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Abstract. Mathematical functions are derived which 
model the retinotopic mapping in the cat's visual 
cortical areas 17, 18, and 19. All three mappings are 
simple modifications of a complex power function with 
an exponent of 0.43. This function is decomposed so 
as to give an intermediate stage which is common to all 
three mappings and can be regarded as a model of the 
lateral geniculate nucleus mapping. The influence of 
retinotopic mapping on visual receptive fields was 
studied. The results show that a dependence of the 
receptive field properties on the position in the visual 
field is to be expected. 

1 Introduction 

Since the work of Daniel and Whitteridge (1961) on the 
retinotopic mapping of the visual field in the cortical 
area V1 of monkeys, a considerable amount of data on 
receptotopic mapping in different regions of the brain 
and in a variety of species has been collected. There 
have also been some attempts to derive a concise 
mathematical formulation of the retinotopic trans- 
formations. The concept of complex logarithmic 
mapping (Fischer, 1973; Schwartz, 1977) proved to be 
especially well suited to model the retinotopic distor- 
tion in the monkey (cf. Allman and Kaas, 1971 ; Daniel 
and Whitteridge, 1961). However, the mapping in the 
cortical area 17 in the cat (Tusa et al., 1978) resembles 
the complex logarithmic mapping only poorly. 
Schwartz (1980) and Epstein (1984) made attempts to 
reconcile the data ofTusa et al. (1978) with the concept 
of complex logarithmic mapping, but they only suc- 
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ceeded by treating the upper and lower part of the 
visual hemifield differently. Furthermore, the decrease 
of the areal magnification factor at higher eccentricities 
in the cat does not show the inverse square law that 
would be predicted for complex logarithmic mapping 
(cf. Sect. 3.1). 

In this paper, a concise description of the reti- 
notopic mapping in the cat's area 17 as revealed by 
Tusa et al. (1978) is derived. It turns out that simple 
modifications of the function constructed for area 17 
can model even the perimeter charts of areas 18 and 19 
(cf. Tusa et al., 1979). The resulting mapping is no t  

conformal and therefore complex variables are used 
only heuristically. 

As a first application, the effect of the derived 
mapping on visual receptive fields is studied in Sect. 6. 

2 The Mapping Problem Formalized 

The notion of receptotopic mapping means that a 
point of a neural surface is assigned to each point of a 
sensoric surface in a continuous way, i.e., retinotopic 
mapping can be regarded as a continuous or at least 
piecewise continuous, vector valued function, the 
domain of which is the visual field. In this paper, the 
visual field V (i.e., the domain of the function) and its 
neural representation are treated as subsets of the 
plane, p2.  The function thus relates a point on a 
tangent screen in front of the animal with a point on a 
fiat map of a cortical area. It should be clear that this is 
perfectly equivalent to the mapping of a retinal point 
onto a point of the folded cortex, since both the 
relation of a point on the tangent screen to a retinal 
point and the correspondence between a fiat cortical 
map and the folded cortex are well known. In order to 
keep the results comparable with the data of Tusa et al. 
(1978, 1979), mappings are visualized by a parallel 
projection of a grid of spherical polar coordinates onto 
a plane (i.e. tangent screen). 
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Besides the actual perimeter charts, magnification 
factors are particularly useful in studying retinotopic 
mapping. There is a lot of data on areal magnification 
relating a given area of the visual field to the area of the 
corresponding cortical representation. When reti- 
notopic mapping is considered as a function, the areal 
magnification factor corresponds to the absolute value 
of the Jacobian of this function. 

Let R : F ~ N  2, VCN 2, denote a retinotopic map- 
ping of the visual field F. The Jacobian JR of R is 
then defined as the determinant of R', i.e., 

ORu/~x, ~R~/~y 
JR (X, y)" = t~Rv/ax, aRJSy 

= t?gJt~x. ~R~/t?y- t?R,/@. ORv/Ox, (1) 

where Ru and R~ denote the components of the vector 
R(x, y). 

It should be noted that the linear magnification 
factor is not simply the square root of the areal 
magnification factor. This is only true for conformal 
mappings�9 In the more general framework of vector 
analysis, linear magnification may depend on the 
direction along which it is measured. 

Computations were done in FORTRAN IV on a 
Nova 3 computer. 

3 Construction of an Appropriate Function 

It seems rather unlikely that a simple function exists 
which fits the relative1 complicated looking perimeter 
charts. Therefore, it is necessary to look for a step-by- 
step approximation. However, there would be little use 
for a series expansion of the desired function since no 
neural equivalent of the summation of mappings seems 
to exist. A step-by-step approximation which can be 
interpreted in terms of neural systems is the subsequent 
application of several distortions, such as in the 
sequence retina - LGN (lateral geniculate nucleus) - 
area 17. In order to gain insight in retinotopic 
mappings one should therefore try to find a compo- 
sition of simple functions matching the data. The 
following information was used to make a suitable 
choice of functions. 

3.1 Magnification Factors 

A satisfactory fit to the data of Tusa et al. (1978) and 
Albus and Beckmann (1980) on the areal magnification 
along the horizontal meridian in area 17 is provided by 
the following power functions: 

M=cr -L13 (Tusa et al., 1978, Fig. 8), (2) 

M = c r  -1"59 (Albus and Beckmann, 1980, Fig. 15). 

(3) 

Here, r denotes eccentricity and c is an arbitrary 
constant. According to the data of Albus and Beck- 
mann, essentially the same power function fits the 
magnification in the areas 18 and 19, whereas the data 
of Tusa et al. (1979) indicate that the fit ought to be 
different in the peripheral parts of area 18. Equation (2) 
remains valid, however, in the central part of area 18 
and in area 19. In the following, (2) is therefore used as a 
constraint for all three mappings. 

In complex logarithmic mapping, the exponent in 
(2) and (3) is - 2 ;  it is therefore excluded from further 
analysis. The conformal mapping, the Jacobian of 
which behaves as M in (2) is a complex power function. 
In general, all mappings for which (2) holds are 
compositions of this complex power function which an 
equal-area distortion. It is therefore useful to consider 
this power function first. Let R : (x, y) ~(u, v) be defined 
by 

(u +jr) = (x +jy)P, (4) 

wherej is the imaginary unit. In real notation we have 

R : (x, y)~(u, v) : = (x 2 + y2)V/2 

(cos (p(2nn + arctany/x))'], 
�9 \ sin(p(2nn + arctan y/x)) ] (5) 

where n is a suitable integer. The Jacobian of R can 
now be readily computed: 

JR(x, y) = 2p2(x 2 + y2)p- 1. (6) 

From (2) we have 2 ( p - 1 ) =  -1.13, i.e., p=0.43. 

3.2 Topological Constraints 

The main difference between the maps of areas 18 and 
19 and that of area 17 is that the outer part of the 
horizontal meridian is represented twice in the former 
areas. This has been called a field discontinuity by Van 
Essen et al. (1981). In the complex power function with 
an exponent less than unity, this behaviour is well 
known for the left (i.e. negative) part of the real axis. It 
is due to the ambiguity of the arctan function (5). When 
approaching the negative real axis from above (y > 0), 
arctan(y/x) will evaluate to n for negative x, whereas 
when approaching the axis from below (y < 0) it will 
evaluate to - n. The complex logarithm, which in real 
notation requires the arctan, too, shows a similar 
behaviour. It should be noted, however, that in 
complex logarithmic mapping the discontinuity is not 
just a bifurcation of the real axis at zero, but rather the 
branches of the negative real axis are removed from its 
positive part. 

If the perimeter charts of areas 18 and 19 on the one 
hand and area 17 on the other are to be described by 
one function, it would thus be sufficient to mirror the 



47 

A 

,~ I -  In, 

a ) ~ ~  b) 

c) ~ d) 
Fig. 1. a Polar grid; b transformation of a polar grid by the 
complex power function (exponent 0.43); e by an eccentric power 
function R(x + 1, y); d by the two-step-modification R2(RI(x, y) 
+(1, 0)). The images of two points on the negative real axis are 
indicated. In b the negative real axis is split throughout, in e only 
the more peripheral part is split, but the point of greatest 
magnification is removed from the centre of gaze. In d both 
requirements are met 

visual hemifield in order to obtain negative coordi- 
nates in the precursor of the maps of areas 18 and 19. 
Figure lb shows the transformation of the entire visual 
field by the complex power function (p =0.43). The 
upper and lower left side of the plot may be regarded a 
first approximation of the area 18 map, bordering on 
area 17 (right) along the vertical meridian. Figure lc 
shows the function (u, v) = R((x, y) + (1,0)) (cf. 5), i.e. an 
eccentric power function. Here, the horizontal 
meridian in the left part is divided for larger eccentric- 
ities only. However, this leads to a new problem: in the 
area 18 map in Fig. lc, magnification is largest not at 
the area centralis, but at the branch point, where the 
horizontal meridian forks. It is therefore necessary to 
separate the part of the function responsible for the 
magnification from that generating the discontinuity. 

This is done by decomposing the function R as 
defined in (5) into two parts, R1 and R2, R=R2oR1 ,  
where "o"  stands for composition. R 1 contains the 
radial compression responsible for the magnification 
factor: 

R 1 : (x, y)-*(s, t) = (x, y). (x 2 + y2)(p- 1)/2, (7) 

R 2 contains the tangential compression, which gives 
rise to the discontinuity: 

R2 : (s, t)--*(u, v) = (s 2 + t2) 1/2 

(cos (p(2nzc + arctant/s))~ 
�9 \ sin(p(2nrc + arctan t/s))/" (8) 

R2 is equal-area except for a constant 2p. 
Figure ld shows the transformation of the polar 

grid obtained by the function (u,v)=R2(Rx(x,y) 
+(1,0)), i.e. the shift necessary to keep part of the 
negative axis undivided is introduced only after the 
radial compression. Thus, the point of largest magnif- 
ication has become independent from the branch 
point. Clearly, the mapping in Fig. ld  is no longer 
conformal. 

The function R2(Rl(x,y)+(1,O)) appears to be 
equally suited to model both area 18 and area 19. After 
all distortions have been performed, the plot has to be 
mirrored at the vertical axis once more to obtain an 
area 19 model. 

3.3 Additional Equal-Area Distortions 

In order to match the perimeter charts published by 
Tusa et al. (1978 and 1979), additional equal-area 
distortions were composed with the two steps R1 and 
R2. Although there is a large variety of equal-area 
mappings, only shifts and linear distortions were used, 
i.e.: 

These are the simplest functions that could be chosen; 
besides shifts, they represent rotations, compressions 
or extensions of straight lines, and mirroring�9 

An important point not yet treated is the difference 
between the mappings in the upper and lower parts of 
the visual hemifield. It is modelled by the introduction 
of a linear distortion L 1 prior to the radial com- 
pression, R x. As depicted in Fig. 2 (first step), a linear 
distortion, though equal-area, may change the dis- 
tances of symmetric points in the upper and lower part 
of the hemifield from the centre of gaze�9 As a conse- 
quence, the effect of the radial compression increases 
with this distance. Thus, in the plot of R 1 o L 1 (Fig. 2, 
second step) a difference in the total area covered by 
the representations of the upper and lower part of the 
visual hemifield results. It therefore seems reasonable 
to fit the perimeter charts published by Tusa et al. 
0978, 1979) by a composition of the following type: 

R = R  2 ~ 2 oR1 oLI .  (10) 

The first two steps, R~ o L1, can be regarded as the 
LGN mapping (cf. Malpeli and Baker, 1975, for the 
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visual field LGN 

Fig. 2. Formation of the final 
mapping by the various steps 
explained in the text. The visual 
field is represented by a grid of 
spherical polar coordinates 

monkey), which is most probably a common precursor 
of all three cortical maps. 

3.4 Final Model 

The final model and the steps leading to it are depicted 
in Figs. 3 and 2, respectively. Starting with a spherical 
polar grid for the visual field, a linear distortion is 
performed as a common step for all three cortical areas. 
In the path leading to area 17 it is shifted a bit to the 
right and down, and in the path leading to areas 18 and 
19 it is shifted left and up, so that spatial zero remains 
on the representation of the horizontal meridian. 

L x 
- \ - 0 . 0 8 /  

(11) 
The shift is added in the path leading to area 17 and 
subtracted in the one to area 18. Now, function RI is 
applied to the two shifted grids (only one is shown in 
Fig. 2). The constant p in (7) takes the value 0.43, which 
fits the magnification data of Tusa et al. (1978). The 
resulting intermediate stage is essentially common to 
all three mappings and may be regarded as a model of 
the L G N  map. It exhibits the difference in total area of 
upper and lower part of the visual hemifield. The 
decrease in magnification at greater eccentricities is 
already fully developed and is not altered in the 
subsequent steps. 

The linear distortion L2, which now follows, essen- 
tially contains all differences between the cortical 

mappings. In the path towards area 17, it deviates only 
a little from identity and might have been omitted. For  
the precursors of areas 18 and 19 one has to observe the 
following constraints: first, the representations of the 
horizontal meridian in the two grids has to be hori- 
zontal with negative orientation in order to make the 
function R 2 split the more peripheral parts along this 
meridian. Second, the representations of the vertical 
meridian in the precursors of areas 17 and 18 and the 
representations of the horizontal meridian in the 
precursors of areas 18 and 19 ought to be equal. This is 
necessary to make the transition from one area to 
another continuous. The matrices and shifts for the 
functions L 2 a r e  presented in Table 1. 

Finally, the tangential compression, R 2 (8), was 
performed in all three mappings. With p = 0.43 in (8), 
one obtains the results for areas 17 and 18. Since the 
representation of the horizontal meridian in area 19 
borders on the one in area 18, the tangential com- 

Table 1. Parameters for the function L 2 in the mappings of areas 
17, 18, and 19 [-Nomenclature as in (9)] 

Area Matrix Shift 

a b c d uo Vo 

17 0.7 0.1 -0.2 0.9 0.15 0 
18 -0.225 0.1 0.4 0.9 0.15 0 
19 -0.534 -0.6 0.267 0.6 0.15 0 
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Fig. 3. Final model of the retinotopic mapping in the areas 17, 18, 
and 19. Those parts of the visual field that are not represented in 
the brain are omitted. The gaps can be closed in a three- 
dimensional model 

pression has to be somewhat lower here; the appropri- 
ate choice for p is 1 - 0.43 = 0.57. As already mentioned 
in Sect. 3.2, an additional mirroring is required for the 
map of area 19. 

All three perimeter charts are drawn together in 
Fig. 3. No additional shifts were necessary to make 
them border on one another. Those parts of the visual 
field that are not represented in an area according to 
Tusa et al. (1978, 1979), were omitted. There are two 
gaps in this map that do not occur in the corresponding 
figure of Tusa et al. (1979, Fig. 2): first, the most 
peripheral parts in the lower visual field in areas 18 and 
19 should border on one another. This can be obtained 
in a three-dimensional folding. If the borders of areas 
18 and 19 are joined together as indicated by the arrow, 
a fold results which may be interpreted as the lateral 
sulcus of the brain. The second gap lies between the 
representations of the vertical meridian in areas 17 and 
18. It can also be closed in a folded map, when area 18 is 
bent downwards relative to area 17. For this proce- 
dure, area 17 should be slightly magnified. 

4 Discussion 

The presented function differs from previous formal- 
ization in two points: first, it uses the complex power 
function instead of the complex logarithm. The power 
function fits magnification data (2, 3) and provides an 
adequate model of the field discontinuity (Van Essen et 
al., 1981) or second order transformation of the visual 
field in areas 18 and 19. Second, the mapping finally 
derived is not conformal due to the composition with 

linear distortions other than rotations. Although the 
concept of conformal mapping is largely used in studies 
on the monkey, there seems to be no theoretical reason 
why a retinotopic mapping should be conformal. Even 
if morphogenesis implies a conformal mapping as a 
solution of some diffusion equation (Schwartz, 1977), it 
may be concealed in the adult animal by allometric 
growth of the cortex occurring after the formation of 
the connections. 

For the presence of a linear distortion in the 
retinotopic mapping of the cat, there is additional 
evidence from the paper by Epstein (1984), who 
suggested that the deviation of the cat's mapping from 
the complex logarithm may be interpreted as a correc- 
tion of the cat's distorted view of the ground it stands 
on. This perspective foreshortening is approximately 
equal to a parallel projection along an oblique line, i.e., 
a linear distortion. The inverse distortion, which is 
necessary for the compensation, is linear, too, and 
actually resembles the mapping L 1 in (11) and Fig. 2. 

Linear distortions in the brain can be produced by 
a very simple mechanism: suppose an orderly orga- 
nized bundle of nerve fibres meets a sheet of nerve cells 
at an oblique angle. The resulting mapping would then 
be an oblique projection, i.e. a kind of linear distortion. 
Mirroring may be obtained even more easily when a 
neural surface receives and emits fibres on the same 
side. Finally, rotations can be constructed as a compo- 
sition of mirrorings. 

In order to obtain the final result of Fig. 3, it is not 
necessary to perform the steps of the distortion in 
exactly the same order as depicted in Fig. 2. For 
example, it is possible to perform the mirroring in L2 
(precursor of areas 18 and 19) in L1, since the 
composition of R1 with mirrorings and rotations is 
commutative. This, of course, would considerably 
change the components of the matrices of L1 and L2. 

In addition to the shift in L 2 (cf. Sect. 3.2), a first 
shift is already performed in distortion La. When a shift 
is performed only in L2, as shown in Fig. ld, a strong 
correlation exists between the width of area 18 and the 
curvature of the vertical meridian in area 17. In order 
to meet both requirements, a narrow area 18 and a 
smoothly curved vertical meridian in area 17, an 
additional shift is required in L~. Then, of course, the 
point of greatest magnification appears at some dis- 
tance from the area centralis in the areas 18 and 19. A 
possible interpretation of this finding is that these areas 
receive a strong input from retinal Y cells, which are 
known to be more frequent at a certain distance from 
the area centralis. 

5 Conclusion 

Figure 3 shows that it is possible to model the 
retinotopic mappings in the LGN and the visual areas 
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17, 18, and 19 by closely related functions. The 
comprehensive model exhibits the general form of the 
mappings, the differences between the upper and lower 
part of the visual hemifield, and the field discontinuity 
in areas 18 and 19. The areal magnification is generated 
in the first two steps of the distortion, i.e. in the L G N  
mapping. This is well in line with the finding that areal 
magnification is essentially a consequence of the 
varying ganglion cell density in the retina. It follows 
that the third and fourth step, leading from the L G N  to 
the cortex, have constant magnification, as have the 
"mappings" of one cortical area onto another. 

The uniformity of the model for the three visual 
areas is in some contradiction to the largely accepted 
view that there is a fundamental difference between the 
mappings in areas 17 and 18, due to the discontinuity 
in the area 18 map. From the above results it follows 
that the area 18 map is in some sense a perfectly natural 
continuation of the area 17 map. Furthermore, there is 
no need for different models of the representations of 
the upper and lower part of the visual hemifield in area 
17 either. 

It is interesting that the differences between the 
three cortical maps stem from the presence or absence 
of such simple operations as mirroring or shift (step L2 
of the model), rendering the task of building multiple 
representations of the visual field a very simple one. 
Further, one might consider the possibility of neurally 
performed shifts, which would result in stimulus 
dependent variations of the retinotopic map. By the 
same token, the ontogenetic formation of such multi- 
ple representations could be governed by only one 
mechanism or morphogenetic field. 

The relationship of the mappings suggests a rela- 
tion of the functional properties of the three areas. As 
a first step towards the understanding of such a 
relation, the influence of the distortion on visual 
receptive fields is studied in the following section. 

6 Appendix 

Effect of the Mapping on Visual Receptive Fields 

A relatively simple method to investigate the func- 
tional relevance of retinotopic mapping is to study its 
influence on the receptive fields. A receptive field can be 
formalized by the so-called weighting function, which 
assigns to each point in the visual field the effect of a 
stimulus at that point on the cell studied. As a 
visualization, contour lines of the weighting function 
are used in Fig. 4. 

Suppose the processing in a cortical area can be 
described by a spatial convolution with a coupling 
function k(u, v). Let p(x, y) denote a "picture", i.e. a 
two-dimensional distribution of light; a mapping 

R:(x ,  y)~(u,  v) transforms this picture into a cortical 
input q(u,v)=p(R-l(u,v)) .  Let e(u,v) denote the 
excitation of a cell at the position (u, v). The con- 
volution then reads: 

e(u, v) = ~ I q(u', v ' ) k ( u -  u', v - v ')du'dv' .  (12) 

In order to calculate the weighting function from (12), 
one has to substitute R(x, y) for (u', v'). For fixed (u, v), 
the kernel of the resulting integral equation models the 
weighting function of the receptive field: 

e(u, v) = ~ ~ p(x, y)k((u, v) - R(x, y))lJR(x , y)ldxdy. (13) 

Here, JR is defined as in (1) 
From (13) it follows that the weighting function of 

the receptive field of a given cell is not just the back- 
projected cortical coupling function of that cell. 
Rather, this must be multiplied by the areal magnific- 
ation at each point. An interpretation of this finding is 
that the influence of a spot in the visual field on a 
cortical cell will be the stronger, the larger its represen- 
tation is. 

Figure 4 shows contour lines of a cortical coupling 
function (4b) and of the associated weighting function 
of the receptive field (4a). These lines show the points of 
equal excitation or inhibition imposed on the cell by a 
suitable stimulus presented at that point. The cortical 
coupling function chosen is rotationally symmetric, 
but the resulting receptive fields are clearly oriented 
and direction specific. This example fits well the data of 
Payne and Berman (1983), who measured the relation 
between receptive field properties and their absolute 

- 6 7 , 5  ~ 

- 4 5  ~ 

- 2 2 , 5  ~ 

2 2 , 5  ~ 

4 5  ~ 

Fig. 4a and b. b Contour lines of a cortical coupling function; 
a the associated weighting function of the receptive field. Intra- 
cortical coupling is symbolized by the difference of Gaussian 
functions. Although cortical coupling is isotropic, a given cell can 
be influenced most strongly from an asymmetric domain in the 
visual field. Vertically hatched: more than 30% of maximum 
excitatory influence; horizontally hatched; more than 70% of 
maximum inhibitory influence 



51 

posi t ion in the visual field. They  found that  orienta- 
t ions at right angles to the direction towards  the area 
centralis are more  frequent than  oblique ones. 
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