
Greedy Submodular Sampling and
Its Relation to DPPs

by

Rahel Fischer

A thesis submitted to attain the degree

Bachelor of Science in

Cognitive Science

at the
Eberhard Karl University of Tübingen

2023

Date of Final Oral Exam: 28/02/2023
Supervisor: Julia Grosse
The thesis was approved by Philipp Hennig, Professor for Machine Learning.

Fischer, Rahel:
Greedy Submodular Sampling and Its Relation to DPPs
Bachelor Thesis Cognitive Science
Eberhard Karl University of Tübingen

ii

Greedy Submodular Sampling and Its Relation to DPPs

A Cognitive Science Bachelor Thesis

Rahel Fischer supervised by Julia Grosse

Abstract

In machine learning, it is often required to generate samples that are diverse and
informative without applying a deterministic procedure. Taking this as a quality criterion,
determinantal point processes (DPPs) generate optimal samples. Yet, it is not always
possible to apply DPPs in a reasonable run time - especially when it comes to huge
domains. Hennig and Garnett (2018) proposed a greedy sampling algorithm for drawing
DPP samples in a fast way. However, it turned out that this algorithm does not exactly
draw DPP samples. In this thesis, we try to find lower bound guarantees about the relation
between greedy sampling and DPPs by transferring guarantees from other procedures with
known relations to both DPPs and greedy sampling. The primary approach transfers the(
1− 1

e

)
-approximation guarantee of a greedy entropy maximization algorithm (Sharma

et al., 2015) into the sampling setting. This approach requires monotonicity of entropy
which can be ensured by modifications in greedy sampling. However, these modifications
make the validity and the meaning of the guarantee more difficult to interpret.
We firstly give an introduction on the theoretical concepts that are relevant for this thesis,
then introduce the greedy sampling algorithm according to Hennig and Garnett (2018)
and point out why it does not draw exact DPP samples. In the final step, we analyze
different approaches to find guarantees of samples drawn by greedy sampling and conclude
our results.

iii

Acknowledgements

My thanks go to all those who enabled and facilitated this bachelor thesis.
In the first place, of course, a whole lot of thanks go to Julia. I am so grateful for her
patience despite all my (repeatedly asked) questions, her encouragement during the whole
process, all the insights I got from her, her openness to discuss mathematical questions
with me and take time to develop our approaches together - all in all: her caring, friendly,
competent and invested supervision. Here, I also want to point out that she spent lots of
energy and time on finding the proof that turned out to be a core of our reasoning.
Also, I want to thank Philipp who did not just offer me a bachelor thesis and accompanied
Julia and me with technical help but also esteemed our work and thoughts even if they
were not thought-out yet.
However, I could neither ask curious questions nor make use of good supervision if I would
not have gotten so far in my studies. Therefore, I want to thank my parents who not
only supported me during my studies by carrying me all the way through but also laid
a great foundation for my entire life and are responsible for so many good things I have
experienced. Also, I am thankful for great fellow students who provide an environment
of good community for as well working, learning, discussing and thinking as just having
a good time. Besides that, there were so many people who knew about this bachelor
thesis (siblings, friends, flat mates, not to forget the two office mates of Julia) and took
an interest in it - that was really heartening.
Taking all together: credits of this work are shared among many - what a blessing! Thank
you!

iv

Contents

1 Theoretical Background 3
1.1 Determinantal Point Processes (DPPs) . 3

1.1.1 Why are we interested in DPPs? . 3
1.1.2 What are DPPs? . 4
1.1.3 Finite and Continuous DPPs . 5
1.1.4 Orthogonal Projection DPPs . 6
1.1.5 The RBF Kernel . 6
1.1.6 Not Quite a DPP: k-DPPs . 7
1.1.7 Exact Sampling Algorithms . 7

1.2 Submodularity . 10
1.3 Entropy and Information Gain . 11

1.3.1 Shannon Entropy . 11
1.3.2 Differential Entropy . 12
1.3.3 Transfer in Sampling Setting . 12
1.3.4 Properties of Entropy . 13

2 Greedy Sampling - a Fast and Almost Exact DPP Sampling Approach 14
2.1 The Greedy Sampling Algorithm According to Hennig and Garnett (2018) . 14

2.1.1 How Greedy Sampling Works in the One-Dimensional Case 14
2.1.2 Greedy Sampling Extended to d Dimensions 17
2.1.3 How It Is Connected to DPPs . 17
2.1.4 How Long It Takes . 18

2.2 The Algorithm According to Hennig and Garnett (2018) Is not Exactly a
k-DPP . 18
2.2.1 The Reason: The Chain Rule . 18
2.2.2 How To Make the Chain Rule Applicable 20

3 Our Approaches for Finding Gaurantees for Greedy Sampling 21
3.1 On the Cholesky-Based Method . 21
3.2 Guarantees for Greedy sampling’s Entropy 23

3.2.1 The Proof Idea . 23
3.2.2 Monotonicity of Entropy . 25

3.3 On a Weak Greedy Max-Dist Algorithm . 30
3.3.1 Weak Greedy Algorithm . 30
3.3.2 Connection to Greedy sampling . 31

v

3.3.3 Why Is the Weak Greedy Algorithm not Similar Enough? 32

4 Conclusion 33

1

Introduction

In machine learning, algorithms are often supposed to learn a function (f.e. a classifi-
cation) on basis of a ”small” data set to then predict the function value for new data.
Obviously, this becomes more and more complex and expensive with growing training
data sets. Therefore, some machine learning algorithms sample a subset from the big
training data set for saving a lot of time and power. Doing so, it is clearly a fundamental
question of how these samples should be generated. DPPs provide a way to find subsets
that are both very informative but also vary between different samples.
Yet, when it comes to larger domains, DPPs take increasingly long to draw samples.
Therefore, there are many approaches to approximate the mode of the DPP - the optimal
sample (Bıyık et al., 2019; Çivril & Magdon-Ismail, 2009; Gillenwater et al., 2012). Other
approaches approximate a space as good as possible (Kanagawa & Hennig, 2019) or reduce
the size of the domain randomly to then draw an informative set (stochastic greedy algo-
rithm suggested by Mirzasoleiman et al. (2015)). However, deterministic approaches do
not offer a variety between samples and stochastic greedy algorithms can hardly guarantee
to generate exact DPP samples.
In contrast, Calandriello et al. (2020) found a way to fast generate exact k-DPP samples
(for which the sample size k is known in advance) without looking at all items. Similarly,
Hennig and Garnett (2018) introduced a greedy sampling algorithm whose run time is not
dominated by the domain size whereas it draws well-distributed samples.
However, this greedy sampling algorithm does not exactly draw DPP samples, mainly,
because it was assumed that the probability of a sample to be drawn is the same, no
matter in what order the points are selected. This assumption does not hold for greedy
sampling and thus the exactness of this algorithm is not given anymore. Therefore, we
try to show here how close greedy sampling is to DPPs. To do so, we find procedures of
which guarantees about the relation to DPPs are known and try to show equivalence to
greedy sampling such that we can apply the known guarantees to greedy sampling as well.
In this thesis, we first give an introduction to DPPs and mathematical concepts that will
be used later (Chap. 1). In Section 2.1.4, the greedy sampling algorithm will be introduced
and in Section 2.1 it will be shown why it does not exactly draw DPP samples. Chapter
3 contains ideas on how to find assertions about how close greedy sampling is to DPPs.
Two of the approaches that are shown there (originating from the Cholesky-based DPP
sampling method and from a weak greedy maximum fill distance algorithm (Kanagawa
& Hennig, 2019)) do not succeed because the procedures are not found to be equivalent
to greedy sampling. In contrast, the approach originating from a greedy maximization of
entropy algorithm leads to new insights. Provided that entropy is a monotone submodular
function, it is known that finding the maximum of entropy has a greedy approach that

2

finds a
(
1− 1

e

)
-approximation of the maximum which is the mode of the DPP. However,

because we are not interested in approximating one sample but a whole distribution, we
show that a probabilistic version of the greedy maximization algorithm also guarantees a(
1− 1

e

)
-approximation of the DPP distribution.

Still, it turns out that entropy is not always monotone such that some guarantees ap-
ply to greedy maximization algorithms only with a scaled similarity measurement and
space. This leads to questions regarding the general meaningfulness of ratio guarantees
concerning entropy that will be discussed in Subsection 3.2.2.

3

Chapter 1

Theoretical Background

1.1 Determinantal Point Processes (DPPs)

Intuitively, DPPs are stochastic point processes that generate samples that are as well
informative as rich in variety. They were introduced in order to model fermion distributions
(Macchi, 1975). Meanwhile, they have found various applications in other fields as machine
learning. This section will give a brief summary of DPPs emphasizing aspects that are
relevant for this thesis.

1.1.1 Why are we interested in DPPs?

In some applications, it is convenient to have both: diversity within one selected subset
but also varying selections of subsets of domains. In the case of a news feed, for instance,
we usually aim to have different topics (intra-variety) but also a ”fresh” news feed each
time the user reloads it (inter-variety). Though deterministic approaches might have a
higher intra-variety, they can not generate different results given the same input (user and
their interests, current news) and thus show no inter-variety.

Beyond that it is sometimes convenient to have varying samples, it is also an NP-hard
problem to determine the subset of points that span the greatest volume together (Çivril &
Magdon-Ismail, 2009). With that, DPPs also provide reasonably diverse sets of points in

0 1
0

1

x1

x
2

0 1
0

1

λ1

λ2

x1
0 1

0

1

λ1

λ2

x1

Figure 1.1: Fig.1 from Hennig and Garnett (2018). Different distributions of one hundred
points depending on the sampling procedure. Left: uniform random. Center and right:
RBF-kernel DPPs of different length scales - here denoted by λ.

4

polynomial time. In machine learning, DPPs can be applied in the exploration approaches
of algorithms. Because they choose points that push each other off, exploration is more
effective than when exploring randomly (see Fig. 1.1). In classification tasks, for instance,
the differentiation can be learned based on human feedback on DPP-generated samples
(Bıyık et al., 2019). Due to the use of the DPPs, the human feedback is gained on different
but each diverse samples and is thus very informative.

1.1.2 What are DPPs?

Let k : X × X → R be a positive semi-definite kernel function. That means that there
is a scalar product space (U, ⟨., .⟩) and a mapping Φ : X → U into that space with
k(x1, x2) = ⟨Φ(x1),Φ(x2)⟩ ∀x1, x2 ∈ X. The kernel function, therefore, indicates the
similarity (scalar product) of two points of X after they were first mapped into a scalar
product space by the feature function Φ. Often, Φ is not explicitly calculated but a relevant
step to ensure both that X does not have to be a scalar product space itself and that a
scalar product/similarity can be calculated.
Given a kernel function, one can calculate a kernel matrix KXX with KXXx1,x2

= k(x1, x2)
for all x1, x2 ∈ X that describes the similarities between all x1, x2 ∈ X. Respectively, for
a finite subset X ⊂ X KXX is a principal submatrix of KXX describing the similarities for
all x1, x2 ∈ X.
A DPP now draws a sample S in proportion to the variety of points in S which is contained
in the kernel matrix:

p(X = S) =
det(KSS)

Z
∝ det(KSS)

That means: the greater the volume of KSS (and with that the diversity of points),
the more likely it is that the DPP would draw S. With that property, DPPs provide a
procedure that preferentially draws samples that have a strong variety within one sample
but also offer a reasonable variety between samples as they generate their samples in a
non-deterministic way. This proportional relation is characterized by the proportionality
factor (here, we also call it normalization constant) Z that is the sum of the (unnormalized)
probabilities over all possible subsets X ⊂ X:

Z =
∑
X⊂X

det(KXX)

In the literature, one can find DPPs defined with both a correlation kernel (here
denoted as KXX) and a likelihood kernel (here denoted as LXX). These kernels can (except
in the case that KXX is orthogonal) be transformed into each other:

LXX = KXX(I −KXX)
−1 and LXX = I − (LXX + I)−1

with I being the identity matrix with size |X|× |X| for |X| < ∞ (Kulesza & Taskar, 2012).
DPPs conducted on basis of a likelihood kernel are also called L-ensembles. Using either
of the two kernels can lead to different algebraic traits, and applications but also interpre-
tations of the kernels. However, we will focus on correlation kernels in this thesis.

In the following, we will look further into different types of DPPs, their properties,
and their sampling methods.

5

1.1.3 Finite and Continuous DPPs

When talking about characteristics of different DPPs, it also plays a role from which do-
main a certain kernel maps into R. More precisely, one can differentiate between DPPs
whose domain is finite (finite DPPs) or continuous (continuous DPPs). In both cases,
however, the domain is bounded. Both types come with different restrictions and enable-
ments for DPP sampling procedures. Therefore, we will shortly go over some properties
and definitions of these two types of DPPs before describing sampling procedures.

Finite DPPs

Let X = {1, 2, ..., N} = [N] be a finite (and thus discrete) domain and KXX ∈ RN×N the
corresponding kernel matrix. Just as given above, we say for subsets S ⊂ X that they
follow a DPP distribution with kernel KXX if p(S) ∝ det(KSS).
One of the most basic characteristics of any sample is its size. For most DPPs (excep-
tion: projections, see Subsec. 1.1.4), the number of points itself is not determined before
sampling. Still, there is a formula describing the sample size for a sample S:

|S| =
N∑

n=1

Ber(λn)

where λn (n ∈ {1, ..., N}) stands for the eigenvalues of KXX and Ber(λ) ∈ {0, 1} for a
Bernoulli variable with success probability λ. One can directly derive the expected sample
size (Hough et al., 2006):

E[|S|] = trace(KXX) =
N∑

n=1

λn

Continuous DPPs

Defining a continuous DPP can differ in complexity. For our purposes, it is sufficient to
use the same general definition with a different domain. Let X be a continuous bounded
set and k : X × X → R the corresponding kernel function. As given earlier: for a finite
subset X ⊂ X KXX denotes the kernel matrix for X. A subset S ⊂ X now follows a DPP
distribution of kernel KXX if p(S) ∝ det(KSS).
Just as for finite DPPs the size of a sample drawn by a continuous DPP is not known
before sampling. It is given by the infinite sum

|S| =
∞∑
n=1

Ber(λn)

where λn (n > 1) again stand for the eigenvalues of KXX and Ber(λ) ∈ {0, 1} for a
Bernoulli variable with probability λ. The expected value is given by

|S| =
∞∑
n=1

λn,

6

respectively (Lavancier et al., 2015).
Continuous DPPs are less explored than finite DPPs. When talking about sampling algo-
rithms, the great majority of literature covers finite DPPs. That is intuitive as one could
argue that numbers that a computer can use are always instances on a grid and thus never
really continuous. However, in this thesis, we will talk about algorithms with a very fine
underlying grid as continuous.

So far, we differentiated between DPPs according to their domain. In the next two
sections, the characteristic of interest is the kernel. Firstly, we will have a closer look at
orthogonal kernels.

1.1.4 Orthogonal Projection DPPs

A DPP is fundamentally characterized by its kernel function. Projection DPPs are DPPs
whose kernel function is orthogonal. There are several properties that come with that
orthogonality, especially when talking about the eigenvalue decomposition. All the eigen-
values λ1, ...λn of any orthogonal kernel matrix are either 0 or 1. Therefore, it is always
known in advance how many points a sample S generated by a projection DPP will sample
because |S| =

∑∞
n=1Ber(λn) is the same as the number of eigenvalues that are unequal

to 0 which again is the same as the kernel matrix’ rank. That number can be easily de-
termined once the eigenvalue decomposition of the kernel matrix is done.

Projection DPPs can be used as components to mix other non-orthogonal kernels.
Though they have some handy properties, the most popular kernel function is not orthog-
onal. It will be introduced in the following section.

1.1.5 The RBF Kernel

As stated above, the kernel function characterizes a particular DPP. In this thesis, we will
mainly talk about the radial basis function (RBF, aka. Gaussian, squared-exponential)
correlation kernel

kRBF (x1, x2) : RD × RD → R, (x1, x2) 7→ exp

(
−1

2

D∑
d=1

(x1 − x2)
2
d

σ2

)

for a fixed parameter σ > 0 that is called the length scale.
The RBF kernel became prevalent for DPPs and machine learning in general - possibly
because it combines several convenient qualities: Firstly, it is stationary, that is, that it
describes the similarity of two points independently from their absolute position within
the domain. That gives us the insight that the kernel function only considers the local
relation between the points rather than the global relation of these points to the whole
domain. The RBF kernel is even homogeneous (isotropic) which means that it does only
depend on the norm of the difference between two points (Rasmussen & Williams, 2006,
Ch. 4). That property allows making assumptions that make the application in machine
learning easier.
Secondly, the functions which an RBF kernel fits are smooth functions. This can be
both helpful and restricting depending on whether we assume the function that should

7

be learned to be smooth or not. Despite the smoothness property, the RBF kernel is still
universal, which means, informally speaking, that it could theoretically approximate any
differentiable bounded function arbitrarily well. In other words, its scalar proudct space is
dense in f : X → R (Micchelli et al., 2006). However, because of the smoothness property,
it might not be possible to approximate an unsmooth function with a limited amount of
data.

Though the RBF kernel has several convenient characteristics, there are also some
shortcomings. Most notably for us, it is not orthogonal. This is relevant because there
are some handy features that only projection DPPs have which we then can not transfer
onto RBF DPPs.

1.1.6 Not Quite a DPP: k-DPPs

Especially when applying DPPs to real-world tasks, it can be practical to have certainty
about the final sample size. Therefore Kulesza and Taskar (2011) proposed the concept of
k-DPPs that determines the sample size beforehand. A k-DPP is defined by

pk(X = S) =
det(KSS)∑

|S′|=k det(KS′S′)
=

det(KSS)

Z

where |S| = k and KXX stands for the kernel matrix and Z =
∑

|S′|=k det(KS′S′) is a
normalization constant .
A naive way to transform a DPP to a k-DPP is to introduce a rejection condition such
that only samples that by chance have a maximal size k will be accepted. Researchers,
however, have found many more favorable approaches (Kulesza & Taskar, 2011) that run
in O(Nk2), assuming an eigendecomposition of the kernel matrix LXX (in this paper they
used a likelihood kernel). Because the samples drawn by a k-DPP have a constant size,
they are not identically distributed as non-restricted DPPs and thus are not exactly DPPs,
though they are often traded as restricted DPPs. In fact, this thesis will mainly focus on
k-DPPs. Thus, from now on we will talk about DPPs when actually talking about k-DPPs
for simplicity.

1.1.7 Exact Sampling Algorithms

All algorithms that implement DPP sampling draw samples that follow the exact same
distribution. However, there are different approaches to fulfill this task of which three will
be introduced in the following. Therefore we assume a finite DPP for a start and consider
the kernel matrix KXX to be given.

Classic: Spectral Method

The spectral method was introduced by Hough et al. (2006) and is the standard method
for DPP sampling. Its key is that any kernel matrix is a mixture of several projection
matrices.
Firstly, the orthonormal eigendecomposition (λi, vi) of the kernel matrix KXX is calculated
(λi denote the eigenvalues and vi the eigenvectors for i ∈ {1, ...N}). To do so, assume

8

KXX to be a real symmetric matrix. Its eigenvectors form an orthonormal basis and all
its eigenvalues are between 0 and 1. The spectral decomposition is then given by

K(x, y) =

∞∑
i=1

λiϕi(x)ϕi(y),

λi, ..., λn denoting its eigenvalues, n the total number of eigenvalues, ϕ the feature function
(see Sec. 1.1).
Gautier et al. (2019) now describe a two-step procedure to draw exact samples from that:
in step one m of the n eigenvalue indices {i1, ..., im} m ≤ n, are randomly selected using
Bernoulli trials. Out of that, there is a new kernel matrix K̃ generated with

K̃(x, y) =

m∑
l=1

ϕil(x)ϕil(y).

K̃ now is an orthogonal component of the mixture of projections constituting K.
Step 2 is simply the sampling step in which any exact procedure (for instance Algorithm
18 from Hough et al. (2006)) can be used to draw a sample {x1, ..., xm} ∼ DPP (K̃) which
now also follows DPP (K) (Gautier et al., 2019). Side note: here, the number of points is
known in advance because K̃ is a projection DPP (see Subsec. 1.1.4).
It is evidently tricky to do exactly the same in the continuous case because KXX would
then be an infinite matrix and would possibly have infinitely many eigenvalues. Still,
Lavancier et al. (2015) present an implementation of this method for continuous domains.
Though this method is exact and popular, it is not the fastest. The eigendecomposition
needs O(N3) in the finite setting. The duration of the steps that follow (containing
Gram-Schmidt orthonormalization) depends on the sample size |S| of the drawn sample
S and is in O(N |S|2) which is still in O(N3). All in all, the first term dominates the
run time. Especially for large amounts of data computing the eigenvalues can be very
expensive which then makes the spectral method overall expensive (Launay et al., 2020).
Altogether, it still is an exact procedure that is reasonably fast for not too huge data sets.

State-of-the-Art: Intermediate Sampling

The intermediate sampling method (Dereziński, 2019) constitutes a newer and faster DPP
sampling method. Because the domain’s dimension will play a role when talking about
this method, we now emphasize this by talking about a data matrix rather than about a
domain.
Given a data matrix X ∈ RN×D, the main idea is to first select poly(D) points S following
an intermediate distribution intermediate(X), N denoting the size of the domain and D
the domain’s dimension. Out of that intermediate sample S a new sample X is drawn
that follows the DPP distribution target(S). Because the intermediate distribution was
chosen appropriately, X now follows target(X).
Evidently, a crucial point for this procedure is the design of intermediate(X). To guaran-
tee that intermediate(X) does not distort the target distribution Dereziński (2019) make
use of the ridge leverage score introduced by Alaoui and Mahoney (2015). It is, intuitively
speaking, a measurement that balances low-rank approximation and overfitting for a ma-
trix approximation (McCurdy, 2018). Thus, the matrix of the intermediate sample S is

9

an approximation of the large data matrix X. Still, it is not the same as a DPP sample
as the points chosen so far do not push each other off. To exactly draw a DPP sample,
the rejection sampling step on S is applied following the DPP distribution.
Derezinski et al. (2019) of course, show more detail about guarantees, formulae, and
premises regarding intermediate(X). In their paper, the authors did not include continu-
ous domains. For a continuous domain (or a fine grid), this procedure might take long to
determine the ridge leverage scores but in general, it is a procedure that can handle great
domains.
Talking about run time, this method performs remarkably better than the spectral method.
The preprocessing step (determining the intermediate distribution) runs in O(N log(N)+
poly(D)) time. The sampling step runs in poly(D) time. With that, the intermediate
sampling method could substantially speed up using the idea of reducing the possibly
large data matrix/domain.

Stochastically Intuitive: Cholesky-Based Method

When thinking about the Cholesky-based method (CBM) presented by Launay et al.
(2020) it might be good to imagine a binary probability tree. Initially, consider two empty
sets of points Ain and Aout that will in the end contain all the points from X. Now we
iteratively go through every single point x in X and randomly decide whether we want to
include this point (add it to Ain) or not (add it to Aout). That iterative binary decision
is what can be well shown with a binary tree. To decide about in- or excluding a point,
the probability for a point xi to be included p(xi ∈ S) depends on the preceding choices
of points:

p(xi ∈ S) = p(xi ∈ S|Ain(i− 1) ⊂ S and Aout(i− 1) ∩ S = ∅)

with p(x1 ∈ S) = 0.5 and p(xiS) = 1 − p(xi ∈ S). After iterating through the whole
domain the selected points form a DPP sample (Gautier et al., 2019). In each step we
use Cholesky decomposition and thus can use matrix multiplication for determining each
p. The main advantage of this method is that we do not have to compute an eigende-
composition which can be costly for large X. Apparently, this method is not possible to
be applied to continuous domains because its key feature is iterating through the whole
domain.
The order of computational complexity is, just as the one of the spectral method O(N3).
However, Launay et al. (2020) showed in their tests that the spectral method outplays
the CBM. The crucial point that makes this method expensive is probably the Cholesky
decomposition which is conducted in each iteration.

10

1.2 Submodularity

In this thesis, we are interested in DPPs and other processes that maximize the volume
(determinant) of a matrix (for more detail, see Sec. 1.1). Taking the log-determinant from
a matrix and increasing the matrix’ numbers of rows and columns, the log-determinant
changes in a submodular way (Gillenwater et al., 2012). This can be helpful for finding
guarantees and comparing different approaches to the determinant maximization task.
Therefore, we will shortly introduce the concept of submodularity.

Formally, a function f : P(M) → R is called submodular if

f(A ∪ {x})− f(A) ≥ f(B ∪ x)− f(B)

holds for A ⊂ B ⊂ M with x ∈ M and x /∈ B, P(M) denoting the power set of M
(Gillenwater et al., 2012). For monotone functions, this formalizes, intuitively speaking,
that the benefit regarding f of a single element in a set diminishes when the set’s size
increases.
When making use of the submodularity of a function f , it is often also required to be
monotone increasing. That means that A ⊂ B implies that f(A) ≤ f(B). This is because
if f was monotone decreasing (A ⊂ B ⇒ f(A) ≥ f(B)), it was submodular anyways
such that submodularity is no helpful information about f . To gain an intuition about
submodularity, see also Figure 1.2.
In the following section, we will look into two functions on sets that are submodular.

Figure 1.2: Two submodular functions. Blue: monotone decreasing. Green: monotone
increasing. In both cases, the change of the function value decreases. However, in the case
of the blue function, its absolute value increases. Thus, submodularity is implicated by
the monotone decreasing property and hence not informative.

11

1.3 Entropy and Information Gain

In many contexts, entropy is seen as a measurement of randomness in a system. Here, we
need a slightly different perspective on entropy and have to be sensitive that the interpre-
tation of entropy is not quite the same for discrete and continuous random variables. In
general, entropy is defined for a random variable. Because we will later apply the entropy
in contexts of sampling, we will here first introduce the concept in that original vocabulary
and later transfer it to our setting - sampling procedures. In that setting, entropy is a
quality measurement for samples drawn by a certain policy π which can be thought of as
a probability distribution.
In the following, we will introduce two types of entropy. On the way, there will occur
logarithm terms for which we will not use a specific basis but talk about any basis > 1.
That is because the basis only changes the unit of entropy but no property that is relevant
for us. However, it was first introduced using 2 as basis (Shannon, 1948).

1.3.1 Shannon Entropy

The Shannon entropy was originally introduced in information theory to measure the
average information content of a single sign in a word - a measure that is always positive.
For a random variable Y it defines the average information content of a single event Y .
Here, an underlying assumption is that the less likely an event is to happen the more
informative it is, and the greater its entropy is (Shannon, 1948).
Let Y be a discrete random variable with n finite possible events Y = {Y1, ..., Yn}. For
each event Y let p(Y) be the probability for that event to happen. Proceeding from that
the information content for a single event can be computed with

I(Y) = − log(p(Y))

which formalizes that a higher probability of an event makes it less informative.
The entropy of one event (how much information (on average) one event contains) is then
defined as

H1(Y) = E[I] =
∑
Y ∈Y

p(Y)I(Y) = −
∑
Y ∈Y

p(Y) log(p(Y)).

Now assume that m different events occurred in a sequence S and assume that we have a
given probability for such a sequence p(S). The entropy (the average information content
of a sequence S of m events) then is

Hm(Y) = −
∑

S∈Ym

p(S) log(p(S)).

Because Shannon entropy is based on the probability of a single event, it can not simply
be transferred to continuous domains because then every single event Y would be selected
with probability p(Y) = 0. With that, the information content I(Y) of a single event
would virtually be ∞ and the whole concept of entropy would lose its validity. Therefore,
there is another concept needed for continuous domains.

12

1.3.2 Differential Entropy

Differential entropy is nearly the continuous equivalent of Shannon entropy. However,
it is harder to interpret differential entropy (for instance it can also be negative) - it is
not exactly equivalent to Shannon entropy. Let Y be a continuous multivariate Gaussian
distributed random variable with infinitely many single events Y ∈ Y. Just as in the
discrete case, a probability is assigned to every single event using a probability density
function p(Y) : Y → [0, 1]. Then, the entropy of Y is

h(Y) =

∫ ∞

−∞
p(Y) log(p(Y)) dY = E[− log(p(Y)].

Because Y is a multivariate Gaussian distributed variable, its differential entropy can
be calculated as

h(Y) =
1

2
ln det(2πeΣ)

where Σ is a covariance matrix.
There are two properties of differential entropy that are mathematically relevant.

Firstly, it is shift-invariant, which means h(c + Y) = h(Y). This can be practical if
one is interested in measuring entropy without looking at absolute values but rather at
relations. Secondly, if Y is scaled with a scalar A ∈ R, entropy changes with an additive
term: h(AY) = h(Y) + log(|A|). This will become important in later chapters.

It is not yet obvious how the concept of entropy is related to our context. That is why
the next paragraph will translate entropy into the sampling setting for the cases we will
use later in this thesis.

1.3.3 Transfer in Sampling Setting

In general, we are interested in using entropy as a quality criterion for a sampling policy
π. The random variable in our case is the outcome of a sampling step. X is the set of
possible events - the domain of which points can be drawn. What was called ”sequence”
in the sections above, is now a ”sample” - several points that were drawn in one sampling
procedure. π determines a probability as well for any single point (p(x), x ∈ X) as for any
sample (p(X), X ⊂ X) to be drawn.
For our purposes, Shannon entropy will be relevant not for determining the average in-
formation content of a single point but rather for the average information content of a
sample. This works, because we are interested in sampling procedures where the sample
size is determined beforehand (k-DPPs, for instance) and X is finite. Thus, we can apply
the formula for an event sequence/sample with length/size k:

Hk(X) = −
∑
S∈Xk

p(S) log(p(S)).

Because this is a measurement that tells us about the informativeness of a sample and not
a point within a sample, we will term this type of entropy ”inter-entropy”.

13

In contrast, we will use differential entropy to make assertions about the informative-
ness of a single point in a single sample S generated by π. X is now again a multivariate
k-dimensional Gaussian distributed random variable. Therefore, its entropy is determined
by

h(X) =
1

2
ln det(2πeKSS) ∝ log(det(KSS)).

Because this expression reveals something about a single point within one sample, not
about a whole sample, we will term this type of entropy ”intra-entropy”. The formal
main difference between inter- and intra-entropy is not that we used for one Shannon and
for the other differential entropy but that intra-entropy is normalized by k contrary to
inter-entropy.

Though we described several perspectives/types of entropy, there are properties that
entropy generally has. Two are very shortly described in the following paragraph.

1.3.4 Properties of Entropy

Looking at (both, Shannon and differential) entropy of samples selected by policy π while
increasing the number of points π should select (denoted by m) we want to emphasize
two properties. Firstly, entropy is submodular (Sharma et al., 2015). Speaking intuitively,
when considering a single sample, the benefit of adding a new point decreases with growing
set size. With that, the average over all information contents of samples with size m, thus
the inter-entropy Hm(π) or hm(π), is submodular with respect to growing m. Secondly,
entropy is not necessarily monotone (Sharma et al., 2015). This will play a role in later
chapters of this thesis.

14

Chapter 2

Greedy Sampling - a Fast and
Almost Exact DPP Sampling
Approach

2.1 The Greedy Sampling Algorithm According to Hennig
and Garnett (2018)

The algorithm suggested by Hennig and Garnett (2018) is an approach to finding a very
fast algorithm that would (for certain continuous domains) generate exact DPP samples.
This is desirable because the known exact sampling algorithms take a long run time -
especially for continuous domains (see Subsec. 1.1.7). Fast algorithms do usually not
provide an exact DPP sampling procedure or do not approach exact DPP sampling in
the first place but try to approximate the mode of a DPP (Bıyık et al., 2019; Çivril &
Magdon-Ismail, 2009; Gillenwater et al., 2012) or find other ways to select points in an
informative way (Djolonga et al., 2018; Mirzasoleiman et al., 2015).
The new approach underlying this algorithm is based on a new perspective on DPPs.
Hennig and Garnett (2018) suggest that a DPP would arise if one followed an elementary
active learning strategy that chooses evaluation points to learn a function on the domain as
exactly as possible. To make use of that, their algorithm uses the concepts from Gaussian
processes. In this thesis, we will use the term greedy sampling to refer to that algorithm
that will be introduced in more detail in the following.

2.1.1 How Greedy Sampling Works in the One-Dimensional Case

Let f : X → R be a function that an algorithm is aiming to learn on the domain X. To
do so, it iteratively chooses a set of evaluation points X ⊂ X. In each iteration it selects
a point x ∈ X solely depending on how uncertain it is about f(x). The more uncertain
it is, the more likely it will select and finally evaluate x. That procedure constitutes the
greediness of this sampling algorithm.
In the first place, however, to have an uncertainty about f(x), it has to keep track of belief
over function values f(x) for all x ∈ X. The uncertainty about these function values for
any x is formally the variance.

15

Therefore, it assumes a Gaussian process prior f ∼ GP (µ, k) with an arbitrary a priori
mean function µ : X → R and the a priori covariance function k : X × X → R that is
precisely the kernel function. Once a certain x is selected, it is evaluated such that new
information on f is gained and a current covariance covi can be computed. According to
the updated variance, which is covi(x, x) for x ∈ X, the algorithm can again select a point
according to the current uncertainty and thus iteratively draw a sample of informative
points.

More technically, let KXX ∈ R|X|×|X| be a (possibly infinitely large) covariance kernel
matrix. The entry at row s and column t (here denoted by KXX(xs, xt)) indicates the a
priori covariance k(xs, xt), s, t ∈ [1, |X|]. The entries on the diagonal contain the a priori
variance k(x, x) for all x ∈ X respectively. In our case, k is the RBF kernel function.
Therefore k(x, x) = KXX(x) is the same for all x ∈ X (homogeneous kernel, see Subsec.
1.1.5).
Moreover, let KXiXi be a principal submatrix of KXX that only includes columns and rows
of points that were selected in iteration i. It is also a kernel matrix but just for a subset
of X. In the beginning (i = 0), it is empty.

Furthermore, let V ∈ R|X| be a (possibly infinitely long) vector that indicates the
variance for each x ∈ X. In contrast to the kernel matrix KXX, it changes with every
iteration. For a start (iteration index i = 0), V0(x) is the same for all s, because it exactly
contains the diagonal of KXX. Later (i ∈ {1, .., k}, k denoting the final number of points),
the entries in Vi change with every iteration because certain points are evaluated and thus
more is known, uncertainty is reduced which leads to different variances among different
points.
This is formalized by the formula:

Vi(x) =

{
k(x, x) for i = 0

Kxx −KxX1:i−1K
−1
X1:i−1X1:i−1

KX1:i−1x for i ∈ {1, .., k}

Because this algorithm aims for reducing uncertainty in every iteration, the choice of
points depends on the variance function. More precisely, the variance function constitutes
an unnormalized probability density function: the less is known about a point x, the
stronger its variance is, and the more likely it is sampled. This relation is even proportional:

p(x | Xi−1) ∝ Vi(x)

To ensure that proportionality in point selection, Hennig and Garnett (2018) use the
integrated Vi(x) (the cumulative probability density function P (x)) for the next steps.
Now, the highest (and last, because Vi(x) > 0 ∀x ∈ X) value of the cumulative probability
density function maxx∈X P (x) = z is found so that u ∈]0, z] can be generated randomly.
Lastly, their algorithm finds the point x for which P (x) = u holds by running a bisection
search. This point now is chosen to be the next one that is included in X. This procedure
is also illustrated in Figure 2.1.
We assume that the final number of points k is known before, and stop after iteration k.
The algorithm then outputs a sample of k different points that (in expectation) display
rather strong entropy.

16

Figure 2.1: Greedy sampling after a third iteration. Top: so far learned/expected function
f (GP posterior) with variance bounds. Center: posterior variance which is also the prob-
ability density function characterizing the next choice of points. Bottom: accumulative
probability density function. u ∈ [0, Z] is randomly generated and determines the point
x4 selected in iteration 4 proportionally to the slope of P (x) which is p(x). Plot drawn
using Pedregosa et al. (2011).

17

2.1.2 Greedy Sampling Extended to d Dimensions

A strength of the Greedy Sampling algorithm proposed by Hennig and Garnett (2018) is
that it is not limited to the one-dimensional case. Though we will now shortly introduce
the two-dimensional case, this way of extending the algorithm can, in theory, be done to
d ≤ ∞ dimensions.
The kernel function is now defined for a tuple of vectors and the variance function can be
thought of as a landscape.
Firstly, if we sample out of X = R2, the algorithm tries to learn a function on an area, a
landscape. The kernel function is now defined for a tuple of vectors ((x1, x2)

T , (y1, y2)
T) ∈

X × X and the variance function can be thought of as a landscape. In the beginning, it
looks like a plane that is parallel to both axes and whose height is determined by V0.
The sampling step is conducted analogously to the one-dimensional case with the difference
that firstly the whole landscape of Vi is projected onto one dimension. This function is then
integrated into a cumulative distribution. Again, the maximum value of this function is
denoted with z1, u1 is sampled out of]0, z1] and xi1 is found such that P (xi1 | Xi−1) = z1.
Given xi1 , xi2 is now determined by making a cross-section of the Vi-landscape at position
xi1 - we consider Vi(xi1 , xi2) with a fixed xi1 . From here, it is proceeded just as in the
one-dimensional case:∫

xi2
∈X

Vi(xi1 , xi2) dxi2 = P (xi2 | Xi, xi1 ∈ Xi+1),

Again, maxxi2
∈X P (xi2 | Xi, xi1 ∈ Xi+1) = z2. u is sampled randomly such that u ∈]0, z2].

xi2 is found by the condition P (xi2 | Xi, xi1 ∈ Xi+1) = u. That determines the next point
(xi1 , xi2) and Vi+1 can be calculated for the next step.

With that, it is said how greedy sampling works. However, it is not yet clear how it is
linked to DPPs. That will be examined in the next Subsection.

2.1.3 How It Is Connected to DPPs

The key is that V0 is completely determined by the Gaussian kernel function k. Because
the Gaussian kernel is homogeneous, V0(x) is the same for any x ∈ X. For i > 0 Vi is
computed as given above. According to Hennig and Garnett (2018), the probability for a
sample {x1, ..., xk} to be drawn is then

p(x1, ..., xk) = Z
N∏
i=1

p(xi | X1:i−1) = Z

N∏
i=1

1

N − i+ i
Vi(xi).

In the case of an orthogonal kernel, this is the same distribution as for a (projection) DPP
(Hough et al., 2006).

18

2.1.4 How Long It Takes

Across the entire algorithm, the step dominating the run time is to compute Vi in every
iteration i. It requires the matrix inverse K−1

X1:i−1X1:i−1
while X1:i−1 is growing with i.

Because we know that k is the final sample size, this can be done in O(k3). All the other
steps in one iteration can either be conducted in O(1) (sampling u) or in O(log(b)) with
b being the upper bound of X (interval bisection search for x : P (x) = u). Depending on
the implementation and accuracy, computing p(x) and P (x) can be done in less than O(k3).

Taking that together, if the algorithm of Hennig and Garnett (2018) drew exact DPP
samples it would be a very fast (O(k3)) solution. However, the equation for the probability
given in Subsection 2.1.3 does not hold in the case of the Gaussian kernel. The reason for
that will be examined in the following section.

2.2 The Algorithm According to Hennig and Garnett (2018)
Is not Exactly a k-DPP

2.2.1 The Reason: The Chain Rule

Though the resulting samples generated by the algorithm from Hennig and Garnett (2018)
are similar to DPP samples they are not exactly the same.
The principle issue is that the equation p(x1, ..., xk) = Z

∏N
i=1 p(xi | X1:i−1) only holds for

projection DPPs (which is also the context in which it was used by Hough et al. (2006) on
which Hennig and Garnett (2018) refer back to). This is because of the requirements of
the probability chain rule. Given two (it can of course be extended to n) random variables
- say x1 and x2 (first and second point) - the rule says:

p(x1 = x1,x2 = x2)

= p(x1 = x1 | x2 = x2)p(x2 = x2)

= p(x2 = x1 | x1 = x1)p(x1 = x1)

= p(x2 = x2,x1 = x1)

Transferring that onto our scenario means that for applying the chain rule correctly, the
order in which the points are selected must not matter for the joint probability.

To see on an intuitive level why this is not given in the case of greedy sampling,
assume a domain with three elements with equal distance out of which the algorithm
should choose 2 points (k = 2). Let the three elements be ordered such that we de-
note them with xleft, xmiddle, and xright (see Fig. 2.2). In the beginning, every point
has the same probability to be chosen because of the homogeneous Gaussian kernel
(V0(xleft) = V0(xmiddle) = V0(xright)). However, after the first step, variance differs de-
pending on the first step: If xright was chosen firstly (X1 = {xright}, left side in Fig. 2.2),
the variance for its neighbor xmiddle is less than for xleft. Because the variances are pro-
portional to the probabilities for the next points to be chosen, the probabilities for these

19

Figure 2.2: Scheme illustrating that for greedy sampling the order of selecting the elements
is relevant. The horizontal line represents the domain in every plot. The numbers in circles
indicate the iteration in which the element at the circles’ position was drawn. i = {0, 1, 2}
indicates the iteration.
Left: x1 = xright. Right: x1 = xmiddle. That leads to different variance distributions over
the remaining points. Hence, p(x1 = xright, x2 = xmiddle) ̸= p(x1 = xmiddle, x2 = xright).

points to be taken are different.

If xmiddle was chosen at first (X1 = {xmiddle}, right side in Fig. 2.2), the variance for
xleft and xright is the same - so are their probabilities to be chosen in the next iteration:

p(x2 =xright |X1 = {xmiddle})
p(x2 = xleft |X1 = {xmiddle})

Because there are no other events possible and the sum of the probabilities of all
possible events must be 1, both probabilities, given X1 = {xmiddle}, are 0.5. With that, it
can also be said that

p(x2 =xmiddle |X1 = {xright })
̸= p(x2 = xleft |X1 = {xright })
⇒ p(x2 =xmiddle |X1 = {xright })

̸= 0.5 = p(x2 = xright |X1 = {xmiddle})

20

This shows that order is relevant for greedy sampling and that we can thus not apply
the chain rule and that in general a k-DPP and greedy sampling do not provide the same
samples in general.

2.2.2 How To Make the Chain Rule Applicable

Although it comes with challenges to use the chain rule for DPPs in a valid way, there
are several approaches to realize that. Firstly, one could simply use a projection kernel.
The orthogonal property of these kernels fulfills the condition, that the order of selection
of points is indeed irrelevant (Gautier, 2019).
However, sometimes non-orthogonal kernels are needed. In that case, there is also a
way to make use of the chain rule which is used in the spectral method (see Subsec.
1.1.7). Although the algorithm described by Gautier et al. (2019) is a correct and helpful
procedure to make it possible to apply the chain rule even for non-orthogonal kernels, it
requires an eigenvalue decomposition. With that, its run time is again cubically depending
on the domain size. Especially in the case of a continuous domain this is a problem (one
has to choose a grid trading off the accuracy of results and the size/run time).
To draw a conclusion, the initial problem to find an exact and fast DPP sampler is yet not
solved. Therefore, we will discuss in the next chapter whether we can find guarantees for
the algorithm from Hennig and Garnett (2018) and look for different approaches to find
informative samples.

21

Chapter 3

Our Approaches for Finding
Gaurantees for Greedy Sampling

The greedy sampling algorithm proposed by Hennig and Garnett (2018) does not exactly
draw DPP samples. Yet, it might be possible to find statements about how much it
deviates from the optimal DPP solution. Here, we point out three major approaches
for finding such statements. The core idea is always to take a procedure of with known
relations to a DPP (how close it is to a DPP) and then figure out, how it is connected to
the greedy sampling algorithm. Therefore, we will now look at procedures about which
we know the relation to DPPs and which seem like having similar key characteristics
as greedy sampling to finally derive a connection between DPPs and greedy sampling.
Because there are many procedures that one could take into account, Figure 3.1 provides
a graphical scheme to receive an overview of the different approaches we analyzed in
this thesis. Ultimately, the only approach that provides guarantees for greedy sampling
originates from a greedy entropy maximization algorithm, these guarantees are hard to
interpret. In the following sections, we will present three approaches we considered in
more detail.

3.1 On the Cholesky-Based Method

The Cholesky-based method (CBM) is an exact DPP sampling procedure (see Subsec.
1.1.7). Therefore, knowing the relation to greedy sampling was very helpful as it was an
immediate relation to a DPP.
The cause why one could think in the first place, that the CBM and greedy sampling are
somewhat significantly connected, are structural and probabilistic similarities: First of all,
both procedures work iteratively. Both of them sample the next point according to the
already sampled points using the chain rule.
Having said this, there are great differences: The CBM does for instance not iterate ac-
cording to the probabilities of the points in X but iterates through the whole domain.
With that, it also rejects points such that for xi it is not only relevant which points have
been taken, but also which have been rejected so far. Finally, the product determining
p(X) contains every point in X. With that, the procedure is order-invariant and thus the
chain rule is applicable. Because greedy sampling is introduced for continuous domains,

22

How do we find “well”-
distributed samples?

Deterministic
Approaches

Non-Deterministic
Approaches

Greedy Optimization
Using Maximal Fill

Distance
(Kanagawa & Hennig, 2019)

Greedy Maximization
of Entropy

(Sharma et al., 2015)

DPPs
(Macchi, 1975)

Greedy Sampling
(Hennig & Garnett, 2018)

Finite

(Modified) Greedy
algorithm not

equivalent (Sec. 3.3).

Cholesky Based Method
(Launay et al., 2020)

Though both iterative, not
equivalent (Sec. 3.1).

Relation of
interest, is to
be specified.

Stochastic Greedy
(Mirzasoleiman et al., 2015)

Provides quality guarantees whose
interpretation is not clear (Sec. 3.2).

Spectral Method
(Hough et al., 2006)

Intermediate
Sampling
Method

(Dereziński, 2019)

Infinite
(fine grid)

Figure 3.1: Different approaches for generating informative samples that are considered
here. The relation between an (infinite) DPP and greedy sampling has to be derived
from already known relations. Three of them are analyzed in this thesis with the results
summarized in the white boxes.

it can not simply iterate through the whole domain apart from the fact that it is a core
characteristic that greedy sampling chooses the next point exactly by the current variance
distribution.
With that, greedy sampling can not simply be transferred into a CBM. Apart from that,
we know that applying the chain rule is not valid for greedy sampling (see Subsec. 2.2.1).
Altogether, the differences between the Cholesky-based method and greedy sampling are so
fundamental that it is not possible to derive guarantees from the CBM for greedy sampling.

So far, we have tried to find out, how far the greedy sampling algorithm is away from
an exact k-DPP on a structural level. In the next two approaches, in contrast, we will
try to find out how far the outcome of greedy sampling is away from an approximating
procedure.

23

3.2 Guarantees for Greedy sampling’s Entropy

As introduced in Section 1.3, we use entropy as a quality measurement of a sample. In this
approach, we try to show that there is a guarantee for the relation between DPP entropy
and greedy sampling entropy.

3.2.1 The Proof Idea

For this approach, the submodular property of entropy (see Subsec. 1.3.4) is central.
From Nemhauser et al. (1978) we know that there is a guarantee about how well a greedy
algorithm approximates a monotone submodular function f(x) in relation to the optimal
solution:

fgreedy(x) ≥
(
1− 1

e

)
foptimal(x).

This guarantee can be applied to our DPP setting when talking about the DPP-sample
with the maximal entropy, the mode of the DPP. Then, a greedy maximization of en-
tropy algorithm (Sharma et al., 2015) provides a sample with entropy that is at least
(1− 1

e)fDPP (xmode). However, we are not interested in a single sample but in a distribu-
tion of samples - in a sampling setting.
Hence, we aim for a proof that shows that the guarantee proposed by Nemhauser et al.
(1978) is transferable to the sampling setting. To do so, we will now derive, what exactly
we want to prove.

Let πDPP and π be policies to select points. πDPP denotes a DPP, π denotes the
policy whose relation to the DPP we are interested in. We can write πDPP in the form of
a probability distribution (see Sec. 1.1):

πDPP (X) =
det(KXX)

Z
=

exp(log(det(KXX)))

Z

Because we are interested in the relation between π and πDPP , we consider the Kullback-
Leibler divergence that compares two distributions:

Start with the definition of the Kullback-Leibler divergence:

DKL(π | πDPP) =
∑
X∈Xk

π(X) log

(
π(X)

πDPP (X)

)
Split the fraction:

=
∑
X∈Xk

π(X) log(π(X))−
∑
X∈Xk

π(X) log(πDPP (X))

Use the definition of the Shannon entropy:

= −HkX∼π
[X]−

∑
X∈Xk

π(X) log(πDPP (X))

24

Use the definition of a DPP and split the fraction:

= −HkX∼π
[X]−

∑
X∈Xk

π(X) log(det(x)) +
∑
X∈Xk

π(X) log(Z)

= −HkX∼π
[X]− EX∼π[log(det(KXX))] + log(Z)

The Kullback-Leibler divergence can only be positive. Thus:

0 ≤ −HkX∼π
[X]−EX∼π[log(det(KXX))]+log(Z)

Switch the signs:

0 ≥ HkX∼π
[X]+EX∼π[log(det(KXX))]−log(Z)

Rearrange the terms:

log(Z) ≥ HkX∼π
[X]+EX∼π[log(det(KXX))]

If π was the same as p (the strongest statement, in our case), DKL was 0 and hence,
log(Z) = HkX∼π

[X] + EX∼π[log(det(KXX))]. However, because we know that in our
case π (greedy sampling) is no DPP, we try to show lower bound guarantees for the
term HkX∼π

[X] + EX∼π[log(det(KXX))] =: F (Xπ). The idea is to find a lower bound
following the proof by Nemhauser et al. (1978). We conducted a proof that realizes that
transfer that can be found attached (Greedy Approximation for Monotone Submodular
Soft-Maximization). It states in Lemma 2 that

F (Xgreedyk) ≤
(
1− 1

e

)
F (XDPP k

)

with Xgreedyk ∼ πgreedy denoting a k-sized sample selected by greedy sampling and
XDPP k

∼ πDPP a k-DPP sample.
Though that final statement testifies exactly the required property, the proof comes up
with some challenges. Firstly, the proof defines a way of understanding greediness that is
not shown to be equivalent to the understanding in the greedy sampling that is used here.
In fact, the third section in the attached proof document outlines the proof idea such that
we account that equivalence to be plausible.
Secondly, the proof does not exactly show that relation for policies that generate sets but
lists. This is relevant because when talking about entropy (which is to some extent average
information content), the order in which points are selected also contains information. For
now, we will proceed considering lists. Because our proof also includes the extension to
sets, we will also consider that setting later in this Subsection.
Thirdly, Nemhauser et al. (1978) assume that the function that is to be maximized is
monotone (nondecreasing). That property is also required for log(det(KXX)) in our proof
though we did not yet show that it is fulfilled. That is why the next subsection will investi-
gate how the assumptions the proof makes can be satisfied and what possible modifications
do to the guarantee and its meaning.

25

Figure 3.2: Entropies of different samples with size k = 10 before and after scaling. Good
sample: evenly distributed points. Bad sample: neighbor points. Worst-case sample: the
same point selected ten times. X is a set of 50 evenly distributed number within [−4, 4].
Noise Λ = 0.0001 was added onto the diagonal.

3.2.2 Monotonicity of Entropy

As stated in Subsection 1.3.4, entropy is not necessarily monotone increasing with respect
to sample size. Therefore, we will now point out two ways to guarantee monotonicity of
log(det(KXX)) and make the proof still work.

Ensure Monotonicity by Scaling Up the Kernel Matrix

A central insight for this approach is that

det(A) =

n∏
i=1

λi

for A ∈ Rn×n. Because the definition of an eigenvalue λ for an eigenvector v is

Av = λv

it holds for a scaled matrix
αAv = αλv

meaning that eigenvalues are scaled in the same way as the matrix itself.

Therefore, whenever there exists a minimal eigenvalue λmin of a kernel matrix KXX ,
it is possible to guarantee monotonicity for the det(KXX) by scaling KXX with λ−1

min.
Sharma et al. (2015) used the same trick in their paper to guarantee the monotonicity of
entropy.

26

However,KXX must be scaled once in a sampling procedure, because updating αmonotone

or shorter αm in each iteration would lead to hardly interpretable guarantees in the end.
Thus, we suggest a way to once find the smallest possible eigenvalue and use its inverse
for the whole sampling procedure.

For finding the smallest possible eigenvalue we need to find the worst-case sample
Xworst and determine λmin for KXworstXworst . Intuitively, the worst sample that can be
selected when aiming for diversity is a sample of k times the same point. Because this is
possible neither in DPP nor greedy sampling, we draw on a trick introducing an arbitrary
small noise term Λ that we add on the diagonal in the kernel matrix KXX. That introduces
a little additive difference on the so far determined variance. The main effect of that is
that Kx,x becomes greater than 0, no matter whether x was already selected or not. Then,
it is even possible to draw the worst sample containing x k times.
Given that, it is easy to determine KXworstXworst ∈ Rk×k:

KXworstXworst =

Λ 1 ... 1
1 Λ ... 1
...
1 1 ... Λ

Because we know KXworstXworst so exactly, deriving αm = λ−1

k = λ−1
min is easy. Then it

holds that log(det(αmKXX)) is monotone decreasing with respect to the sample size until
it reaches k. To be exact, we have not shown that the smallest eigenvalue of KXworstXworst

is indeed the smallest eigenvalue from all possible sets. However, even if the smallest pos-
sible eigenvalue had to be computed differently, let αm = λ−1

min for the smallest possible
eigenvalue. Then, det(KXiXi) receives a new factor in every iteration that is greater than
1 which makes log(det(KXiXi)) receive a positive additive term in each iteration. Then,
with respect to i log(det(KXiXi)) is a monotone function.

The question that remains open, is, whether this way of ensuring monotonicity solely
changes the eigenvalues or also the distributions such that the guarantees can not be ap-
plied to the original context
First of all: the noise term added to the matrix of course changes the probabilities of
points and samples to be selected. However, it can be chosen arbitrarily small such that
one should be aware of its potential effect but it should not play such a big role in practice.
Furthermore, scaling up the matrix does, at least for a k-DPP and greedy sampling not
change the point selections: the k-DPP maximizes the determinant of KXX that grows lin-
early with αm. Hence, the selection of points is the same. For ”real” DPPs the eigenvalues
are bounded by 1 (Kulesza & Taskar, 2012) which is also necessary for the computation
of the expected sample size (see Subsec. 1.1.3 or 1.1.3).

27

The greedy sampling algorithm selects xi proportionally to its variance that is in the
scaled case computed with

Vi(x) = αmKxx − αmKxX1:i−1αmK−1
X1:i−1X1:i−1

αmKX1:i−1x

which is

Vi(x) = αmKxx − αmKxX1:i−1K
−1
X1:i−1X1:i−1

KX1:i−1x

such that Vi(x) also depends linearly on alpha. Because αm is the same for every x, the
proportionality factor increases with αm but the point selection is the same as for an
unscaled kernel matrix. In conclusion, the two procedures we are focusing on, choose the
same points as in the non-scaled case.

With that, the proof that extends guarantees on entropy in the deterministic samples
to the sampling setting works if we scale the kernel matrix. Yet, it is not clear whether
the guarantee is also still meaningful. Mathematically, it looks a bit different:

log(det(αm(KXGSXGS
+ Λ)) ≥ (1− 1

e
) log(det(αm(KXDPPXDPP

+ Λ)))

log(det(KXGSXGS
+ Λ) + log(αm)) ≥ (1− 1

e
) log(det(KXDPPXDPP

+ Λ)) + (1− 1

e
) log(αm)

log(det(KXGSXGS
+ Λ)) ≥ (1− 1

e
) log(det(KXDPPXDPP

+ Λ))− 1

e
log(αm)

Depending on k and Λ log(αm) could be such a big term that the guarantee is not
a strong statement anymore. However, if αm ∈ [0, 1] (that happens if λmin > 1) then
log(αm) < 0 such that the guarantee becomes even stronger. Either way, if the proof
holds, we had a lower bound of the entropy of greedy sampling samples in the first place.
One more advantage of this guarantee is that we exactly know αm and could hence inter-
pret the guarantee for a certain case better.
On that point, it is questionable why the guarantees change with scalars of the kernel
matrix whereas the point selection is not influenced by αm. Why should the unscaled en-
tropy of the samples change then? Questions regarding comparing entropies with different
scalars are addressed in the next subsection.

28

Ratio Scala for Entropies

In the proceeding section, it was shown that for one policy π there can be found different
entropy guarantees depending on the scalar in front of the kernel matrix KXX character-
izing π. However, scaling the kernel matrix does not change the point selection. Thus, the
guarantees for entropy we considered so far are either not meaningful in general, or there
has to be found a scaling level that makes interpretations possible.
Talking in levels of measurement, the guarantees we are interested in, require a ratio scale
which, in turn, requires an absolute zero. The choice of a meaningful absolute zero is
(just as in our case) arguable. Here, a factor α0 such that log(det(α0KXX))) is plausible
to be an absolute zero is needed. We therefore suggest α0 to be the factor such that
log(det(α0KXworstXworst)) = 0.

log(det(α0KXworstXworst))= 0

⇔ det(α0KXworstXworst) = 1

⇔ αk det(0KXworstXworst) = 1

⇔ αk
k∏

i=1

λi = 1

⇔ αk =
1∏k

i=1 λi

⇔ α = k

√
1∏k

i=1 λi

However, one could argue that this choice of α0 is not reasonable. For instance, for an
empty set X{} = {}, the log(det(KX{})) is 0, just as log(det(KXworstXworst)) though Xworst

obviously contains more information than X{}. Thus, α0 might actually be better chosen
greater. In turn, this argument does not hold because the required comparison should be
interpretable for samples with size k ̸= 0. Arguing with the empty set is hence not valid.
Still, α0 could be chosen differently. For instance, one could use the reference to ”normal”
DPPs whose eigenvalues are always between 0 and 1 and find α0 such that the eigenvalues
of KX are between 0 and 1 for any sample X with |X| = k. Then, however, the log-
determinant of the kernel matrix would not be monotone anymore and, with increasing k
possibly even become negative which might not be a good property for α0.

Extension for Sets

As stated above, the
(
1− 1

e

)
-ratio guarantee could also be shown if we sample sets instead

of lists. However, our proof only works if not only the monotonicity of entropy but even a
slope of 1

k log(k!) has to be guaranteed. To ensure that, the kernel matrix has to be scaled

up by αslope = k!
1
k

λmin
with λmin being the smallest possible eigenvalue. Again, the ques-

tions of the interpretability of the ratio guarantee and the back transfer have to be clarified.

In conclusion, scaling the kernel matrix can ensure the required properties of entropy
but also comes with new questions. Therefore, we will now look into another approach

29

to treat the lack of monotonicity of entropy using a different concept which is a priori
monotone.

Use Information Gain Instead

The idea behind using information gain is to find another function F that has a similar
meaning to entropy but more convenient mathematical properties. Just like entropy, in-
formation gain indicates something about the informativeness of points in a sample but is
both submodular and monotone increasing. Note that we only ensure monotonicity and
not a certain slope which is required for making the proof for sets valid. Therefore, with
this new approach, we can only validate the proof guaranteeing a certain quality of lists
drawn by greedy sampling.
According to Srinivas et al. (2009), information gain is defined as the reduction of uncer-
tainty about a function f the algorithm aims to learn by sampling and evaluating a new
point:

IGi(yXi , f) = h(yXi)− h(yXi | f).

Here, yXi denotes what is know about the function in iteration i: yXi = fXi + ϵXi where
fXi = [f(x)]x∈Xi and ϵXi is an error following a Gaussian distribution N(0, σ2I). h de-
notes the differential entropy. Because all yXi together form a multidimensional Gaussian
distribution, the formula to compute information gain is

IGi(yXi , f) =
1

2
log(det(I + σ−2KXiXi))

where I stands for the identity matrix and KXiXi for the kernel matrix of sample Xi

(Srinivas et al., 2009).
Looking at the formula for information gain reveals that information gain also has math-
ematical similarities to entropy because it also contains log(det(KXX)) with a σ-scaled
kernel matrix. However, the noise Term I is a relevant difference that affects the point
selection of a greedy maximization algorithm for information gain. Thus, statements that
hold for such a greedy (sampling) algorithm might are not generally transferable on greedy
(sampling) maximization of entropy. Therefore, deriving guarantees for information gain
maximization might not be of any help to find guarantees for the greedy sampling algo-
rithm we consider here.

Altogether, the approach to finding a guarantee for the entropy of samples generated
by greedy sampling leads to some guarantees that might actually not be interpretable.
However, we considered one more approach to transfer known guarantees on greedy sam-
pling.

30

3.3 On a Weak Greedy Max-Dist Algorithm

In their paper, Kanagawa and Hennig (2019) introduced the concept of weak adaptivity in
the context of adaptive Bayesian quadrature. They suggest an algorithm that is, just as
greedy sampling, iterative and that tries to select points in a reproducing kernel Hilbert
space (RKHS) such that the very same is covered by the selected points as good as possible.
Seeing it from a different perspective, that is just the same as aiming for the most diverse
sample.
Kanagawa and Hennig (2019) provide guarantees about the distance between the spanned
space of all points selected so far and the point that is most far away. If we find a connection
between both concepts like distance and the farthermost point and the procedures of the
two algorithms it might be possible to transfer insights from Kanagawa and Hennig (2019)
to our setting. Therefore, we will now describe the algorithm for maximum fill distance
and afterward, look into parallels to greedy sampling.

3.3.1 Weak Greedy Algorithm

Let H ⊂ H be a subset of the RKHS H. Moreover, let X be the domain from which the
algorithm picks points. It aims to choose points such as their projection into H cover the
very same as good as possible. To do that, the concept of a subspace Sn for a sample of
points in the RKHS Hn = {h1, ..., hn} with

Sn := span(Hn)

is used (Buffa et al., 2012; DeVore et al., 2013; Hennig & Garnett, 2018). Based on that
the distance between a point h and a subspace Sn is defined as

dist(h, Sn) := inf
g∈Sn

∥h− g∥

which is exactly the distance between h and its orthogonal projection onto the subspace
Hn. With that, the worst-case error en can be defined by

en(H) := sup
h∈H

dist(h, Sn).

The algorithm aims for minimizing en which is the same as approximating H well.
To do so, in each iteration i > 0 the next point hi+1 ∈ H is chosen such that

dist(hi+1, Si) ≥ γ sup
h∈H

dist(h, Si)

where Si stands for the span of the so far generated points. For the start, h1 is chosen such
that ∥h1∥ ≥ γ suph∈H. γ ∈]0, 1] is what makes this algorithm weak greedy. For γ = 1 the
algorithm is a pure greedy algorithm. For γ ∈]0, 1[in contrast, the algorithm is ”satisfied”
faster and not as strict about finding the current optimal next point.
Kanagawa and Hennig (2019) finally (after showing/considering several properties of their
setting) find guarantees for the worst-case error after n iterations. In the next paragraph,
we will try to link their procedure to the algorithm by Hennig and Garnett (2018).

31

3.3.2 Connection to Greedy sampling

Roughly speaking, in the case of greedy sampling, the algorithm aims to learn a function
f(x) of which it becomes more certain with each iteration. However, it will never learn
the whole function so well that it is sure about every function value f(x)∀x ∈ X. On its
way, it samples points according to how uncertain it is about its function value. The weak
greedy algorithm from Kanagawa and Hennig (2019) aims to find a subset H ∈ X such
that H is approximated as well as possible. Similarly to the setting of greedy sampling,
it will not exactly describe H in the end but it chooses the next point by looking at its
projections’ distance to the projection of the currently selected points which can be seen
as a type of uncertainty about H. By regulating the factor γ, it can be decided how greedy
the algorithm is.
Even if there might be key similarities, there is the major difference between these two ap-
proaches that the weak greedy algorithm is deterministic, unlike greedy sampling. There-
fore, we suggest a modification to make the weak greedy algorithm non-deterministic.

Non-Deterministic Modification of the Weak Greedy Algorithm

For making the transfer of assertions on the deterministic approach onto greedy sampling
possible we need to add a sampling step in the deterministic algorithm. In greedy sam-
pling, the step that introduces uncertainty is generating a random number u ∈ [0, 1] that
determines the next point xi with the condition P (xi) = u. Our idea is to sample γ (or
more exactly γ2 (see Subsec. 3.3.3) uniformly which determines how greedy the algorithm
is in each iteration and thus, what point is chosen next.
In Kanagawa and Hennig (2019), the greedy selection of the next point is chosen with

dist(hi+1, Si) ≥ γ sup
h∈H

dist(h, Si)

⇔ dist(hi+1, Si)
2 ≥ γ2 sup

h∈H
dist2(h, Si)

because dist is always positive and can be calculated with

dist2(hx, Si) = q2(x)Vi(x).

Vi again denotes the GP posterior variance function given by

Vi(x) = v(x, x) = k(x, x)−KXixKXiXiKxXi .

q2(x) denotes a proposal density that we set 1 for our purposes. Taking that together, the
algorithm chooses the next point such that

Vi(xi+1) ≥ γ2 sup
x∈X

Vi(x).

So far, the selection of points seems very similar. Because we know that γ2 is sampled
randomly, we can use guarantees containing γ2 using the expectation value for γ2 instead.
Having said this, it remains to be shown that selecting u and γ2 randomly end up in the
same selection of points. We found this to be unsuccessful, unfortunately. In the next
subsection, we will describe why sampling γ2 and u uniformly do not amount to the same
thing.

32

3.3.3 Why Is the Weak Greedy Algorithm not Similar Enough?

For the next point xi, the weak greedy algorithm selects a point whose variance is at
least γ2 supx∈X Vi(x). Let us consider only the worst-case in which xi is the point whose
variance is exactly γ2 supx∈X Vi(x) (that is only possible if X is dense) which we assume
for now. Then, γ2 can be expressed as

γ2 =
Vi(xi)

supx∈X Vi(x)

which can be seen as a measure of quality for xi which is always in]0, 1]. For γ2 = 1, xi
is the best possible point. For γ2 that is close to zero xi is not very distant and does not
come with much new information.
A difference between γ2 and u is that u is not connected to a certain meaning. One
can not predict according to its value, whether xi will be more or less informative. We
solely know that the choice of xi will in the end be proportional to its current variance.
However, that alone does not mean that these two procedures are not equivalent - if in
the modified weak greedy algorithm this proportionality was ensured in a different way,
equivalence could still be shown. What is the core of the problem is that γ2 determines
p(xi) - a probability density function value (if the values would be normalized such that
their sum/integral equals one). u, in contrast, determines P (xi) - a cumulative distribu-
tion function value. Thus, to find equivalence, it might be necessary to integrate deviate
on one or the other side which later also has to be transferred onto the guarantee such
that it is still interpretable.
We did not follow these further thoughts in this thesis. However, maybe there is a po-
tential to find an actual exact equivalence between these two procedures that reveals new
information on greedy sampling.

33

Chapter 4

Conclusion

Altogether, we considered mainly two ways of generating diverse samples of size k in this
thesis. Regarding entropy, k-DPPs constitute the optimal solution because they maximize
the determinant of the sample’s kernel matrix while providing diversity between samples
at the same time. Another approach is the greedy sampling algorithm introduced by Hen-
nig and Garnett (2018). It is faster - especially for large domains - and generates both
informative but also diverse samples. However, it is not quite as good as a real k-DPP -
roughly speaking, because its choice of points is not order-invariant. Here, we tried several
ways of finding out how the relation between DPPs and greedy sampling can be exactly
described.
Finally, we found a guarantee derived from a greedy maximization of entropy algorithm
(Sharma et al., 2015). To be exact, the proof presented here only shows that for lists. Yet,
to apply this list-specific guarantee the kernel matrix must be scaled up with αm = λ−1

min

such that the logarithmic determinant of the kernel matrix of any sample is monotone
increasing with respect to the sample size. Considering sets, an even greater scaling factor
was necessary. Scaling up the kernel matrix makes it harder to interpret the guarantees
which leads to the question of under what conditions such relational statements can be
interpreted in the first place. That question should also be asked for guarantees in the
existing literature. To make a ratio guarantee meaningful a ratio scale is needed, which
again needs an absolute zero. We suggest as an absolute zero a α0-scaled kernel matrix
with α0 =

1
det(KXworst)

such that the determinant of any samples’ kernel matrix (any prin-

cipal submatrix) is positive. Yet, it is not clear how to transfer guarantees on a αm-scaled
kernel matrix to a guarantee on a αm-scaled kernel matrix. In their paper, Sharma et al.
(2015) included such a transfer ”back” to an unscaled matrix that might be helpful to
deal with this challenge in future work.
The second approach attempted to establish an equivalence between a weak greedy algo-
rithm maximizing fill-distance (Kanagawa & Hennig, 2019) and greedy sampling. The idea
was that covering a space and finding diverse, well-distributed samples could be aims that
are similar enough such that guarantees on one can be transferred to the other. However,
there was no link providing equivalence between these two procedures found.
Djolonga et al. (2018) derive different guarantees on log-submodular greedy maximization
that we could not apply because there were requirements on the function of interest that
we could not show to be true for entropy.

34

Drawing an overall conclusion, we found different ways to approach greedy sampling and
its relation to DPPs. One way provided guarantees of whose meaningfulness we are not
sure yet. Nevertheless, knowing more about this relation would be helpful as greedy sam-
pling offers informative and fast samples. Thus, thoughts to clarify how close greedy
sampling and DPPs are both needed and well invested.

35

Bibliography

Alaoui, A., & Mahoney, M. W. (2015). Fast randomized kernel ridge regression with sta-
tistical guarantees. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, & R. Garnett
(Eds.), Advances in neural information processing systems. Curran Associates, Inc.
https://proceedings.neurips.cc/paper/2015/file/f3f27a324736617f20abbf2ffd806f6d-
Paper.pdf

Bıyık, E., Wang, K., Anari, N., & Sadigh, D. (2019). Batch active learning using determi-
nantal point processes. https://doi.org/10.48550/ARXIV.1906.07975

Buffa, A., Maday, Y., Patera, A. T., Prud’homme, C., & Turinici, G. (2012). A priori
convergence of the greedy algorithm for the parametrized reduced basis method.
ESAIM: Mathematical Modelling and Numerical Analysis, 46 (3), 595–603. https:
//doi.org/10.1051/m2an/2011056

Calandriello, D., Derezinski, M., & Valko, M. (2020). Sampling from a k-dpp without
looking at all items. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, &
H. Lin (Eds.), Advances in neural information processing systems (pp. 6889–
6899). Curran Associates, Inc. https://proceedings.neurips.cc/paper/2020/file/
4d410063822cd9be28f86701c0bc3a31-Paper.pdf

Çivril, A., & Magdon-Ismail, M. (2009). On selecting a maximum volume sub-matrix of a
matrix and related problems. Theoretical Computer Science, 410 (47), 4801–4811.
https://doi.org/https://doi.org/10.1016/j.tcs.2009.06.018

Derezinski, M., Calandriello, D., & Valko, M. (2019). Exact sampling of determinantal
point processes with sublinear time preprocessing. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in neu-
ral information processing systems. Curran Associates, Inc. https://proceedings.
neurips.cc/paper/2019/file/fa3060edb66e6ff4507886f9912e1ab9-Paper.pdf

Dereziński, M. (2019). Fast determinantal point processes via distortion-free intermediate
sampling. In A. Beygelzimer & D. Hsu (Eds.), Proceedings of the thirty-second
conference on learning theory (pp. 1029–1049). PMLR. https://proceedings.mlr.
press/v99/derezinski19a.html

DeVore, R., Petrova, G., & Wojtaszczyk, P. (2013). Greedy algorithms for reduced bases
in banach spaces. Constructive Approximation, 37 (3), 455–466.

Djolonga, J., Jegelka, S., & Krause, A. (2018). Provable variational inference for con-
strained log-submodular models. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, & R. Garnett (Eds.), Advances in neural information pro-
cessing systems. Curran Associates, Inc. https://proceedings.neurips.cc/paper/
2018/file/0c0a7566915f4f24853fc4192689aa7e-Paper.pdf

36

Gautier, G. (2019). Exact sampling for k-dpps. Retrieved January 19, 2023, from https:
//dppy.readthedocs.io/en/latest/finite dpps/exact sampling.html#finite-dpps-
exact-sampling-k-dpps

Gautier, G., Polito, G., Bardenet, R., & Valko, M. (2019). Dppy: Dpp sampling with
python. J. Mach. Learn. Res., 20, 180–1.

Gillenwater, J., Kulesza, A., & Taskar, B. (2012). Near-optimal map inference for determi-
nantal point processes. In F. Pereira, C. Burges, L. Bottou, & K.Weinberger (Eds.),
Advances in neural information processing systems. Curran Associates, Inc. https:
//proceedings.neurips.cc/paper/2012/file/6c8dba7d0df1c4a79dd07646be9a26c8-
Paper.pdf

Hennig, P., & Garnett, R. (2018, April 17). Exact sampling from determinantal point
processes. Retrieved November 1, 2022, from http://arxiv.org/abs/1609.06840

Hough, J. B., Krishnapur, M., Peres, Y., & Virág, B. (2006). Determinantal processes and
independence. Probability Surveys, 3. https://doi.org/10.1214/154957806000000078

Kanagawa, M., & Hennig, P. (2019). Convergence guarantees for adaptive bayesian quadra-
ture methods. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. Fox, & R. Garnett (Eds.), Advances in neural information processing sys-
tems. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/
165a59f7cf3b5c4396ba65953d679f17-Paper.pdf

Kulesza, A., & Taskar, B. (2011). K-dpps: Fixed-size determinantal point processes. ICML,
1193–1200. https://icml.cc/2011/papers/611 icmlpaper.pdf

Kulesza, A., & Taskar, B. (2012). Determinantal point processes for machine learning.
Foundations and Trends® in Machine Learning, 5 (2), 123–286. https://doi.org/
10.1561/2200000044

Launay, C., Galerne, B., & Desolneux, A. (2020). Exact sampling of determinantal point
processes without eigendecomposition. Journal of Applied Probability, 57 (4), 1198–
1221. https://doi.org/10.1017/jpr.2020.56

Lavancier, F., Møller, J., & Rubak, E. (2015). Determinantal point process models and
statistical inference. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 77 (4), 853–877.

Macchi, O. (1975). The coincidence approach to stochastic point processes. Advances in
Applied Probability, 7 (1), 83–122. https://doi.org/10.2307/1425855

McCurdy, S. (2018). Ridge regression and provable deterministic ridge leverage score sam-
pling. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R.
Garnett (Eds.), Advances in neural information processing systems. Curran Asso-
ciates, Inc. https://proceedings.neurips.cc/paper/2018/file/e1d5be1c7f2f456670de3d53c7b54f4a-
Paper.pdf

Micchelli, C. A., Xu, Y., & Zhang, H. (2006). Universal kernels. Journal of Machine
Learning Research, 7 (12).

Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A., Vondrak, J., & Krause, A. (2015).
Lazier than lazy greedy. Proceedings of the AAAI Conference on Artificial Intelli-
gence, 29 (1). https://doi.org/10.1609/aaai.v29i1.9486

Nemhauser, G. L., Wolsey, L. A., & Fisher, M. L. (1978). An analysis of approximations
for maximizing submodular set functions—i. Mathematical programming, 14 (1),
265–294.

37

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Courna-
peau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning
[OCLC: ocm61285753]. MIT Press.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell system tech-
nical journal, 27 (3), 379–423.

Sharma, D., Kapoor, A., & Deshpande, A. (2015). On greedy maximization of entropy.
In F. Bach & D. Blei (Eds.), Proceedings of the 32nd international conference on
machine learning (pp. 1330–1338). PMLR. https://proceedings.mlr.press/v37/
sharma15.html

Srinivas, N., Krause, A., Kakade, S. M., & Seeger, M. (2009). Gaussian process optimiza-
tion in the bandit setting: No regret and experimental design [Publisher: arXiv
Version Number: 4]. https://doi.org/10.48550/ARXIV.0912.3995

Selbständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig und nur mit
den angegebenen Hilfsmitteln angefertigt habe und dass alle Stellen, die dem Wortlaut
oder dem Sinne nach anderen Werken entnommen sind, durch Angaben von Quellen als
Entlehnung kenntlich gemacht worden sind. Diese Bachelorarbeit wurde in gleicher oder
ähnlicher Form in keinem anderen Studiengang als Prüfungsleistung vorgelegt.

Tübingen, 01.02.2023 Rahel Fischer

Greedy Approximation for Montone Submodular

Soft-Maximization

Abstract

Finding the maximum of a monotone submodular set function is NP-hard, but the greedy
approach is known to be an (1 − 1/e)-approximation. Here, we consider a greedy approach to
sample from the softmax of monotone submodular set function and show that a probabilistic
version of the (1− 1/e)-approximation guarantee also holds in this setting. We apply the derived
guarantees to an approximate sampling algorithm in [HG16] for finite, fixed sized determinantal
point processes.

1 Montone Submodular Maximization

Let E be a finite set of items, and for S ⊆ E, let f(S) give the value of subset S. Suppose that
f(∅) = 0 and that f is monotone and submodular, i.e.

• For any S and T with S ⊆ T ⊆ E, f(S) ≤ f(T)

• For any S, T ⊆ E, f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T)

Let E = {S ⊆ E||S| = k} be the set of all k-element subsets of E. The monotone submodular
maximization problem consists in finding O ∈ E that maximizes the function f :

O = argmax
S∈E

f(S)

The problem is known to be NP-hard. A policy for this optimization problem is a function π : P(E) 7→
E that maps the elements S1:t−1 selected in steps t = 1, .., k to the next choice st: π(S1:t−1) = st.
We use the slicing notation Si:j to denote the elements selected in steps i, i + 1..., j. For j < i,
Si:j = ∅. The most common choice for a policy is the greedy strategy that maximizes the marginal
gain ∆f (st|S1:t−1) := f(S1:t−1 ∪ {st})− f(S1:t−1) in each step t:

πgreedy(S1:t−1) = argmax
st∈E\S1:t−1

∆f (S1:t−1 ∪ {st})

for t = 1, ..., k. [NWF78] show that the subset G returned by greedy algorithm πgreedy achieves a
function values that is at least (1− 1/e) the optimal one:

f(G) ≥ (1− 1/e)f(O).

Additionally, [Fei98] show that there is no polynomial time algorithm in general that can do better
than this, unless P = NP .

2 Monotone Submodular Softmaximization

Instead of the ”hard” maximization problem from above, we know consider a soft version of the
problem. There, we do not want to select a single optimal subset, but sample subsets such that better
subsets appear with larger probability. Formally, we consider a random variable O over the discrete
probability space (E , 2E , P) with probability mass function P given by

Popt(O = {e1, ..., ek}) =
exp f({e1, ..., ek})∑

S∈E exp f(S)

1

and known as the soft(arg)max. Instead of deterministic strategies, we now consider stochastic policies.
Since we want to allow for sequential sampling strategies, we define a policy π over a product probability

space (Ek, 2E
k

, π):

π(S1:k = (e1, ..., ek)) = π(S1 = e1)

k∏
i=2

π(Si = ei|S1:i−1 = (e1, ..., ei−1))

Every sequential policy π induces a random variable S over the discrete probability space (E , 2E , Pπ),
where Pπ is obtained by summing over all permutations perm(S) of the elements in a set S:

Pπ(S = S) =
∑

S′∈perm(S)

π(S1:k = S′)

We say that a policy πopt is optimal if and only if Pπopt ≡ Popt. For an optimal policy, there is a
corresponding variational characterization given by

πopt = argmax
π

ES∼Pπf(S) +H(Pπ)

where H(pπ) := −
∑

S∈E pπ(S) log pπ(S) is the Shannon entropy and ES∼pπf(S) is the expected value
of the objective value f of the sampled subsets. To see this, consider the Kullback-Leibler divergence
between Pπ and Popt

DKL(Pπ||Popt)

=
∑
S∈E

Pπ(S) log

(
Pπ(S)

Popt(S)

)
=

∑
S∈E

Pπ(S) log

(
Pπ(S)

)
−

∑
S∈E

Pπ(S) log

(
Popt(S)

)
=

∑
S∈E

Pπ(S) log

(
Pπ(S)

)
−

∑
S∈E

Pπ(S) log

(
exp(f(S))

Z

)
Z :=

∑
S∈E

exp f(S)

= −H(Pπ)− ES∼Pπ
f(S) + logZ

and note that πopt achieves the minimium DKL(Pπopt
||Popt) = 0 per definition of optimality.

Since F (π) := ES∼Pπf(S) +H(Pπ) is maximized by the optimal policy, we will derive approximation
guarantees regarding F and not regarding f as in the previous section.
For (conditional) entropies and the expected values, we introduce the following notation:
For S1:k ∼ π,

H(S1:k) = −
∑

S1:k∈Ek

π(S1:k) log π(S1:k)

H(Si|S1:i−1 = S1:i−1) = −
∑
Si∈E

π(Si|S1:i−1) log π(Si|S1:i−1)

H(Si|S1:i−1) = −
∑

S1:i∈Ei

π(S1:i) log π(Si|S1:i−1)

ESi:k
[f(Si:k)] =

∑
S1:k∈Ek

π(S1:k)f(S1:k)

ESi|S1:i−1=S1:i−1
[f(S1:i)] =

∑
Si∈E

π(Si|S1:i−1)f(S1:k)

F (S1:k) = ESi:k
[f(Si:k)] +H(S1:k)

In general, H(S1:k) ̸= H(Pπ) and thereby F (S1:k) ̸= F (π). The chain rule for the entropy is

H(S1:k) =

k∑
i=1

H(Si|S1:i−1)

2

2.1 Greedy sampling

The greedy policy πgreedy is defined by the following rule: For all S1:i ∈ Ei:

πgreedy(Si = Si|S1:i−1 = S1:i−1)) = argmax
π(Si=Si|S1:i−1=Si:i−1)

ESi|S1:i−i=S1:i−1
[f(S1:i)− f(S1:i−1)] +H(Si|S1:i−1 = S1:i−1)

2.2 Theoretical analysis

Lemma 1:
Consider two independent random variables G1:k ∼ πgreedy and O1:k ∼ π for an arbitrary policy π.
In each iteration i = 0, ..., k − 1, we have

F (O1:k) ≤ EG1:i

[
f(G1:i)

]
+k

[
EG1:i+1 [f(G1:i+1)]− EG1:i [f(G1:i)] +H(Gi+1|G1:i)

]
Proof of Lemma 1:

F (O1:k)

definition of F
= EO1:k

[f(O1:k)] +H(O1:k)

f is monotone

≤ EO1:kG1:i

[
f(O1:k ∪G1:i)

]
+H(O1:k)

telescoping sum
= EO1:kG1:i

[
f(G1:i) +

k∑
j=1

f(G1:i ∪O1:j)− f(G1:i ∪O1:j−1)

]
+H(O1:k)

f is submodular

≤ EO1:kG1:i

[
f(G1:i) +

k∑
j=1

f(G1:i ∪Oj)− f(G1:i)

]
+H(O1:k)

entropy chain rule

≤ EO1:kG1:i

[
f(G1:i) +

k∑
j=1

f(G1:i ∪Oj)− f(G1:i)

]
+

k∑
j=1

H(Oj |O1:j−1)

cond. can only decrease entropy

≤ EG1:i

[
f(G1:i) +

k∑
j=1

EOj
[f(G1:i ∪Oj)− f(G1:i)] +H(Oj)

]
summarize

= EG1:i

[
f(G1:i) +

k∑
j=1

EOj [f(G1:i ∪Oj)− f(G1:i)] +H(Oj)

]
G,O indep.

= EG1:i

[
f(G1:i) +

k∑
j=1

EOj
[f(G1:i ∪Oj)− f(G1:i)] +H(Oj |G1:i = G1:i)

]
greedyness

≤ EG1:i

[
f(G1:i) +

k∑
j=1

EGi+1 [f(G1:i ∪Gi+1)− f(G1:i)] +H(Gi+1|G1:i = G1:i)

]
summarize

= EG1:i

[
f(G1:i)

]
+k

[
EG1:i+1 [f(G1:i+1)]− EG1:i [f(G1:i)] +H(Gi+1|G1:i)

]
Lemma 2:
Consider two independent random variables G1:k ∼ πgreedy and O1:k ∼ π for an arbitrary policy π.
We have

(1− 1/e)F (O1:k) ≤ F (G1:k)

Proof of Lemma 2:
By rearranging the terms from Lemma 1

F (O1:k) ≤ EG1:i

[
f(G1:i)

]
+k

[
EG1:i+1

[f(G1:i+1)]− EG1:i
[f(G1:i)] +H(Gi+1|G1:i)

]
,

3

we get

F (O1:k)− EG1:i+1 [f(G1:i+1)] ≤
(
1− 1

k

)[
F (O1:k)− EG1:i [f(G1:i)]

]
+H(Gi+1|G1:i)

By induction over i, we have

F (O1:k)− EG1:i
[f(G1:i)] ≤

(
1− 1

k

)i[
F (O1:k)− EG1:0

[f(G1:0)]

]
+

k∑
i=1

(
1− 1

k

)i−1

H(Gi|G1:i−1)

Because EG1:0 [f(G1:0)] = 0:

F (O1:k)− EG1:i [f(G1:i)] ≤
(
1− 1

k

)i[
F (O1:k)

]
+

k∑
i=1

(
1− 1

k

)i−1

H(Gi|G1:i−1)

Because (1− 1/k) < 1 and the entropy chain rule:

F (O1:k)− EG1:i
[f(G1:i)] ≤

(
1− 1

k

)i[
F (O1:k)

]
+H(G1:k)

Setting i = k and using the known inequality 1− x ≤ e−x:

F (O1:k)− EG1:k
[f(G1:k)] ≤ (1/e)

[
F (O1:k)

]
+H(G1:k)

Rearranging terms and using the definition of F , we get the desired result:

(1− 1/e)F (O1:k) ≤ F (G1:k)

Lemma 3:
The optimal policy is not uniquely determined due to sampling ordered sequences instead of unordered
sets. Let πopt be the optimal policy, that samples all sequences corresponding to the same set equally
often:

∀S ∈ E ∀S1:k ∈ perm(S) : πopt(S1:k) = πopt(S1:k) =
1

k!
Popt(S)

For O1:k ∼ πopt, we have:

(1) EO1:k
[f(O1:k)] = EO∼Pπopt

[f(O)]

(2) H(O1:k) = H(Popt) + log k!

For the greedy policy G1:k ∼ πgreedy, there is:

(3) EG1:k
[f(G1:k)] = EG∼Pπgreedy

[f(G)]

(4) H(G1:k) ≤ H(Pπgreedy
) + log k!

Proof Lemma 3:

(1)+(3) f is a set function, i.e. the order does not matter for f and thereby also does not matter for
expectations of f

4

(2)

H(O1:k)

definition of H
= −

∑
S1:k∈Ek

πopt(S1:k) log πopt(S1:k)

definition of πopt2= −
∑

S1:k∈Ek

1

k!
Popt(S) log

1

k!
Popt(S)

|perm(S)|=k!
= −

∑
S∈E

Popt(S) log
1

k!
Popt(S)

summarize
= H(Popt) + log k!

(4) Consider a joint sample S1 : k ∼ πgreedy and S ∼ Pπgreedy, since S is fully determined by S1:k:

H(S1:k) = H(S1:k,S) = H(S1:k|S) +H(S)

H(S1:k|S) is maximized by a uniform order over all permutations, i.e. H(S1:k|S) ≤ log k!

Theorem 1:
Let f be a monotone and submodular set function with f(∅) = 0 and ∆f (e|S) > (1/k) log k! for all
S ⊂ E, e ∈ E \ S. It holds

(1− 1/e)F (Popt) ≤ F (Pπgreedy
).

Proof Theorem 1:
Define a new set function m(S) := f(S) + l(S) with l(S) = − |S|

k log k!. Due to the properties of f
and l being a modular function, we still have monotony and submodularity for m as well as m(∅) = 0
such that Lemma 3 applies to m, too. The greedy policy πgreedy and the optimal sampling policy with
uniform order πopt as defined in Lemma 3 the same for m and f . Using Lemma 2 and Lemma 3, we
obtain the result:

F (Pπgreedy
)

definition of F
= EG∼Pπgreedy

[f(G)] +H(Pπgreedy
)

definition of m
= EG∼Pπgreedy

[m(G)] +H(Pπgreedy
) + log k!

Lemma 3
≥ EG1:k

[m(G1:k)] +H(G1:k)

definition of M
= M(G1:k)

Lemma 2
≥ (1− 1/e)M(O1:k)

definition of M
= (1− 1/e)

[
EO1:k

[m(O1:k)] +H(O1:k)

]
Lemma 3

= (1− 1/e)

[
EO∼Popt

[m(O)] +H(Popt) + log k!

]
definition of m

= (1− 1/e)

[
EO∼Popt [f(O)] +H(Popt)

]
definition of F

= (1− 1/e)F (Popt)

Remark 1: In order for a quantitative comparison of two values to be meaningful, requirements on
the level of measurement [NL86] have to be fulfilled. In our case with a guarantee on the ratio, the
compared quantity has to be measured on a ratio scale, meaning that there is a ”natural” zero point,
as well as a ”natural” interpretation of the difference of two values. Since the greedy as well as the
optimal algorithm are invariant with respect to shifting f by a constant term there is a degree of
freedom that allows one to choose a meaningful scaling for f .

5

3 Application: Sampling from a k Determinantal Point Pro-
cess

A k-DPP on a finite set E = {e1, ..., en} (e.g. a grid) is given by

PkDPP (S = {S1, ..., Sk}) =
detKSS∑

S∈E detKSS
,

where K is a positive-semidefinite kernel matrix. To see, that this is an instance of Softmaximization as
described in Section 2, choose f(S) = log detKSS . The log-determinant of a Gram matrix corresponds
to the differential entropy of the Gaussian distribution (up to constants) and is known to be submodular
[KSG08].
The approximate sampling algorithm πgreedyDPP suggested in [HG16] consists in sampling the next
point Si proportionally to the posterior variance:

πgreedyDPP (Si|S1:i−1) ∝ Vi(Si) =

{
KSiSi

if i = 1

KSiSi
−KSiS1:i−1

KS1:i−1S1:i−1
KS1:i−1Si

otherwise

Corollary 1:
Running the algorithm πgreedyDPP in [HG16] for k iterations on a finite grid is a (1 − 1/e) approxi-
mation for sampling from a k-DPP.

Proof Corollary 1:
First, we show that πgreedyDPP is an instantiation of the greedy sampling algorithm defined in Section
2. It is well known that the differential entropy 1

2 log 2πedetKSS of a Gaussian random variable can
be expressed as the sum over the predictive variances Vi(Si):

1

2
log 2πedetKSS =

1

2

k∑
i=1

log(2πeVi(Si)))

Removing constants, we get:

f(S) = log detKSS =

k∑
i=1

logVi(Si)

For the marginal gain, this means:

∆f (Si|S1:i) = log detKS1:iS1:i − log detKS1:i−1S1:i−1 = logVi(Si).

This reveals that the policy πgreedyDPP is the softargmax of the marginal gain ∆f (Si|S1:i):

πgreedyDPP (Si|S1:i−1) =
exp∆f (Si|S1:i)∑

Sj∈E exp∆f (Sj |S1:i)

Or equivalently,

πgreedyDPP (Si|S1:i−1) = argmax
π

Eπ(∆f (Si|S1:i)) +H(π)

by using the variational representation. In order to apply Theorem 1, it has to hold ∆f (Si|S1:i) >

(1/k) log k!. This can always be achieved by scaling K by a factor of α = k!1/k

λmin
, where λmin is the

smallest eigenvalue of KEE . Note that scaling by α neither changes πgreedyDPP nor PkDPP . Theorem
1 gives the desired result.

Remark 2.
The scaling of f and thereby of F may seem arbitrary, but it has the following interpretation: The
”natural” zero point is the empty set. Since all marginal gains are positive, no other set can underscore
the value of the empty set. The unit difference between two values corresponds to ...

6

References

[Fei98] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.

[HG16] Philipp Hennig and Roman Garnett. Exact sampling from determinantal point processes.
arXiv preprint arXiv:1609.06840, 2016.

[KSG08] Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-optimal sensor placements in gaus-
sian processes: Theory, efficient algorithms and empirical studies. Journal of Machine Learn-
ing Research, 9(2), 2008.

[NL86] Louis Narens and R Duncan Luce. Measurement: The theory of numerical assignments.
Psychological Bulletin, 99(2):166, 1986.

[NWF78] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approxima-
tions for maximizing submodular set functions—i. Mathematical programming, 14(1):265–
294, 1978.

7

	Montone Submodular Maximization
	Monotone Submodular Softmaximization
	Greedy sampling
	Theoretical analysis

	Application: Sampling from a k Determinantal Point Process

