition with three factors, the

contributions are equal to the ceteris paribus effects, see Proposition 1). Using this argument

recursively,

intj = totalj −

j∑

i=1

cpi −
∑

k∈P2

int2k −
∑

k∈P3

int3k − . . .−
∑

k∈Pj−1

int
j−1
k = 0 (52)

for all remaining j = 4, . . . , m (because all preceding (j−1)-way interactions are zero and totalj =
∑j

i=1 cpi because of path-independence). This establishes that if the sequential decomposition

scheme is path-independent, all interaction effects have to be zero.

On the other hand, if all the interaction effects are zero, then for any number of factors j ≤ m

totalj =

j∑

i=1

cpi + interactions =

j∑

i=1

cpi. (53)

Consider the case of m factors and take any sequential decomposition with order O. We will

show that the contributions in this decomposition are equal to the ceteris paribus effects of the

corresponding factors. The contribution of the first factor in O is equal to the ceteris paribus

effect of this factor by definition. Now consider the second factor. Its contribution in the

sequential decomposition is f1,1,(0,...,0) − f1,0,(0,...0) (the first subscript refers to the first factor

in O, the second to the second factor, and the rest to all other factors). But this contribution

is equal to f0,1,(0,...,0) − f0,0,(0,...0) = cp2, i.e. the ceteris paribus effect of factor two because

there are no two-way interactions (see (16)). Now consider again sequential decomposition O

but only the sequential sub-decomposition in O that involves the first three steps. Because all
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interaction effects are zero, in this three factor sequential decomposition it also holds that total3

is equal to the sum of the ceteris paribus effects of the the three factors, i.e. total3 =
∑3

i=1 cpi

(see (53)). This means that in sequential decomposition O (which shares the first three steps

with the sub-decomposition), the contribution of the third factor is equal to cp3 (because the

contributions of the first two factors were cp1 and cp2). The same argument applies recursively

to the contributions of factors 4, 5, . . . , m in O. This means that if all interaction effects are

zero, in any sequential decomposition O the contribution of each factor is equal to its ceteris

paribus effect. This is equivalent to the sequential decomposition scheme being path-independent

according to Proposition 1.
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8 Figures

Figure 1 – Illustration of Oaxaca-Blinder decomposition with interaction term
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Notation: xM , xF represent mens’ and womens’ average characteristics,

βM , βF represent their regression coefficients

Figure 2 – Illustration of the decomposition with three factors involving interaction effects
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Figure 3 – Counterfactual income distribution if only labor market returns are changed (dashed

line) vs. factual distribution (bold line).
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Source: GSOEP, own calculations. The graph shows the density of log equivalized incomes.

Figure 4 – Counterfactual income distribution if only the tax system is changed (dashed line) vs.

factual distribution (bold line).
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Source: GSOEP, own calculations. The graph shows the density of log equivalized incomes.
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9 Tables

Table 1 – Oaxaca-Blinder decomposition of wage differentials between the services

sector and other sectors of the economy

Average wage other sectors 2.7258 (0.0072)

Average wage services sector 2.5803 (0.0115)

Difference 0.1454 (0.0136)

Characteristics effect 0.0834 (0.0086)

Coefficients effect 0.0830 (0.0115)

Interaction effect -0.0210 (0.0040)

Source: German Socio-Economic Panel, 2005. Standard errors shown in parentheses.

Standard errors and point estimates were computed as described in Jann (2008).
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Table 2 – Coefficients and endowments in wage example

Coefficient Average endowment

Other sectors

Education 0.0721 (0.0022) 12.8174 (0.0417)

Experience 0.0321 (0.0029) 16.6536 (0.1280)

Experience squared -0.0007 (0.0000) 349.715 (4.5973)

Tenure 0.0131 (0.0008) 11.114 (0.1319)

Female -0.1689 (0.0126) 0.4489 (0.0074)

Constant 1.4666 (0.0390) - -

Observations 4356 - - -

Services sector

Education 0.0783 (0.0036) 12.6519 (0.0535)

Experience 0.0314 (0.0045) 15.3221 (0.1652)

Experience squared -0.0007 (0.0001) 303.473 (5.7538)

Tenure 0.0185 (0.0014) 8.8625 (0.1584)

Female -0.2643 (0.0198) 0.5252 (0.0099)

Constant 1.3103 (0.0613) - -

Observations 2519 - - -

Source: German Socio-Economic Panel, 2005. Standard errors shown in parentheses.

Standard errors and point estimates were computed as described in Jann (2008).
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Table 3 – Decomposition with interaction effects

Absolute Percentage of

overall change

total .0298 100 -

cp1 (Returns) .0105 35.09 (6.50)

cp2 (Tax system) .0075 25.10 (3.93)

cp3 (Other factors) .0147 49.41 (12.38)

int12 -.0036 -12.08 (3.31)

int13 .0005 1.75 (5.53)

int23 .0009 3.22 (10.67)

int123 -.0007 -2.51 (5.07)

Source: German Socio-Economic Panel. The decomposition decomposes the change in income inequality between

1999/2000 and 2005/2006 as measured by the Theil coefficient, Theil2005/2006−Theil1999/2000 = .1303−.1005 =

.0298, into different components. The bootstrap standard errors shown in parentheses take into account the

longitudinal sample design, the clustering of observations within households, and stratification.
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Table 4 – All possible sequential decompositions and Shapley decomposition

1,2,3 1,3,2

Returns 35.09 (6.50) 35.09 (6.50)

Tax system 13.02 (4.22) 13.73 (10.75)

Other factors 51.88 (7.48) 51.17 (11.27)

2,3,1 3,1,2

Returns 22.24 (7.35) 36.84 (6.18)

Tax system 25.10 (3.93) 13.73 (10.75)

Other factors 52.64 (8.66) 49.41 (12.38)

2,1,3 3,1,2

Returns 23.00 (5.85) 22.24 (7.35)

Tax system 25.10 (3.93) 28.33 (11.58)

Other factors 51.88 (7.48) 49.41 (12.38)

Shapley (=average)

Returns 29.08 (5.68)

Tax system 19.83 (6.56)

Other factors 51.06 (8.57)

Source: German Socio-Economic Panel. For example, the sequence ‘3,1,2’ means that factor 3 (= all other factors)

is changed first, then factor 1 (= labor market returns), and then factor 2 (= tax system). The bootstrap standard

errors shown in parentheses take into account the longitudinal sample design, the clustering of observations within

households, and stratification.
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