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Abstract

In order to contain the pandemic caused by the novel coronavirus (SARS-
CoV-2), first reported in China in December 2019, many countries imposed
unprecedented lockdowns that have resulted in extraordinary consequences,
far reaching into all facettes of life. There is great interest to understand the
current infection process and development in a timely manner in order to allow
for mitigation policies to be implemented aptly and promptly. A pivotal figure,
often required for deriving further epidemiological parameters, is the number
of infections occuring on a given day, which naturally, nobody can exactly
determine. We provide a probabilistic model to approximate this number via
the disease onset date using Bayesian inference. Focusing on case numbers
in Germany, we find reporting-specific effects, which we ”model-away” with a
Gaussian process defined by a sum kernel. Finally, we derive a metric, which
quantifies the growth rate of new infections. The uncertainty in the data,
which is especially large at the beginning of the pandemic when test capacities
were low, poses a major challenge. We compensate for this data scarcity by
integrating prior knowledge into the model and provide the resulting estimates
with uncertainty in order to keep them faithful.
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Acronyms

GP Gaussian process
GPR Gaussian process regression
LR Linear Regression
rv random variable
SE Squared exponential
RKI Robert Koch Institute
pdf Probability density function
MLE Maximum likelihood estimate / estimation
MAP Maximum a posteriori
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Notation

Scalars, Vectors, Matrices and Symbols

θ Scalar or (probability distribution) parameter
x (Column) vector
I Unit matrix
yT The transpose of vector y

, An equality which acts as a definition
x ∝ y x is directly proportional to y

Probability Theory

p(x) Probability density function or probability mass function
p(y|x) Conditional density function
i.i.d. Independent and identically distributed
X ∼ D Random variable X is distributed according to

distribution D
Σ Covariance
N (µ,Σ) (Multivariate) normal distribution with mean µ and

covariance Σ
N (x|µ,Σ) Density of the (multivariate) normal distribution
cov(x,x′) Covariance between vectors x and x′

GP(µ, k) Gaussian process with mean function µ(·) and
covariance function k(·, ·)
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Regression

x Input vector
x Scalar input
x? Scalar test point, (or vector if bold)
y Observed target value which is assumed to be corrupted

by noise, i.e., y = f (x) + ε
y Vector of targets
y? Predicted target or output value corresponding to novel

test input x?

w Vector of weights (parameters)
φ(x) Function which maps a D−dimensional input vector x

into an N dimensional feature space
φx abbreviation for φ(x)
φ? abbreviation for φ(x?)
f(x) A real process where f(x) ∼ GP(m(x), k(x,x′))).

f evaluated at x is a random variable.
fx abbreviation for f(x)
f(x?) Gaussian process (posterior) prediction (random variable)
f? abbreviation for f(x?)
ε Noise by which observed values y differ from function

values f(x), assumed to be i.i.d. and ε ∼ N (0, σ2
n)

σ2
n Variance of noise
X N ×D Design matrix
D Dimension of input space
D Training set, D = (X,y)
k(x,x′) Kernel or covariance function evaluated at x and x′

k(x?) Vector, short for K(X, x?) when there is only a single
test case x?

k? Abbreviation for k(x?)
K N ×N Covariance matrix K(X,X) for the training points
K? N ×N? Covariance matrix K(X,X?) between the training

and test cases
Kf Covariance matrix for the noise free f values
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Chapter 1

Introduction

The novel coronavirus disease (COVID-19), first reported in Wuhan, China, in
December 2019, has rapidly grown into a pandemic as cases have been reported
worldwide [1]. With more than 53 million confirmed cases in 191 countries and
about the 1.3 million deaths [2] as of November 2020, the virus continues to
spread across the globe.

The ongoing pandemic poses immense threats not only to public health,
but also to the stability of society and economies across the world. In order to
contain the outbreak, many countries have imposed unprecedented lockdowns
and other policies with far reaching consequences for family life, work, sports
and travel. In Germany, such measures eventually proved effective in reducing
the number of fatalities and daily confirmed cases (incidence). This steady
state w.r.t. the incidence rate over the summer was succeeded by a second
wave of infections.

To be able to impose targeted, time-limited, strict mitigation policies, re-
liable estimates on how easily the virus is spreading under different scenarios
are key. Hence, for pandemic mitigation to be effective, reliable forecasts are
crucial. These are provided by data-driven models, which make predictions
about the future by learning from the past.

However, at the beginning of the pandemic there is only a small amount
of data available and additionally, little is known about epidemiological pa-
rameters such as the basic reproduction number. This is further complicated
by changing protocols of data collection and low data quality in general. This
makes generating reliable estimates challenging and can result in systematic
and statistical errors in these initial stages of the pandemic. This is further
complicated by the delay with which effects of policy interventions can be
evaluated and the time-lag inherent in the reporting process yielding the daily
reported case numbers. All of these factors result in the fact that decision
making has to take place under large uncertainty.

This can only be done near-optimally if the resulting uncertainty can be
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2 CHAPTER 1. INTRODUCTION

quantified and possibly reduced by incorporating any prior knowledge, e.g.
from similar diseases. This also includes information on factors such as the
reporting delay and lag, the serial interval1 (needed to estimate turnover of case
generations and transmissibility),2 the incubation period,3 virulent window
and proportion of transmissions occuring during the incubation period, as well
as factors such as the latent number of infected, dead and recovered, etc. The
need to obtain faithful estimates, which account for uncertainty, incorporate
prior knowledge and integrate newly available data continuously, naturally
leaves us with a Bayesian approach to model the dynamics of the coronavirus.

1.1 Contribution

In this work, we design a probabilistic model estimating the daily number of
newly infected individuals with the novel coronavirus SARS-CoV-2 in Ger-
many. In particular, we remove reporting-specific effects present in the data.
We improve upon this model by also estimating the disease onset date with
uncertainty, which serves as a proxy for the time of infection of a case, yielding
a more accurate reflection of the pandemic’s state for a given point in time. Fi-
nally, we propose a new metric, which reflects the trend of disease progression
and may thus serve as a policy guiding tool.

1Serial interval: time from when one infected person starts showing symptoms to illness
onset in a secondary case.

2The serial interval is estimated to have a median of 4.0 days which indicates rapid cycles
from one generation to the next [3].

3Incubation period: time elapsed between exposure to virus and when symptoms start
showing.



Chapter 2

Background

This chapter concerns itself with regression. We begin by introducing a basic
linear model, point out its limitations and subsequently outline a way to cir-
cumvent these by projecting the inputs into a higher-dimensional feature space
to instead perform inference there. As it turns out, performing linear regres-
sion in feature space naturally leads to a concept called Gaussian Process
(GP) regression as discussed in Section 2.4.

For later reference, it may be useful to note that the following presentation
of regression sometimes is referred to as the weight space or parameter space
view, while the subsequent one using GPs in Section 2.4 is considered the
function space view. This introduction mostly relies on standard textbooks on
this topic, most notably Rasmussen and Williams [4], Bishop [5] and Murphy
[6].

2.1 Introduction

We aim to find a relationship between the time and observed incidence, which
would enable us to predict the future trend of incidence with uncertainty.
To put it in a more formal way, observing some inputs Xi and outputs yi,
we assume yi = f (Xi) for some unknown function f . Inferring this function
from the input-output pairs amounts to the regression problem that supervised
learning is concerned with (next to classification problems which will not be
considered here).

2.2 Standard Linear Model

A basic linear regression model, where the scalar output yi is a linear combi-
nation of the input vector xi and some weights w, is easy to interpret but also

3



4 CHAPTER 2. BACKGROUND

limited in its expressiveness if the relationship between input and output can
not be linearly approximated anymore.

From a Bayesian viewpoint on the standard linear regression model, we
assume for some unknown function f , corrupted by Gaussian noise ε,

f (X) = XTw, yi = f (X) + ε, (2.1)

where X is the input vector and w a vector of weights (parameters). If the
observed values y were noise-free, our linear model should perfectly interpolate
and predict f (X) with zero uncertainty for a value of X that was already seen
by the model, i.e., Xi is an element of the training set. Since we have assumed
that the observed values y are a noisy version of the underlying function,
however, the model is not expected to perfectly interpolate the data but only
to come ”close”, i.e., with uncertainty. We assume the noise ε to be Gaussian
distributed with zero mean and variance σ2

n

ε ∼ N (0, σ2
n). (2.2)

Suppose we have a training set D of n observations with D = {(xi, yi)}
where xi denotes an input vector of dimension D and yi corresponds to a scalar
output or target (dependent variable). Then the column vector inputs for all
n cases are aggregated in a D× n design matrix X, and we write D = (X,y).

In order to now perform Bayesian inference for a test case x?, all possible
parameter values are weighted by their posterior probability.

This is done by Bayes’ rule

posterior =
prior× likelihood

evidence
, p(w|y, X) =

p(w)p(y|X,w)

p(y|X)
, (2.3)

where the evidence is independent of the weights w. The evidence or normal-
ization constant is also known as the marginal likelihood and given by

p(y|X) =

∫
p(y|X,w)p(w)dw. (2.4)

Thus, the posterior in eq. (2.3) captures everything we know about the
parameters by combining prior and likelihood. Conversely, in non-Bayesian
settings, typically a single parameter is chosen by some criterion. The likelihood
p(y|X,w) in eq. (2.3) is the probability density function (pdf) of y evaluated
at w.

When making predictions given new inputs X? by applying Bayes’ rule from
eq. (2.3), we compute the predictive distribution f? , f(X?), which amounts to
averaging the output of all possible linear models w.r.t. the Gaussian posterior.
The predictive distribution f? is then given by

p(f?|X?, X,y) =

∫
p(f?|X?,w)p(w|X,y)dw, (2.5)
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where again, f? is the predictive distribution for some new inputs x? given the
training data (X,y). Since we assumed everything to be Gaussian distributed,
the posterior distribution is Gaussian as well and is parametrized by a mean
given by the posterior means of the weights multiplied by the test input and
a predictive variance.

2.3 Feature Space

The Bayesian linear model lacks expressiveness in the case where input and
output are non-linearly related. A way to circumvent this limitation is to first
project the inputs into a high dimensional feature space by using a set of basis
or feature functions φ(X). Subsequently, we can apply the linear model in
the feature space rather than on the inputs themselves. A plethora of feature
functions φx may be used, such as the Switch-, Pixel-, Fourier- Bell Curve, etc.,
resulting in different piecewise interpolants and therefore in various regression
models. For instance, a polynomial feature function φ(X) = (1, X,X2, X3, ...)T

projects an input X into the space of powers resulting in polynomial regression.

For this section we rely on the lecture Probabilistic Machine Learning by
Prof. Philipp Hennig [7]. The described model is still linear in the param-
eters, hence computationally tractable, as long as the projection functions
independent of the parameters w. By introducing the feature function φ(X)
that projects a D−dimensional input vector X into an D′-dimensional feature
space, the linear model f (X) = XTw from eq. (2.1) now becomes

f (X) = φ(X)Tw, (2.6)

where the parameter vector now has length D′. The analysis of this model is
still analogous to the standard linear model described in eq. (2.1), except that
all X are being substituted by φ(X) now.

If we assign a prior Gaussian distribution over the weights w with mean µ
and covariance matrix Σ, we can write the posterior predictive distribution as

p(f?|y, φX) = N (f?;φ
T
? µ+ φT? ΣφX(φTXΣφX + σ2

nI)−1(y − φTXµ),

φT? Σφ? − φT? ΣφX (φTXΣφX + σ2
nI)−1φTXΣφ?), (2.7)

where φ?,X , φ(X?, X).

Note that φ is always part of an inner product. Hence, we may define
two abstract functions encapsulating the two operations in which φ is included
respectively (color-coded by blue and red).

Now let

m? := φT? µ (2.8)
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be the mean function, where φT? denotes features of test data (φTX respectively
denotes features of training data), and µ is the mean of weights w.

Let further

kab := φTaΣφb (2.9)

be the covariance function or kernel.1 Then we can rewrite the posterior
predictive distribution as

p(f?|y, φX) = N (f?;m? + k?X(kXX + σ2
nI)−1(y −mX),

k?X − k?X(kXX + σ2
nI)−1kX?). (2.10)

Note that the kernel kab in eq. (2.9) is replacing the inner product between two
feature vectors φa and φb weighted by the covariance Σ of the weights, which
also is referred to as the kernel trick [5]. Inner products are sums 〈φa, φb〉 :=
φTa φb =

∑F
i (φa)i(φb)i. Some feature functions φj(xi) with j = 1, ..., F and

i = 1, ..., N , where F is the number of features and N the number of input
data, can even be evaluated when F →∞. This is because in that case, these
sums turn into integrals with analytical solutions. However, this requires some
regularity assumptions about the features’ shape, locations, etc.

When computing the kernel rather than the feature vectors themselves is
cheaper, then the kernel trick is particularly valuable. This notion sets the
stage for the concept of Gaussian processes (GPs), which we will shed
more light on in the next Section 2.4.

2.4 Gaussian Process Regression

In the previous section we observed that sometimes it is possible to consider
infinitely many features. We can then learn infinitely many features in parallel
in closed form using the kernel operation. In that sense, we learn p(θ|D),
as opposed to inferring p(f |D), which we did previously when we focused
on parametric representations of a function fθ. Here, θ denotes some latent
distribution parameters and D denotes the observed data. More generally, if
the unknown variable or parameter is not a scalar or a fixed-length vector, but
a function, we can perform Bayesian inference over functions themselves. The
resulting (nonparametric) process is referred to as a Gaussian process (GP)
if any finite projection is a Gaussian random variable. For this introduction
on GPs, we again rely primarily on Bishop [5], Rasmussen and Williams [4]
and Murphy [6].

1The terms covariance function and kernel will be used interchangeably throughout this
thesis.
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2.4.1 Introduction

In Gaussian process regression (GPR) we aim to find a function that is close to
the latent, unknown function f that generated the data and that generalizes
well. In this case, a GP is used as a prior probability distribution whose samples
are continuous functions. Function values are then modeled as a draw from
a multivariate normal distribution. GPs are a particularly convenient choice
due to the analytic marginalization and conditioning properties innate to the
multivariate normal distribution, which we will elaborate on in Sections 2.4.3
and 2.4.4 when discussing the inference and prediction step.

2.4.2 Definition

For our purposes a GP defines a prior over functions, which can be transformed
into a posterior over functions after the model is presented with data. While
one may think of a GP as describing a probability distribution over functions,
the definition only refers to a finite number of evaluations. A Gaussian process
is a random process, which, if evaluated at a number of input points x1, ...,xN ,
the function values f(x1), ..., f(xN ) are jointly Gaussian distributed. We then
write a GP as

f(X) ∼ GP(m(x), k(x, x′)), (2.11)

solely parametrized by the mean function m(x) and the covariance function
k(x, x′), which is assumed to be positive semi-definite (see also eq. (2.8) and
eq. (2.9)).

2.4.3 Inference

Inference refers to the process of fitting the underlying GP to the given training
data. By definition, a GP induces a joint distribution, here for noise-free
observations y = f(X) and y? = f(x?), which is a multivariate normal,[

f
f?

]
= N

([
m(x)
m(x?)

]
,

[
k(X,X) k(X,X?)
k(X?, X) k(X?, X?)

])
, (2.12)

where f are training and f? test outputs, and K(·, ·) denotes the respective
sub-matrix of the covariance given by the kernel. That is, K(X,X?) defines
the N ×N? covariance matrix evaluated at all pairs of training points N and
test points N?. The same notion applies to the remaining entries K(X?, X),
K(X?, X?) and K(X,X). Typically, the kernel function is chosen to express
the property that, for any arbitrary points xa and xb which are similar, the
corresponding output values y(xa) and y(xb) will be more correlated as well
(see Figure Figure 2.1). Note, however, that the notion of similarity mainly
depends on the context that GPR takes place in and may hence differ.
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f1 f2 f∗

y1

x1 x2 x∗

y∗y2

Inputs

f(xi)

+ε

Observations

Observed

Latent (unknown)

yi|fi conditionally inde−
pendent of all other nodes

fully connected
layer of nodes

x∗similar to x1,2

⇒ y?similar to y1,2

Figure 2.1: Graphical model for GPR. Graphical model (chain graph) for two
training points x1,2 and one test point x?. Adapted from [4], p. 17.

In order to predict f? at new locations x?, we need to first learn the latent
function f , the data generating process for the observed data y. We obtain
the marginal likelihood (or evidence) p(y|X) by integrating over the unknown
latent function f . The marginal likelihood then is likelihood times the prior

p(y|X) =

∫
p(y|X,f)p(f) df . (2.13)

Conveniently, the corresponding marginal distribution can directly be read
off of the joint distribution in eq. (2.12). Therefore

y|X ∼ N (m(X), K). (2.14)

We typically only have access to noisy observations y = f(X) + ε. Suppos-
ing additive i.i.d. Gaussian noise ε with variance σ2

n, the prior covariance for
noisy observations then becomes

K = k(X,X) + σ2
nI, (2.15)

where I is the unit matrix.

The joint distribution of the observed noisy target values y and the function
values f? at new input locations X? then becomes[

y
f?

]
= N

([
m(X)
m(x?)

]
,

[
k(X,X) + σ2

nI k(X,X?)
k(X?, X) k(X?, X?)

])
, (2.16)
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An example of a latent function f for a synthetic data set is shown in
Figure 2.2.

0 2 4 6 8 10
X

−6

−4

−2

0

y t
ru
e

True latent f

Observed Data (Noisy)

Figure 2.2: Inference using a GP. Observations y are the unknown function
f plus some i.i.d. Gaussian distributed additive noise. The latent function was
generated by a Gaussian Process with an RBF kernel.

Here, the observed data y are the sum of a GP with a radial basis function
kernel (RBF) as covariance function and Gaussian noise. Observe that the
RBF covariance function ky explicitly refers to the noisy targets y (and not,
say, kf , referring to the signal) and is then given by

ky(xa, xb) =

signal variance︷︸︸︷
σ2
f exp(−‖xa − xb‖

2

2l2
)︸ ︷︷ ︸

Radial Basis Function kernel kRBF (xa, xb)

+ σ2
nδ(xa, xb)︸ ︷︷ ︸

Gaussian noise kernel kε(xa, xb)

.

(2.17)
Note that the lengthscale l, the signal variance σf and the noise variance σn
can be varied and are called hyperparameters. We will expand on this notion
in Section 2.4.5.

It turns out that inference in the regression setting of GPs has polynomial
cost of O(N3) in the number of data points N , which is due to inversion of
an N × N kernel matrix (see eq. (2.7)). While inference is computationally
tractable, the polynomial running time is still one principal drawback of GPs.
While this is a valid concern for some applications (e.g. autonomous driving,
online trading, etc.), this will not affect our use case of GPs we do not re-
quire real-time decision, which would necessitate fast computation. Rather,
we simply exploit a GP’s ability to approximate any function arbitrarily well
via its posterior mean, given enough data [7].Since a GP’s predictive perfor-
mance depends on the suitability of the chosen kernel, we will take some time
to explore different kernels and combinations thereof in Chapter 3. One can
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create new kernels from old ones since we can take the product and sum of
kernels as well as scale the kernel’s input and output [5]. This property gives
rise to a powerful modelling language which allows for very expressive models
while keeping computations tractable.

2.4.4 Prediction

Now that our model is fit to the data, we can predict new values y? at new
input locations x?. Using the conditional distribution, we obtain the predictive
distribution for the underlying function represented by the GP, inducing the
conditional mean and variance. Figure 2.3 depicts the posterior predictive
distribution using the GP defined above. Figure 2.3a shows the posterior
predictive distribution f? without noise, while Figure 2.3b depicts what we
actually observe, namely f? + ε and additionally new data points.
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(a) Posterior predictive distribution and observed values. The observed data (black), the
true latent function (blue) and 200 samples from the posterior predictive distribution (red)
are plotted. Note that here, we only predicted f? as opposed to f? + ε. The latter one is
actually observed. The kernel has fitted hyperparameters (l, σf , σn) = (1.30, 1.79, 0.77) and
the mean function is set to be zero.
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Posterior Predictive Distribution, (50 Samples).

Predicted Data (Sampled)

Observed Data (Noisy)
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(b) Posterior distribution of the data generating process. In addition, we now predict new
data points (shown as light colored dots) drawn from the posterior predictive distribution.
Note that the posterior predictive density is wider than the conditional distribution of the
noiseless function depicted in Figure 2.3a. This reflects the predictive distribution of the
noisy, observed data (red). Further note, that the new points do not follow the spread of the
predictive density exactly since they are a single draw from the GP’s posterior plus noise.

Figure 2.3: Posterior Predictive Distribution.

Finally, we can plot the posterior mean and 2σ uncertainty region which
is shown in Figure 2.4. Observe that the further we move away from observed
data, the wider the uncertainty. It may be worth highlighting, that the
predictive uncertainty is independent of the data (since we assumed i.i.d.
additive Gaussian noise ε on each individual observation yi) setting the stage
to two, somewhat orthogonal properties. On the one hand, this allows for
measurements y to be placed in a way such that the aggregated predictive
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uncertainty becomes fairly small for a lot of corresponding locations X which
might be desired in an experimental context. On the other hand, since the
predictive uncertainty does not adapt to the data, the model does not reliably
estimate how well it fits to the test data.

0 2 4 6 8 10 12 14
x

−7.5

−5.0

−2.5

0.0

2.5

5.0

Predictive Mean and 2 σ Interval.

Mean and 2σ Region

Observed Data (Noisy)

True latent f

Figure 2.4: Posterior mean and 2σ posterior credible interval.

2.4.5 Kernel Parameters

In Section 2.4.4, we encountered parameters, that govern things such as the
length scale or amplitude of a kernel which are also referred to as hyperparam-
eters. Since the predictive performance of GPs depends on the choice of the
kernel, it is hence crucial to have well chosen hyperparameters.

In the following, we discuss approaches to estimate the parameters by max-
imum likelihood (MLE type I), maximum a posteriori (MAP) and MLE type
II.

MLE refers to maximizing the likelihood p(y|f,X,θ) as a function of the
given parameters θ. By minimizing the negative log of the likelihood using
any standard gradient-based optimizer, we obtain estimates for optimal θ.
One problem with this approach is, however, that the optimizer may only find
local minima, thus possibly not translating into globally optimal θ. The MLE
for θ is prone to overfitting, that is, the function is fit too closely too the
training data and consequently, will not generalize well to new input points.
This can manifest itself in extreme parameter values found by the optimizer.

In order to mitigate this effect, a prior distribution p(θ) can be placed
over the hyperparameters. This distribution then explicitly constrains the
range of values that the hyperparameters can take. Instead of maximizing
the likelihood, we maximize the posterior p(θ|X,y). This procedure is called
maximum a posteriori (MAP) estimation.
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Alternatively, one can also use MLE type II. This amounts to maximiz-
ing the evidence in Bayes’ theorem eq. (2.3), also referred to as the model’s
marginal likelihood

p(y|θ,X) =

∫
p(y|θ,f , X)p(f |θ,X)df . (2.18)

2.4.6 Source Separation

In the following section, we briefly digress and introduce the concept known
as source separation, also referred to as additive decomposition. Here we rely
on Duvenaud [8]. We will make use of this concept later on in this thesis,
particularly in Section 3.2.2.

One convenient property of constructing an additive kernel, as in eq. (2.17),
for instance, is that we can decompose our posterior into additive parts. That
is, if our kernel is a sum ksum(x,x′) = k1(x,x

′) + k2(x,x
′) + · · ·+ kD(x,x′),

then our posterior can equally be decomposed into a sum of GPs, each with
mean

m(fd(x?)) = kd(x?, X)Ksum(X,X)−1f(X) (2.19)

and variance

cov(fd(x?), fd(x?)) = var(fd(x?))

= kd(x?,x?)− kd(x?, X)Ksum(X,X)−1kd(X,x?), (2.20)

where kd and fd denote the corresponding decomposed entities.

Note, however, that this concept is constrained to additivity which is lost
under any non-linear transformation of the output.
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Chapter 3

Probabilistic Model

In order to assess the status of the pandemic and to derive the best possible in-
formed decisions on mitigation policies, an estimate on the number of infected
persons on a given day is an important figure. However, these numbers can
only be estimated by counting backwards from what we actually can measure,
that is the daily number of people tested positive for the virus, also known as
incidence. Consequently, for the estimate to be as accurate as possible, several
assumptions based on what we know about the data generating process must
be incorporated into the model.

By its nature, one can never be 100% certain about these assumptions. This
is why the models presented in this work consider many possible options while
assigning different probabilities to these scenarios based on their likelihood. In
a nutshell, we aim to infer the most likely curve depicting the latent incidence
given the data we observe.

In what follows, we will present different models increasing in complexity
in an attempt to estimate the latent number of infected people on a given day.
This leaves us with an estimate with uncertainty about the incidence and hence
provides some information about the current status of the pandemic. Based on
this information, it is of great importance to act accordingly as a society. For
this reason, we subsequently derive a metric called D-value, which assesses the
current trend in transmission rates from which potential mitigation strategies
can be derived by policy makers.

3.1 Data

We use daily counts of confirmed cases published by the Robert Koch Insti-
tute (RKI) [9], Germany’s central scientific body, in charge of federal health
reporting and of epidemiological evaluation of contagious diseases. An excerpt
of the data published by the RKI is depicted in Table 3.1.

15
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3.1.1 COVID-19-Reporting in Germany

In Germany, in accordance with the obligation to notify under the Infection-
Protection Act (IfSG)1, COVID-19 infections are reported to the local pub-
lic health department in the respective districts. Subsequently, the data are
transmitted to the responsible federal state health authorities. Each day by
midnight the total number of infections per federal district reported to the re-
spective health departments is transmitted to the RKI. Thereby the RKI eval-
uates all laboratory diagnostic evidence of SARS-CoV-2 as COVID-19 cases,
regardless of presence and severity of clinical symptoms, which is in accordance
with the international standards of the World Health Organization (WHO)
and the European Center for Disease Control (ECDC). Hence, the number of
COVID-19 cases summarizes both acute SARS-CoV-2 infections and COVID-
19 diseases. In what follows, we provide a brief overview on important dates
involved in the reporting process and the progression of the disease caused by
the virus as can be seen in Figure 3.2.

Reporting Date. For the daily published number of COVID-19 cases, the
reporting date is used, which refers to the date on which the local health depart-
ment became aware of the case and recorded it electronically. The RKI uses
the reporting date to display newly submitted cases per day on its dashboard
[10] a screenshot of which can be seen in Figure 3.1.

Notification Delay. A few days may elapse between the notification by
doctors and laboratories to the local health departments and the transmission
of the cases to the responsible state authorities and the RKI. The number
of new cases received by the RKI each day may have been reported to the
health departments on the same day or on earlier days. Thus, the difference in
reported cases w.r.t. the previous day may be distributed over multiple days.
This is illustrated on the COVID-19 dashboard [10] COVID-19 cases by date
of report by the orange bars, which represent the newly reported cases. (see
Figure 3.1).

Time of Infection. The exact time of infection of the reported cases can
usually not be be determined. The RKI states that the reporting date therefore
best reflects the time the infection was detected and hence the current infection
rate in a given region [10]. This is why we choose the daily counts by reporting
date as an initial proxy to model the daily infections of COVID-19 cases.
Additionally, we will consider the reporting delay in order to approximate
the date of infection to ultimately model the latent ongoing transmission of
infections more accurately.

1https://www.rki.de/DE/Content/Infekt/IfSG/ifsg_node.html

https://www.rki.de/DE/Content/Infekt/IfSG/ifsg_node.html
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Figure 3.1: Screenshot of the RKI dashboard. Depicted are daily counts of
COVID-19 cases by reporting date. As a first step, we use these numbers to
approximate the daily number of infections of COVID-19 in Germany. Blue
represents the status of the previous day’s numbers, while orange depicts the
newly submitted cases for today. Note that the newly reported cases (orange)
can be distributed over multiple days.

Time of Disease Onset. The date of disease onset is the date on which
the patient claims to have become ill with clinical symptoms according to
their own information or an estimate by the treating physician. According to
an der Heiden and Hamouda [11], the disease onset date may be the best way
to approximate the time of infection since comparably reliable estimates on
the incubation period are available, on average five to six days, which can be
as high as 14 days, however.2 According to the Centers for Disease Control
and Prevention (CDC) in the U.S. the infectious period lasts for up to ten days
following symptom onset.3

Estimate of Recovery Date. Based on the disease onset date (or if not
known, based on the reporting date), an estimated recovery date results for
each case. However, since disease progression may vary significantly, and the
disease onset date is only known for about ∼ 60 − 70% of the cases, the
recovery dates are to be considered only rough estimates with the respective
limitations taken into account. This date is especially of interest when trying
to assess the degree of immunity present in a population (assuming recovery
from disease prevents a reinfection), which will ultimately give rise to more
accurate forecasts (see also compartmental models, e.g., SEIR).

It is important to note that the case numbers by reporting date do not

2https://www.rki.de/SharedDocs/FAQ/NCOV2019/gesamt.html
3https://www.cdc.gov/coronavirus/2019-ncov/hcp/faq.html, last accessed:

November 16, 2020

https://www.rki.de/SharedDocs/FAQ/NCOV2019/gesamt.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/faq.html
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Figure 3.2: Timeline of COVID-19. Depicted are critical time ranges (in
days) of COVID-19 regarding time of infection, disease/symptom onset, serial
interval, virulent window, reporting and recovery date. Numbers come from our
own analysis, the RKI, WHO and CDC.4

reflect the actual temporal progression of COVID-19-transmissions since the
time intervals between symptom onset and disease diagnosis, reporting, as well
as data transmission to the RKI varies greatly.

The issues of reporting delay and delays between symptom onset and in-
fection are going to be accounted for in a second step in which we approximate
the actual number of infected persons for a given day. Generally, it is impor-
tant to bear in mind, that results presented here are sensitive to changes in
testing practices and the degree of effort put into detecting cases, e.g. through
contact tracing.

3.1.2 Data Processing

The data in its raw form is given as a csv file,5 of which an extract is depicted
in Table 3.1.

In a first step, we process the data such that we obtain a time-series for
Germany as a whole (national level) by date of report. For sub-national analy-
sis, we equally create a time-series for each of Germany’s 16 federal states and
412 counties and districts.

Next, we create a time-series by symptom-onset-date6 for each geographic

5https://www.arcgis.com/sharing/rest/content/items/

f10774f1c63e40168479a1feb6c7ca74/data
6Date by symptom onset and disease onset are used interchangeably throughout this

https://www.arcgis.com/sharing/rest/content/items/f10774f1c63e40168479a1feb6c7ca74/data
https://www.arcgis.com/sharing/rest/content/items/f10774f1c63e40168479a1feb6c7ca74/data
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ü
rt
te
m
b
er
g

S
K

S
tu

tt
g
a
rt

1
0

2
0
2
0
-1
0
-2
2

0
2
0
2
0
-1
0
-2
2

-9
0

B
a
d
en

-W
ü
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ü
rt
te
m
b
er
g

L
K

B
ö
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Figure 3.3: Cases by reporting and disease onset date. The disease onset date
is not known for all notified cases. On November 4, 2020, the disease onset
date was known for ∼ 67.09%. Additionally, the mean number of days between
disease onset date and date of report for a given day varies over the course of the
pandemic. While during the first wave in March and April a significant shift can
be observed, this shift seems to have decreased as the pandemic has progressed.
Moreover, for the latest seven to ten days, significantly fewer cases by disease
onset date are known. This is due to the time-delay resulting from the point in
time a test-positive case is notified to the RKI in the course of a case starting
from infection to disease onset date to getting tested to being reported.

entity, which will serve as a better proxy for the date of infection. However, this
date is only being reported for ∼ 67.09%7 of the notified cases. The analysis
of how the missing dates are estimated and all further analyses regarding data
imputation are described in Section 3.2.3.

3.1.2.1 Data Transformation

We transform the data to a latent space in which we can make approximate
normality and linearity assumptions via

y(t) = T (x) = log(x+ 1) (3.1)

with inverse T−1(y) = exp(y) − 1. This also allows for modelling the het-
eroscedastic variance present in the data. For instance, Figure 3.1 illustrates
that the variance in reported cases clearly is not constant over time.

thesis.
7As of November 4, 2020
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Figure 3.4: Day-of-the-week-effect. Daily confirmed cases by date of report. A
day of the week-effect becomes apparent by Sundays, marked by dashed vertical
lines, matching the local minima observed in the reported case numbers.

We standardize each time-series in time

y′(t) = l(y(t)) =
y(t)−meant(y(t))

stdt(y(t))

resulting in the following data transformation

z(t) = (l ◦ T )(x(t)). (3.2)

Figure 3.5 depicts z(t) from eq. (3.2) applied to the the daily confirmed
cases by reporting date in Germany.

3.2 Time-series Modelling using Gaussian

Processes

In this section, we perform GP regression for time-series modelling of COVID-
19 cases in Germany. We are interested in the incidence, that is, the number
of newly infected people per day. However, the disease onset date is only
known for ∼ 60− 70% of the cases reported to the RKI, which is why we first
base our model on cases by date of report. Consequently, when interpreting
the model’s predictions, the time delays innate to the reporting process must
be considered. In particular this means that the resulting estimate does not
represent a timely reflection of the incidence but rather a shifted one. This
shift can be approximated by the number of days that on average lie between
reporting date and disease onset date, which can be derived from the cases
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Figure 3.5: Data transformation z(t) from eq. (3.2) applied to daily cases by
reporting date in Germany. Vertical dashed lines represent Sundays, illustrating
the day-of-the-week effect present in the data.

for which both dates are known. In Section 3.2.3.1 and Section 3.2.4 two
different approaches to estimating the disease onset date are outlined. Finally,
in Section 3.2.5.3 we derive an alternative metric to the R-value, called D-
value.

3.2.1 Modelling Confirmed Cases by Date of Report

When considering the number of confirmed cases per day by reporting date
(see Figure 3.4), two distinct patterns can be derived:

• a latent trend, approximately reflecting the progression over time of
COVID-19 cases and

• a periodic trend, suggesting a day-of-week effect.

It turns out that the local minima to be observed in the periodic trend
match to Sundays, which can be seen in Figure 3.4. This suggests that the
cases to be considered by reporting date depict a poor reflection of the true
underlying transmission process of the virus but rather reflect the way the
reporting system is set up (e.g., fewer laboratories, local health departments
etc. are actively reporting on Sundays). Derived from this observation, we
expect the latent incidence to follow the trend of the curve of reported numbers
(see Figure 3.4), which is based on the assumption that the number of people
getting infected by the virus is distributed uniformly across weekdays. Further,
due to the reporting delay, the most current data available only reflect the
transmission rate from approximately ten days ago [11, 3].
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One may conclude that a 10-day forecast represents the current transmis-
sion situation more accurately. As a first step, however, we aim to ”model-
away” the day-of-the week effect w.r.t. date of report which is why it is im-
portant to consider the limitations when interpreting the results.

We do this by assuming that in the transformed space, the reported cases
constitute the sum of a latent, smooth trend, and a periodic trend, reflecting
the day-of-the week effect. Re-transformed, the latent-underlying component
should serve as a first approximation for the actual incidence.

3.2.1.1 Model specification

As a first approach, we assume the following Gaussian process model for the
data.

z(t) ∼ GP(0, k(t, t′)) (3.3)

Our prior knowledge about the periodic reporting behavior is encoded in a
sum kernel of the form

k(t, t′) = klatent(t, t
′) + kweekly(t, t

′) + εδ(t, t′)

where klatent aims to model the latent trend in reported cases, while kweekly
aims to account for the day-of-week-effect, which we choose a locally periodic
kernel for:

k(t, t′) = klatent(t, t
′) + klatent(t, t

′)kperiodic(t, t
′)︸ ︷︷ ︸

locally periodic kernel

+εδ(t, t′) (3.4)

We choose a non-stationary kernel in the form of a locally periodic kernel
because clearly the mean and covariance of the data are non-constant over
time. Rather, we can observe the variance shifting over time, i.e. the data
is heteroscedastic. In particular, the variance might be bigger when test
capacities are being pushed to their limits. This might be especially true
either at the beginning of the pandemic, when test facilities have not been
properly set up yet, or in the event of another surge in infections happening,
which would exceed available test capacities.

Our model is trained on daily counts of confirmed cases in Germany starting
with the first reported case on January 21, 2020 and ending on September 30,
2020. Data from October 1, 2020 onwards serves as test data to evaluate our
model’s predictive performance.

3.2.1.1.1 Kernel Hyperparameters. We assume the following prior
distributions for the kernel hyperparameters (see Appendix B) based on our
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prior knowledge:

• Radial Basis Function (RBF) kernel kRBF modelling the latent trend:

kRBF(t, t′) =

signal variance︷︸︸︷
σ2
f exp(−‖t− t

′‖2
2l2

)︸ ︷︷ ︸
RBF

+ σ2
nδ(t, t

′)︸ ︷︷ ︸
Gaussian noise

. (3.5)

– Length-scale l: We expect the number of cases to vary over a pe-
riod of two to four weeks, which is why we assume a prior on the
lengthscale l ∼ N (20, 4).

– Scale factor: output variance σ2, which determines the average
squared distance of our function from its mean (in latent space,
i.e. transformed reported cases).

• Locally Periodic Kernel klocalPer modelling the day-of-the week effect:

– To account for the periodic pattern in the data, we choose a locally
periodic kernel, constituted by the product of of a periodic and an
RBF-kernel. As opposed to a standard periodic kernel, a locally
periodic kernel allows to account for the heteroscedasticity.

– We place a very informative prior on the periodicity by fixing the
period p to 7 since we assume the periodic pattern to be repeated
on a weekly basis.

– The RBF kernel parameters are identical to the ones simulating the
latent trend for the same reason except for σ being set to 2 since
we assume the latent trend to dominate the pattern in the data.

klocalPer(t, t
′) = kperiodic·klatent = σ2

f exp(−2sin2(π‖t− t′‖/p)
l2

)︸ ︷︷ ︸
periodic

exp(
−‖t− t′‖2

2l2
)︸ ︷︷ ︸

RBF

(3.6)
.

3.2.1.2 Predicted Case Numbers:

After having trained the model by fitting the hyperparameters via MAP, for
which the exact values can be found in Table A.1, we obtain the following
predictions for the case numbers after applying the inverse transformation
T−1 as shown in Figure 3.6.
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Figure 3.6: Predicted reported case numbers. Posterior mean of the model
and 95%-CI are shown. Extrapolation (i.e. predicting into the future) is only
significantly influenced by the data approximately l days away from the data,
which, in this case amounts to a reasonable prediction range of ∼ 16 days,
marked by a dashed line.

3.2.2 Source Separation / Additive Decomposition

For our model we chose a sum of GPs, where the corresponding kernels define
the additive model given by

z(t) = l ◦ T (x(t)) = flatent(t) + flocPer(t) + fnoise(t),

where flatent(t) ∼ GP(0, kRBF(t, t′)), flocalPer(t) ∼ GP(0, kRBF(t, t′)kperiodic(t, t
′))

and flatent(t) ∼ GP(0, εδ(t, t′)).

As a first step we aimed to ”model-away” the day-of-the-week-effect in order
to obtain an estimate of the latent underlying trend flatent(t) of reported cases.
Due to the additive nature of our model we can perform source separation /
additive decomposition as described in Section 2.4.6 to compute the individual
posterior distributions of the components (see Figure 3.1). Since T is not linear,
the following holds:

T−1 ◦ l−1(z(t)) 6= T−1 ◦ l−1(flatent(t)) + T−1 ◦ l−1(flocPer(t)) + T−1 ◦ l−1(fnoise(t))
Therefore, while terms like (T−1 ◦ L−1)(flatent(t)) are informative (and one
can compute their means and covariances via Monte-Carlo), they have to be
carefully interpreted. Only in the transformed space do their means and co-
variances actually add up to the mean and covariance of the entire model z(t),
which is shown in Figure 3.7.

3.2.2.1 Model Evaluation and Improvements

Generally speaking, the model seems to fit the data reasonably well, that is
the number of daily reported COVID-19 cases in Germany as a whole.
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Figure 3.7: Source separation / additive decomposition. Latent Space: the
reported numbers are the sum of local, periodic and a latent trend.

When it comes to estimating future reported case numbers, it should be
noted that a reasonable prediction region only comprises the number of days
given by the lengthscale parameter of theRBF -kernel. Considering this region,
one can observe two things in Figure 3.8.

First, the periodic reporting behavior is indeed reflected by our model (red
curve depicting the posterior predictive µtotal). Second, the latent number of
infections (blue curve in Figure 3.8), which is supposed to ”model away” the
day-of-the-week-effect, equally reflects our expectation of reflecting a smooth
trend, somewhat averaging the observed data across weekdays.

However, when considering the model’s behavior when moving further away
from the data that the model was trained on, one can assert two things: First,
the ”sausage of uncertainty” becomes wider. Second, both posterior predictive
means µtotal and µRBF converge to zero in latent space, which is to be expected,
given that we initialized our GPs with zero-mean functions (see Figure 3.8).
Depending on the phase of the pandemic, this prior mean may or may not
be a good reflection of the reality. Alternatively, a compartmental prior mean
model, such as SEIR (Susceptible, Exposed, Infected, Recovered) might be
more apt to reflect the prior underlying dynamics of the disease progression
within a society.

Weekly Fluctuations in Reported Numbers and Testing. There are
two quantities to be observed, neither one uniformly distributed across week-
days. One being the number of reported cases as depicted in Figure 3.4. The
other being the number of daily tests carried out, which not only influences the
number of reported cases with some time-lag but also varies over the course of
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Figure 3.8: Fit and prediction of reported and latent case numbers. The up-
per curve represents fit and prediction to the actually reported data, while
flatent,reported (blue curve) in the second graph represents the underlying re-
ported incidence, that is, day-of-the-week effect instigated by the reporting dy-
namics is ”modelled away”. As we move further away from the data that the
model has seen during training, the ”sausage of uncertainty” becomes wider.
Additionally, the posterior predictive freported describing the predicted newly
reported case numbers converges to zero reflecting the fact that any GP con-
verges to its prior mean function (which we set to zero) when moving sufficiently
far away from the data.
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the pandemic. At the beginning of the pandemic, for instance, test facilities
were low, while by now test capacities allow for 219092 of daily tests (as of
calender week 38 in 2020) 8 The number of tests, however, cannot be equated
with the number of people being tested since the data may contain multiple
tests per patient. If more tests are carried out, the probability of discovering
an infected individual increases. By taking this probability into account, a
model may compensate for the weekly fluctuations.

3.2.3 Modelling Confirmed Cases by Date of Disease
Onset

In order to obtain a more timely reflection of the pandemic’s progression, we
now consider the cases by disease onset date. We do this first by shifting the
reported cases by the mean number of days that pass from disease onset date
to a case being reported (Section 3.2.3.1) and in a second step by applying a
coregionalization approach described in Section 3.2.4.

3.2.3.1 Estimating Disease Onset Date via Shift

From the ∼ 60 − 70% of cases for which both, disease onset and reporting
date are known, we calculate the mean number of days that pass from a case’s
disease onset date to its date of report for every day. Next, we calculate the
mean over all average shifts per day. This number is then subtracted from the
reporting date yielding the an approximation of the disease onset date. The
mean number of days between a cases’s disease onset date and date of report
is ≈ 5.67 days, while for a small number of cases this shift can be as large
as 308 days. From Figure 3.9 can be inferred that for most cases three days
(mode) pass from disease onset date to reporting date.9 Running our model
on data by disease onset date yields the prediction depicted in Figure 3.10.

Evidently, this is a poor fix for estimating the date of disease onset. In
particular, all cases are shifted and not only the ones for which the disease
onset date is not known. This means that we bias the data to a certain degree
in the sense that we are agnostic to the 60−70% of cases for which the disease
onset date was reported to the RKI. Moreover, this approach does not account
for the variation in time lag between a case’s disease onset and reporting date
as can be seen in Figure 3.11. The time-lag depends, for instance, on factors

8https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/

Situationsberichte/Sept_2020/2020-09-16-de.pdf?__blob=publicationFile
9Refers to the date a test-positive case is reported to the local health department. Note

that still a few days may elapse until a case is notified to the RKI. Nonetheless, the date of
report in the RKI database refers to the date a case has been reported to the local health
authorities.

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Sept_2020/2020-09-16-de.pdf?__blob=publicationFile
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Sept_2020/2020-09-16-de.pdf?__blob=publicationFile
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Figure 3.9: Mean shift between cases by disease onset date and date of report.
For most cases, 3 days pass from disease onset date to being reported (mode =
3). On average, 5.67 days elapse with a minimum of 1 and maximum of 308
days and the median being at 4 days. For cases with unknown disease onset
date, we estimate this date by shifting their date of report by this number back
in time.
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Figure 3.10: Predicted case numbers by estimated disease date via mean shift.
Our model’s prediction for the latent incidence by disease onset date is depicted.
This date is estimated by shifting the date of report by 5.67 days back in time.
This is the average number of days that has elapsed between a case’s date of
illness onset until its date of report inferred from cases notified to the RKI for
which both dates are known.

such as test-capacities and absolute number of incidence, but also the day-
of-the-week effect not only present in the reporting behavior to local health
departments but also induced by the point in time people may or may not
decide to go to tested. To account for this weekly fluctuation, a more sophis-
ticated modelling approach is necessary. In particular, outliers represented by
cases that are reported with a large number of days having elapsed since their
date of disease onset date result in the mean to be a rather conservative shift.
This way, the disease onset date is estimated to have happened earlier rather
than later w.r.t. their date of report. On the positive side, we believe this
conservative nature of shifting by the mean to be a rather desirable property
resulting in the estimated date of disease onset to be closer to its respective
date of infection. To that end, this results in forecasts reflecting the actual
transmission dynamics more accurately, which is a crucial factor for mitiga-
tion strategies to be decided upon such that they can be effective in a timely
manner. Alternatively, one could consider the mode (∼ three days) or median
(four days) in place of the mean, which would both be less sensitive to outliers.

3.2.4 Coregionalization

In Section 3.2.1 we learned the latent trend of reported cases, which resulted
in a curve with no day-of-the-week effect (i.e. periodic pattern) present in the
posterior predictive anymore. Aiming to ”model-away” the periodic pattern
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Figure 3.11: Time-series of the average number of days elapsed from a case’s
disease onset date until its date of report. For cases with both, disease onset and
reporting date are known, the average number of days that has elapsed from their
time of disease onset until they were reported is depicted. For instance, cases
that were reported in mid-February have a disease onset date, which precedes
their date of report on average by ∼ 13 days.
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was based on the assumption that the true, latent transmission rate is approx-
imately constant across weekdays. Consequently, the same reasoning applies
to cases by disease onset date, which, as previously stated, is only known for
about ∼ 60 − 70% of the notified cases.10 From the latent pattern learned in
Section 3.2.1 we now want to derive the cases by disease onset by taking a
coregionalization approach. This allows us to use the pattern learned from the
reported data to inform the pattern (with missing data) of the date of disease
onset. In particular, this reduces the uncertainty in the prediction. To this
end, we consider a two-dimensional Gaussian process model(

freported(t)
fdisease(t)

)
∼ GP(0, k) (3.7)

where freported(t) denotes the model for the structured noisy process and
fdisease(t) the second informative process for the latent function that we would
like to retrieve. The covariance function (i.e. kernel k) is given by

k(fi(t), fj(t
′)) = kreported(t, t′) ·B(i, j)

where kreported is an arbitrary kernel describing the way the function varies
over time. B describes the degree of similarity between freported and fdisease.
B has to be a symmetric positive (semi-)definite matrix in order for k to be a
kernel. Thus, we parametrize B as

B = WW> + diag(κ)

where W ∈ R2×p and κ ∈ R2. While the off-diagonal entries of WW> de-
scribe how the two processes vary together, the diagonal entries and κ describe
how strongly the processes vary. This is analogous to the scaling parameter
of an RBF kernel, for instance. This approach is also known as the intrinsic
model of coregionalization [12] and in particular does not require the same
data points for freported and fdisease.

Figure 3.3 not only illustrates that for a lot of cases the disease onset date
is missing but also that the cases by disease onset roughly follow the trend
of the reported cases. Yet, depending on the point in time considered in
the pandemic, varying sizes in shift between disease onset and reporting date
can be observed (see also Figure 3.11). In order to uncover the unobserved
latent trend in cases by disease onset date, we design our prediction model
as a combination of the coregionalization approach and an additive Gaussian

10Note that the RKI’s daily situation report of 05/11/2020, page 4 states that the disease
onset date is only known for 295, 205 cases (49%) for the period 01/03/2020-05/22/2020. We
however, consider the entire time range starting from when the first cases was reported on
28/01/2020. See https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/

Situationsberichte/Nov_2020/2020-11-05-en.pdf?__blob=publicationFile

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Nov_2020/2020-11-05-en.pdf?__blob=publicationFile
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Nov_2020/2020-11-05-en.pdf?__blob=publicationFile
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Figure 3.12: Coregionalization-kernel. In eq. (3.8), the sum kernel is rewritten
as products of a coregionalization kernel and the corresponding kernel modelling
either the latent trend or the periodic component

process model. The coregionalization part of the new model then accounts for
the similarity in shapes of the curves depicting cases by disease onset date and
reported date and the additive Gaussian process model allows to distill the
latent trend in reported cases without the weekly pattern.

The sum kernel in eq. (3.8) can be rewritten as products of a coregional-
ization kernel and the corresponding kernel modelling either the latent trend
or the periodic component:

k(t, t′) = klatent(t, t
′)

[
B11 B21

B21 B22

]
+

[
klocPeriodic(t, t

′) 0
0 0

]
+ σ2δt,t′ (3.8)

= klatent(t, t
′)(WW> + diag(κ)) + klocPeriodic(t, t

′)(

[
0
0

] [
0 0

]
+ diag(

[
1
0

]
)) + σ2δt,t′

(3.9)

where W ∈ R2×p and κ ∈ R2. Graphically this is illustrated in Figure 3.12.

3.2.4.1 Prediction of Missing Disease Onset Dates

Since our model is the sum of individual GP s, we can again apply additive
decomposition in the transformed space. This yields the individual posterior
predictive distributions depicted in Figure 3.13.

Overall, the upper graphs in Figure 3.13 illustrate that our model fits well to
the data for both dates, that is freported and fdisease. Further, it can be seen that
the uncertainty is generally low except in regions where there is no data. This
concerns the first few weeks in January for freported and the prediction region
where uncertainty becomes higher the further we move away from data. The
lower part of Figure 3.13 depicts the posterior predictive distributions of the
periodic component and flatent, reported resulting from additive decomposition.

The latter one is then used to inform fdisease in the coregionalization ap-
proach. Several aspects can be inferred from the shape of the periodic com-
ponent. First, it can be noted, that overall, the posterior predictive distribu-
tion including its uncertainty oscillates approximately constantly around zero,
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Figure 3.13: Additive decomposition and coregionalization. The upper graph
shows fdisease and freported. The uncertainty is generally low except for in regions
with no data. This concerns the prediction region where uncertainty increases
as we move away from the data and the first weeks of January for freported. The
lower graph depicts the additive decomposition of freported resulting in the latent
trend flatent,reported and its periodic component flocper. flatent,disease is what we
are interested in and results from coregionalizing with flatent,reported.

which suggests that it captures all structure hidden in freported. Conversely, if
there were for instance a linear trend within the periodic posterior predictive
apparent, this would suggest that freported is additionally made-up of a linear
trend not yet accounted for in the model. Since this is not the case, however,
we have reason to believe that our model constituted by a sum of GPs and the
kernels chosen have been reasonable. Moreover, we can see that the periodic
pattern has a slightly different shape at the beginning of the pandemic. This
is because, back then, only few data was available, which in particular yielded
no obvious day-of-the-week effect. However, we encoded this periodic behavior
by fixing the period hyperparameter to 7 in the locally periodic kernel.

Transformed back to the incidence space, case numbers now become inter-
pretable again and can be seen in Figure 3.14. The upper plot in Figure 3.14
indicates that the model is fitted well to the raw data for both dates while the
lower plot shows particularly high uncertainty for the first and second waves
for flatent,reported. Moreover, the model’s forecast for freported reflects the peri-
odic pattern well. Given what we provided the model with, a rise in reported
cases followed by declining incidence seems plausible.
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Concerning the first wave, the disease onset peak exceeds the reported peak
by ∼ 2000 cases (when comparing the two latent trends in the lower plot) and
a shift of approximately one week. Interestingly, the predicted cases by dis-
ease onset date fitted to either the known data (upper plot) or estimated by
following the trend provided by flatent,reported do not differ significantly. When
taking a closer look at the prediction region in Figure 3.15, flatent, disease de-
clines immediately as we move away from the date while uncertainty increases.
Some samples, however, illustrate a more probable scenario in which cases by
disease onset further rise. Given that people experiencing symptoms today will
only be notified as test-positive in a couple of days from today, this would be
the most likely trajectory and consequently a desired property of the model.
However, the declining posterior predictive of flatent, disease suggests that our
model is strongly influenced by the declining case numbers by date of disease
onset present in the most recent days of our data set which is due to the
missing cases yet to be reported who have been infected within this period.
This brings us to the limitations of the coregionalization approach, namely,
that freported and fdisease inform each other mutually. In our case, this is an
undesired property since we know that fdisease is to follow a rising trajectory
at least for the period of time delay imposed by the reporting process. The
bidirectional flow of information consequently also results in fdisease informing
freported. Since we know that for the most recent days of the data set fdisease
constitutes a lower bound to freported, this bidirectional flow hinders the pre-
diction for freported to be as accurately as possible. To mitigate this effect a
little (that is, information flowing from to fdisease to freported) we excluded the
most recent days of the datasets such that declining case numbers for most
recent days especially present for fdisease (since yet to be reported) do not affect
prediction of freported too strongly. In particular, we excluded six days from
the datareported and 12 ≈ 6 +mean(disease onset date− report date).

To conclude, this approach allows for a more accurate estimate of dis-
ease onset dates as opposed to simply shifting by the mean average of days
between the two dates as in Section 3.2.3.1. This is because the coregionaliza-
tion approach takes into account the varying numbers of days present between
reported and disease onset date of cases over the course of the pandemic.

3.2.5 Rating the Spread of the Pandemic – Metrics,
which Inform Mitigation Strategies

In order to assess how fast the pandemic evolves, the reproduction number
R in conjunction with the number of daily newly infected persons (incidence)
constitutes an important epidemiological metric.

The time-dependent effective reproduction ratio Rt describes the expected
number of disease transmissions caused by a single infectious individual. Thus,
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Figure 3.14: Disease onset date estimated by coregionalizing approach. The
upper graph shows fdisease and freported. The uncertainty is generally low except
for in regions with no data. This concerns the prediction region where uncer-
tainty increases as we move away from the data and the first weeks of January
for freported. The lower graph depicts the additive decomposition of freported re-
sulting in the latent trend flatent,reported. flatent,disease is what we are interested
in and results from coregionalizing with flatent,reported.
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Figure 3.15: Forecast with coregionalization approach. Excerpts of the last
five weeks of Figure 3.14 depicted. The forecast region is marked by the end of
data points on October 28, 2020.

Rt essentially is a multiplier, which describes how effectively a virus is spread-
ing and is a commonly used guidance instrument for policy decisions.

There are three cases to be distinguished:

• Rt > 1: number of new infections increases

• Rt = 1: number of new infections stagnates

• Rt < 1: number of new infections decreases

The RKI provides two estimates for the Rt values, which will be described
below. Subsequently, we propose two alternative metrics, R4,GP and the D-
value, which may equally inform mitigation strategies.

3.2.5.1 R-values published by the RKI

The RKI defines the R-value as the mean number of people being infected by
one infected person11 and critically notes that its value cannot be derived from
the notification system but that it can only be estimated which an der Heiden
and Hamouda [11] do via a statistical approach which they name Nowcasting.
The RKI further notes that fluctuations regarding R-value are especially high
when overall numbers are low. In order to account for these fluctuations, they
apply a 4- or 7-day moving average, resulting in a 4− or 7−day-R-value which
we will briefly elaborate on below. Both R-values are based on Nowcasting
which predicts the number of cases with illness onset up to the date of four

11https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/

Situationsberichte/2020-05-21-en.pdf?__blob=publicationFile

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/2020-05-21-en.pdf?__blob=publicationFile
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/2020-05-21-en.pdf?__blob=publicationFile
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days ago, since no reliable prediction can be made about the number of new
cases in the last three days. The 4− and 7−day-R-values as calculated by the
RKI are depicted in Figure 3.16.

4-day R-value. The 4-day R-value is estimated by using a moving 4-day
average of the number of cases with illness onset up to the date of four days
ago. The 4-day mean of incident cases on one day is compared with the
respective mean four days before. This takes into account that infections occur
four to six days before symptom onset and reflects the course of infection from
approximately one to two weeks ago. However, according to the RKI, the 4-
day-R-value is still very sensitive to fluctuations in case numbers which is why
they additionally provide a 7-day R-value.

7-day R-value. Aiming to account for the day-of-the-week effect to be ob-
served in reported case numbers, the RKI provides a 7-day R-value based on
data from a longer time period which is less subject to short-term fluctuations.
It is calculated the same way as the 4-day R-value except that a moving 7-day
average from the Nowcasting [11] curve is used. Hence, this reflects trends
more reliably but is based on infections that occured on average earlier than
those on which the more sensitive 4-day-R-value is based on. The 7-day R-
value consequently represents a slightly later course of infection of about one
to a little over two weeks ago.

3.2.5.2 Comparison to R-value Based on Coregionalization Model

We compute the 4-day incidence rate based on the case numbers by disease
onset date described by flatent, disease, which resulted from the coregionalization
model in Section 3.2.4 the same way as the RKI calculates its R4 depicted
in Figure 3.16 which we denote as R4,GP . According to the RKI, R4 is more
sensitive to fluctuating case numbers resulting from the day-of-the-week effect.
Thus they also provide the R7-value, which is supposed to mitigate said effect
and is therefore more apt to serve as a policy guiding tool.

Supposedly, while R7 is smoother than R4, Figure 3.16 shows that R7 still
reflects the periodic pattern, which is also not covered by the ”sausage of
uncertainty”. This implies that R7 is quite certain about infections to follow
a periodic pattern.

Conversely, this effect has already been ”modeled-away” in flatent, disease.
Computing the more sensitive R4-value based on this data (R4,GP ) depicted in
Figure 3.16, results in no periodic pattern present anymore.

When comparing R4,GP to R7, one can generally observe that R4,GP is
much smoother than R7 but mostly follows the same trajectory, approximately
averaging the periodic pattern present in R7. In particular, uncertainty for
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R4,GP is very low in these regions. Combined with the observation that R4,GP

has a similar shape to R4,7, this adds to the plausibility of R4,GP .

Furthermore, uncertainty for R4,GP increases, in regions where there is only
little data available. This concerns the beginning of the pandemic (when R4,7

following the Nowcasting approach were not yet computed) and the forecast.
This is a desired property since the level of uncertainty suggests a degree of
trust adequate to put into the model’s estimate.

Moreover, there are a few points in time, where R4,GP and R7 diverge. We
observe this behavior first during the initial wave in March where R4,GP not
only estimates a slightly higher R-value but also suggests a wider range in
which the majority of infections were occuring, which, overall, are additionally
predicted to have happened approximately a week earlier than suggested by
R7. Further, the peak in June is again predicted to have happened a few days
earlier by R4,GP and with an estimated value of R4,GP ≈ 1.25 significantly
lower than R4 ≈ 2.1. This shift in peaks may be explained by the moving
average, which the R-values are based on. Since R4,GP is computed already
on the latent trend, sudden fluctuations and delays are already smoothed and
further washed out by the moving average. Lastly, R4,GP decreases and hence
seems to underestimate the R-value starting ca. on October 18, which corre-
sponds to ten days before the coregionalization model was not provided with
data anymore. This decreasing trend of R4,GP is to be explained by the core-
gionalization model’s reversion to the prior mean. In particular, we already
pointed out that its ability to predict new cases by disease onset is limited
due to the time delay with which they become notified to the RKI and the
bidirectional flow of information present in the model which compromises its
forecasting ability such that a reversion to the zero-mean function is eventually
to be observed.

All things considered, the approach yielding R4,GP seems to be a worthwhile
alternative to the Nowcasting approach by [11], which R4 and R7 are based
on.

3.2.5.3 D-value

In the following, we propose an alternative metric to R named D-value, that
estimates the spread of the disease via the normalized change in case numbers.

D is calculated by taking the derivative of the underlying trend flatent, disease
(see eq. (3.10)), which resulted from the coregionalization model in Sec-
tion 3.2.4 (see Figure 3.14). This is possible since flatent, disease is given by a
GP itself, differentiation is a linear operation, and, applied to a GP, therefore
results in a GP again. The result is normalized by dividing by the posterior
mean of flatent, disease. Uncertainty is represented as a 95%-CI, which is calcu-
lated based on samples drawn from the GP that were transformed back to the
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Figure 3.16: R-values. The 7-day R-value compares a 7-day moving average
of new cases on one day with the corresponding 7-day average of new cases on
the day a week before, while the more sensitive R4-value is estimated by using
a moving 4-day average of the number of cases with illness onset up to the date
of four days ago. R4,GP is calculated the same way as R4, on the case numbers
described by flatent, disease. While both, R4 and R7, still reflect some periodic
pattern arising from the day-of-the-week effect, our estimate R4,GP does not
show this undesirable periodicity. For each R-value, the upper and lower bound
of the 95% prediction interval is depicted. Data for R4,7 comes from a .csv-
file provided by the RKI found under https://tinyurl.com/y5e93kmf. The
Nowcasting data in this plot is based on Nov. 7, 2020.

https://tinyurl.com/y5e93kmf
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incidence space.

D(t) =
d
dt
flatent, disease(t)

µlatent, disease(t)
(3.10)

In principle, D can be computed for any GP-based model of similar form
to the one we propose here. Given our model, estimating the change of the
incidence by calculating the derivative is the intuitive metric to consider if one
is interested in the dynamics of the disease. We therefore believe this to be
a worthwhile approach, not least because it additionally provides uncertainty
and also allows for improved predictions by incorporating prior knowledge.

D on any given day can now be interpreted as follows and is depicted in
Figure 3.17:

• D < 0: case numbers are decreasing

• D ≈ 0: case numbers stagnate

• D > 0: case numbers are increasing

Figure 3.17 shows that D generally follows a similar trend to R4,GP and
R4,7. In contrast to R4,7 but similar to R4,GP , no day-of-the-week effects are
present in D. During much of the so called ”steady-state”-phase, when case
numbers were comparatively low (from May to August), D stays approximately
constant. Analogous to R < 1, D is smaller than zero suggesting declining
case numbers for that period. One may interpret, that during the steady-state
phase, both, D and the R-values predicted a slightly decreasing trend in case
numbers. Uncertainty in D being higher than in the R-values suggests that
D deems a (slight) surge in case numbers more probable than R4,7 and R4,GP

do. Further, it can be observed that in October, D reflects the start of the
second wave with high probability. Following this rise in D a downturn along
with an increase in uncertainty can be observed. This effect can be explained
by fewer cases by disease onset date being available in our dataset and by the
the model’s reversion to the prior mean as it moves away from the data.

Additionally, while both R4 and R7 come with uncertainty, no significant
benefit is added since the periodicity imposed by the day-of-the-week effect is
not covered by the ”uncertainty sausage ”. In contrast, uncertainty is generally
wider in D compared to the R-values. In fact, R4,GP is particularly certain in
the regions with a lot of data available, a result, which is to be questioned. We
believe this to be caused by a ”double-smoothing”-effect underlying the calcu-
lations yielding R4,GP . Recall that we calculate the four-day incidence based
on the coregionalized latent disease onset date in which the day-of-the-week
effect has been ”modeled-away” yielding a smooth curve. Further smoothing
is induced by the 4-day moving average yielding an R4,GP with uncertainty
that arguably does not faithfully represent uncertainty in the estimate.
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Figure 3.17: D-value. D is calculated via the normalized change in case
numbers (see eq. (3.10)) based on the coregionalized disease onset date. D
assesses the rate at which the virus is transmitted and therefore provides an
alternative metric to R. The upper and lower bound of the 95% prediction
interval is depicted.

With that in mind, it is important to consider the limitations of such
metrics. Altogether, we have seen that even R7, which intends to account
for the day-of-the-week effect, still reflects the weekly periodicity. Conversely,
both D and R4,GP based on the coregionalized disease onset dates do not reflect
such periodicity. Both the D- and R4,GP -value seem to provide a reasonable
alternative toR4 andR7 as a metric to evaluate the rate the disease spreads and
even seem to offer some advantages over R4 and R7 regarding fluctuations in
reporting-behavior and in terms of possibly providing a more accurate estimate
when it comes to the latent trend. All things considered, we believe that even
though R4,GP improves upon R4,7, D is a more informative metric given this
model with the additional benefit of faithful uncertainty.

The previously described GP models were implemented in the probabilistic
programming language PyMC3 [13], a Python framework, which includes pre-
defined probability distributions and covariance functions serving as building
blocks for our models.

3.3 Related Work

Since the ongoing pandemic affects countries across the globe, the scientific
community has made an immense effort to understand the dynamics of the
pandemic, the virus and treatments for the disease. Meanwhile, this research
has manifested itself in a plethora of studies. Here, we only refer to a handful
of studies, which have influenced this work.
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Do we need to act? In order to decide whether to impose new lockdown
policies, it is crucial to have faithful estimates reflecting the current stage
of the pandemic. A principal epidemiological parameter is the reproduction
number R, which quantifies the average number of people that one infectious
individual will pass on a virus to [14].

R is derived from the daily number of reported cases and provides a metric
for the relative growth or decline of the virus. The RKI therefore computes
its R-values not directly based on reported case numbers but data that has
been nowcasted to correct for the delay between disease onset and day of
report. Nowcasting is a statistical correction by an der Heiden and Hamouda
[11], which accounts for the diagnosis, reporting and notification delay in the
reporting process of test-positives. They simulate the date of illness onset by
computing an empirical distribution for the number of days elapsed from a
case’s disease onset to its reported date. Based on this, the date of infection
can be estimated by assuming a serial interval of four days.

An alternative approach to estimating R is proposed by Systrom et al. [15]
who provide a real-time view of Rt. In essence, amongst the infinite number of
curves potentially describing the true trajectory of Rt, their model12 searches
for the one with the highest probability of explaining the observed data. Their
model integrates data on test-adjusted positives, which is a relative measure
of how many true positives there are, which they admit to not be an ideal
measure. However, more informative ones, such as the hospitalization and
death rate are drastically time-shifted from the infection date.

How to contain the spread of the virus? Having reliable estimates on
the current stage of the pandemic w.r.t. incidence is key to decide on mitigation
strategies such as (lockdown) policies in order to curb case numbers. Coun-
terfactual analyses answering ”What if ...”-questions regarding hypothetical
scenarios and illustrating different intervention strategies can be an informa-
tive tool for policy makers.

Qian et al. [16] provide a machine-learning based decision-making tool
named ”Policy Impact Predictor (PIP) for COVID-19”13 aimed at guiding gov-
ernments in their decisions on measures that prevent the virus from spreading.
PIP uses a two-layer Gaussian process model where the lower layer has country
and policy specific parameters as a prior mean described by a variant of the
SEIR-model, which, in their case, comprises six compartments (Susceptible,
Exposed, Infected, Recovered, Critically-ill, Recovered, Dead) – SEICRD. This
layer captures fatality curves under counterfactual policies within each country
whereas the upper layer is shared across all countries and learns lower-layer
SEICRD-parameters as a function of a country’s features and policy parame-

12Rt.live is a Bayesian model equally implemented in PyMC3 as our model is.
13https://www.vanderschaar-lab.com/policy-impact-predictor-for-covid-19/

https://www.vanderschaar-lab.com/policy-impact-predictor-for-covid-19/


44 CHAPTER 3. PROBABILISTIC MODEL

ters.

Evaluating the effects of interventions in a timely manner is possible with
the Bayesian framework for the spread of COVID-19 by Dehning et al. [17].
Their model infers principal epidemiological parameters and the timing and
magnitude of policy effects, which also allows for short-term forecasts of future
interventions’ effects (or effects from lifting restrictions).



Chapter 4

Conclusion and Future Work

The pandemic known as the coronavirus (SARS-CoV-2) has significantly dis-
rupted public life world-wide and was directly responsible for approximately
1.3 million excess fatalities as of November 2020 [2] . In order to contain
the disease’s spread, mitigation strategies need to be decided upon in a timely
manner. These should be guided in part by metrics reflecting the current stage
of the pandemic. Such important epidemiological parameters are the incidence
in conjunction with the basic reproduction value R.

This thesis concerned itself with modelling the current state of the pan-
demic in Germany by estimating the daily number of newly infected people.
Based on our model, we also provide a metric assessing the trend of the inci-
dence.

modelling the number of COVID-19 cases should ideally be based on the
date of infection since this reflects the current stage of the transmission rate as
timely as possible. The infection date is not known, however, and can only be
inferred by the disease onset date of a case. Unfortunately, even this date is
not known for all cases notified to the RKI. Ultimately, only the date of report
is provided for all notified cases which is why this date served as a first proxy
in our models.

We observed a weekly periodicity in the case numbers by date of report,
which we attributed to the time lags innate in the reporting process of a
test-positive case to the RKI. As an initial model we assumed a transformed
Gaussian process with a sum kernel. Via source separation, we were able to
disentangle the periodic effect from the latent trend which we presume to be
a more accurate description of the true transmission dynamics.

However, the date of report only reflects a ”back-cast” of the status of
the pandemic due to its inherent time lag. For this reason, we next modeled
the incidence by disease onset date. As of today this date is only known for
∼ 60−70%.1 Therefore, we computed the empirical distribution of the average

1This range stems from considering the cases numbers provided by the RKI from the

45
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number of days that elapsed from a case’s date of illness onset until its date of
report. We observed this time lag between disease onset and reporting date to
vary over time. This variation can be attributed to several factors, such as the
phase of the pandemic (beginning vs. first or second wave), a surge or decline
in case numbers, available test capacities and other resources (health-care staff,
test-kits, etc.), etc.

As an initial improvement over the model based on the date of report we
imputed the missing disease onset dates with the mean difference between
disease onset and reporting date and ran the same model again on this data.

In order to account for the varying differences between disease onset and
reporting date, we next applied a coregionalization approach with the intent
of informing the curve modelling the disease onset date via the shape of the
latent time-series describing cases by date of report. We again accounted for
the reporting specific pattern in the data and were left with a reasonable fit
with uncertainty to the raw data (both dates). The model’s prediction ability,
however, was impaired by the fact that the two time-series were able to inform
each other mutually, which yielded too optimistic forecasts. The ideal property
would have been an unidirectional flow of information, such that the reporting
date curve (which is ”most complete”) only informs the disease onset curve and
not vice versa. Nonetheless, this approach improved upon our initial model.

Finally, we proposed a metric that we named D-value, which quantifies
the change in daily confirmed cases by calculating the normalized derivative
of the incidence on coregionalized disease onset data. Importantly, it provides
a confidence estimate for the current dynamic of the pandemic.

4.1 Shortcomings and Improvements

Our models provide reasonable estimates on the latent trend of the incidence
by removing reporting-specific patterns in the data, specifically a pronounced
periodicity. However, forecasts eventually always revert to zero and come
with rapidly increasing uncertainty as we move away from the data. The
former effect can be explained by the GP reverting to its prior mean away
from the data which we initialized to be zero. Depending on the phase of
the pandemic, this may or may not be a reasonable choice. An improvement
upon this behavior would be a compartmental prior model, for instance the
SEIR-model.

The latent trend of the incidence by disease onset date is equally estimated
reasonably well but also falls short with predictions where the trajectory of
the curve is eventually decreasing as well. Again, this can be partly explained
by reversion to the prior mean. Additionally, while the coregionalization ap-

first case up until early November.
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proach generally accounts for the varying shift over time, it results in a mutual
exchange of information between the two time-series results in predictions of
incidence by reported date to be underestimated. Moreover, estimates gener-
ally suffer from the curves informing each other mutually.

An improvement upon this would be to e.g. sample shifts from an empirical
distribution. This could be even extended to constraining sampling a shift to
an empirical distribution estimated from the same time period as the case’s
date of reporting.

4.1.1 Geographic Knowledge as a Predictor

Oftentimes, surging case numbers are restricted to a local region often resulting
from superspreader events (e.g. slaughter houses such as Tönnies, ...). To con-
tain such outbreaks, temporary mitigation policies might need to be imposed
locally but not be required on a national scale. Hence, making predictions for
different counties would be informative given varying causal factors influencing
the progression of the COVID-19 case numbers. Our model in Section 3.2.1.1
does not take geographic information available from the RKI into account. Us-
ing the same assumptions for the national model also for an individual county
does not result in an ideal prediction as Figure 4.1 shows.
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Figure 4.1: Naive model on the federal county of Gütersloh. The resulting
posterior means show a somewhat poor fit when reporting behavior does not
reflect the national trend. Gütersloh is a county in the federal state of North
Rhine-Westphalia where. In June 2020, there was a surge in cases due to an
outbreak of COVID-19 in a meat processing plant.

A more finely grained approach could be to model each county in Ger-
many separately and taylor the assumptions of the model to the individual
geographic regions. In particular this also considers spatial proximity. In our
framework a hierarchical Gaussian process model would be an appropriate
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choice, where we partially pool the data per geographic region and thus al-
low for these levels to mutually inform each other. In a recent episode of the
Coronavirus-Update Podcast, Professor Christian Drosten2 mentioned that it
may be of importance to take a closer look at the incidence in individual dis-
tricts lending credence to this extension of our approach. Figure B.4 illustrates
that the national shape of reported COVID-19 cases is mainly influenced by
the reporting shape found in Bayern and Baden-Wuerttemberg, while several
other states and districts do not reflect the pattern found in the national trend.
This further illustrates that a ”one-size-fits-all”-approach may not be suitable
here and motivates a model of the following form:

fnational(t) ∼ GP(0, k)

flocal, i(t) ∼ GP(fnational(t), klocal, i),

where fnational(t) describes the national trend, defined by a GP with zero-
mean function and a kernel accounting for the day-of-the-week-effect in the
reporting behavior, amongst others. flocal, i(t) defines a respective GP for a
local geographic region (state- or county level), defined by a mean-function
which now corresponds to some pooled geographic posterior predictive, e.g.
fnational, and a respective kernel. This additional granularity would allow for a
more detailed incorporation of structural knowledge (demographic data, spa-
tial proximity of counties, population density, urban - rural, vacation returnees,
school openings, ...) to enter the model.

4.2 Outlook

With the recent announcement of the primary efficacy analysis of a vaccine
by Biontech / Pfizer, which suggests to be 95% effective against COVID-19,3

followed by similar results of Moderna’s vaccine candidate,4 an end to the
pandemic is a possibility. However, it will take a considerable amount of
time until sufficient doses of a vaccine for the entire world population can be
produced. Hence, it is important to distribute vaccines in such a way that
transmission of the virus is curbed and a level of herd immunity is achieved to
ensure the resumption of public life and economic activity. At the same time,
however, we would like to keep the hospitalization rate and lethality as low as
possible. These factors necessitate an informed vaccine distribution strategy.
One may intuitively think that vaccines should be brought first to the most
vulnerable groups in the population, namely elderly and those suffering from

2Das Coronavirus-Update von NDR Info Folge 56
3https://www.pfizer.com/news/press-release/press-release-detail/

pfizer-and-biontech-conclude-phase-3-study-covid-19-vaccine, last accessed
on November 19, 2020

4https://www.modernatx.com/cove-study, last accessed on November 19, 2020

https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-conclude-phase-3-study-covid-19-vaccine
https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-conclude-phase-3-study-covid-19-vaccine
https://www.modernatx.com/cove-study
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pre-existing medical conditions. However, it is important to consider, that
the vaccine could cause side-effects that these groups may be suffering from
more severely than healthy people. Other factors to consider are differences
in mobility between population groups, occupational differences in number of
contacts, probability of a surge in cases in certain areas and the severity of
mitigation policies (e.g. lockdowns). Devising a vaccine distribution strategy
therefore has to make use of the current state of knowledge about the pandemic
and its effects, derived from models and data similar to what we consider in
this work. The more that is known about the spread of the virus, the faster
immunity across the population can be achieved.
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Appendix A

Further Tables and Figures

Parameter Value at MAP

lRBF 15.352809
θRBF 0.850290
lpRBF 23.434164
θpRBF 0.547721
θper 0.547721
σnoise 0.104464

Table A.1: Hyperparameter values after fitting naive model to incidence by
reported date.

Parameter Value at MAP

lRBF 18.378534

W

[
0.812192− 2.208457
0.617260− 1.820872

]
κ

[
0.812192
0.617260

]
θRBF 0.418021
σ 0.110604
σlocper 0.302919
llocper 38.787971

Table A.2: Hyperparameter values after fitting corgionalization model.
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Figures
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Figure B.1: PDFs of scaling hyperparameters for naive model on reported
case numbers in Germany.
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