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Abstract

Differential equations, and in particular, ordinary differential equations (ODEs), are a central
aspect of scientific machine learning. For latent force inference in models based upon them,
traditional iterative optimization is expensive. Recently, new methods have emerged from
the area of probabilistic numerics, which can perform inference while only solving the ODE
once, yielding a posterior distribution over the inferred latent force. We repeat one of their
experiments, in which they inferred the contact rate of a SIRD model on data of the COVID-
19 outbreak, and show that just an inferred contact rate alone can not properly explain the
data. Then, we try to approximate a posterior distribution using Laplace approximations, in
order to quantify uncertainty.

3





Contents

1 Introduction 7

2 Foundations 9
2.1 The susceptible, infected, recovered and deceased model . . . . . . . . . . . . 9

2.1.1 Susceptible, infected and recovered-type models . . . . . . . . . . . . . 9
2.1.2 Mathematical formulation of the SIRD model . . . . . . . . . . . . . . 9
2.1.3 Numerical solvers for ordinary differential equations . . . . . . . . . . 10

2.2 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Lognormal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Maximum a posteriori estimation . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Adam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Newton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 BFGS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.4 Line search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Uncertainty quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.1 Laplace approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 General model and method 19
3.1 COVID-19 data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Model and implementation details . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Parameterized SIRD model . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Modeling the contact rate . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Other model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Learning the parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Experiments 23
4.1 Inferring the contact rate of artificial data with known contact rate . . . . . . 23

4.1.1 Generating an artificial data set . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Inferring the contact rate of real COVID-19 data . . . . . . . . . . . . . . . . 24
4.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5



6 CONTENTS

4.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Inferring the contact, recovery and death rate . . . . . . . . . . . . . . . . . . 28

4.3.1 Extending the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Adding uncertainty quantification to the model . . . . . . . . . . . . . . . . . 31
4.4.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Conclusion 35

A On the choice of hyperparameters 41
A.1 ODE solver tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.2 Optimization algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



Chapter 1

Introduction

Differential equations play a central role throughout many different fields of science, such
as physics, chemistry, medicine, meteorology, sociology or epidemiology, to give only a
few examples, where they very often are a core component of all kinds of different mod-
els and mechanisms. It is thus no surprise that the area of scientific machine learning
(SciML) [BAB+19], combining scientific modeling, prominently via differential equations,
with machine learning methods, has seen numerous recent developments and advances.

For example, [RPK17] and [RPK19] introduced physics informed neural networks that can
encode prior mechanistic knowledge in the form of partial differential equations (PDEs). This
encoded prior knowledge can vastly reduce the amount of data required for training the
neural network, which is in cases where data is not abundant and expensive to procure, such
as physics, a requirement that most other modern machine learning methods (in particular
deep learning) can not fulfill.

Other interesting advancements have been made eg. by [CRBD19], who introduced the
concept of Neural ODEs. These are essentially differential equations modeling residual
networks, where the hidden state is modeled by a neural network. The resulting model is
similar to a residual or recurrent neural network, but is continuous in terms of layer depth
or time respectively. It additionally provides the possibility to choose different ODE solvers
(introduced in Section 2.1.3) and tolerances in order to achieve a tradeoff between accuracy
and computation time. Furthermore, they emphasized that it is possible to backpropagate
through any ODE solver using adjoint and sensitivity analysis in constant memory and
without the need to backpropagate through individual solver calculations, making training of
larger models feasible.

Another big contribution was lately made by [RMM+21]. They published the SciML software
ecosystem, which provides a big suite of high-performant tools for scientific modeling. Sharing
a common mathematical foundation they call universal differential equations (UDEs), all
individual parts of the SciML ecosystem together enable very efficient and simple to use
tools for scientific modeling and learning those models via other machine learning methods,
such as gradient-based optimization.

However, while learning differential equation based models or parameters thereof via iterative
optimization methods is very powerful, it is also very expensive. Typically, with these methods,
the differential equation has to be solved in every iteration, which increases computational
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8 CHAPTER 1. INTRODUCTION

requirements and computation time for training such models, in particular with very large
and complex models. To address this problem, [SKH21] have very recently developed a new
algorithm that allows inference on latent forces in ODEs while only needing to run a solver
once. Their approach, built on the foundation of probabilistic numerics [HOK22], employs
Bayesian filtering to solve ODEs [TKSH19], yielding both a posterior over the ODE solution,
as well as the latent force.

In light of this new approach, this thesis aims to replicate the experiment by [SKH21] in
which they inferred the contact rate of an epidemiological SIRD model (see Section 2.1 for
an introduction), but using a more traditional approach based on iterative optimization
of point estimates. We will also infer the contact rate similarly to [SKH21], at first for a
generated data set with known true contact rate, and then on a real data set. Additionally,
we will extend the model to also infer the recovery and death rate, and then try to quantify
uncertainty using Laplace approximations (see Section 2.5.1). The overall goal of the thesis
is to obtain a baseline for this model and data set, with which the newer approaches can be
compared.

Chapter 2 contains the theoretical foundations of this thesis, Chapter 3 details the method
and implementation. Chapter 4 contains the individual experiments conducted and discusses
their results, and finally, Chapter 5 provides a summary and conclusion of the thesis.



Chapter 2

Foundations

2.1 The susceptible, infected, recovered and deceased
model

2.1.1 Susceptible, infected and recovered-type models
In epidemiology, susceptible, infected and recovered (SIR)-type models are a simple tool
for modeling epidemics [Het00]. They describe transitions of individuals between different
classes through a system of ordinary differential equations (ODEs), and therefore constitute,
given initial values for every class, an ODE initial value problem.

SIR-type models assume a population of constant size P , which is subdivided into at least
the class S for individuals susceptible to the disease, the class I for infected individuals, and
the class R for individuals who recovered from the disease. However, many models of the
SIR-type family extend the model, for example by also modeling changes in the population
size, making it more suitable for longer term (endemic) modeling [Het00] or by introducing
more classes, such as for example the SIDARTHE model proposed by [GBB+20] that they
used to model the COVID-19 epidemic outbreak in Italy, or the SEIR model that was used
by [LZG+20] to model the COVID-19 epidemic outbreak in Wuhan, including individual and
governmental reactions.

This thesis will use the SIRD model, also being an extension of the classical SIR model, to
fit and infer parameters of the COVID-19 epidemic outbreak in Germany. The next section
will describe that model. The SIRD model, which is used in this project, introduces the class
D which represents individuals that died due to the disease.

2.1.2 Mathematical formulation of the SIRD model
The susceptible, infected, recovered and dead (SIRD) model [Het00] extends the standard S,
I and R classes (see Section 2.1.1) by a fourth class D, representing deceased individuals. The
model is an initial value problem (IVP), and models the transitions between these classes
using the ODE system

Ṡ(t) = −βS(t)I(t)/P Ṙ(t) = γI(t)

İ(t) = βS(t)I(t)/P − γI(t)− ηI(t) Ḋ(t) = ηI(t)
(2.1)

9



10 CHAPTER 2. FOUNDATIONS

with initial values S(0) = S0 , I(0) = I0 , R(0) = R0, D(0) = D0.

In these equations, the variable β ∈ [0 , 1] represents the contact rate between individuals,
γ ∈ [0 , 1] the recovery rate and η ∈ [0 , 1] the mortality rate. Later on, in Section 4.3.1, we
will also extend the model by replacing these constants with time-dependent functions, just
like β.

Since the SIRD model is an ODE initial value problem with no closed form solution, we
need to numerically estimate the individual values for S(t) , I(t) , R(t) , D(t) over time. This
numerical approximation can be computed by ODE solvers, which will be introduced in the
next section.

2.1.3 Numerical solvers for ordinary differential equations

Numerical solvers for ordinary differential equations (ODE solvers) can, as the name implies,
approximately solve ODE initial value problems by computing a numerical approximation at
discrete time steps. There are many different ways of obtaining such solutions, for example
the very basic Euler’s method [Eul68]: Given an ODE ẏ(t) = f(t, y(t)) with initial value
y(t0) = y0, a step size h > 0, and discrete time steps tn+1 = tn + h, Euler’s method now
approximates y(t) by simply taking steps of size h along the derivative, resulting in the
approximation

y(tn+1) = y(tn) + hẏ(tn) = y(tn) + hf(tn, y(tn)) . (2.2)

In this equation, we can see that the left-hand side, which is the approximation at the next
time step y(tn+1), is explicitly defined in terms of f , the step size h and the approximation of
the previous time step y(tn). which makes Euler’s method an explicit ODE solving method.
There is a multitude of different explicit ODE solvers, such as for example the class of (explicit)
Runge-Kutta methods (see for example [But08]), which also contains Euler’s method.

Some ODEs are stiff, which means that many solvers compute unstable solutions with normal
step sizes. For stiff ODEs, it is usually better to use implicit methods. In implicit methods,
the above condition does not hold: The left-hand term y(tn+1) is only implicitly defined,
which means it also occurs on the right-hand side, and, because of that, additional non-linear
equations need to be solved. For example, there is an implicit version of Euler’s method (as
explained in [But08]), which looks almost the same as the explicit Euler method, except that
on the right-hand side, y(tn) is replaced by y(tn+1), resulting in

y(tn+1) = y(tn) + hẏ(tn) = y(tn) + hf(tn, y(tn+1)) , (2.3)

where we then need to solve this new algebraic equation for y(tn+1). This means that implicit
methods are generally more expensive to compute (per step), but they are usually more
stable in the case of stiff ODEs. Prominent are, again, the class of implicit Runge-Kutta
solvers, which for example also contains the implicit version of Euler’s method.

In this thesis, we will use a solver belonging to the class of Rosenbrock methods [PTVF07],
which can be seen as semi-implicit: They work similarly to the aforementioned implicit
methods, but instead of fully solving the non-linear equations at each step, they only perform
one step toward that solution, and are also suitable for stiff problems [But08].

Implementations of ODE solvers usually allow for automatic step size control [But08]: They
allow specification of an error tolerance, and can choose the next step size automatically at
every iteration.
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2.2 Maximum likelihood estimation
Given some data set D = {(t1, d1), . . . , (tn, dn)} and a model distribution M, we can formulate
the likelihood of the data D given M, which is the probability of the data D occurring under
M:

L(M ;D) = p(D | M) = p((t1, d1) | M) · · · p((tn, dn) | M) = M(t1) · · ·M(tn) . (2.4)

The principle of maximum likelihood estimation (MLE) now is to choose the model distribution
M such that the likelihood L(M ;D) is maximized, or, in other words, to choose the model
under which the data has the highest probability.

However, in practice, we usually can’t just estimate an arbitrary model distribution Mθ(t).
For obtaining MLE estimates, usually a parametric distribution is chosen for Mθ(t), and
instead of finding a distribution that maximizes the data, we only need to maximize over θ,
leading us to the MLE estimate

θ̂ML = argmax
θ

L(θ ;D) . (2.5)

2.2.1 Normal distribution
If we assume that the model distribution is a (multivariate) normal distribution with mean
vector fθ(t) ∈ Rk and covariance matrix Σ ∈ Rk×k, and thus have a model distribution

p(di) = N (di ; fθ(ti) ,Σ) , (2.6)

where we want to calculate the MLE estimate for θ (but not for Σ), we can rearrange the
MLE from Equation 2.5 into

θ̂ML = argmax
θ

L(θ ;D) (2.7)

= argmax
θ

p(D | θ) (2.8)

= argmax
θ

n∑
i=1

log p(di | fθ(ti)) (2.9)

= argmax
θ

n∑
i=1

logN (di ; fθ(ti) ,Σ) (2.10)

= argmax
θ

−1

2

n∑
i=1

k log 2π + log det (Σ) + (di − fθ(ti))
⊤Σ−1(di − fθ(ti)) (2.11)

= argmax
θ

−1

2

n∑
i=1

(di − fθ(ti))
⊤Σ−1(di − fθ(ti)) (2.12)

= argmin
θ

1

2

n∑
i=1

(di − fθ(ti))
⊤Σ−1(di − fθ(ti)) , (2.13)

which, if Σ = diag(σ1 , . . . , σk), can be further simplified to

θ̂ML = argmin
θ

1

2

n∑
i=1

k∑
j=1

σ−1
k (dik − fθ(ti)k)

2 , (2.14)



12 CHAPTER 2. FOUNDATIONS

and, if Σ = Ik, even further to obtain

θ̂ML = argmin
θ

1

2

n∑
i=1

∥di − fθ(ti)∥22 . (2.15)

Therefore, maximizing the likelihood under a normal distribution is equal to minimizing the
L2-loss if the covariance matrix is the identity matrix. If the covariance matrix is diagonal,
but not the identity matrix, the individual entries σi correspond to different weighting of
their respective dimension, larger values will lead to lower weighting.

2.2.2 Lognormal distribution

The (multivariate) lognormal distribution describes the distribution of a random variable
whose (element-wise) logarithm is normally distributed:

d ∼ Lognormal (log θ ,Σ) ⇔ logd ∼ N (log θ ,Σ) (2.16)

The lognormal distribution is very useful for describing random variables that are assumed to
be influenced by various independent factors, but the effects are multiplicative as opposed to
additive as in the regular Normal distribution [LSA01], and are frequently used throughout
different disciplines of science, for example in medicine ([Sar50], [Sar52], [Sar66], [Kon77] as
cited by [LSA01]), economics ([CG05]) and many more.

Since we have defined the lognormal distribution in terms of the normal distribution, we can
derive the MLE estimate (if Σ is diagonal) from Equation 2.14 under the same preconditions,
except that the model distribution is a lognormal distribution, by simply replacing di with
logdi, and fθ(ti) with log fθ(ti), and obtain

θ̂ML = argmin
θ

1

2

n∑
i=1

k∑
j=1

σ−1
k (logdik − log fθ(ti)k)

2 . (2.17)

Similarly from Equation 2.15 and if Σ = I, it follows that

θ̂ML = argmin
θ

1

2

n∑
i=1

∥logdi − log fθ(ti)∥22 . (2.18)

Therefore, we can see that in the case of the lognormal distribution, θ̂ML minimizes the
L2-Distance between the log-transformed data points and the logarithm of the mean. This
loss objective will be used later for optimizing, and will be referred to as sum squared log
space error (SSLSE). For numerical reasons (especially if the data set contains zeroes), it is
also beneficial to add 1 before taking the logarithm in the loss, which would be equivalent to
add 1 to every point in the data set (and the model prediction) and then taking the SSLSE
of that. For individual points y, ŷ ∈ Rn, the SLSE used in this thesis is therefore given by

SLSE(y, ŷ) = ∥log(y + 1)− log(ŷ + 1)∥22 , (2.19)

where the logarithm is applied element-wise. The SSLSE is then the sum of the SLSE of the
individual data-prediction pairs.
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Also, note that here, we modeled the first parameter of the lognormal distribution with log fθ
instead of with fθ directly. By doing this, we obtain the equivalence

di ∼ Lognormal (log fθ(xi) ,Σ) ⇔ di = fθ(xi) ∗ ϵ , ϵ ∼ Lognormal (0 ,Σ) , (2.20)

which means that fθ is still a point estimate for the data points, with a lognormally distributed
multiplicative error, analogously to the additive error with the normal distribution. If we
had instead modeled the parameter of the lognormal distribution with fθ directly, we would
get point estimates for the data with exp(fθ).

2.3 Maximum a posteriori estimation
The MLE estimate is a point estimate of parameters that maximize the likelihood of given
data, but it can not leverage any sort of knowledge or prior information about the paramateres
that might exist already. However, if we do have prior information about the parameters in
form of a prior distribution p(θ), we can also formulate the maximum a posteriori (MAP)
estimate

θ̂MAP = argmax
θ

p(θ | D) (2.21)

= argmax
θ

p(D | θ)p(θ)
p(D)

(2.22)

= argmax
θ

p(D | θ)p(θ) (2.23)

= argmax
θ

logL(θ ;D) + log p(θ) , (2.24)

which incorporates this prior knowledge. If we look again at the result from Section 2.2.2, and
extend it by assuming a prior distribution p(θ) ∼ N (µp ,Σp), where Σp = diag(σp

1 , . . . , σ
p
k)

is diagonal, then we can further rearrange Equation 2.24, analogously to Equation 2.14,
resulting in

θ̂MAP = argmin
θ

1

2

n∑
i=1

∥logdi − log fθ(ti)∥22 +
1

2

k∑
j=1

(σp
k)

−1(µp
k − θk)

2 . (2.25)

This term, too, can be further simplified if the variances are equal (σp = σp
1 = · · · = σp

n), to
obtain

θ̂MAP = argmin
θ

1

2

n∑
i=1

∥logdi − log fθ(ti)∥22 +
(σp)−1

2
∥µp − θ∥22 . (2.26)

Thus, assuming a Normal prior parameter distribution is equal to regularization with an L2
norm penalty of the parameters, keeping them close to the prior distribution parameter µp.

2.4 Optimization
In the previous sections, we have seen that maximizing the likelihood or the posterior is,
in this case, equivalent to finding parameters that minimize some loss function. Very often,
the minimizer of that loss function can not be calculated in closed form, and thus has
to be numerically estimated. The process of finding such estimated minimizers is called
optimization, and there are many different optimization algorithms that can accomplish this.
This section introduces the three optimization algorithms that are used in this thesis.
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2.4.1 Adam

The Adam optimization algorithm, introduced by [KB14], is a first-order optimization
algorithm. It extends traditional stochastic gradient descent (SGD) by combining both the
momentum method [Pol64] and RMSProp [TH+12]. In essence, it calculates per-parameter
moving averages of the gradients (first momentum) and the (element-wise) squared gradients
(second momentum) in order to provide momentum and a per-parameter adapted learning
rate.

Adam works as follows: Let gk = ∇θf(θk−1) denote the gradient at iteration k. Then, the
first momentum term is given by

mk = β1mk−1 + (1− β1)gk , m̂k =
mk

1− βk
1

, (2.27)

and the second momentum term by

vk = β2vk−1 + (1− β2)gk ⊙ gk , v̂k =
vk

1− βk
2

. (2.28)

The parameter updates are then given by

θk = θk−1 − λ
m̂k√
v̂k + ϵ

. (2.29)

For some learning rate λ > 0 and ϵ > 0. All other values are initialized as zero. Because they
are zero initialized, mk and vk are biased (toward zero), m̂k and v̂k remove the bias.

2.4.2 Newton

Newton’s method for optimization (as described in [NW99]) is a simple and fast converging
second-order method. This means that, unlike first-order methods, it also makes use of
second-order derivatives (the Hessian matrix) of the optimization objective. The Hessian and
the first-order gradients are used in conjunction for a second-order Taylor approximation, a
quadratic function, which is then minimized instead in every iteration. Let Hk = ∇θ∇θf(θk−1)
be the Hessian and gk = ∇θf(θk−1) be the gradient at iteration k. Then, Newton’s method
calculates the step direction as

ρk = −H−1
k gk (2.30)

While taking the step ρk would minimize the Taylor-approximation in exactly one step,
but in practice, only a small step is taken in that direction, or a line search algorithm (see
Section 2.4.4) is used in order to determine an approximately optimal step length in that
direction.

Newton’s method, sounds compelling, but in practice, it’s often not optimal due to two major
problems: The first is that, while it can often converge fast, it often behaves in problematic
ways when far from the minimum or in regions with many local minima. The other problem
is that the seemingly harmless Equation 2.30 for the descent direction is often completely
intractable to compute: It requires both the time-consuming calculation of the Hessian, which
takes time O(n2) (if n is the number of parameters), and on top of that, its inversion, which
takes O(n3), making it impossible to use in problems with many parameters.
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2.4.3 BFGS algorithm
In order to reap the benefits of Newton’s method, but also scale to bigger problems than
Newton’s method can address, one can instead resort to the family of quasi-Newton opti-
mization algorithms. Algorithms of this family do not calculate the Hessian, but instead
approximate it using only gradient information, and therefore stay first-order and way less
computationally expensive.

Among the quasi-Newton optimization algorithms, the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm (after [Bro70], [Fle70], [Gol70], and [Sha70]) is perhaps the most popular
choice, and the one used in this thesis.

BFGS, as detailed in [NW99], works as follows: Let θ0 be the starting value that should be
optimized, and f(θ) the objective that should be minimized. Furthermore, let B0 ≈ H−1

0 be
the first (positive definite and symmetric) approximation of the inverse Hessian (which is
often just set as the identity matrix, resulting in regular gradient descent in the first iteration,
but other initial values are also possible).

Then, the k-th iteration of the BFGS algorithm goes as follows: First, obtain a direction pk
from the inverse Hessian approximation and the current gradient:

pk = −Bk∇θf(θk) (2.31)

Then, calculate (approximately):

αk = argmin
α

f(θk + αkpk) (2.32)

In practice, αk is found using a line search algorithm (see Section 2.4.4). This results in the
increment sk = αkpk and we can update θ by this increment:

θk+1 = θk + sk (2.33)

The key part of BFGS is updating the approximation of the inverse Hessian. For this, set

yk = ∇θf(θk+1)−∇θf(θk) (2.34)

and
ρk =

1

y⊤
k sk

(2.35)

The updated inverse Hessian approximation is then given by the formula

Bk+1 = (I − ρksky
⊤
k )B(I − ρkyks

⊤
k ) + ρksks

⊤
k (2.36)

This procedure is repeated until a convergence criterion is reached. Both the computational
and the time complexity of one iteration of the BFGS algorithm are quadratic in |θ|.

2.4.4 Line search
Both Newton’s method (in practice) and BFGS perform line search in order to determine
optimal step lengths. A line search algorithm, as described in [NW99], usually determines a
direction pk and a step length αk in every iteration, which sufficiently minimize an objective
function. In the case of the line search used in Newton’s method and in BFGS, the direction
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is already determined by the respective method, and only the optimal step length αk needs
to be determined, so a line search algorithm only needs to approximate

αk ≈ argmin
α

f(xk + αkpk) , (2.37)

as for example required in Equation 2.32 for BFGS. There are various different line search
algorithms, providing different balances between how good αk is (ie. how good the function
is minimized), and how many individual steps or evaluations of f are needed in order to
determine it.

A simple line search method is for example backtracking (as written in [NW99]), which, as
the name suggests, starts with an initial guess α(1) = α, and then successively decreases the
current candidate exponentially by multiplying it with a factor m ∈ (0, 1)

α(n+1) = mα(n) , (2.38)

until a sufficiently good α(n) is found. In this case, α(n) is deemed good if it satisfies

f(xk + α(n)pk) ≤ f(xk) + cα(n)∇xf(xk)
⊤pk (2.39)

for some chosen c ∈ (0, 1).

Another more sophisticated line search algorithm based on conjugate gradients was described
by [HZ06], which is what we will use in the majority of our experiments. We will refer to
this line search algorithm as HagerZhang line search.

2.5 Uncertainty quantification
The MLE and MAP estimates introduced in Section 2.2 and Section 2.3 are simple point
estimates. However, it is often very desirable to have a (posterior) distribution over the
parameters instead, as this distribution directly reflects the uncertainty of the model regarding
the parameters.

There have been different approaches toward this. For example, [Bis94] introduced Mixture
Density Networks, which combines neural networks with mixture density models, and can also
model other distribution parameters. A different possibility that has recently been explored
for uncertainty quantification are ensemble methods [LPB17], which encompasses training
multiple models at once and combining their individual predictions. Often used are also
different kinds of Markov Chain Monte Carlo (MCMC) methods (see for example [BGJM11]),
which can approximate probability densities by repeated sampling. MCMC methods can be
very costly if good approximations are required, as many samples are required, and during
sampling, many function evaluations are necessary, which can be especially problematic if
the function is expensive, as is the case in the SIRD model, as every evaluation involves
solving the ODE given by it.

Another very compelling way of uncertainty quantification that does not involve expensive
sampling is realized through the usage of Laplace approximations, which are explained in
the next section.

2.5.1 Laplace approximations
Laplace approximations were first introduced to the domain of machine learning by [Mac92],
and recently, have been demonstrated to scale up to and be useful even in modern, bigger
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networks [RBB18]. They provide an easy way of providing uncertainty estimation, and can
be used post-hoc (after training on a point estimate) without having to change anything
about the training itself [DKI+22]. Furthermore, they also enable marginal likelihood-based
model selection and hyperparameter tuning [IBF+21].

The basic idea behind Laplace approximations is as follows: Equation 2.21 almost provides
the formula of the posterior parameter distribution p(θ | D), but it is unnormalized, since the
normalizing factor p(D) (in Bayesian terms called the ‘evidence’ for the data D) was dropped.
This normalizing factor is intractable, and thus we can’t calculate the true posterior.

This is where Laplace approximations come into play: They allow us to approximate this
otherwise intractable distribution with a Gaussian: Let θ∗ be a mode of the unnormalized
posterior p(D | θ)p(θ). The MAP estimate introduced in Section 2.3 suffices this per definition,
so it is possible to obtain the MAP estimate first through regular optimisation, and then
perform the Laplace approximation with θ∗ = θ̂MAP. Then, we can approximate the posterior
as

p(θ | D) ≈ N (θ ;θ∗ ,S−1) (2.40)

Where S is the (positive definite) Hessian matrix of the log unnormalized posterior at the
mode θ∗:

S = −∇θ∇θ (log p(D | θ∗)p(θ∗)) (2.41)

As we are only working with a small number of parameters, completing the full Hessian
matrix is completely tractable, and we do not have to approximate it through other means.

Since this approximation yields a distribution over the parameters θ (given the data D), we
can use it to draw random weight samples from this distribution and parameterize the model
with these samples, allowing us to obtain an (approximate) distribution of model outputs.





Chapter 3

General model and method

In this section, the data set and the model used in the experiments in Chapter 4 will be
explained, as well as how the model will be optimized. The following will generally apply to
all experiments, except where specified otherwise.

3.1 COVID-19 data set
As [SKH21], we will use the COVID-19 data set published by the Johns Hopkins University
Center for Systems Science and Engineering [DDG20]. This data set contains, starting on
January 22, 2020, the daily numbers of total confirmed COVID-19 cases (ct), as well as the
numbers of recovered (rt) and deceased (pt) individuals that died during their COVID-19
infection. The population size will be fixed to P = 83.783.945 .

The complete training data set then is

D = {d0, . . . ,dT } ,dt = (St, It, Rt, Dt)
⊤ , (3.1)

which can be obtained by transforming the aforementioned public data set:

St = P − ct It = ct − pt − rt

Rt = rt Dt = pt
(3.2)

We will, as [SKH21], only model the data until July 16, 2021, ie. T = 541, for a total of 542
days.

3.2 Model and implementation details

3.2.1 Parameterized SIRD model
In all experiments, the SIRD model introduced in Section 2.1.2 will be used to predict the
number of susceptible (S), infected (I), recovered (r) and deceased (D) individuals of a
given data set, by inferring the latent, time-varying parametric force β which represents the
contact rate. The model itself will be denoted as

fθ(t) = (S(t), I(t), R(t), D(t)) , (3.3)

19
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where S(t), I(t), R(t) and D(t) are described by the ODE initial value problem formulated
in Equation 2.1, except that β is now parameterized by θ:

Ṡ(t) = −βθS(t)I(t)/P Ṙ(t) = γI(t)

İ(t) = βθS(t)I(t)/P − γI(t)− ηI(t) Ḋ(t) = ηI(t)
, (3.4)

with given initial values S(0) = S0, I(0) = I0, R(0) = R0, D(0) = D0. The parameter θ is
omitted from S, I,R and D for better visual clarity.

3.2.2 Modeling the contact rate
In all experiments, the contract rate, represented by β, is to be inferred as a latent parametric
force. It will be modeled as a weighted sum of Nβ Gaussians with equal width σβ and
individual weight parameters θi, which will be the learnable parameters. On top of this, to
ensure β(t) ∈ [0, 1], a sigmoid function is applied to the sum. The individual Gaussians are
each placed with their own extremum µi equidistantly across the interval [0− 2σβ , T + 2σβ ],
which means that the individual µi can be calculated as

µi =
i− 1

Nβ − 1
(T + 4σβ)− 2σβ . (3.5)

This padding by 2σβ in either direction allows for equal prior weight distribution everywhere,
even near the edges. Without padding, the prior weights for the Gaussian curves close to 0
or T would have to be scaled down. Figure 3.1b shows how the contact rate looks without
padding.

The mathematical formula for the parametric contact rate model is then given by

β̂(t) = σ

(
N∑
i=1

θiϕi(t)

)
, ϕi(t) = exp

(
− (t− µi)

2

2σ2
β

)
, (3.6)

where σ(x) = 1
1+e−x is the sigmoid function.

In all experiments, Nβ = 36 individual gaussian curves are used for the contact rate. We
assume a prior Normal distribution of the weights, with mean µwβ

= −1 and standard
deviation σwβ

= 0.01. During initialization, the weights are independently and identically
distributed (iid) drawn from this prior distribution. The resulting contact rates average at
around 0.114 . Figure 3.1a shows prior samples of the contact rate from this prior distribution.

3.2.3 Other model parameters
For the first two experiments, in accordance to [SKH21], we are using a constant recovery
rate of γ = 0.06 and a constant death rate of η = 0.002. In later experiments, the model will
be extended and instead of assuming fixed constants for the recovery and death rate, they
will also be modeled as a parametric latent force and inferred. The details of this extension
can be found in Section 4.3.1.

The data sets used in the experiments are usually problematic for our SIRD model: They
start with zero infections. Looking at the SIRD formulae (Equation 2.1 or Equation 3.4), it is
immediately obvious that, if at any point in time I(t) = 0, then it follows that I(t+∆t) = 0
for all ∆t > 0, or, in other words, if there are no infected individuals, nobody can catch an
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(a) with padding (as used in the experiments) (b) without padding

Figure 3.1: 100 Samples of the contact rate model with weights drawn from the prior
distribution used in the experiments, as explained in Section 3.2.2. The grey lines show the
individual samples, and the black lines show the average across the samples. Figure 3.1a
shows the contact rate with padding as was used in the experiments, and Figure 3.1b shows,
as can be seen by the higher contact rate at the beginning and end, why the padding is
necessary.

infection. This makes perfect sense for the model, as it assumes a constant population and
therefore does not model population size changes or people traveling in or out of the country,
but it also means that there have to be infected individuals initially. We can capture these
initially infected individuals in another (hyper-) parameter, which will be denoted as Iinitial.
Using this parameter, we can now use the initial values

S′
0 = S0 − Iinitial I ′0 = Iinitial R′

0 = R0 D′
0 = D0 , (3.7)

if the problem I0 = 0 arises. Note that, using this method, Iinitial can also be learned in
exactly the same manner as for example the weights for the modeled contact rate β. However,
for our experiments, we will just set Iinitial = 1, as we found no real benefit of also training
this parameter.

For solving the SIRD equations, we use the ‘Rosenbrock23’ ODE solver (see Section 3.3.1),
and we use a tolerance of 10−5 for both relative and absolute tolerances. This choice is
explained in Appendix A.1.

3.3 Learning the parameters
The model parameters will be learned by minimizing the SSLSE (see Equation 2.19) between
the data and the predicted I, R and D values. Like [SKH21], we will not use the class of
susceptible individuals S for loss calculation, as we do not have real data for S, but just
calculate it from the other classes based on the assumption of a constant population size.

For minimizing the loss, we will mainly make use of the BFGS algorithm introduced in
Section 2.4.3. The initial approximation of the inverse Hessian in the first BFGS iteration is
set to 0.1

∥∇θf(θ)∥I.

One possible pitfall with BFGS (and equally Newton) is that, during the line search, it
is possible that parameters have to be evaluated for which the ODE given by the SIRD
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equations becomes very stiff, to the point that the ODE solver we use produces unstable
solutions. We circumvent this problem by returning a very large number (1010) in the loss
function if the ODE solution is unstable. Importantly, this approach also causes all gradient
information to get lost, meaning that if an optimizer can only try parameters producing
unstable solutions, no further optimization can occur. This is especially important during
initialization, where this possible scenario has to be avoided by choosing sensible initializations
(which the initialization described earlier suffices).

3.3.1 Implementation details
This thesis makes use of the SciML software ecosystem [RMM+21] for the Julia programming
language [BEKS17]. All gradients are computed using forward mode differentiation, as imple-
mented by [RLP16]. For optimization algorithms (as listed in Section 2.4), [MR18] is used, the
ODE implementation and ODE solvers are provided by [RN17], and probability distributions
are used as provided by [LWB+19]. All plots and graphics are made using [CSR+23]. The
source code used for all experiments contained in this thesis is made available in a git repo1.

All experiments are executed on a standard desktop grade computer with an AMD Ryzen
3600 CPU.

1https://github.com/17ex/sird-contact-rate

https://github.com/17ex/sird-contact-rate


Chapter 4

Experiments

4.1 Inferring the contact rate of artificial data with known
contact rate

In the first experiment, we will generate an artificial data set with a known contact rate,
and evaluate how well the contact rate can be recovered. The goal is to show that, given all
model assumptions are fulfilled, the true contact rate can be recovered.

4.1.1 Generating an artificial data set

In this experiment, the same model will be used as described in Section 3.2. However, instead
of using real COVID-19 case numbers, instead, we generate an artificial data set, of which
we know the true contact rate.

Here, we accomplish this by drawing the ‘real’ weights from some distribution, which
determine the real contact rate. The distribution for this is a normal distribution, with mean
µβ1 = −0.78 for the first 10 weights, µβ2 = −1.275 for the next 15 weights, and µβ3 = −0.6
for the last 11 weights. For all weights, the standard deviation is σβ = 0.01. The numbers
here are chosen arbitrarily, but with the intention of generating an interesting data set that
can be interpreted: Using these numbers, we obtain a contact rate that starts out moderately
high, then rapidly decreases and stays low for a while, and is high at the end.

Next, the true case numbers for S, I, R and D can be obtained by simply solving the SIRD
equations, using the chosen parameters for the contact rate. On top of that, we will apply
multiplicative noise, as we assume a lognormal model distribution. The noise factors ϵi are
iid drawn from a lognormal distribution with µϵ = 0 location and scale factor σϵ = 0.01. The
generated data set, as well as the true contact rate, are depicted in Figure 4.1.

4.1.2 Method

The model used in this experiment is as described in Section 3.2, that is, we infer the contact
rate, but assume a fixed recovery and death rate. MLE estimates for the parameters are
determined using BFGS as explained in Section 2.4.3, with the HagerZhang line search (see
Section 2.4.4).

23
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4.1.3 Results

The final training loss (SSLSE) was 1.64228 (rounded), after 397 BFGS iterations in 9.5
minutes. Figure 4.1 shows the predicted S, I, R and D values, as well as the inferred contact
rate. We can see that the model was able to recover the true contact rate well, with some
slight deviations in the months around July 2020 and in the end (after April 2021). Both time
spans with the deviations match up with the time spans of higher noise in the infected class
I (or, in other words, with time spans of high infection counts, as the error is multiplicative).

4.1.4 Discussion

This experiment shows, using a toy example, that, at least if all the model assumptions are
fulfilled, the model is able to recover the true contact rate reasonably well. Furthermore,
this is even true if the prior contact rate guess is not close to the real one, and the data is
moderately noisy.

However, while it worked well under these artificial conditions, we don’t know how well this
transfers to over to the real COVID-19 statistics. Particularly, we don’t know how well the
SIRD model with variable contact rate can explain them, or how well our model of the
contact rate would work. In the next experiment, we will address these questions by applying
the same model to the real data set, and see how well we can infer the contact rate on the
real data set.

4.2 Inferring the contact rate of real COVID-19 data

This experiment examines whether we can also infer the contact rate of the German COVID-19
statistics using the same model that worked for the toy example in the previous experiment.

4.2.1 Method

We use both data set as described in 3.1 and model as described in Section 3.2, and try to
infer the contact rate β, while assuming a constant recovery and death rate (see Section 3.2.3).

In this experiment, for obtaining the MLE estimates, will try out the backtracking line
search (explained in Section 2.4.4, and with quadratic interpolation for the step size guess)
instead of the HagerZhang line search used in the other experiments, to show the impact on
performance different optimizers can have.

4.2.2 Results

The optimizer stops after 226 iterations, with a final error of 185.19889 (rounded). Using
the backtracking line search algorithm, this takes only 9 seconds, which is approximately 60
times faster than the previous experiment. The resulting predictions of S, I, R and D, as
well as the contact rate, are depicted in Figure 4.2.

However, the overall fit of the model predictions to the data is bad. Especially the predicted
numbers of recovered R and deceased D individuals are way off, and the predictions for
infected I are also inaccurate, especially during the first wave of infections at around April
2020, and between October 2020 and January 2021, around the second wave of infections.
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Figure 4.1: Results of the first experiment: The first four plots show the generated data
set in black, and the predicted model values for S, I, R and D in color. All counts for S, I,
R and D have been rescaled to cases per thousand (cpt). The last plot shows, in a dashed
grey line, the chosen true contact rate, and in black the inferred contact rate.
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Figure 4.2: Results of the second experiment: Shown in the bottom plot is the MLE
estimate for the contact rate β, the top four plots show in color the model predictions for S,
I, R and D (rescaled to cases per thousand (cpt)), as well as the observed German COVID-19
statistics in black, for which the contact rate was inferred. As can be seen, the fit for counts
of both recovered R and deceased D individuals is bad, as well as the counts of infected I
individuals at around April 2020 and between October 2020 and January 2021.
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4.2.3 Discussion
This experiment has shown that by only inferring the contact rate, the model can not
accurately fit the observed data.

While a small contribution to the bad fit may be made by the choice of the backtracking line
search for BFGS, and thus not obtaining a good enough solution, this experiment brings
to light other issues: The model simultaneously underestimates the number of recovered R,
and overestimates the number of deceased D. Since both only depend on I, we can therefore
conclude that the assumed constant for the recovery rate γ and death rate η are not a good
choice for the model, as the predictions can’t match the data.

Going even further, if we take a look again at the SIRD equations (see Equation 2.1), and
notice that

D(t) = D0 +

∫ t

0

Ḋ(r)dr (4.1)

= D0 +

∫ t

0

ηI(r)dr (4.2)

= D0 + η

∫ t

0

I(r)dr (4.3)

= D0 +
η

γ

∫ t

0

γI(r)dr (4.4)

= R0 − (R0 −D0) +
η

γ

∫ t

0

Ṙ(r)dr (4.5)

=
η

γ

(
R0 +

∫ t

0

Ṙ(r)dr

)
− η

γ
R0 +D0 (4.6)

=
η

γ
(R(t)−R0) +D0 , (4.7)

and, since D0 = R0 = 0 is the initial value (and also in the data set), it follows that

D(t) =
η

γ
R(t) . (4.8)

This means that our model, mechanistically, is actually not much different from a regular
SIR model (see Section 2.1.1), as it is equivalent to a model that only predicts the three
classes S, I, and R′, and just subdivides the class R′ into the two different classes R and D
with a constant and fixed proportion. It follows that it is impossible for this model to fit
data in which the data for R and D is not proportional properly. The ratio between R and
D in the COVID-19 statistics is drawn in Figure 4.3, where it is immediately clear that not
only can the chosen constants not fit the data, but that there are no constants at all that
could even approximately work, as R and D are not proportional to each other. Note that
this does not mean that the inferred contact rate has to be wrong or bad, but we can not
really interpret its quality, as the the model can not explain the data regardless.

Concluding this experiment, we see that our model itself is a bad fit for the data. In order to
more accurately explain the data and better infer the contact rate, we need to increase the
capacity of the model, by allowing non-constant death and recovery rates. Thus, in the next
experiment, we will model the recovery and death rates similarly to the contact rate, and
infer all three.
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Figure 4.3: Ratio between recovered and deceased individuals: Depicted is the ratio
between recovered (Rt) and deceased (Dt) individuals for the German COVID-19 statistics.
Note that, in the beginning, where Dt = 0, the ratio is also set to zero. The dashed grey line
is the ratio between the assumed constant recovery rate γ = 0.06 and death rate η = 0.002.
Clearly, as the ratio between Rt and Dt does not overlap with γ

η , and is itself not constant,
a constant death and recovery rate can not fit the data appropriately.

4.3 Inferring the contact, recovery and death rate
As we concluded from the previous experiment, we need to extend our model in order to fit
the data properly. In particular, we need to also infer a time-variable recovery and death
rate. This experiment evaluates whether we can infer reasonable estimates for the contact,
recovery and death rate together, and how well the result can fit the COVID-19 statistics.

4.3.1 Extending the model

In order to infer the recovery and death rate as well, we need to model them as parametric
functions. For this, we will just use the same function that we have already been using for
the contact rate β as detailed in Section 3.2.2, which is a weighted sum of Gaussian curves,
on top of which we apply the sigmoid function.

In advance, we expect the recovery and death rate to not change rapidly and thus be a lot
smoother than the contact rate, so we only model them with half the number of parameters
as the contact rate (Nγ = Nη = 1

2Nβ = 18), resulting in a total of 72 parameters for all three
together. We then also have to widen their individual Gaussian curves, and also set them
twice as wide (σγ = ση = 2σβ = 28), so one individual Gaussian curve has the standard
deviation (width) of roughly a month.

The resulting new SIRD equations with a variable contact, recovery and death rate then are
given by

Ṡ(t) = −βθS(t)I(t)/P Ṙ(t) = γθ(t)I(t)

İ(t) = βθS(t)I(t)/P − γθ(t)I(t)− ηθ(t)I(t) Ḋ(t) = ηθ(t)I(t) .
(4.9)

On top of that, we have to choose different prior distributions of the weights. As for the
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contact rate, we choose a standard deviation of σwγ = σwη = 0.01, but the mean for the
recovery rate weights is µwγ = −1.52, and the mean for the death rate is µwη = −3.43. This
results in prior samples of recovery and death rates similar to the contact rate depicted in
Figure 3.1a, but the recovery rate averages at around 0.06, and the death rate around 0.002,
the constants that they were previously assumed as. Their initial values are also, like that of
the contact rate, sampled from their prior distributions during initialization.

4.3.2 Method

We perform the BFGS algorithm for 1000 iterations with the HagerZhang line search algorithm
(as used in the first experiment, Section 4.1) to obtain MLE estimates for the parameters of
the contact, recovery and death rates.

4.3.3 Results

The 1000 iterations of the BFGS algorithm took about 95 minutes, with a final error of
84.47409 (rounded). The resulting inferred contact, recovery and death rates, as well as
the model predictions for the S, I, R and D counts are depicted in Figure 4.4. The final
loss is less than half of what it was in the previous experiment which assumed a constant
recovery and death rate, and the overall fit to the observed COVID-19 statistics has improved
drastically as well compared to the previous experiment.

4.3.4 Discussion

Evidently, the inclusion of a variable recovery and death rate into the model and inference
thereof are necessary for properly fitting the COVID-19 statistics: The resulting model with
inferred contact, recovery and death rate can fit the observed data pretty well, which is not
the case when inferring the contact rate alone (see previous experiment in Section 4.2).

One still has to be careful with interpreting the resulting inferred rates however. For example,
the model inferred a contact rate very close to zero between May and June 2020 (see
Figure 4.4), which seems implausible, and has two big spikes before that. These problems
might be partly caused by the very low counts of I, R and D before and during that time,
and the model overfitting them with large positive or negative weights. Overall though, the
resulting contact rate seems to roughly match up with the results obtained by [SKH21],
especially so in the second half (after around September 2020). The inferred recovery rate
exhibits similar problems in the first months as the contact rate, with a big spike surrounded
by two phases with an implausibly low recovery rate. The inferred death rate however looks
more plausible, being smooth overall, with two bigger spikes occurring right after big waves
of new infections.

Do note however, that this thesis is not meant to provide any sort of realistic conclusions
about the data set (the German COVID-19 statistics) itself (or even other things such as
governmental measures taken), and should not be considered epidemiologic research. The goal
of this thesis is only to learn about the method and model used, therefore, by for example
saying that the contact rate fits the data well, we are only stating things within the context
of this method and model, and explicitly not claiming relationships to anything outside of
that.

Of course, it would be very interesting to have quantifications of the uncertainty about the
inferred rates, as well as the prediction of S, I, R and D counts. As explained in Section 2.5.1,
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Figure 4.4: Results of the third experiment: Shown in the bottom three figures are the
MLE estimates for the contact rate β, the recovery rate γ and the death rate η. The top four
plots show in color the model predictions for S, I, R and D (rescaled to cases per thousand
(cpt)), as well as the observed German COVID-19 statistics in black, for which the contact,
recovery and death rates were inferred.
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Laplace approximations provide a relatively easy way to obtain uncertainty quantification,
which we will use in the next experiment.

4.4 Adding uncertainty quantification to the model
After obtaining a relatively good MLE point estimate for the contact, recovery and death
rate of the SIRD model, we will use Laplace approximations in order to obtain a posterior
parameter distribution as a measure of uncertainty of the estimated parameters.

4.4.1 The model
The model itself is identical to that used in the last experiment (see Section 4.3), meaning
we try to infer parameters of the contact rate and the recovery rate, as well as the death
rate. However, the prior parameter distributions that were used to initialize the parameters
and had no further use after that, as we just performed MLE, but in this experiment, we
also use them as a proper prior distribution of the parameters.

4.4.2 Method
First, we calculate a MAP estimate, as explained in Section 2.3, for the parameters. Since the
prior distribution of the parameters is a normal distribution, this boils down to calculating
the MLE as before (also explained in Section 2.3), but with an L2 norm parameter penalty,
penalizing parameters far from the prior means µwβ

, µwγ
and µwη

. The prior parameter
distribution standard deviation is set to σwβ

= σwγ = σwη = 0.01 as in the previous
experiments, and the model distribution, which is assumed to be lognormal, also has a scale
parameter of σϵ = 0.01 (as was used in the first experiment, Section 4.1 for data noise).
Effectively, this means that the weighting of the MLE loss term and the L2 norm penalty in
the loss function for the MAP is equal, but the implementation would also allow for different
noise distribution scale parameters and prior standard deviations for a different scaling of
the loss and the parameter penalty.

In this experiment, we optimize the loss function in a two-stage process. First, for a quick
and rough optimization, we run the Adam optimizer for 6000 iterations, with a learning
rate of λ = 0.005. Additionally, for this optimization stage, the ODE solver tolerances are
relaxed to 10−4. Then, in the second stage, we tighten the tolerances again to 10−5 as in the
other experiments, and further optimize with 50 iterations of the Newton algorithm. The
line search used with the Newton optimizer is again the HagerZhang line search, with an
initial α = 1 length. A more extensive reasoning behind this design is given in Appendix A.2

With the MAP estimate obtained through optimization, we can perform the Laplace ap-
proximation (introduced in Section 2.5.1), yielding a normal distribution that approximates
the posterior parameter distribution. Note that the Hessian H of the loss is likely to not be
positive definite, which can happen if the MAP is slightly off from the minimum or due to
numerical imprecisions. In this case, we have to calculate a positive definite approximation.
This can be done by calculating the Eigendecomposition

H = V ΛV −1 , (4.10)

and we can then calculate the approximation

H∗ = V Λ+V −1 , (4.11)
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where the matrix Λ+ with the eigenvalues has all negative (or zero) entries replaced by some
small ϵ > 0. In our case, we chose ϵ = 10−7.

After approximating the posterior, we can then sample parameters from this approximation
in order to obtain posterior samples for the contact, recovery and death rates. Finally, with
these posterior samples, we can obtain a posterior distribution over the counts of S, I, R
and D by solving the SIRD equations for every sample.

4.4.3 Results
The two-stage optimization took around four minutes for the first stage with Adam, and
around ten minutes for the second stage using the Newton algorithm, for a total of around
14 minutes. The final error was 11503.234 (rounded), of which 1532.598 are due to the
regularization term, and 9970.637 come from the MLE loss term. This last MLE loss term can
be divided by 100 (the inverse of the model distribution scale factor), resulting in 99.70637,
which is comparable to the error from the previous experiment. This error is quite a bit higher
than before, which is expected because of the regularization, resulting in a worse overall fit
to the data, but also preventing overfitting due to large positive or negative weights.

In Figure 4.5, both the MAP estimate and samples from the Laplace approximated posterior
distribution are shown for the contact, recovery and death rates, as well as the predicted S,
I, R and D counts for these samples.

4.4.4 Discussion
It seems like the Laplace approximation could work well for uncertainty quantification of our
model. In fact, after seeing the posterior samples of the contact, recovery and death rates,
it was surprising to us that the posterior samples of the S, I, R and D counts obtained
by solving the SIRD equations with the posterior rate samples actually are close to the
observed data at all. For the recovered counts R and deceased counts D, the observed data
is contained within the area of posterior samples almost everywhere (except for D between
February and March 2021). For the infected counts I, the observed data is not within the
area of posterior samples everywhere, especially during the first wave of infections in April
2020, and partly the second wave of infections around December 2021. However, the distance
between posterior samples (the variance between the samples) captures the noise in the data
rather well, and is small (lower variance) when the data seems to have lower noise, and bigger
when the data noise is higher, just fitting most of the observed data points within the area
of posterior samples.

However, overall, the Laplace approximation shows a problematically low sample variance, or,
in other words, the approximation is overconfident, even at time points where we would expect
higher uncertainties, such as for example in the first three months, where infection counts
are very low. This is also the time span of lowest uncertainty in the contact, recovery and
the death rate. Also, it is important to note that we did not perform any model selection or
hyperparameter optimization for the Laplace approximation. Most importantly, at least the
model distribution width parameter σϵ and the prior distribution would have to be optimized
as well in order to obtain any kind of interpretable and calibrated posterior distribution
(and with that, a quantification of uncertainty), which we did not do. Thus, the posterior
distribution we obtained in this experiment is not really meant to be interpreted as a good
posterior distribution, and far from a definitively good approximation. We only tried the given
values and, again, did not perform any hyperparameter optimization. The intent is just to
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Figure 4.5: Results of the fourth experiment: Depicted are the MAP estimates (black
lines for the contact rate β, recovery rate γ and death rate η, darker colored lines for the S,
I, R and D counts), as well as 500 samples from the approximated posterior distribution
(grey lines for the contact, recovery and death rates, light colored lines for the S, I, R and D
counts). The observed German COVID-19 counts for I, R and D are depicted in black, and
the counts for S, I, R and D have been rescaled to cases per thousand (cpt). Regions where
samples are spread further apart (higher sample variance) indicate a higher uncertainty.
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show that, for this model, a Laplace approximation of the posterior has interesting properties
that reflect the observed data, and it could be used as a proper measure of uncertainty, if the
hyperparameters are carefully selected and thus the approximation calibrated. Furthermore,
Laplace approximations are effective and easy to perform in this setting, with a very low
additional computational cost.

Also worthy of note is the regularizing effect of the prior distribution for the MAP estimate.
The inferred contact, recovery and death rates are a lot smoother as compared to MLE
estimate in the previous experiment (see Section 4.3). On top of that, other implausible
aspects like the near-zero contact rate between May and June 2020, which were caused
by large negative weights, are not present or softened in the MAP estimate due to the
regularization.

Finally, the two-stage training process has shown to be very effective, and did not only
drastically reduce the training time (as compared to the third experiment, in which we just
used BFGS) by almost an order of magnitude, but as required for the Laplace approximation,
yielded a MAP very close to a local minimum, with an approximately zero gradient and
approximately positive definite Hessian.



Chapter 5

Conclusion

In this thesis, we have shown that a SIRD model inferring the contact rate, but with fixed
recovery and death rate, can not accurately fit the German COVID-19 statistics. Instead,
the recovery and death rate have to be inferred as latent forces as well. When extending
the model by inferring the contact, recovery and the death rate, we can obtain reasonable
estimates for the contact, recovery and death rates and fit the data reasonably well.

Overall, our inferred contact rate shows similarities to what [SKH21] obtained with their
approach using probabilistic state space models, although our quantification of uncertainty
using Laplace approximations is very rough. We have also demonstrated an advantage of
iterative point estimate optimization, which is the fact that the point estimate is directly
interpretable, and easily evaluated. With the obtained MLE point estimate in the second
experiment (Section 4.2), it is immmediately clear that the model can not fit the data
properly with a constant recovery and death rate, a fact that could remain hidden or would
be harder to spot if we only had posterior distributions available.

On top of that, Laplace approximations present an easy and computationally inexpensive
way to quantify the model uncertainty. Although we did not achieve calibrated or well-
interpretable uncertainties, we were still able to obtain meaningful posterior samples with a
good fit to the data. As already mentioned in the last experiment, one possible improvement
would be the hyperparameter selection (for example of the prior and the model distribution),
which could be improved in future work, and also performed using the Laplace approximation.
The purpose of this would be to achieve the calibration of the uncertainties that is still
missing, and perhaps also obtaining a well-interpretable posterior distribution.

The complete inference process can, with careful selection of hyperparameters, be completed
within minutes, or sometimes, if it works, within seconds (see the second experiment in
Section 4.2). However, the whole process and its computational demands are heavily dependent
on a multitude of factors, such as the number of parameters, the chosen optimizer, and more,
with time demands spanning ranges from seconds to potentially hours. Furthermore, by
tweaking solver tolerances, there is a further potential for speedup at the cost of accuracy
(see Appendix A.1) that can be considered.

Another open question would be for example how the approach taken in this thesis would
translate over to other models for the contact, recovery and death rates, such as for example
to a standard neural network architecture predicting all three rates.
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Lastly, it would be interesting to see how well MCMC methods would perform in this context.
According to [SKH21], just inferring the contact rate alone would take time in the range of
multiple hours, and it would be interesting to see how well they would work for inferring
the contact, recovery and the death rate, and how computationally expensive it would be.
Overall, the iterative optimization approach we used in this thesis performed a lot worse than
the approach introduced by [SKH21] using probabilistic state space models. Even though we
discussed an advantage of the obtained point estimate, iterative optimization was still way
more computationally expensive, and all potential speed improvements we presented come
with significant loss of accuracy.
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Appendix A

On the choice of hyperparameters

A.1 ODE solver tolerances
We found the tolerances for the ODE solver, in our case, a Rosenbrock method based solver,
to heavily influence both the training time, as well as the results. Obviously, for higher
tolerances, the training process is much, much faster, but it also results in significantly worse
results (higher final error). This enables one to explicitly trade off computational cost for
accuracy. For the setup in the first experiment (see Section 4.1), we have tried out different
tolerances in order to emphasize this, the results are shown in Table A.1. Based on these
results, we opt for a solver tolerance (both absolute and relative) of 10−5, which seems to
provide the best trade-off between execution time and accuracy.

A.2 Optimization algorithms
This section describes problems with the choice of optimization algorithms. It applies to all
experiments, but is written in the context of the fourth, as it is the only one where we really
need a good enough minimum.

One big problem of this thesis is the selection of optimal optimization algorithms. Particularly,
it is very hard for the optimizer to converge in our setting, by which we mean terminating at
least very close to a minimum, and therefore an approximately zero gradient, and a positive
definite Hessian. While for the first three experiments, it is enough to get reasonable estimates

Tolerance 10−3 10−4 10−5 10−6

Final error 6.6 3.0 1.64 1.56
Optimization time 12 seconds 30 seconds 9 minutes > 49 minutes (aborted)

Iterations 77 77 397 > 700 (did not converge)

Table A.1: Impact of different solver tolerances on optimization result and duration:
This table contains the final error (rounded to two decimal places), as well as how much time
and how many iterations of optimization were required, with the setup of the first experiment
(Section 4.1), but choosing different ODE solver tolerances. A tolerance of 10−5 was chosen
for this thesis.
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with low error, the Laplace approximation performed in the fourth experiment (Section 4.4)
requires that the estimate is a minimum (or, technically, a maximum of the joint prior and
likelihood distribution), and even small deviations from it become problematic.

For example, Adam can reduce the error quickly and get close to minima, but no matter
how small a (realistic) learning rate we choose, it does not converge. Even with a learning
rate of for example 10−5, Adam starts to oscillate after about 180000 iterations.

With BFGS, we have the two main options for line search, HagerZhang line search and
backtracking line search. Here, the former produces fairly consistent results, but requires far
more function evaluations, which are very expensive since they involve solving an ODE every
time. With backtracking line search, we can often very quickly (orders of magnitude faster,
usually in the range of seconds) obtain results, but they very often with implausibly large
weights and generally suboptimal (in the sense that other optimization algorithms almost
always obtained results with significantly lower loss).

For the fourth experiment, we opt to use the Newton optimization algorithm, which is even
more expensive, but works with the (still numerically approximated) true Hessian instead of
the approximation that BFGS uses. Therefore, it should be more accurate, and we found it
to be more consistent. In order to save potentially lots of time, we use Adam in a first stage,
until about where it starts to oscillate (which, in the fourth experiment, are about 6000
iterations), and then further optimize the result of that in a second stage, using the Newton
algorithm. Note that, since Adam does not have to optimize the minimum accurately, we
can relax the solver tolerances in the first stage (as stated in the previous section).
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