
Eberhard Karls University of Tübingen
Wilhelm-Schickard-Institute for Computer Science

Bachelor’s Thesis Computer Science

Learning Dynamics in Models for Topographic

Evolution

Author

Michel Jubke

Examiner

Prof. Phillip Hennig
Wilhelm-Schickard-Institute for Computer Science

University of Tübingen

Supervisor

Jonathan Schmidt
Maria-von-Linden-Straße 6, 2.OG, 20-30/A15

University of Tübingen

Jubke, Michel
Learning Dynamics in Models for Topographic Evolution
Bachelor’s Thesis Computer Science
Eberhard Karls University of Tübingen
Time allowed for completion: 17.5.2022 - 9.9.2022

i

Abstract

Erosion shapes landscapes and impacts the lives of people all around the
globe. We present a semi-automatic method that uses Landlab — a toolkit to
numerically model earth surface dynamics — to generate data that describes
water related erosion in mountainous areas. This data is used to train different
graph neural networks (GNN) in order to examine, if they are capable of
generating correct erosion simulations from unseen initial conditions. We
succeed in finding GNN architectures that solve this task on 900-, 2500-,
and 6400-node voronoi grids where the resolution of the model simulations
decreases as the number of grid nodes increases. Further, two directions are
pointed to firstly refine the results of this study and to secondly scale the
proposed method up to potentially huge grids.

Zusammenfassung

Erosion formt Landschaften und beinflusst das Leben von Menschen auf
der ganzen Erde. Wir präsentieren eine halb-automatisceh Methode, um
Daten zu generieren, die wasserbedingte Erosion in gebirgigem Gelände
beschreiben. Diese Methode nutzt Landlab, ein Toolkit um numeriscche
Modelle der Erdoberflächendynamik zu erstellen. Unsere Daten nutzen wir,
um verschiede Graph Neural Networks (GNN) zu trainieren, mit dem Ziel
heraus zu finden, ob diese auch aus unbekannten Anfangsbedingungen kor-
rekte Erosions-Simulationen erzeugen können. Erfolgreich präsentieren wir
Netzwerk-Architekturen, die diese Aufgabe auf 900-, 2500- und 6400-Knoten
Voronoi-Grids lösen. Allerdings nimmt die Auflösung der Simulationen ab,
wenn die Anzahl der Knoten steigt. Deshalb zeigen wir zwei Richtngen auf,
um erstens die Ergebnisse dieser Untersuchnug zu verbessern und um zweitens
die vorgestellte Methode auf potentiell riesige Grids zu skalieren.

ii

Acknowledgements

First, I want to thank Professor Phillip Hennig and my supervisor Jonathan
Schmidt for accompanying this study over the last months and for giving me
advise and fortification whenever I needed it.
Further, I want to thank Franziska Weiler for always having the right answers
when it came to the organizational part of this project.
Also I want to thank Yannick Streicher for his kind and valuable words in
times of despondence.

But most importantly I want to thank Caya, Ida and Imi for always having
my back, giving me love and motivation and cheering me up after a hard day
of work. Without you and the rest of the family, none of this would have been
possible.

Contents

List of Figures vii

List of Tables ix

Abbreviations xi

1 Introduction 1

1.1 Related Work . 3

1.1.1 Numerical Approaches 4

1.1.2 Data Driven Approaches 4

1.2 Goal . 5

1.3 Structure . 5

2 Theoretical Background 7

2.1 Landlab . 7

2.1.1 Landlab Grids . 8

2.1.2 Landlab Components . 10

2.2 Graph Neural Networks . 13

2.2.1 Graph Embedding . 13

2.2.2 Graph Convolution . 14

2.2.3 Message Passing . 16

2.2.4 GCNConv . 17

2.2.5 SAGEConv . 19

iii

iv CONTENTS

3 Method 23

3.1 Data . 23

3.1.1 Grid Type and Size . 23

3.1.2 Initial Topographies . 24

3.1.3 Erosion Timeseries . 26

3.1.4 Encoding . 26

3.2 Models . 26

3.2.1 Goal . 27

3.2.2 32-layer Architecture . 27

3.2.3 48-layer Architecture . 27

3.2.4 80-layer Architecture . 28

3.3 Training . 28

4 Results 31

4.1 Questions . 31

4.2 Evaluation Metrics . 31

4.3 900-Node Grids . 32

4.3.1 GCN32 on Raster900 . 32

4.3.2 SAGE32 on Raster900 33

4.3.3 GCN32 on Voronoi900 34

4.3.4 SAGE32 on Voronoi900 35

4.3.5 Evaluation . 36

4.4 2500-Node grids . 37

4.4.1 SAGE32 on Voronoi2500 37

4.4.2 SAGE48 on Voronoi2500 38

4.4.3 Evaluation . 38

4.5 6400-Node grids . 39

4.5.1 SAGE48 on Voronoi6400 39

4.5.2 SAGE80 on Voronoi6400 40

4.5.3 Evaluation . 40

CONTENTS v

4.6 Further Remarks . 41

5 Conclusion 43

5.1 Discussion . 43

5.2 Outlook . 44

Bibliography 45

vi CONTENTS

List of Figures

8

2.2 Example of a graph with scalar node features 15

3.1 Example initial topographies . 25

4.1 GCN32 on 900-node raster grid 33

4.2 SAGE32 on 900-node raster grid 34

4.3 GCN32 on 900-node voronoi grid 35

4.4 SAGE32 on 900-node voronoi grid 36

4.5 SAGE32 on 2500-node voronoi grid 37

4.6 SAGE48 on 2500-node voronoi grid 38

4.7 SAGE48 on 6400-node voronoi grid 40

4.8 Exemplary losses of models that do not train 41

vii

viii LIST OF FIGURES

List of Tables

4.1 Losses and required training time of GCN32 on Raster900 . . . 32

4.2 Losses and required training time of SAGE32 on Raster900 . . . 33

4.3 Losses and required training time of GCN32 on Voronoi900 . . . 34

4.4 Losses and required training time of SAGE32 on Voronoi900 . . 35

4.5 Simulation losses on 900-node grids 36

4.6 Losses and required training time of SAGE32 on Voronoi2500 . 37

4.7 Losses and required training time of SAGE48 on Voronoi2500 . 38

4.8 Simulation losses on 2500-node grids 39

4.9 Losses and required training time of SAGE48 on Voronoi6400 . 39

ix

x LIST OF TABLES

Abbreviations

SPL Stream Power Law

SPE Stream Power Equation

PyG PyTorch Geometric

PDE Partial Differential Equation

CNN Convolutional Neural Network

GNN Graph Neural Network

VL Validation Loss

MSL Mean Simulation Loss

xi

xii LIST OF TABLES

Chapter 1

Introduction

The evolution of the Earth’s surface topography is an omnipresent and
never ending process. Besides phenomena like landslides, volcanic eruptions,
earthquakes or topographic uplift due to tectonic activity, it is erosion that
shapes landscapes all across the globe and thus impacts the lives of humans
in a subtle yet crucial manner.
It is the discipline of geomorphology that tries to firstly understand such
erosion processes and to secondly make erosion related predictions both
forward and backward in time. While such backward predictions of earth
surface dynamics might mainly satisfy the general human curiosity in under-
standing the physical laws governing our planet, the forward predictions are
of much bigger practical use: just think of infrastructure projects or urban
development which — in the best case — should be inter-coordinated with
the evolution of the surrounding landscape on a long term time scale.

Erosion can be described as sediment transportation and deposition (Braun
and Willett 2013) and it is a whole range of phenomena that can be made
responsible for this processes.
However, the impact of the single actors varies and depends a lot on the
specific setting. In dry and rather flat areas like deserts for example, aeolian
processes (i.e., wind) play the biggest role, in other instances it could be
hillslope processes like soil creep that mainly cause erosion (Braun and Willett
2013).
In this study, we will examine erosion in mountainous landscapes that are
characterized by relatively large mean slopes. In such environments, it is
water coming from rain or glaciers that is responsible for the transportation
of sediment.
The water gathers in channels that incise into the bedrock with time. This
channel incision destabilizes neighbouring hillsides and results in a gravity
driven movement of soil and rock towards the bottom of the channels. From
there, the sediment is then transported towards lower elevations by the water

1

2 CHAPTER 1. INTRODUCTION

flowing in the channels (Braun and Willett 2013; Whipple and G. E. Tucker
1999; Whipple 2004).

In order to build reliable erosion prediction models for such environments,
it is thus a crucial step to first understand the water runoff behaviour on
surfaces. This task is commonly known as flow routing.
Once we are able to precisely quantify where which amounts of water are
flowing on a given landscape (e.g. after rainfall), we can make use of physical
theories to calculate the amounts of sediment being transported downhill.

Landscape evolution processes usually take place in very large time
scales: we are talking about at least tens or hundreds but often thousands
or even millions of years (G. Tucker 2015). Therefor it is only to a certain
degree, that theories describing the laws governing erosion can be empirically
substantiated. However, one theory that is broadly accepted as governing
water related erosion processes is the stream power law (SPL) (Yuan et al.
2019). The SPL assumes, that the rate of channel incision is proportional to
the hydraulic shear stress that a river is exerting to its channel bed (Braun
and Willett 2013). In its simplest form the SPL can be expressed as

∂h

∂t
= −KAmSn, (1.1)

which is also known as the stream power equation (SPE). In this equation
h is topographic elevation, t is time, K is the fluvial erosion coefficient —
a constant depending on a range of properties of the river bed (Howard
and Kerby 1983; Whipple and G. E. Tucker 1999) — A is the contributing
upstream drainage area, S is the local channel slope and m, n are the SPL
exponents (Yuan et al. 2019).
Even though it is well known, that the SPL might be oversimplified because it
does not take into account several important processes acting in river channels
(Lague 2014), it is the de facto standard for modeling fluvial incision related
erosion (Yuan et al. 2019).
The SPE is a hyperbolic partial differential equation (PDE). To model stream
power governed erosion, it has to be solved in each time step. To solve this
kind of equations, numerical approximations are most often applied.

So bringing together a solid understanding of flow routing and both
effective and stable methods to solve the stream power equation lets us
already build simple numerical models for erosion prediction — at least from
a theoretical point of view.

1.1. RELATED WORK 3

One state of the art toolkit for building erosion models as described
so far, is the Python library called Landlab (Barnhart et al. 2020, Hobley
et al. 2017). Landlab provides (i) suitable graph encoded data structures to
represent landscapes in a efficient and discretized manner and (ii) so called
components to simulate — among many other processes — both flow routing
and stream power governed erosion.
On the other hand there is an extension to the widespread Python deep
learning library PyTorch (Paszke et al. 2019) with the name PyTorch Geo-
metric (PyG) (Fey and Lenssen 2019). It extends the well known PyTorch
functionalities and allows for geometric deep learning (Bronstein et al. 2017),
meaning: Convolutional neural network (CNN) like deep learning on graphs
and point clouds.

Landlab is the starting point for this study. We use Landlab to generate
data that describes flow routing based, stream power governed erosion. This
data forms the ground truth for a series of experiments: We want to use it to
train different graph neural networks (GNNs) (Scarselli et al. 2009) in order
to learn erosion dynamics in a data driven end-to-end manner. The predictive
performance of the trained GNNs can then be tested against Landlab data
again.

Two problems of this attempt can be addressed straight ahead: (i) We
do not use real world data in order to learn a real world process. This is
a benefit in the way that we have nearly unlimited amounts of data at our
disposal but it also puts a lot of trust in the reliability and correctness of
the existing methods of which we actually know, that they are based on
insufficient assumptions (Lague 2014) (ii) The nature of this thesis is very
explorative: From the starting point of view it is neither clear if and if yes,
how it is possible to achieve satisfying results.

1.1 Related Work

On the one hand, there are the (classical) numerical approaches for modeling
dynamic earth surface processes as they are implemented in Landlab for
example.
On the other hand, there are data driven (i.e., machine learning) approaches to
model a variety of geomorphological phenomena including soil erosion (Yavari,
Maroufpoor, and Shiri 2017). However, we found only one contribution from
recent years, that approaches the task of landscape deformation prediction
from a graph based (i.e., grid based) perspective (Zhou, Li, and Zhang 2021).

4 CHAPTER 1. INTRODUCTION

1.1.1 Numerical Approaches

The numerical approaches provide general purpose landscape evolution
models with a great flexibility and user friendliness. They mainly differ in (i)
the way they solve the SPE (equation 1.1) and (ii) which factors are included
in the computation of the SPE’s fluvial erosion coefficient K.
The approach that is implemented in Landlab follows (Braun and Willett
2013). To effectively approximate a solution to the SPE, the authors first
build a temporal data structure that indicates, in which order the nodes of
the underlying grid have to be visited during computation. The exploitation
of this node ordering results in an O(n) algorithm where n is the number of
grid nodes that are used to discretize the landscape. The algorithm is stable,
implicit and parallel and can effectively handle very large grids with up to
108 nodes.
As mentioned above, some authors criticize the SPL as being over simplified.
(Davy and Lague 2009) address this issue and present an equation that
explicitly takes into account a mass balance equation for the streamflow (i.e.,
sediment erosion and deposition) but they do not provide a effective method
to solve the equation.
(Yuan et al. 2019) follow the approach taken in (Davy and Lague 2009) and
can provide a efficient (i.e., implicit and stable) O(n) algorithm to solve the
equation.

1.1.2 Data Driven Approaches

In (Zhou, Li, and Zhang 2021) the authors use a GNN to predict landscape
deformation (i.e., hillslides) in a very specific scenario: They use InSAR (i.e.,
satellite based) technology to collect landscape data on two sides of a large-
scale hydropower dam for a time period of about one year. In this time period
several minor landslides took place in the surveyed area. The InSAR data has
the form of 3D point clouds which are first transformed into nearest neighbour
graphs and then used to train a slope aware GNN in order to predict future
landslides.
The authors consider themselves as being one of the first team ever to present
a graph-based deep learning approach to modeling landscape evolution.

1.2. GOAL 5

1.2 Goal

As we have seen, the only graph-based deep learning approach in the field of
landscape evolution models deals with a very specific use case and relies on
real world data that has to be collected first in a lavish an expensive procedure.

In the current study, we mitigate this problem by using Landlab as
inexhaustible source of graph-based erosion data. This gives us the possibility
to build more general erosion prediction models that we can test on unseen
data rather then performing prediction s within the training domain as it is
done in (Zhou, Li, and Zhang 2021).

Still, this study should not be regarded as the attempt to build a fully
working general purpose deep learning framework for flow routing based
erosion prediction. It is rather an attempt to combine the two worlds of
existing numerical methods on one side and existing deep learning techniques
that suite this domain on the other hand in order to get a intuition, if this is
a promising direction at all.

1.3 Structure

The further structure of this thesis is as follows: Chapter 2 gives a introduction
to the Landlab functionalities that are used in this thesis as well as a theoretical
background for the different PyG convolution layers that come into action. In
chapter 3 we present our method including data generation with Landlab.
The results alongside their evaluation follow in chapter 4. The thesis is finally
concluded by a discussion and a short outlook in chapter 5.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Theoretical Background

Before we present the method proposed in this thesis, we introduce all the
Landlab functionalities that come into action as well as the theoretical back-
ground for the two PyG convolution layers that are being employed later on.

2.1 Landlab

When building landscape evolution models of any flavour, a crucial yet
error-prone part is the development of data structures (i.e., grids) that hold
the rich and mostly continuous landscape related information at ones disposal
in a consistent and discrete manner. Especially when irregular grids are
applied, as it is the case in a lot of real world applications, this can be very
time consuming (Hobley et al. 2017).

Landlab is designed to build numerical models for a wide range of earth
surface dynamics without having to deal with these kind of issues. It lets
scientists and students start their work exactly where they normally want to
start: With setting up or loading a topographic profile and then simulating
all kinds of geoscientific processes on it.
In a nutshell, Landlab consists of (i) a powerful gridding engine that defines
the model domain and (ii) a wide range of so called components, each of
which simulating one specific geoscientific process. All the components share
a standardized and simple interface.
Landlab follows a very modular plug-and-play style design: The different
grid elements (i.e., nodes, links, cells, ...) can hold arbitrary numerical
information, dependent of the specific task. On such a loaded grid, we
can simulate different earth surface processes by repeatedly running one or
multiple of the components. In each iteration, the components update the
numerical information stored on the grid (Hobley et al. 2017).

7

8 CHAPTER 2. THEORETICAL BACKGROUND

2.1.1 Landlab Grids

As already introduced, a grid forms the basis for all Landlab models. Landlab
supports different grid structures. The ones that are used in this study are
regular raster grids and irregular delaunay triangulated voronoi cell grids.

Landlab grids can be divided into different elements. Each of the grid
elements can hold an arbitrary number of numerical data fields to represent
any kind of landscape related data.
The elements of a Landlab grid are nodes, links, cells and faces as well as the
less frequently used corners, patches and junctions.

Figure 2.1: Landlab grid elements for regular and irregular grids 1

Nodes can be further distinguished into core nodes and boundary nodes
depending on their position within the grid. Links can be further distin-
guished into active links and inactive links, depending on their capability of
transporting flux (i.e., soil, water, ...) (Barnhart et al. 2020). In this study
only nodes and links are being used.

Internally, Landlab grids are represented as dual graphs. Both of these
graphs consist of a set of vertices connected with edges and both are planar,
meaning edges within one graph do not cross. For the first graph, the vertices
are the grid nodes each of which is centered at a grid cell and the edges are
the grid links that outline the grid patches. For the second graph, the vertices

1This figure is taken from https://landlab.readthedocs.io/en/master/user guide/grid.html

2.1. LANDLAB 9

are the grid corners and the edges are the grid faces that outline the grid
cells. The points where edges of both graphs cross define the grid junctions
(Barnhart et al. 2020; Hobley et al. 2017).

This simple and yet expressive graph encoded model domain already
gives a small glance on the possibilities of applying geometric deep learning
methods in this field.

Regular Raster Grid

Raster grids are the simplest grids provided by Landlab. They consist of n
rows and m columns of nodes resulting in m · n nodes in total. The spacing
between the nodes can be freely chosen both in x and in y direction.
Indeed, this grid structure is so simple, it does not enforce the use of geometric
deep learning methods (i.e., GNNs). If we want to operate on grid nodes only,
we could easily apply regular CNNs in order to process raster grids. However,
as soon as we want to include edge weights (e.g., topographic slopes) into our
training process, CNNs reach their limitations.

Irregular Voronoi-Delaunay Grid

A bit more complex are the Voronoi-Delaunay grids. They consist of n
nodes arbitrarily distributed in the 2D plane. On these nodes, a Delaunay
triangulation2 is performed. From this triangulation, the voronoi grid3 can be
easily computed: The centers of the circumstances of the Delaunay triangles
form the vertices of the voronoi grid.
In such a voronoi grid, not all core nodes have the same number of neighbours
as it is the case in regular raster grids. Therefor, this grid structure is nothing
a regular CNN can process anymore and it enforces the use of other methods
such as GNNs.

Boundary Control

An important question when building earth surface dynamics models is how to
handle the boundaries of the underlying grid. Landlab provides the possibility
to close certain boundary nodes, meaning no flux can enter or leave the grid
over these nodes. By default, all links of a Landlab grid are considered being

2https://en.wikipedia.org/wiki/Delaunay triangulation
3https://en.wikipedia.org/wiki/Voronoi diagram

10 CHAPTER 2. THEORETICAL BACKGROUND

active links. If we now close a boundary node, Landlab simply sets all links
connecting core nodes with this boundary node to inactive (Hobley et al. 2017).

Since this study aims towards generating a general understanding of the
effectiveness of deep learning methods in the domain of erosion simulation,
it is of minor importance to us how exactly we choose the grid boundary
conditions. Still this should be mentioned because at the latest when it comes
to designing applications for real world use cases, one has to deal with this
issue.

2.1.2 Landlab Components

As already mentioned, each Landlab component is designed to simulate one
specific geoscientific process. Each component needs a grid to be instantiated
on and — depending on the component — certain data fields already loaded
on the grid.
All the components share a simple and standardized interface: There is
a method run one step() that each component has to implement. This
methods simulates the component on the grid for one time step (if the
simulated process is time dependant). The duration of such a time step can
be freely chosen by the user.

In this study three Landlab components come into operation for the
simulation of flow routing based stream power governed erosion and two more
for the semi-automated generation of initial topographies.

Flow-Routing

Flow routing is the process of determining where and in which quantities
water (i.e., rain) runs off and gathers on a surface (i.e., a landscape).
Landlab implements flow routing via two separate components. The first
component is referred to as flow director, the second one is referred to as flow
accumulator.

The flow director operates on node level: for each node it computes those
neighbours that receive flow and, potentially, splits the complete cell outflow
among these neighbours. There are two general approaches to implement flow
directors: the route-to-one methods where all outflow of one cell is directed
to exactly one neighbouring cell and the route-to-many methods where the
outflow of one cell is being divided and directed to (potentially) more than

2.1. LANDLAB 11

one neighbouring cell. The criterion in both cases is the topographic slope of
the links between neighbouring cells.
When operating on raster grids, flow directing methods can be further
separated into D4 and D8 methods, referring to the size of the neighbourhood
of each core cell.

The flow accumulator on the other hand operates on grid level: It combines
all the node level computations of the flow director to compute for each node
of the grid a value referred to as drainage area. This value describes the
size of the area surrounding a node from which flow arrives at this specific
node (value A in the SPE (equation 1.1)).

For this study we choose the FlowDirectorSteepest as our flow director
which needs a field topographic elevation being present on the grid it is
instantiated on.
It routes all outflow of a cell along the link with the steepest slope (route-
to-one) taking into account the D4 neighbourhood when operating on raster
grids.
The name of Landlab’s flow accumulator is FlowAccumulator.

Both the FlowDirectorSteepest and the FlowAccumulator operate
time invariant — they compute their output deterministically for a given
topographic profile. Therefor, their run one step() method does not require
an additional argument to determine the temporal step size. Only after
some erosion has taken place (i.e., the topographic elevation field of
the grid has changed), the values computed by FlowDirectorSteepest and
FlowAccumulator may change.

Erosion

There are different Landlab components available to simulate erosion. They
mainly differ in the way, they solve the SPE, which is, as already introduced,
the de facto law governing all water related erosion processes on earth.

We choose the StreamPowerEroder for our contribution. It needs a
field drainage area being present on the grid it is instantiated on as it is
accomplished by the FlowAccumulator.
It’s run one step() method requires an argument dt which determines the
time period for which to simulate erosion. Running the StreamPowerEroder

results in an updated topographic elevation field being saved on the grid
nodes.

12 CHAPTER 2. THEORETICAL BACKGROUND

A complete flow routing based erosion model in Landlab can now be realized
in a few lines of code where we assume that grid is a already instantiated
Landlab grid with a already initialized topographic elevation field being
present.

1 from landlab.components import FlowDirectorSteepest

2 from landlab.components import FlowAccumulator

3 from landlab.components import StreamPowerEroder

4

5 fd = FlowDirectorSteepest(grid)

6 fa = FlowAccumulator(grid , flow_director=fd)

7 se = StreamPowerEroder(grid)

8

9 for _ in range(timestes):

10 fd.run_one_step ()

11 fa.run_one_step ()

12 se.run_one_step(dt)

Generation of initial Topographies

Before we can use Landlab as a generative model for erosion related data, we
need a set of topographies that we can use as initial conditions for the erosion
simulation described above. Handcrafting such topographies is very time
consuming and — since we need quite a lot of data — not feasible. Therefor
we developed a semi automatic method to generate such initial topographies.
Besides the already introduced Landlab components for flow routing based
erosion, it uses the components NormalFault and LinearDiffuser.

The NormalFault component is designed to simulate so called fault traces
— uplifts of the terrain along certain lines as they can occur after earthquakes
for examples. For us this means topographic uplifts on one side of a line con-
necting two arbitrary boundary nodes of a grid. Beside the run one step()

method, NormalFault has a method called run one earthquake(). For the
sake of simplicity, it is the latter one that we use in our method, since it lets
us time-invariantly uplift the terrain by a fix rate we can freely choose.

The LinearDiffuser component applies linear diffusion to the topogra-
phy loaded on a grid, i.e., it transports soil from higher elevations to lower
elevations. It’s run one step() method requires an additional argument dt

to determine the temporal step size. If time steps are chosen too big, applying
the LinearDiffuser results in completely flat landscapes, if time steps are
chosen small enough, it only smoothens the edges of a topographic profile.

2.2. GRAPH NEURAL NETWORKS 13

2.2 Graph Neural Networks

In the last years, CNNs gained a lot of attention since they achieved remark-
able results on a whole range of tasks. But despite their striking performance
in some domains, CNNs are completely unavailable in other domains because
they can only operate on rectangular data such as vectors, matrices or cubes.

However, a lot of real world data is not rectangular structured at all. It
comes encoded in graphs, trees (that can be seen as a subset of graphs) or
multi dimensional point clouds (that can be easily transformed into, e.g.,
k-nearest neighbour graphs). All these data structures are nothing a regular
CNN can easily process.
GNNs can be seen as the attempt to close this gap by introducing a convolu-
tion like operator for graph structured data.

The input to a simple GNN consists of (i) n-dimensional node level feature
vectors (ii) the graph’s topology, e.g. in form of an adjacency matrix and
(iii) optionally edge level features or weights.
Given this information, GNNs can produce output either on graph-, node- or
edge-level what makes them applicable in a lot of scenarios. These reach from
graph classification to edge prediction to node regression (Scarselli et al. 2009).

As we have seen in section 2.1.1, Landlab uses graphs as the data structure
to represent the model domain.
One has to mention, that in the case of regular raster grids, these graphs
could be regarded as rectangular structured and if only node features would
be taken into account, they could be perfectly processed by regular CNNs.
But as soon as edge features (i.e., weights) should used as well or at the latest
when irregular voronoi grids are used, CNNs reach their limitations and it
seems to be perfectly reasonable to go for GNNs.

Before describing in more detail the two graph convolution layers that
have been investigated in this study, let us introduce some general terms and
concepts that are related to GNNs.

2.2.1 Graph Embedding

4 Let G = (V , E) be a graph with one feature vector xi ∈ Rn being associated
to each node vi ∈ V , then n is called the dimension of the graph.

4This passage follows the explanations in https://towardsdatascience.com/node-
embeddings-for-beginners-554ab1625d98

14 CHAPTER 2. THEORETICAL BACKGROUND

If we apply a function f that maps each feature vector xi to a new feature
vector x′

i ∈ Rm usually with m < n these vectors x′
i are called an embedding

of G.
Let M be such an embedding. In order to allow inference from M to the
original graph G, it is desired, that nodes being similar in G are similar inM
as well, where the measure of similarity depends on the specific task to be
performed. In order to preserve existing similarities, the embedding function
should capture (i) the topology of the graph i.e., the connectivity of nodes
with edges and (ii) all the provided node- and edge-features (i.e., weights).
How exactly this is accomplished, depends on the embedding function (Grover
and Leskovec 2016; Perozzi, Al-Rfou, and Skiena 2014).
GNNs can be seen as a general and yet powerful group of graph embedding
functions.

2.2.2 Graph Convolution

5 If in regular CNNs convolution is applied on e.g. an image, this means
that for each pixel, information of the neighbouring pixels is aggregated by
weighting it and summing it up. The size of this neighbourhood is defined
by the size of the applied convolution filter. Since CNNs rely on rectangular
structured data, the convolution filters also are of rectangular shapes, namely
vectors, matrices or (hyper)-cubes.
GNNs attempt to generalize such neighbourhood aggregation onto graph
structured data. The shortly introduced graph convolution operator does the
exact same thing as it happens in CNNs: For each node in a given graph it
aggregates information of neighbouring nodes. However, this time we do not
know in advance, how many neighbours are present for each node and thus
we need a different approach than sliding fixed-size convolution filters over
the input data. One way to solve this problem, is to make use of the graphs
adjacency matrix.
Again, let G = (V , E) be a graph with adjacency matrix A ∈ R|V|×|V|. Further,
let X be the graph’s node feature matrix — each row of X represents one
n-dimensional node feature vector, hence, X is of shape |V| × n. If we now
multiply adjacency matrix A with node feature matrix X, we obtain a new
node feature matrix X′, again of shape |V| × n, that aggregates for each node
the information of its direct neighbours’ node features.

Let us look at an example6 to make things clear — for the sake of
simplicity we use scalar node features:

5This passage follows the explanations in https://towardsdatascience.com/the-intuition-
behind-graph-convolutions-and-message-passing-6dcd0ebf0063

6This example together with figure 2.2 are taken from https://towardsdatascience.com/

2.2. GRAPH NEURAL NETWORKS 15

Figure 2.2: Example of a graph with scalar node features

Let us now see, what happens, if we apply the procedure described above:

0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 1
0 0 1 0 1 1 1 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0

︸ ︷︷ ︸

A

×

x0

x1

x2

x3

x4

x5

x6

x7

︸ ︷︷ ︸

X

=

x1

x0 + x2

x1 + x3 + x7

x2 + x4 + x5 + x6

x3

x3

x3

x2

︸ ︷︷ ︸

X′

(2.1)

Note, that if we want to include the own feature values of a node into this
neighbourhood aggregation, we have to set the entries on the diagonal of the
adjacency matrix to 1. Further, if we want to include edge weights into this
process, we can use them instead of having 0 and 1 entries in the adjacency
matrix.
So far, for each node we aggregate information from neighbours in a 1-hop
distance meaning nodes that can be reached using a single edge. But how
can we collect information of nodes, that are further away like we would in
CNNs by choosing a bigger kernel size? We simply use higher powers of A to
be multiplied with X, where using Ah means collecting information of nodes
that are h hops away. Let us demonstrate this for h = 2:

the-intuition-behind-graph-convolutions-and-message-passing-6dcd0ebf0063

16 CHAPTER 2. THEORETICAL BACKGROUND

1 0 1 0 0 0 0 0
0 2 0 1 0 0 0 1
1 0 3 0 1 1 1 0
0 1 0 4 0 0 0 1
0 0 1 0 1 1 1 0
0 0 1 0 1 1 1 0
0 0 1 0 1 1 1 0
0 1 0 1 0 0 0 1

︸ ︷︷ ︸

A2

×

x0

x1

x2

x3

x4

x5

x6

x7

︸ ︷︷ ︸

X

=

x0 + x2

2x1 + x3 + x7

x0 + 3x2 + x4 + x5 + x6

x1 + 4x3 + x7

x2 + x4 + x5 + x6

x2 + x4 + x5 + x6

x2 + x4 + x5 + x6

x1 + x3 + x7

︸ ︷︷ ︸

X′

(2.2)

Putting it all together, a general graph convolution filter P of size h can
be formally expressed as

P = w0A
0 + w1A

1 + w2A
2 + · · ·+ whA

h (2.3)

so that

X′ = PX. (2.4)

The wi are weights, that determine the influence of the node features in i-hop
distance in the updated node feature matrix X′.

2.2.3 Message Passing

7 Considering a 1-hop neighbourhood, equation 2.3 could be also expressed as

x′
i = update(xi, aggregate(xj, j ∈ N (i))) (2.5)

where N(i) represents the neighbourhood of node i. This way of looking onto
graph convolution is called a message passing mechanism. In the basic graph
convolution operator as described in equation 2.3, update and aggregate are
simple summation functions. But in fact, all permutation invariant functions
like sum, mean, min, max or more sophisticated handcrafted functions could
be used. So the expressive power and flexibility of graph convolution is highly
increased, if we look at it as a message passing process.

7This passage follows the explanations in https://towardsdatascience.com/the-intuition-
behind-graph-convolutions-and-message-passing-6dcd0ebf0063

2.2. GRAPH NEURAL NETWORKS 17

Further, we can add learnable weights W1 and W2 to equation 2.5 where
W1 weights the components of a nodes own feature vector and W2 weights
the components of the nodes neighbours feature vectors what leads us to

x′
i = update(W1xi, aggregate(W2xj, j ∈ N (i))). (2.6)

This equation forms the theoretical basis of all GNNs. We can iteratively
apply it to the nodes of a graph and use gradient descent techniques to adjust
the weights W1 and W2 after each iteration.

PyTorch Geometric provides a wide range of graph convolution layers.
All of them implement equation 2.6 in a unique and use-case dependant way.
In fact, all classes representing such graph convolution layers have to inherit
from a base class called MessagePassing.

As discussed above, applying equation 2.6 aggregates information within a
1-hop neighbourhood only. In order to increase the size of the neighbourhood,
we can use multiple instances of equation 2.6 in a row in each iteration, each
instance enlarging the neighbourhood by 1 hop. In PyTorch Geometric, this
means to simply build networks with multiple convolution layers.

So let us now introduce the two graph convolution layers that have been
used in this study.

2.2.4 GCNConv

PyTorch Geometric’s GCNConv layer implements equation 2.4 as it is described
in Semi-Supervised Classification with Graph Convolutional Networks (Kipf
and Welling 2016).

In essence, it is

X′ = AXW (2.7)

where again A is the graphs’ adjacency matrix, X is the node feature matrix
(or its representation for the hidden network layers) and W is the learnable
weight matrix.

Note that the GCNConv layer supports the use of scalar edge weights. If
present in the graph, the edge weights are used instead of the 1 entries in A.

18 CHAPTER 2. THEORETICAL BACKGROUND

The model as simple as it is in described in equation 2.7 has two drawbacks:
(i) Multiplying with A means that for each node only information of its
neighbours is aggregated but not of the node itself unless the graph has self
loops what is not the case in general and (ii) typically A is not normalized so
multiplication with A completely changes the scale of the feature vectors in X.

To solve problem (i), we can enforce self loops by adding the identity matrix
to A what leads us to

X′ = ÂXW (2.8)

with Â = A+ I where I is the identity matrix.

To solve problem (ii), matrix Â needs to be normalized. The authors
suggest a symmetric normalization what finally leads us to

X′ = D̂− 1
2 ÂD̂− 1

2XW (2.9)

where D̂ is the node degree matrix 8 of Â.

The node-wise formulation of equation 2.9 is given by

x′
i = W

∑
j∈N (i)∪{i}

ej,i√
d̂j d̂i

xj (2.10)

= Wxiei,i +W
∑

j∈N (i)

ej,i√
d̂j d̂i

xj (2.11)

where ej,i denotes the weight of the edge from source node j to target node

i and d̂i denotes the degree of node i. Note that if edge weights are present,
the degree is the sum of the weights of all incoming edges.

If we now compare equation 2.10 and equation 2.6, we can state that in
the GCNConv-layer (i) update is a simple summation function (ii) aggregate
computes for each node the normalized and potentially edge-weighted sum
of the node features of neighbouring nodes and (iii) instead of two weight
matrices W1 and W2 a shared weight matrix W is used.

8The node degree matrix of a graph is a diagonal matrix that contains for each node of
the graph its degree. A nodes’ degree is the number of (incoming) edges that are connected
with this node

2.2. GRAPH NEURAL NETWORKS 19

Limitations

This approach assumes, that all of the graphs present during training have the
same number of nodes. During training, it is the embedding of these graphs
that is being learned directly and not, e.g., a function thereof. Therefor,
this approach fails, when it comes to generalizing to unseen nodes since only
embeddings can be predicted for graphs that have the exact same number of
nodes as the ones being present during training.
If we want to predict an embedding for a graph with only one node added,
this means that we have to retrain the whole model, this time using graphs,
that also have one node added.
However, a lot of real world data that comes in graph encoded form (i.e.,
citation networks, social media, the world wide web), is not that static. It is
rather characterized by a ongoing fluctuation of nodes and edges. This means,
that for a lot of real world applications, generalizing to unseen nodes is a very
crucial property.

2.2.5 SAGEConv

PyTorch Geometric’s SAGEConv layer implements graph convolution as it is
described in Inductive Representation Learning on Large Graphs (Hamilton,
Ying, and Leskovec 2017).

The goal of this approach is not to learn an embedding for fixed size
graphs directly as it is done in (Kipf and Welling 2016) but rather to learn
a function that generates embeddings for single nodes depending on their
neighbourhood. This is a effective strategy in order to mitigate the limitations
of the GCNConv layer described in the previous section. For example it is
possible when using SAGEConv, to use a subset of a graph as the training data
and to then generate meaningful embeddings for an other, unseen subset of
the graph. Like this, generalizing to unseen nodes is not a problem any more
what makes SAGEConv applicable in domains, where nodes are often added or
deleted from a graph.

In fact, GraphSAGE as the authors call their approach, can be seen as a
whole framework for different specific convolutional operators, as it allows for
different types of neighbourhood aggregation. It generates embeddings using
the algorithm at the top of the next page.

The intuition behind this algorithm is, that in each iteration of the
outer loop (i.e., each layer of the neural network), each node aggregates
information from its direct neighbours (line 4) using iteration specific (i.e.,
layer specific) aggregator functions. Some of the aggregator functions available

20 CHAPTER 2. THEORETICAL BACKGROUND

Algorithm 1:GraphSAGE embedding generation (i.e., forward prop-
agation) algorithm

Data: Graph G(V , E), input features {xv ∀v ∈ V}, depth K, weight
matrices Wk ∀k ∈ {1, . . . , K}, non-linearity σ, differentiable
aggregator functions AGGREGATEk ∀k ∈ {1, . . . , K},
neighborhood function N : v 7→ 2V

Result: Vector representations zv ∀v ∈ V
1 h0

v ← xv ∀v ∈ V
2 for k = 1..K do
3 for v ∈ V do
4 hk

N (v) ← AGGREGATEk({hk−1
u ∀u ∈ N (v)})

5 hk
v ← σ

(
Wk · CONCAT (hk−1

v ,hk
N (v))

)
6 end
7 hk

v ← hk
v/∥hk

v∥2 ∀v ∈ V
8 end
9 zv ← hK

v ∀v ∈ V

are parametrized and thus can be learned during training. The aggregated
information is then concatenated with the information of the node itself,
weighted with iteration specific (i.e., layer specific) weight matrices and passed
through a non-linear activation function (line 5). The CONCAT operation
prevents nodes that have distinct feature vectors in the original vector space
from being mapped to identical values in the embedding space. In line 7, the
result of each iteration (i.e., layer) is being l2 normalized. In the actual PyG
implementation, this step is optional. Line 9 serves notational convenience
only.

However, in this study we use the mean aggregator function and in
contrast to the other aggregator functions available, the mean aggregator is
not parametrized. This makes it a deterministic function that is not being
learned during training. Further, the CONCAT operation in line 5 of the
algorithm is not performed when using the mean aggregator. Instead, a nodes
own feature vector is being weighted with a separate weight matrix and then
added to the aggregated (and weighted) information of neighbouring nodes.

This leaves us with a node wise update rule that is given by

x′
i = W1xi +W2 ·meanj∈N (i)xj (2.12)

If we now compare equation 2.12 to the GCNConv update rule described
in equation 2.10, we can point out four differences: (i) mean is used instead
of sum for neighbourhood aggregation (ii) Two weight matrices are used

2.2. GRAPH NEURAL NETWORKS 21

instead of one to determine the influence of the components of a nodes own
feature vector and the components of its neighbours feature vectors (iii)
SAGEConv does not provide the possibility to take edge weights into account
(iv) The update rule itself does not produce normalized edge features. As
already mentioned, SAGEConv provides the possibility to produce normalized
embeddings by applying l2 normalization to the already updated feature
vectors.

If we want to express the update rule of equation 2.12 in terms of the
message passing scheme of equation 2.6, aggregate is the mean function and
update is the sum function.

22 CHAPTER 2. THEORETICAL BACKGROUND

Chapter 3

Method

In this chapter, we first describe in detail, how we use Landlab to generate
grap-based erosion data as we need it to train and to test different types of
PyG GNNs. We then continue by presenting three different GNN architectures,
differing in the number of neural network layers being used. The Chapter is
concluded by a brief description of the training setup for our experiments.

3.1 Data

As already discussed in chapter 1, we do not use real world data for our ex-
periments. Instead we use Landlab to generate all the data we need.
The complete data generation process can be divided into four steps: (i) Ini-
tializing a Landlab grid of the desired size an type (ii) Generating a initial
topography and loading it on the grid (iii) Simulating erosion for the desired
number of time steps and saving all the intermediate results (iv) Encoding
these results in a way such that they can be processed by PyG GNNs.

3.1.1 Grid Type and Size

As grid types for our experiments, we use rectangular raster grids and voronoi
grids as they are described in chapter 2.1.1.
The grid sizes in our experiments regarding number of grid nodes are
30× 30 = 900, 50× 50 = 2500 and 80× 80 = 6400.
In the case of raster grids, we have a spacing of 1m between neighbouring
nodes, so the areas described by these grids have a size in m2 of about the
number of grid nodes.
By design, this also holds for the voronoi grids — the number of nodes
approximates in m2 the area that is being described. However, this time
the nodes are randomly distributed within this area so that there is no fixed
spacing between neighbouring nodes. This also means, that the number of

23

24 CHAPTER 3. METHOD

neighbouring nodes for each node varies.

3.1.2 Initial Topographies

Handcrafting initial topographies is a very time consuming task and since we
need quite a lot of them, this approach is highly infeasible.
But before we present in detail our semi-automatic method to solve this
problem, let us have a look at the requirements, that such initial topographies
have to fulfill.

Requirements

As we have outlined in chapter 1, stream power governed erosion is charac-
teristic in areas with relatively large mean slopes (i.e., mountainous areas).
Since this precondition is quite general, we make some further assumptions
for the sake of simplicity: We always choose the northern boundary nodes
to have the highest average topographic elevation and the southern boundary
nodes to have the lowest average elevation. In the case of raster grids, we fur-
ther close the western, northern and eastern boundaries so that flux generally
moves from north to south and can only exit the grid over the southern grid
boundary. In the case of voronoi grids, boundary control is limited because
the algorithm that identifies the boundary nodes does not collect all of them1.
Therefor we leave all grid boundaries open when operating on voronoi grids.

Method

We start by stacking several so called fault scarps over another. This can
be done with Landlabs NormalFault component (see chapter 2.1.2). This
component lets us define a line (i.e., a fault scarp) from one edge of a grid to
an other and elevate the terrain on one side of that line.
In order to meet the requirements described above, we pre-define a set of
fault scarps that elevate western, north-western, northern, north-eastern or
eastern parts of the terrain. From this set n ∈ {5, 10, 15, 20} fault scarps are
randomly selected. This results in a topographic profile with very clear and
sharp edges

Next, we apply some stream power based erosion since we can easily
assume, that erosion has already taken place before we start our simulation.
This is achieved using the FlowDirectorSteepest, the FlowAccumulator

1https://github.com/landlab/landlab/issues/885

3.1. DATA 25

and the StreamPowerEroder components (see chapter 2.1.2). The time period
for which we apply erosion varies between 50 and 400 years depending on the
grid size. We choose it by visually checking the results.

Now, we want to control the topographic slope. Therefor we center the
topographic elevation we have so far around 0 by subtracting the mean
topographic elevation of all nodes from each single nodes’ topographic
elevation. Now we can multiply the complete topographic elevation with a
value x ∈ (0, 2) where any x < 1 makes the slope smaller and any x > 1
makes it bigger. Suitable values for x are again chosen by visually checking
the results. We choose x ∈ {0.3, 0.6, 0.9}.
After adjusting the steepness, we lift the topographic elevation up again until
the lowest point is 20m above 0.

Next, we want to get rid of the sharp edges in our topographic profile that
are still present from the first step. Therefor, we apply the LinearDiffuser

component (see chapter 2.1.2). Here it is important, to choose the time period
small enough because otherwise the result is a completely flat landscape.
Depending on the grid size, we choose time periods between 10 and 400 years
— again based on visually checking the results.

Finally, we add some random noise ϵ ∈ [0m, 1.5m] to the topographic
elevation.

The results look like this (f.l.t.r.: Raster900, Voronoi900, Voronoi2500,
Voronoi6400):

Figure 3.1: Example initial topographies

For each grid type and size, we generate 36 initial topographies for training
and 36 initial topographies for testing our GNNs later on.
It has to be mentioned, that in the case of voronoi grids, not only each
topographic profile is unique but also each underlying graph structure,
because for each initial topography we randomly re-distribute the grid nodes.

26 CHAPTER 3. METHOD

3.1.3 Erosion Timeseries

For each initial topography, we now simulate stream power based erosion for
50 time steps using Landlab’s FowDirectorSteepest, FlowAccumulator and
StreamPowerEroder components (see chapter 2.1.2).
After these 50 time steps we want about 3/4 of the terrain to be gone, so we
choose the size of the time steps accordingly. For the small grids each time step
represents 100 years of erosion so in total we simulate for 5000 years. For the
medium grids each time step represents 120 years of erosion so we simulate for
6000 years. For the large grids each time step represents 150 years of erosion
so we simulate for 7500 years.

3.1.4 Encoding

While simulating erosion as described above, we safe the results of each
iteration. Therefor we use PyG’s Data object which is designed to repre-
sent arbitrary graph related information. Most importantly, it can hold
n-dimensional node features, the graph structure (i.e., all the edges being
present in the graph), n-dimensional edge features and a target to train
against.
In each iteration, we instantiate a new Data object. As node features, we
use the topographic elevation before running the flow routing and erosion
components on the grid. The graph structure is represented by all the active
links of the grid — this excludes links that touch at least one closed boundary
node. Edge features are not used for our experiments although grid attributes
like link slopes or lengths would be legitimate candidates.
As node-level target we use the difference of the topographic elevation before
and after running the flow routing and erosion components.

So in total, we generate 50 unique data points (i.e., graphs) from each
initial topography. This results in data sets with 1800 data points for each
possible combination of grid size, grid type and mode (i.e., train or test).

3.2 Models

In this section, we present a 32-layer, a 48-layer and a 80-layer GNN archi-
tecture. All of them can be implemented either using the GCNConv layer (see
2.2.4) or using the SAGEConv layer (see 2.2.5).
But before we present our architectures, we want to briefly discuss the task
we aim to solve with them.

3.2. MODELS 27

3.2.1 Goal

The overall goal is to build a erosion simulation pipeline in which the
three Landlab components FlowDirectorSteepest, FlowAccumulator and
StreamPowerEroder are replaced with a trained GNN. As a first input,
this GNN takes one of our initial topographies and predicts the change of
topographic elevation on node level. With this information, we can compute
an updated topographic profile, which we can then feed into the GNN again
to compute the next update.
The task we are facing is thus a node level linear regression task: For each
node of a graph we feed as input into our GNN we want to predict a small
continuous value.

Since the nature of this study is very explorative, we do not know from
the beginning, which network architectures fit best for the task we want to
accomplish. Therefor, the GNN architectures we are about to present follow
two simple design principles. (i) We use only graph convolution layers followed
by a fully connected output layer — features like dropout or normalization
layers are not applied (ii) The number of convolution layers is about the
square root of the number of the input graph’s nodes. Remember that the
number of convolution layers in a GNN defines the size of the neighbourhood
(in hops) from which each node can aggregate information (see chapter 2.2).

3.2.2 32-layer Architecture

This architecture aims towards processing our small, 900-node grids. It has
32 graph convolution layers that produce output with a different number
of channels. The first five layers produce 256 output channels, followed by
five layers with 128 output channels, five layers with 64 output channels,
five layers with 32 output channels, five layers with 16 output channels, five
layers with 8 output channels and two layers with 4 output channels. As
non-linearity we choose the ReLU after each convolution layer.
The last layer that solves the regression task, is a fully connected linear layer
with one output channel.
We refer to this architecture as GCN32 and SAGE32 respectively.

3.2.3 48-layer Architecture

This architecture aims towards processing our medium, 2500-node grids. It
has 48 graph convolution layers that produce output with a different number
of channels. The first seven layers produce 256 output channels, followed by

28 CHAPTER 3. METHOD

seven layers with 128 output channels, seven layers with 64 output channels,
seven layers with 32 output channels, seven layers with 16 output channels,
seven layers with 8 output channels and six layers with 4 output channels. As
non-linearity we choose the ReLU after each convolution layer.
The last layer that solves the regression task, is a fully connected linear layer
with one output channel.
We refer to this architecture as GCN48 and SAGE48 respectively.

3.2.4 80-layer Architecture

This architecture aims towards processing our large, 6400-node grids. It has
80 graph convolution layers that produce output with a different number of
channels. The first twelve layers produce 256 output channels, followed by
twelve layers with 128 output channels, twelve layers with 64 output channels,
twelve layers with 32 output channels, twelve layers with 16 output channels,
twelve layers with 8 output channels and eight layers with 4 output channels.
As non-linearity we choose the ReLU after each convolution layer.
The last layer that solves the regression task, is a fully connected linear layer
with one output channel.
We refer to this architecture as GCN80 and SAGE80 respectively.

3.3 Training

In this section we briefly describe the training setup we use for our experiments.

The criterion we apply is the smooth L1-loss. For network outputs ŷ,
targets y and a batch size of N , this loss function can be formally described as

ℓ(ŷ, y) = L = {l1, . . . , lN}T (3.1)

with

ln =

{
0.5 · (ŷn − yn)

2/β if |ŷn − yn| < β

|ŷn − yn| − 0.5 · β otherwise.
(3.2)

The smooth L1-loss thus behaves similar to L1-loss (mean absolute error), if
the error exceeds a threshold β and similar to L2-loss (mean squared error)
otherwise. We use batch sizes of 32 for the 6400-node grids, 64 for the
2500-node grids and 128 for the 900-node grids and stick to the convention to
set β = 1.

3.3. TRAINING 29

The reduced batch error as it is finally used for optimization is computed
as the mean error over all data points of a batch. Formally this is

ℓ(ŷ, y)reduced = mean(L) (3.3)

All models are trained for 5000 epochs. We use the Adam optimizer
with default parameters except for the learning rate. Figuring out the best
learning rates for the different network architectures and grid sizes is one goal
of the experiments we present in the next section. Therefor we train in each
experimental condition with three different learning rates: 0.0001, 0.00005
and 0.00001 and pick the best result.

Each model was trained on a NVIDIA GeForce RTX 2080 Ti GPU. The
training times vary depending on the grid size and the applied learning rate.

30 CHAPTER 3. METHOD

Chapter 4

Results

In this section, we present the results we obtain from applying the method
proposed in the previous chapter on different grid types and grid sizes.
In each experimental condition, we train with three different learning rates to
see, which one is suited best to solve the task. The applied learning rates are
0.0001, 0.00005 and 0.00001.

4.1 Questions

In chapter 3.2.1 we have described the goal of this study from a methodical
point of view. So let us now have a look at the questions we want to find
answers for by applying our method.
The three main questions are (i) Which one of the two graph convolution layers
(GCNConv and SAGEConv) solves the task better? (ii) Does the grid type have
any impact on the results? (iii) How does the approach scale?

As a first step, we try to answer question (i) and (ii) by applying the 32-
layer network architectures on the 900-node grids.
We then only keep the better one of the two convolution layers and the better
one of the two grid types for the proceeding experiments.
To answer question (iii), we apply the 32- and the 48-layer architecture on
the 2500-node grids as well as the 48- and the 80-layer architecture on the
6400-node grids.

4.2 Evaluation Metrics

To evaluate the performance of our models, our first indicator is always
a visual inspection of the model predictions in comparison to the original
Landlab simulations.

31

32 CHAPTER 4. RESULTS

As a second indicator we define a simulation loss for our models. It is real-
ized using PyTorch’s smooth L1-loss — the same loss we use for optimization
during training. If T is the number of data points (i.e., time steps) within each
simulation, it can be formally described as

ℓ(ŷ, y) =

∑T
t=0 lt
T

(4.1)

with

lt =

{
0.5 · (ŷt − yt)

2/β if |ŷt − yt| < β

|ŷt − yt| − 0.5 · β otherwise,
(4.2)

where ŷ denotes the model predictions and y denotes the Landlab baseline.
The hyper parameter β is set to 1.

4.3 900-Node Grids

After defining the metrics for the evaluation, we now present the results for
our 900-node grids.

4.3.1 GCN32 on Raster900

After 5000 epochs, the smallest validation loss (VL) during training, the mean
simulation loss (MSL) and the required training time for the three training
conditions (i.e., learning rates) are:

0.0001 0.00005 0.00001

VL 1.921 0.663 0.741
MSL 5.523 2.690 2.869
Time1 6:29 5:41 5:32

Table 4.1: Losses and required training time of GCN32 on Raster900

An exemplary simulation of the model with the smallest MSL (i.e., the one
that was trained with a learning rate of 0.00005) compared to the Landlab
baseline looks like this:

1Time is given in the form hh:mm in this and all the following tables

4.3. 900-NODE GRIDS 33

Figure 4.1: GCN32 on 900-node raster grid

As we can see, GCN32 captures the general tendency of the erosion process
as the topographic elevation steadily decreases. Still it clearly fails in repro-
ducing the fine grained structures of the channel incisions in the bedrock as
Landlab produces them.

4.3.2 SAGE32 on Raster900

After 5000 epochs of training, the smallest VL, the MSL and the required
training time for the three training conditions are:

0.0001 0.00005 0.00001

VL 0.101 0.151 0.173
MSL 2.993 3.161 3.792
Time 4:25 4:35 4:24

Table 4.2: Losses and required training time of SAGE32 on Raster900

An exemplary simulation of the model with the smallest MSL (i.e., the one
that was trained with a learning rate of 0.0001) compared to the baseline looks
like this:

34 CHAPTER 4. RESULTS

Figure 4.2: SAGE32 on 900-node raster grid

As we can see, SAGE32 also lets the topographic elevation decrease steadily
and it produces a more fine grained channel structure in the bedrock as GCN32
does. Still, it does not accurately reproduce the Landlab baseline.

4.3.3 GCN32 on Voronoi900

After 5000 epochs of training, the smallest VL, the MSL and the required
training time for the three training conditions are:

0.0001 0.00005 0.00001

VL 1.828 1.936 3.551
MSL 8.399 8.623 9.510
Time 9:39 7:19 7:19

Table 4.3: Losses and required training time of GCN32 on Voronoi900

In this experimental condition, all the losses above are comparatively high.
An exemplary simulation of the model with the smallest MSL (i.e., the one
that was trained with a learning rate of 0.0001) compared to the baseline looks
like this:

4.3. 900-NODE GRIDS 35

Figure 4.3: GCN32 on 900-node voronoi grid

As we can see, GCN32 lets the topographic elevation gradually decrease
but the topographic pattern it produces does not mach the pattern of the
baseline.

4.3.4 SAGE32 on Voronoi900

After 5000 epochs of training, the smallest VL, the MSL and the required
training time for the three training conditions are:

0.0001 0.00005 0.00001

VL 3.383 0.491 3.189
MSL 9.415 2.950 11.220
Time 5:26 5:32 5:31

Table 4.4: Losses and required training time of SAGE32 on Voronoi900

An exemplary simulation of the model with the smallest MSL (i.e., the one
that was trained with a learning rate of 0.00005) compared to the baseline
looks like this:

36 CHAPTER 4. RESULTS

Figure 4.4: SAGE32 on 900-node voronoi grid

From all the experiments on 900-node grids, SAGE32 operating on voronoi
grids produces the most accurate results. It is capable of generating a erosion
pattern that highly resembles the Landlab baseline.

4.3.5 Evaluation

From visually inspecting the above results, we can state two things: (i) The
SAGEConv layer clearly outperforms the GCNConv layer both on the raster and
the voronoi grid (ii) The results obtained on voronoi grids are more promising
than the ones obtained on raster grids.
We can further state that a comparably high MSL is a good indicator for a
bad performing model. On the other hand, the best performing model (based
on visual inspection) is not the one with the lowest MSL:

GCN32 SAGE32

Raster 2.690 2.993
Voronoi 8.399 2.950

Table 4.5: Simulation losses on 900-node grids

As a consequence of these first results, we drop the GCNConv layer and
the raster grids as conditions for our next experiments, in which we want to
examine, how our approach scales to bigger grids.

4.4. 2500-NODE GRIDS 37

4.4 2500-Node grids

To examine, how our approach scales to bigger grids, we now train a 32-layer
and a 48-layer SAGEConv network on 2500-node voronoi grids.

4.4.1 SAGE32 on Voronoi2500

After 5000 epochs of training, the smallest VL, the MSL and the required
training time for the three training conditions are:

0.0001 0.00005 0.00001

VL 3.374 0.549 0.830
MSL 7.884 3.823 5.465
Time 15:37 15:41 17:47

Table 4.6: Losses and required training time of SAGE32 on Voronoi2500

An exemplary simulation of the model with the smallest MSL (i.e., the one
that was trained with a learning rate of 0.00005) compared to the baseline
looks like this:

Figure 4.5: SAGE32 on 2500-node voronoi grid

As we can see, SAGE32 produces a topographic pattern that is related
to the Landlab baseline. However, there are also distinct differences in the
two simulation patterns. Further, in the model simulation the topographic
elevation decreases slightly faster than in the baseline simulation.

38 CHAPTER 4. RESULTS

4.4.2 SAGE48 on Voronoi2500

After 5000 epochs of training, the smallest VL, the MSL and the required
training time for the three training conditions are:

0.0001 0.00005 0.00001

VL 0.990 6.595 1.288
MSL 3.267 8.211 4.850
Time 22:17 22:29 22:05

Table 4.7: Losses and required training time of SAGE48 on Voronoi2500

An exemplary simulation of the model with the smallest MSL (i.e., the one
that was trained with a learning rate of 0.0001) compared to the baseline looks
like this:

Figure 4.6: SAGE48 on 2500-node voronoi grid

We see, that SAGE48 performs quite similar to SAGE32 regarding the
erosion pattern it produces. However, it reproduces the actual decrease of the
topographic elevation slightly more accurate.

4.4.3 Evaluation

The above results show, that the SAGEConv layer in general is capable of pro-
ducing meaningful predictions also on bigger grids. However, it seems like the
resolution of the produced erosion patterns becomes slightly less accurate as
it was the case on 900-node voronoi grids.
Considering the above results, it seems also reasonable to add layers to the

4.5. 6400-NODE GRIDS 39

applied GNN as the number of nodes of the processed grid increases. This as-
sumption is substantiated if we compare the MSL of the two applied network
architectures.

SAGE32 SAGE48

3.823 3.267

Table 4.8: Simulation losses on 2500-node grids

4.5 6400-Node grids

To further examine, how our approach scales to bigger grids, we finally train
a 48-layer and a 80-layer SAGEConv network on 6400-node voronoi grids.

4.5.1 SAGE48 on Voronoi6400

After 5000 epochs of training, the smallest VL, the MSL and the required
training time for the three training conditions are:

0.0001 0.00005 0.00001

VL 13.532 1.112 13.533
MSL 7.558 3.181 7.561
Time 57:38 57:27 59:52

Table 4.9: Losses and required training time of SAGE48 on Voronoi6400

An exemplary simulation of the model with the smallest MSL (i.e., the one
that was trained with a learning rate of 0.00005) compared to the baseline
looks like this:

40 CHAPTER 4. RESULTS

Figure 4.7: SAGE48 on 6400-node voronoi grid

We see, that — again — the model is capable of generating an erosion
pattern that resembles the Landlab baseline. But, just as it was when scaling
up from 900-node grids to 2500-node grids, the resolution of the produced ero-
sion timeseries decreases: SAGE48 fails in capturing the fine grained channel
incisions as they can be seen in the Landlab baseline.

4.5.2 SAGE80 on Voronoi6400

Unfortunately, the training of the models in this experimental condition failed
because of the walltime (3 days) of the compute node within the SLURM
cluster that hosts the GPU that was used for training.
Analysing the log files that were created during training still lets us assume,
that SAGE80 failed to train properly regardless the applied learning rate. The
VL in all three conditions converged very fast at around 13. For comparison:
The VL of SAGE48 trained with a learning rate of 0.00005 converges at around
1.5.

4.5.3 Evaluation

We have now seen, that the SAGEConv layer also on grids with 6400 nodes is
capable of generating erosion patterns that at least resemble the patterns that
are generated by Landlab. However, the models clearly fail in catching the
fine grained channel incisions as they can be seen in the baseline.
We have also seen that in the case of the 6400-node grids, the assumption does
not hold that the deeper GNN produces the better results.

4.6. FURTHER REMARKS 41

4.6 Further Remarks

In all experimental conditions, we are facing GNNs with a comparably high
MSL that produce extremely inaccurate simulations. The training and valida-
tion losses during training indicate, that these models somehow do not train
properly.

Figure 4.8: Exemplary losses of models that do not train

In some case, this might happen because the optimizer gets trapped in a
local minimum of the loss function.
However, a successful training does not seem to depend on the learning rate
that is applied. In the SAGE48-Voronoi2500 condition for example, good
results are achieved with the learning rates 0.0001 and 0.00001 whereas the
medium learning rate of 0.00005 fails. In the SAGE32-Voronoi2500 condition
on the other hand, the medium learning rate produces the best simulations.
The real factors that determine whether a model succeeds or fails during train-
ing are not known to us.

42 CHAPTER 4. RESULTS

Chapter 5

Conclusion

5.1 Discussion

In the previous chapters we first introduced a method to generate arbitrary
amounts of graph encoded data describing stream power governed erosion
processes in mountainous areas. This was achieved with the help of Landlab,
a Python library for numerical modeling of earth surface dynamics.
We further introduced two graph convolution operators — the SAGEConv-
and the GCNConv-layer of PyTorch’s extension PyTorch Geometric. Alongside
these operators, we presented three GNN architectures — one with 32, one
with 48 and one with 80 convolution layers.
In a series of experiments we finally tried to learn the erosion dynamics that
are inherent to our data in a end-to-end manner in different experimental
conditions.

Through our experiments, several things became clear: (i) GNNs in
general are capable of learning erosion dynamics and can produce good
landscape evolution simulations on small grids with 900 nodes (ii) Operating
on voronoi grids (versus operating on raster grids) results in more accurate
simulations from a visual point of view (iii) The SAGEConv layer clearly
outperforms the GCNConv layer both in accuracy and in required training time
(iv) The proposed method does somehow scale to bigger grids but as the
number of nodes increases, the resolution of the model predictions slightly
decreases (v) Deeper networks do not necessarily go along with better results
(vi) Some networks do not train and we do not know why.

The question still to be answered is, if the approach taken in this thesis
is of any practical relevance. The short answer is: No. This becomes clear if
we have a look at the baseline: Numerical methods for landscape evolution
modeling as they are implemented in Landlab can operate on grids with up

43

44 CHAPTER 5. CONCLUSION

108 nodes on a normal laptop and, potentially, up to 1010 nodes on large
multi-processor computers in O(n) where n is the number of nodes (Braun
and Willett 2013).
In this thesis we achieve satisfying results on grids with about 103 nodes
but already lack resolution when operating on grids with more than 2.5 · 103
nodes.
Further, we have seen that the time to train a 80-layer model that processes
grids with 6400 nodes already exceed 3 days. So training models that process
grids with 108 to 1010 nodes most probably is highly infeasible.

5.2 Outlook

In order to mitigate the limitation described in the previous section, we
suggest two directions.

The first one takes into account two observations: (i) Deeper networks
do not necessarily produce better results but need much longer to train (ii)
There are still reasons that keep some models from training that we do not
know of.
As a consequence, one way to achieve better results in less training time could
be, to operate with shallow networks also on big grids but to refine and debug
both the network architecture and the training process.
However, training time will stay an issue like this if we want to process really
big grids in one piece.

Therefor we suggest a second direction. It might be even more promising
but also much harder to implement.
As described in chapter 2.2.5, the SAGEConv operator has the capability to
generalize to unseen nodes of a graph. This makes it possible to only use
a subset of a graph during training and to still make meaningful predictions
on other parts of the graph. Exploiting this fact, we could use a small but
well trained GNN and slide it over a potentially huge grid to predict the
landscape transformation patch by patch and not for the whole grid at once.
This approach could (i) drastically reduce the training time even for very big
grids and (ii) keep the resolution of the model predictions high.
However, a correct and consistent handling of the flux (i.e., soil) crossing the
boundaries between those patches is crucial and potentially hard and time
consuming to implement.

Bibliography

Barnhart, K. R. et al. (2020). “Short communication: Landlab v2.0: A soft-
ware package for Earth surface dynamics”. In: Earth Surface Dynamics 8.2,
pp. 379–397. doi: 10.5194/esurf-8-379-2020. url: https://esurf.
copernicus.org/articles/8/379/2020/.

Braun, Jean and Sean D. Willett (2013). “A very efficient O(n), implicit and
parallel method to solve the stream power equation governing fluvial in-
cision and landscape evolution”. In: Geomorphology 180-181, pp. 170–179.
issn: 0169-555X. doi: https://doi.org/10.1016/j.geomorph.2012.
10.008. url: https://www.sciencedirect.com/science/article/pii/
S0169555X12004618.

Bronstein, Michael M. et al. (July 2017). “Geometric Deep Learning: Going
beyond Euclidean data”. In: IEEE Signal Processing Magazine 34.4, pp. 18–
42. doi: 10.1109/msp.2017.2693418. url: https://doi.org/10.1109%
5C%2Fmsp.2017.2693418.

Davy, Philippe and Dimitri Lague (2009). “Fluvial erosion/transport equa-
tion of landscape evolution models revisited”. In: Journal of Geophys-
ical Research: Earth Surface 114.F3. doi: https : / / doi . org / 10 .

1029/2008JF001146. eprint: https://agupubs.onlinelibrary.wiley.
com / doi / pdf / 10 . 1029 / 2008JF001146. url: https : / / agupubs .

onlinelibrary.wiley.com/doi/abs/10.1029/2008JF001146.
Fey, Matthias and Jan Eric Lenssen (2019). Fast Graph Representation Learn-

ing with PyTorch Geometric. doi: 10.48550/ARXIV.1903.02428. url:
https://arxiv.org/abs/1903.02428.

Grover, Aditya and Jure Leskovec (2016). “Node2vec: Scalable Feature Learn-
ing for Networks”. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’16. San Fran-
cisco, California, USA: Association for Computing Machinery, pp. 855–
864. isbn: 9781450342322. doi: 10.1145/2939672.2939754. url: https:
//doi.org/10.1145/2939672.2939754.

Hamilton, William L., Rex Ying, and Jure Leskovec (2017). Inductive Repre-
sentation Learning on Large Graphs. doi: 10.48550/ARXIV.1706.02216.
url: https://arxiv.org/abs/1706.02216.

45

46 BIBLIOGRAPHY

Hobley, D. E. J. et al. (2017). “Creative computing with Landlab: an open-
source toolkit for building, coupling, and exploring two-dimensional numer-
ical models of Earth-surface dynamics”. In: Earth Surface Dynamics 5.1,
pp. 21–46. doi: 10.5194/esurf-5-21-2017.

Howard, Alan D. and Gordon Kerby (June 1983). “Channel changes in bad-
lands”. In: GSA Bulletin 94.6, pp. 739–752. issn: 0016-7606. doi: 10 .
1130/0016-7606(1983)94<739:CCIB>2.0.CO;2. eprint: https://pubs.
geoscienceworld.org/gsa/gsabulletin/article- pdf/94/6/739/

3434551/i0016-7606-94-6-739.pdf. url: https://doi.org/10.1130/
0016-7606(1983)94%3C739:CCIB%3E2.0.CO;2.

Kipf, Thomas N. and Max Welling (2016). Semi-Supervised Classification with
Graph Convolutional Networks. doi: 10.48550/ARXIV.1609.02907. url:
https://arxiv.org/abs/1609.02907.

Lague, Dimitri (2014). “The stream power river incision model: evidence, the-
ory and beyond”. In: Earth Surface Processes and Landforms 39.1, pp. 38–
61. doi: https : / / doi . org / 10 . 1002 / esp . 3462. eprint: https : / /

onlinelibrary.wiley.com/doi/pdf/10.1002/esp.3462. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/esp.3462.

Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-Performance
Deep Learning Library”. In: Advances in Neural Information Processing
Systems 32. Curran Associates, Inc., pp. 8024–8035. url: http://papers.
neurips . cc / paper / 9015 - pytorch - an - imperative - style - high -

performance-deep-learning-library.pdf.
Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena (Aug. 2014). “DeepWalk”.

In: Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM. doi: 10.1145/2623330.
2623732. url: https://doi.org/10.1145%5C%2F2623330.2623732.

Scarselli, Franco et al. (2009). “The Graph Neural Network Model”. In: IEEE
Transactions on Neural Networks 20.1, pp. 61–80. doi: 10.1109/TNN.
2008.2005605.

Tucker, Gregory (Dec. 2015). “Landscape Evolution”. In: pp. 593–. isbn:
9780444538031. doi: 10.1016/B978-0-444-53802-4.00124-X.

Whipple, Kelin (2004). “Bedrock Rivers and the Geomorphology of active Oro-
gens”. In: Annual Review of Earth and Planetary Sciences 32.1, pp. 151–
185. doi: 10.1146/annurev.earth.32.101802.120356. eprint: https:
//doi.org/10.1146/annurev.earth.32.101802.120356. url: https:
//doi.org/10.1146/annurev.earth.32.101802.120356.

Whipple, Kelin and Gregory E Tucker (1999). “Dynamics of the stream-power
river incision model: Implications for height limits of mountain ranges, land-
scape response timescales, and research needs”. In: Journal of Geophysical
Research: Solid Earth 104.B8, pp. 17661–17674.

Yavari, Shahla, Saman Maroufpoor, and Jalal Shiri (Aug. 2017). “Modeling soil
erosion by data-driven methods using limited input variables”. In: Hydrol-

BIBLIOGRAPHY 47

ogy Research 49.5, pp. 1349–1362. issn: 0029-1277. doi: 10.2166/nh.2017.
041. eprint: https://iwaponline.com/hr/article-pdf/49/5/1349/
483241/nh0491349.pdf. url: https://doi.org/10.2166/nh.2017.041.

Yuan, X. P. et al. (2019). “A New Efficient Method to Solve the Stream Power
Law Model Taking Into Account Sediment Deposition”. In: Journal of Geo-
physical Research: Earth Surface 124.6, pp. 1346–1365. doi: https://doi.
org/10.1029/2018JF004867. eprint: https://agupubs.onlinelibrary.
wiley.com/doi/pdf/10.1029/2018JF004867. url: https://agupubs.
onlinelibrary.wiley.com/doi/abs/10.1029/2018JF004867.

Zhou, Fan, Rongfan Li, and Goce Trajcevski andKunpeng Zhang (2021).
“Land Deformation Prediction via Slope-Aware Graph Neural Networks”.
In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications of Artificial Intelli-
gence, IAAI 2021, The Eleventh Symposium on Educational Advances in
Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021.
AAAI Press, pp. 15033–15040. url: https://ojs.aaai.org/index.
php/AAAI/article/view/17764.

48 BIBLIOGRAPHY

Selbständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig und
nur mit den angegebenen Hilfsmitteln angefertigt habe und dass alle Stellen,
die dem Wortlaut oder dem Sinne nach anderen Werken entnommen sind,
durch Angaben von Quellen als Entlehnung kenntlich gemacht worden sind.
Diese Bachelorarbeit wurde in gleicher oder ähnlicher Form in keinem anderen
Studiengang als Prüfungsleistung vorgelegt.

Ort, Datum Unterschrift

