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Abstract

The research field of deep learning actively develops new optimizers in order to
train deep neural networks. However, it is becoming increasingly difficult to
classify what can be considered state-of-the-art in deep learning optimization.
Reproducible and comparable results have to be obtained in a time-consuming
process, testing a new optimizer on various tasks and deep neural networks,
completed by tuning the hyperparameter, to achieve a better performance.

Therefore the optimizer benchmark library DEEPOBS is offering a highly
automatized and standardized process for comparison with unified perfor-
mance measures but still flexible hyperparameter tuning. The library offers to
choose between different data sets and network architectures for different tasks,
which constitute simplified representatives of more complex systems, to help
understand the performance of optimizers.

By now, the deep neural networks in DEEPOBS mainly solve classification
tasks. Yet, the diversity of tasks is an important issue to stay meaningful as a
benchmark and offer a product, which can be used for optimizer comparison in
research. This work extends the DEEPOBS library with a special family of
deep generative models, the Generative Adversarial Networks (GANS).

GANSs are a rather new approach, though gained high popularity in the deep
learning field by means of remarkable achievements in generation tasks. Not
only the capabilities of this architecture make it interesting in an optimizer
benchmark, but the fact that training these until convergence comes with
various new challenges. In this thesis, a deep convolutional GAN is introduced,
addressing image generation tasks on different data sets, within the PyTorch
framework. The architecture and the adapted training process form the ground
for the integration of further varieties and the comparison of an optimizer’s
performance across different generation tasks in DEEPOBS. The implementa-
tion of the training process comes with a qualitative evaluation method for the
beginning. Allowing the user, to save the images generated by the model, at
every epoch of the training process, to visually investigate the performance of
an optimizer.

In order to investigate the capabilities of the test problems and the characteris-
tics of the training process, several experiments have been done. This work,
illustrates the most realistic outcomes, along with examples that emphasize
the hyperparameter sensitivity of GAN models and the pitfalls that can arise
during the training process.
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Zusammenfassung

Auf dem Forschungsgebiet des Deep Learning wird aktiv an neuen Optimier-
ern zum Training tiefer neuronaler Netze gearbeitet. Jedoch wird es immer
schwieriger einzuordnen, was als Stand der Technik in der Deep Learning Opti-
mierung angesehen werden kann. Reproduzierbare und vergleichbare Ergebnisse
miissen in einem zeitaufwandigen Prozess erarbeitet werden, indem ein neuer
Optimierer an verschiedenen Aufgaben und tiefen neuronalen Netzen getestet
wird, ergdnzt durch die Abstimmung der Hyperparameter.

DEEPOBS bietet dafiir eine Benchmark-Bibliothek fiir Deep Learning Op-
timierer, mit einem hochautomatisierten und standardisierten Prozess fiir
den Vergleich, zusammen mit einheitlichen Leistungsmerkmalen und dennoch
flexiblem Hyperparameter-Tuning. Die Bibliothek bietet die Moglichkeit, zwis-
chen verschiedenen Datensétzen und Netzwerkarchitekturen, fiir verschiedene
Aufgaben zu wahlen. Diese stellen vereinfachte Représentanten komplexerer
Systeme dar, um die Leistung eines Optimierers besser zu verstehen.

Bisher losen die tiefen neuronalen Netze in DEEPOBS hauptsachlich Klassifika-
tionsaufgaben. Dennoch ist die Vielfalt der Aufgaben ein wichtiges Thema, um
als Benchmark aussagekraftig zu bleiben und ein Produkt anzubieten, das in
der Forschung fiir Vergleiche von Optimierern genutzt werden kann. Mit dieser
Arbeit wird die DEEPOBS Bibliothek um eine spezielle Familie von tiefen
generativen Modellen, den Generative Adversarial Networks (GANS) erweitert.
Diese sind zwar ein eher neuer Ansatz sind, haben aber im Deep Learning durch
bemerkenswerte Erfolge bei Generierungsaufgaben hohe Popularitéit erlangt.
Nicht nur die Fahigkeiten dieser Architektur machen GANs interessant fiir
ein Benchmark von Optimierern, sondern auch die Tatsache, dass das Training
dieser mit verschiedenen neuen Herausforderungen einhergeht.

In dieser Arbeit, wird ein Deep Convolutional GAN eingefiihrt, welches mit
verschiedenen Datensatzen zur Generierung von Bildern trainiert wird. Die
Architektur und der angepasste Trainingsprozess bilden die Grundlage fiir die
Integration weiterer Varianten in DEEPOBS und den Vergleich der Leistung
eines Optimierers tiber verschiedene Generierungsaufgaben hinweg. Die Imple-
mentierung des Trainingsprozesses kommt fiir den Anfang mit einer qualitativen
Evaluationsmethode. Diese erlaubt es dem Benutzer, die vom Modell erzeugten
Bilder, in jeder Epoche des Trainingsprozesses, zu speichern und die Leistung
eines Optimierers visuell zu untersuchen.

Um die Fahigkeiten der Testprobleme und die Eigenschaften des Train-
ingsprozesses zu veranschaulichen, wurden mehrere Experimente durchgefiihrt.
In dieser Arbeit werden die realistischsten Ergebnisse prasentiert, zusammen mit
Beispielen, die die Hyperparameter-Sensitivitat von GANs und die Fallstricke,
die wahrend des Trainingsprozesses auftreten konnen, hervorheben.
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Chapter 1

Introduction

The field of deep generative neural networks evolved from the continuous
progress in research on deep learning and deep neural networks. Some of
the models within this family gained wide popularity through remarkable
achievements. Especially two architectures have to be named in this con-
text, Variational Autoencoders (VAESs) and Generative Adversarial Networks
(GANS). These introduce new applications for deep neural networks, to not
just detect and classify real-world objects (further explained in Chapter 2),
but to reconstruct image representations such that the results can even deceive
human perception. Figure 1.1 shows some representative examples to give an
impression of the capabilities of today’s generative models.

Figure 1.1: Representative samples from generative models. The two images on
the left are the result of a three-level hierarchical Vector Quantized VAE model
trained on FFHQ-1024x1024 data set. Adopted from [RvdOV19]. The last four
images are samples from a GAN model trained on the 1024x1024 CELEBA HQ
data set. Adopted from [KALL18].

In general, this is accomplished by reducing the huge amount of input data
into a significantly smaller dimensioned space, to force a model to discover and
internalize the essential features and properties of the input data, in order to
generate it by itself. This process is not limited to the image generation tasks
shown in the example but also includes natural language generation, which is
briefly explained in Chapter 2 or even 3D object generation [FSG16], among
various other applications.

Just like with classical deep neural network tasks the problem of learning is cast
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as an optimization problem and in most scenarios, optimization means using
gradient descent methods. Established gradient descend methods used for opti-
mization include SGD [RM51], its momentum variants (MOMENTUM)
[Pol64, Nes83] and ADAM [Diel4] (see for example [Karl7]). Although
research on new techniques for optimization and improvements of the ex-
isting ones, has not ceased (see following papers for further information
[Mat12, Tim16, Yi 16, Zey17, Ily18]), by now no optimizer seems to outperform
the other ones significantly. However, there is this notion in the deep learning
community, that some optimizers perform not better in general, but only on
certain tasks (see for example [SSH20]).

The reproduction of an optimizer’s performance and behavior from empirical
reports is constrained by the lack of unified implementation environment for a
proper and significant benchmark process. Researchers decide for themselves
how detailed, in which environment, and which hyperparameter setting the
performance of a new optimizer or variants of existing ones are reported. This
often means that the exact results cannot be reproduced what makes the
comparison with other developments even harder. Additionally, the models, to
train on, get heavily simplified, as real-world applications ordinarily have to be
omitted, due to limitations of time for training and execution. Considering all
the above it is difficult to keep an overview of state-of-the-art optimizer and
make grounded statements on their relations to one another.

Just recently Schneider et al. [Fral9] developed the DEEPOBS library (Sec-
tion 2.1), which directly addresses the evaluation and comparison of deep
learning optimizers. The authors provide unified performance measures and
baselines for a more straightforward comparison with the popular optimizer,
SGD, MOMENTUM, and ADAM mentioned above, among with a great
variety of test problems (Section 2.2), which is basically a neural network
(Section 2.4) within a fixed setting. What makes it even more attractive for re-
searchers in the field is that the two most common and widely used frameworks
TensorFlow [ Mal5] and PyTorch [PGC*17] are provided (see for example the
statistics in [Hel9]). Overall DEEPOBS automates and simplifies the process
of downloading and preparing data sets, as well as logging relevant metrics
when running an optimizer and afterward reporting and visualizing the results.
With the standardized procedures Schneider et al. target to help streamlining
the analysis, making results reproducible and comparisons fair as possible.

Providing a sufficient environment to create expressive benchmark results
requires the continuous development of such an environment, guided by current
research and improvements of the field, in order to maintain the integrity
of the objectives. Two main aspects prevent DEEPOBS to follow up with
state-of-the-art conditions for a significant benchmark in research:

e Contribute to both frameworks equally: Taking into account the
performance margins between the two machine learning frameworks, that



Table 1.1: Overview of the test problems included in the DEEPOBS library,
separated by data set and model, and whether there exists an implementation in
the TensorFlow or the PyTorch framework. The colors denote the task to which
a test problem belongs to. For DEEPOBS these tasks are image classification

the most common task, image generation

, and one test problem solving

a natural language processing task. Additionally, DEEPOBS offers small two-
dimensional problems, for sanity checks, where the loss function is explicitly

given

Data set Model Description Framework
Noisy Beale Noisy version of Beale function

2D Noisy Branin Noisy version of the Branin function [Bra72]
Noisy Rosenbrock Noisy version of the Rosenbrock function [Ros60]

Quadratic Deep 100dim ill-conditioned noisy quadratic [CCS+19]
Log. Reg. Logistic regression O

MNIST [LBBH9S] MLP Four layer fully-connected network ()
2c2d Two conv. and two fully-connected layers O
VAE Variational Autoencoder O
Log. Reg. Logistic regression

Fastiox MNIST [XRV17] MLP Four layer fully-connected network ()
2c2d Two conv. and two fully-connected layers O
VAE Variational Autoencoder O
3c3d Three conv. and three fully-connected layers O

CirAR-10 [Kri09] VGG 16 Adapted version of VGG16 [SZ15]
VGG 19 Adapted version of VGG19
3c3d Three conv. and three fully-connected layers O
VGG 16 Adapted version of VGG16

CIFAR-100 [Kri09] VGG 19 Adapted version of VGG19
All-CNN-C The all convolutional net from [SDBR14] O
Wide ResNet-40-4 Wide Residual Network [ZK16]

SVHN [NtWC+11] 3c3d Three conv. and three fully-connected layers .
Wide ResNet-16-4 Wide Residual Network O
VGG 16 Adapted version of VGG16

IMAGENET [DDS+09] VGG 19 Adapted version of VGG19

Inception-v3

Inception-v3 net as described in [SVIT 16]

Tolstoi

CharRNN

Recurrent NN for character-level language modeling

Bahde showed in his work [Aarl9] and the fact that most developers
prefer to use only one of the two frameworks, allowing to either choose
one of them or to take the opportunity to run experiments on both, is an
important issue. Offering only one framework considerably reduces the
target group and leaves the question open whether variations in behavior
are due to the setting or the framework. Therefore striving a diverse

selection of architectures and modules in both frameworks is fundamental.

Table 1.1 shows which test problem is represented in each framework. By
now, there are twice as many test problems in TensorFlow as in PyTorch.
This can be attributed to the fact that DEEPOBS was first published
with the TensorFlow framework only [Fral9].
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e Provide expressive test problems: As stated in the corresponding
paper [Fral9] the provided test problems, shall offer a diversified range of
tasks and difficulties that are as representative as possible for real-world
applications and adapt to state-of-the-art configurations, while at the
same time, enables less complex and time-consuming training. This work
addresses both the range of diversity and the level of difficulty. Table 1.1
can be seen as a status report on the existing test problems at the time
before this thesis and is later on supplemented by the contributions of
this work in Table 5.1. What stands out is, that most models come under
the image classification tasks whereas image generation and language
processing problems are very limited.

To address these problems, this work strikes to extend the implementations
supported by the PyTorch framework and as the main objective, extend the
variety of tasks provided by introducing a meaningful new class of test problems
to the DEEPOBS library:

e Support diversity for both frameworks: Table 1.1 points out, that it
is the variety of models in the PyTorch framework that is to be extended,
to achieve equally distributed test problems across the frameworks. For
PyTorch, there should no longer be only a slimmed-down version of
DeEEPOBS available. Rather, it is intended to enlarge the possibilities
for comparison between the frameworks on the same test problems, by
implementing the missing ones into PyTorch in Section 3.1 as well as to
provide new, more complex tasks.

e Image generation tasks of higher complexity: Considering the
above described ongoing popularity of generative deep neural networks
and the models in Table 1.1, it is out of the question that DEEPOBS needs
more image generation tasks, to stay competitive as a benchmark. As
one of the two popular families in image generation, the implementation
of a VAE, is already provided in DEEPOBS, this work is dedicated to
the second family, generative adversarial networks (GANs). Introducing
GANSs (Section 3.2) comes with a lot of new challenges in the training
process (Section 3.2.3), making this project even more interesting.



Chapter 2

Background

When proposing a new optimizer, benchmarking the performance on deep
neural networks, which are widely accepted by the research community, is
crucial. Therefore the benchmark library DEEPOBS (2.1) provides a variety
of test problems on which an optimizer (2.3) can be tested and compared with
state-of-the-art optimizer. These test problems (2.2) consist of deep neural
networks (2.4) at their heart, combined with a data set (2.5) and a loss function

(2.6).

2.1 DeepOBS

In the introduction, the fundamental objectives of the DEEPOBS li-
brary are outlined but not the structure that is build up to achieve
them. DEEPOBS consists of a pipeline of modules, shown in Figure 2.1,
build upon each other, to cover the whole bench-
mark process. At the ground level it offers to

download and pre-process data sets from the
source and directly batches them. Combined
with the Model, the deep neural network, a test
problem can be run. In the training process
(Runners), the performance of the optimizer is
calculated, by determining loss and accuracy
as well as logging those for evaluation. After
training, Baselines offer the possibility to com-
pare one’s results with competitors (currently
these are SGD, MOMENTUM, ADAM) and
a visualization module saves the performance
measures as IXTEX-files. Introducing a new test
problem usually only requires the modification
of the Model Loading and potentially the Data

Visualization

Data Loading

Data Downloading

. tex files of learn-
ing curves for new
optimizer and the
baselines.

Performances re-
sulis of the most
popular optimizers.

Optimization per-
formance of an
oplimizer on a spe-
cific test problem.

Losses and ac-
curacy of a deep
learning model.

Pre-processed and
batched data.

Figure 2.1: Module pipeline
of DEEPOBS, from bottom to
top. Adopted from [Fral9]
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Loading part of DEEPOBS. However, for a novel class of test problems, more
or less complex changes in the Runners part are required. This is the case for
GANS, such that the introduction of these (3.2) demands new neural network
architectures (3.2.1), a different training process (3.2.3) than all other existing
test problems, and additional data sets (3.2.4).

2.2 Test Problems

The components that build up a test problem, on which an optimizer (2.3) is
applied, consisting of the deep neural networks (2.4), each of them in many
variations, the data set (2.5) for training, that directly denotes the domain
of the test problem and the loss function (2.6) to calculate the error. The
architecture of the neural network and the training process (3.2.3) varies for
the task to solve. Combined with the specific training process, the components
form a class of test problems. Figure 2.2 is a simplified illustration and serves
exclusively to visualize the interrelationships of the essential modules. Note
that this figure applies for classical test problems with one objective function,
rather than GANS, as these consist of two DNNs (2.4.4) and therefore have
more than one objective function.

Test Problem

Deep Neural
Network

Data Set E— +—— Loss Function

Training Process
(Runmner)

Figure 2.2: Illustration of the components of a test problem, with the deep
neural network at its heart, getting input from the data set, and evaluating its
performance with the loss function. Combined with the specific training process
these components form a class of test problems. The optimizer applies directly
to the loss function to minimize it in the training process.
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2.2.1 Classes of Test Problems

Tasks or classes of test problems form the ground for the optimization problem.
The better the optimizer (2.3), the faster and more accurate the test problem
tends to solve the task. All of the classes below can be achieved with various
types of test problems.

e Regression is a task that belongs to the area of supervised learning.
Regression is used to determine relationships between a dependent variable
and one or more independent variables. The input is a series of discrete
or real values. The objective of regression models is to approximate the
mapping function from inputs to continuous output variables. A common
example would be predicting stock prices.

e Classification tasks are assigned to the area of supervised learning.
This means the input data used for training comes with labels in the
form of numeric keys. Here the labels can only have a finite number of
values. The output of a classification task is a classifier, that predicts
the classes, defined by the labels, of new, meaning unseen examples of
the same data type used in training. This includes image recognition
in Chapter 1 mentioned, for example, handwritten numbers from 0-9 or
object recognition as described by Szegedy et al. [SRET15].

e Generation tasks are a class of test problems, that covers the objective
to generate new examples according to those seen in the training data.
This means, there is no single correct output for a given input but various
outputs striking to match the distribution of the input data or less formal
of what appears to be perceived as realistic or natural. This leads to new
challenges in training for deep neural networks, which will be discussed
in Section 3.2.

Besides the classes mentioned above, there exist many more in the field, like
anomaly detection, clustering, or denoising, which are not further explained
here, as they are not represented in DeepOBS and therefore do not appear in
the context of this thesis.

The above-mentioned tasks can be applied in different domains, referring to the
type of input data that is processed. In DEEPOBS two domains are represented
among different tasks:

e Image Vision is the most represented domain in DEEPOBS. It refers
to all problems in which a DNN is applied to understand the content of a
digital representation, such as images or videos. This can be for example
a classification task in which the model has to predict numbers shown on
pictures.
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e Natural Language Processing (NLP) is broadly defined as the auto-
matic comprehension and generation of natural language in speech or text
by a system. NLP is applied, for example, to solve sequence-to-sequence
or character prediction problems. This can be achieved with supervised
as well as unsupervised learning. In DEEPOBS the test problem in the
NLP domain solves a character-level language modeling task (1.1).

2.3 Optimizer

The optimizer forms the basis for training neural networks. Therefore this
section offers a more detailed view on the respective optimizer, to get a better
notion for the differences in their performance. Only those optimizer are
mentioned here whose results are used as baselines for comparison in DEEPOBS
and are therefore taken up again in Chapter 4. The selection of baselines covers
three of the most popular and established optimizer in the research field.

2.3.1 SGD

The algorithm mentioned in the introduction was the first of the three optimizers
to be introduced. With a batch z; from the training data and the assigned
labels y; the respective loss I(0;|(x;, y;)) is calculated at each iteration ¢ through
the network. The 6#; parameter denotes the current point and 7 the learning
rate or step size for the calculation of the next point #,,,. Thereby the gradient
tries to minimize the loss in the way of determining the direction for the next
point.

041 =0, — Uvel(9t|($z’7 3/1)) (2~1)

2.3.2 SGD with MOMENTUM

The momentum variant of SGD was introduced, to steam oscillations and
accelerate the gradient vectors in a direction that minimizes the error [Sut86].
This was achieved by adding the momentum term Awv; with hyperparameter
B, that takes into account the weight change already made at step ¢ when
calculating the change for the next step t + 1.

Avey = BAv, + erl(et’(%‘, yi))7 56[07 1]

2.2
01 = 0, — Av, ( )
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2.3.3 ADAM

The comparatively young Adaptive Moment Estimation (Adam) is founded on
the adaptive learning rate method RMSProp! and has shown great performance
in research [Rud17]. It extends the update rule, by taking into account a decay-
ing average of prior squared gradients v; as well as an exponentially decaying
average of past gradients m; similar to the above-mentioned MOMENTUM.
The gradient of the objective function to the parameter 6; at time step t, is
denoted as g;.
M1 = By + (1 — B1)ge
Vi1 = Pave 4 (1 = Ba)g

Due to the fact, that m; and v; are initialized as zero vectors, these tend to
be biased towards zero, which is particularly noticeable at the initial time
steps when (3; and [y are close to 1. The authors counteract this weakness by
computing a bias correction for the first and second moment estimates 7m; and
0. Then these are applied to the update rule.

(2.3)

A my
miy1 = 1—51
- Mt
. (%
Ut+1 - 1 _ /Bt (24)
2
briy = 0, — ———1i,

Vor+ €

2.4 Deep Neural Networks

Deep neural networks are the core elements of a test problem. Therefore offering
a diverse selection of architectures that cover state-of-the-art approaches and
allow test problems to act as representatives for real-world applications is
essential. Deep neural networks are distinguished according to their basic
structure, despite the fact, that the exact architecture may also vary within
this distinction. Basically, the objective of the network is to turn the input
into the desired output by pushing it through a network of layers, which in
turn consists of several weights.

2.4.1 Multilayer perceptron

Multilayer perceptrons (MLP) are considered the most basic model of a deep
neural network. They consist of an input and an output layer along with
multiple hidden layers. The inputs given are pushed forward through the
network taking the dot product with the weights between the input and the

Thttp://www.cs.toronto.edu/~tijmen/csc321 /slides/lecture_slides_lec6.pdf
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hidden layer. At each of the layers, an activation function is applied to calculate
the output at the respective weights before it is pushed forward to the next
layer. Usually, either the sigmoid function, tanh, or rectified linear units are
chosen for the activation function. This procedure is repeated until the last
layer. In the training process, backpropagation is applied that corresponds to
the selected activation function, pushing the error back into the network to
adjust the weights. In the case of testing, the MLP makes a prediction based
on the output pushed through the activation function.

For example, in classification tasks every layer learns to map a different charac-
teristic of the input data, similarly to our brain, which uses the V1 area for
the detection of edges and corners [Ros58].

2.4.2 Convolutional Neural Networks

With convolutional neural networks, the research field of deep learning proceeds
to use the organization of the visual cortex in the human brain as an inspiration
[SDBR14]. Here the architecture tries to imitate the connectivity pattern of
neurons in the way that only certain nodes in the network react to stimuli in a
limited area of the image, thus successfully capturing the spatial dependencies
of the image.

Convolutional neural networks achieve this by convoluting and reducing the
image, without losing features that are critical for an accurate prediction.
Basically, they are performing a many-to-one relationship operation. This is
done by applying a filter with a much smaller size than the original input,
shifting it through the picture and performing a matrix multiplication operation
with the pixels over which the filter is hovering, till the entire image is traversed,
outlined in Figure 2.3. The filter is referred to as kernel with the main objective
to extract features, starting with low-level features, such as edges and color,
then proceeding with additional convolutions to extract more high-level features
[DV16].

The downscaling is usually done by either max pooling, which replaces the
values in the filter area with the maximum value or average pooling, which
works analogous but with the average value and mainly decreases the compu-
tational power needed to process the data. Among these various other layers
can be applied, such as batch normalization or skip connections. After the
convolutional layers, a fully-connected one is applied, to get a vector that allows
classification in the form of probability calculations.

Transposed Convolutions. The process of convoluting images can be ap-
plied in the backward direction as well, to produce an image out of, for example
randomly sampled values, as it is done with deep convolutional GANs [AR16].
This comes under the term of transposed convolution, deconvolution or fraction-
ally stridden convolutions, performing a one-to-many relationship operation,
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Figure 2.3: The basic architecture of a convolutional neural network training on
the mnist[LBBH98] data set. The input image gets convoluted and downscaled
to a size of 4x4 pixel maintaining the positional connectivity before it is proceeded
into a fully-connected layer to get the one-dimensional vector to classify the
digits from 0-9. Adopted from [Sah15]

with the same course as above but the other way around. For example, when
the values of a 2x2 matrix are broadly speaking, upsampled to a 4x4 matrix,
it results in a 1-to-9 relation, which is maintained due to the weight layout,
when further deconvolutions are applied with the same filter or kernel size,
further illustrated in Figure 3.1. What is notable here is, that a transposed
convolution can always be emulated with a direct convolution but this would
mean adding various columns and rows of zeros to the input, which results in a
far less efficient implementation.

2.4.3 Variational Autoencoder

As stated in Chapter 1, VAEs are one of the most popular representatives
from the area of generative models. The architecture of a VAE, depicted in
Figure 2.4, basically consists of an encoder processing the input data X in
space R" to an encoded form with lower dimensionality Z in the latent space
R™ with m < n [Doel6], which is usually done with the above-mentioned
convolutional layers. Most noteworthy here is, that within the encoder two
vectors are constructed, to create objects that follow a Gaussian distribution.

From there on, a decoder takes Z and reconstructs it to X , by trying to match
the distribution p; with the original distribution p, of the input data. This is
usually done with the above-mentioned transposed convolutions aiming that
the following equation applies X = X. VAEs are special in the sense that their
loss function consists of a reconstruction term, accelerating the decoding theme
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and a regularization term, that makes the distributions from the encoder close
to a normal distribution. The regularization is needed to obtain a latent space
with good properties, in the meaning of forcing the encoded distributions p, to
rather overlap for reasons of continuity and completeness than fall apart.

| — r\\\
| -
.~ Decoding
r- = -9
Input = — QOutput
lower
dimensional
embedding
Encoder Decoder

Figure 2.4: Straightforward illustration of the architecture of a VAE training
on the mnist[LBBHI8] data set to reconstruct the distributions of handwritten
numbers. Here the input denotes X, the output X, and the red-colored bar
display the Z vector that is fed into the decoder. Adopted from [Han19]

2.4.4 Generative Adversarial Networks

GANSs were first introduced by Tan Goodfellow et al. [GPAM™14] addressing
image generation tasks and their popularity has exploded since then. What is
special in regards to GANSs is that they consist of two distinct models, each
is a deep neural network depending on the other one in the training process.
The first model acts as the generator, which in generating, for example, images,
from a given noise. Second is the discriminator, whose job is to look at a given
input, without any knowledge whether it was generated by the generator or
it is genuine training data. The basic idea is that during the training process
the generator tries to outwit the discriminator by generating more and more
realistic looking data. On the other hand, the discriminator tries to detect and
correctly classify real from fake, as it is illustrated in Figure 2.5. The generator
and the discriminator compete with each other in something that is referred to
as a minimax game.

The generator G is a differentiable function generating outputs G(z) with a
distribution p,, from an input noise vector Z. G strikes to map the distribution
of its outputs to the distribution of the input data X of the discriminator. The
discriminator D outputs a single scalar, the probability logD(x), by classifying
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Figure 2.5: The basic architecture of a GAN. In this case, the discriminator is
trained with mnist[LBBH9S8] to force the generator to output images looking
like handwritten numbers. Adopted from [Sil18]

the given input X as part of the training data or as a creation of the generator
G(z). G is then trained to fool the discriminator, which means to minimize the
probability of D to designate its outputs as fake (log(1—D(G(x)))). Conversely,
the discriminator D is trained to maximize its probability to differentiate
between X and G(z) (logD(z)). Both terms together define the following
function that is to be optimized,

min maz V(G, D) = Eop. ) [log(1 = D(G(2)))] + Eunpra(ollogD(@)]. (25)

In theory, the end of the training process is reached when both networks’ loss
functions are at a level that can be defined as equally minimized. This scenario
is referred to as the Nash equilibrium, illustrated in Figure 2.6. This is achieved,
when the generator creates images looking like the distribution of the given
training data, so the discriminator’s guess is at a robust 50 percent confidence.

2.5 Data Sets

The term data sets covers every type of input data, that is used to train and
test a deep learning model and in this case a deep neural network. This can
range from a function to images or text and is specific to the given task of the
model.

In the supervised learning field the input data X or at least a sufficient subset
of it comes with labels Y. Labels can be specified as a kind of numeric property
describing a feature or class, for which the model learns to map, the respective
input to.

No matter, which type of input data is used and what the task of the neural
network is, before starting the training, the input data needs to be divided into
subsets, for several reasons:
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(a) (b) (©) (d

Figure 2.6: Development of the distributions over the training process of a
GAN. With the discriminator’s distribution D (blue, dashed line), to distinguish
the generative distribution p, (green, solid line) from the sample distribution
pz (black, dotted line). The horizontal lines below the graphs show the domains
from which xz and z are sampled. In this case, z is uniformly sampled and
the upward arrows represent how the mapping r = G(z) imposes the non-
uniform distribution p, on the generated samples. Starting from a point (a),
at which the discriminator is capable of partly accurate classifications. Before
an update step for G is made (b), D converges to Wm. During training
pg(G) approximates p, step by step with every update of the generator G (c),
due to guidance of D. In the optimal case (d) the adversarial pair reaches a
state at which no further improvement can be done, because now both p, and
pg are equivalent p, = p,. The discriminator cannot distinguish among both

distributions anymore. Adopted from [GPAM™*14]

e Training Set: This subset of the input data is used to adjust the weights
on the neural network during training, to improve its performance.

e Validation Set: With this subset, one does not adjust the weights of
the network but evaluate it in every epoch to verify that an increase
of accuracy over the training data set yields an increase in accuracy
over new, unseen data. This is important to avoid overfitting the neural
network. For example, in the event, that the accuracy over the training
set increases but the accuracy over the validation data stays the same
or decreases, then the network is overfitting, and the training parameter
should be reconsidered. DEEPOBS separates the validation from the test
set to provide the possibility to tune the hyperparameter for training.
With the validation set, one can for example test several learning rates
before deciding for the one who leads to the best performance.

e Test Set: For the final solution of the network, meaning no further
adjustments will be made, another subset of the input data is coming
into action. This subset only contains data the network has never seen
before, not even for any validation cycle, and therefore, is used to confirm
the actual predictive power of the network.
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2.6 Loss Functions

The optimization process in training deep learning models with gradient descent
methods requires the loss function to repeatedly calculate the respective error
[, in order to be minimized. This section covers only the functions that are
used in the context of this thesis and are therefore listed in more detail.

2.6.1 Cross-Entropy Loss

The cross-entropy loss is a very common loss function to use when a classification
problem has various classes Y assigned to the input data X. The function
creates a criterion that measures the cross-entropy between the distribution of
the respective target y,, and the distribution of the output of the propagation.
In the PyTorch implementation, the function allows to add a weight argument,
that is assigned to each of the classes to overcome the difficulties, described in
the subsection on data sets, of an unbalanced training data set.

2.6.2 Binary Cross Entropy Loss

The binary cross entropy-loss, as the name suggests, allows only two classes Y
and therefore also a binary output. With the way, the loss function is defined,

ln = —wplynlogz, + (1 — yn)log(1 — )] (2.6)

with I(z,y) = {l1,...,In}T and the fact that Y is either 0 or 1, one of the
terms in the equation turns out to be 0. This circumstance is taken up in the
implementation of GANSs as a new class of test problems in Section 3.2.2.
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Chapter 3

Implementation

The main contribution of this work is, to extend DEEPOBS with novel test
problems, therefore this chapter gives detailed insights on the implementation
process of such. As obtained in the introduction, a balanced selection of test
problems would be of great value for the optimizer benchmark suite. Before
setting the focus on introducing a whole new class of test problems to DEEPOBS
(3.2), this work starts with a few test problems existing in the TensorFlow
framework that can be adapted for PyTorch by modifying the Model Loading
module of the pipeline, shown in Figure 2.1, only.

3.1 Translate test problems to PyTorch

The following list gives a brief explanation of the test problems, most often
have been directly translated from TensorFlow to PyTorch. All of these are
classification tasks of varying complexity.

e Logarithmic regression with F-MNIST: Analogous to the existing
logarithmic regression for MNIST in PyTorch, this test problem was created
for F-MNIST. The authors Xiao et al. consider FMNIST to slightly raise
the level of difficulty for test problems([XRV17]).

e Convolutional neural network with SVHN: This test problem al-
ready exists for the data sets CIFAR-10 and CIFAR-100, which both
have a size of 32x32 pixel and as the names suggest, one has 10 and the
other 100 classes to distinguish. SVHN may resemble CIFAR-10 in size
and classes but it includes some distractors in the background of the
images, making the task more challenging. The architecture is kept as
implemented with three convolutional and three fully-connected layers.

e VGG variants with CiFAR-10 and CI1FAR-100: For each data set two
variants of the VGG architecture reference have been created respectively,

17



18 CHAPTER 3. IMPLEMENTATION

one with 16 and the other with 19 layers. The architecture of the model
is adapted from the original VGG TensorFlow implementation that was
designed for the IMAGENET data set [SZ15].

e Variants of the wide residual network with CIiFAR-100: In the
TENSORFLOW implementation two versions of the wide residual network
are provided. One is using six residual blocks (16-4) and the other two
(40-4). For CIFAR-100 both the 16-4 and a 40-4 wide residual network
have been adopted into the PyTorch framework, to offer direct comparison
with the same test problem for the SVHN data set.

3.2 Introducing GANs to DeepOBS

Now the core part of the contribution of this work outsets, the implementation
of a new class of test problems. Considering the recent impressive achievements
of generative models stated in the introduction and the popularity of GANs in
special, there are strong enough reasons for the need to implement such in a
deep learning optimizer benchmark suite. However, the training process differs
greatly from other test problems (3.2.3) and the evaluation comes with a lot of
new challenges (3.2.5).

Since being introduced there have been many variations of GAN to improve
their performance along with the attempt to stabilize the training process
[MGN18, SGZ*16]. This results in a broad selection of possible architectures.
To provide a good starting point for the decision, the weaknesses that appear
in the training process of GAN, are to be considered.

e Non-Convergence: This happens when the minimization of cost for
the discriminator and the generator with gradient descent methods leads
the gradient to rather enter a stable orbit than maintaining a Nash
equilibrium. This results in parameter oscillation and therefore the model
destabilizes and never converges.

e Mode collapse: This is considered one of the harder problems to solve
in GANs and describes the case in which the generator produces only a
few or even just one single mode of outputs, meaning that the generator
collapsed to a certain parameter setting. This can happen easily when
the discriminator is exposed to only one example in an iteration, because
it does not take into account any relations between its gradients for each
example. In more detail, the gradient of the discriminator points in
similar directions for similar points and therefore at first predicts the
examples shown as realistic, while the generator emits the same point
every time. After collapse, the discriminator learns which point comes
from the generator and no convergence with sufficient entropy is achieved.
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e Overfitting: In the original GAN paper, Goodfellow et al. state that
a balance between the discriminator and generator updates is crucial
to avoid overfitting and the resulting non-convergence, for training the
discriminator to completion on a finite data set.

e Hyperparameter sensitivity: A small change in the hyperparameters
can result in huge variations of a GAN’s performance and therefore may
cause one of the above problems. This effect is visualized in Section 4.2.1.

e Cost function and image quality: When classifiers are trained, the
loss and the resulting accuracy are used to monitor the progress of a
model. Yet for GAN the loss function estimates the performance of the
network compared with the opponent. This means that even though the
generator cost function increases, the image quality may be improving,
which makes the evaluation and comparison between different models
even harder along with complicating the tuning process.

For the purpose of an optimizer benchmark, the architecture of the model should
consist of standardized and established elements, that keep the training process
in appropriate limited time but still offer a significant problem representation
for state-of-the-art tasks to solve by generative models. Therefore developments
that seem quite promising but are of a rather exotic kind do not apply for the
DeEEPOBS environment.

3.2.1 Setting up the architecture

For the implementation, the deep convolutional GAN (DCGAN?) architecture
is adopted, introduced by Radford et al. [AR16]. It is a direct extension of
the GAN described in Chapter 2 and consists exclusively of convolutional and
transposed convolutional layers. The general structure of the network is shown
in Figure 3.1. In this case, the generator consists of five transposed convolutions,
each of them is followed by a batch normalization layer using ReLU as the
activation function. An exception is the last layer, which is activated by the
Tanh function without batch normalization. The image gets scaled up from
the input vector Z to a 3x64x64 pixel image.

The discriminator network works analogously to the generator but in reverse.
Using classical convolutional layers, explained in Chapter 2, followed by batch
normalization with LeakyReLU as the activation function. The input layer
does not use batch normalization, for the reasons of stability (see the original
paper for a detailed explanation [MGN18]). Just as with the generator, the
last layer makes an exception, as it is activated by the Sigmoid function. All
convolutions, whether they are transposed or not, use a filter or kernel size of
four.

LCode available at https://github.com /pytorch/examples
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Figure 3.1: The architecture of the generator network. An input vector Z is
fed into four transposed convolutional layers, scaling it up to a two-dimensional
image G(z) of size 64x64 with three channels according to the given noise vector.
Adopted from [AR16]

3.2.2 Implementing the loss functions

As stated in the original paper [GPAM™14], the generator is trained by mini-
mizing log(1 — D(G(z))) in an effort to generate better fakes. This was shown
by means of the authors to not provide sufficient gradients, especially early in
the learning process. As a fix, instead log(D(G(z))) is maximized. In the code,
this is accomplished, by classifying the generator output with the discriminator
and computing the generator’s loss using real labels. On that basis then the
gradients are computed in a backward pass, and finally the generator’s parame-
ters are updated with an optimizer step. It may seem counter-intuitive to use
the real labels as labels for the generator loss function but as the BCELOSS in
PYTORCH is defined as

Wz y)=L="{ly,...,In} ", lh = —wp[yulog(x,) + (1 — yu)log(1 — x,)], (3.1)

it allows, to use the log(z) part of the function for the generators objective
rather than the log(1 — x) part. Therefore now the desired part to use from
the BCE equation can be directly addressed with the y input.

3.2.3 Training process

The discriminator and the generator compete against each other, trying to
minimize their loss function and thereby maximize that of the opponent, this
is referred to as a minimax game. Therefore, a GAN uses two optimizers,
one for the discriminator updates and one for the generator updates. In
state-of-the-art approaches of GANSs, often different optimizers or at least
the same optimizer, with different training parameters is used. Due to the
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high tuning and benchmarking effort, that comes with this adaptation, the
same configuration for both optimizers has been used, in this work. Yet future
extensions, which support the selection of different optimizers for a DCGAN
test problem, are possible.

The training process starts with the discriminator iterating over the training
data set for each batch in the data loader, one epoch denoting a whole cycle
through the data set. In each iteration, the discriminator sets its gradients to
zero, performs a forward pass with the real batches, evaluates the loss for them,
and then computes the new gradients in a backward pass.

In the next step, the discriminator is trained with fake batches and the generator
is fed with noise, to generate fake image batches. The output is then classified
by the discriminator. The gradients for the fake batch are added to the gradients
from all real batches to perform an update step by the optimizer.

Now the generator is about to be updated. Therefore the gradients of the
generator are set to zero before the fake images get assigned to real labels to
calculate the costs and then perform another forward pass with the all fake
batch through the discriminator. Afterward, the gradients get calculated to
perform an update step for G.

The values of both loss and accuracy function get saved for measuring training
statistics in every iteration.

3.2.4 Setting up instances for the data sets

Now that the model architecture and the training schedule are defined, building
up test problems within this new class is due. For a broader range of com-
parisons, four test problems, classified in different levels of difficulty for the
optimizer, are created. Two of these are considered as less complex because
of the fact, that they are trained on data sets with images that have only one
color channel, MNIST, and F-MNIST. In this case, both instances already existed
in the DEEPOBS library only not for the DCGAN. For test problems that
generate colored images, two data sets have been introduced to DEEPOBS.
One is the quite popular Celebrity Faces CELEBA [LLWT15] data set, which
comes with over 200.000 images and rises the level of difficulty because of the
fact, that humans have a sensitized perception of human faces. The other is
the Animal Faces HQ AFHQ [CUYH20] data set, which only contains around
16.000 images in total, of dogs, cats, and wildlife animals, such as tigers or
foxes. The size of the images is not taken into account here, because for the
DCGAN implementation every input is resized, before being presented to the
discriminator.

Below the four test problems of that new class of generative models are listed
according to their expected level of difficulty from top to bottom:

e mnist_dcgan
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e fmnist_dcgan
e afhqg_dcgan

e celebA_dcgan

3.2.5 Methods for Evaluation

”"While several measures have been introduced, as of yet, there is no consensus
as to which measure best captures strengths and limitations of models and
should be used for fair model comparison.” [Bor18]. A GAN has two models, the
discriminator, and the generator, training each other in a minimax game. Min-
imizing one loss function results in increasing the other, meaning the accuracy
denotes how one model is performing compared to its opponent. Therefore the
generator, that is trained by the discriminator through classification of real and
generated images, has no objective function to directly measure and compare
performance [SGZ116] as well as finding a low value of a loss function is not
quite helpful for the evaluation of such a minimax game. Furthermore, only
local Nash equilibria can be found, as gradient descent is a local optimization
method.

Qualitative Evaluation: In the rather short research history of GANSs, there
have been several approaches on how to evaluate a GAN or more generally the
quality of a generated image. Intuitively it seems more reliable to measure the
quality and diversity of the generated images. This can be achieved through
several procedures:

e Rating and Preference Judgment: This is a quite popular way, where
participants are asked to rank samples in terms of fidelity of the images,
though the judgment is not fixed as it usually progresses over time, by
cause of the judges getting more sensitive to the features, that indicate a
fake or real sample.

e Rapid Scene Categorization: This procedure works analogous to the one
above, with participants distinguish real from fake images but within
a short presentation time. In this case, the samples are set next to
each other for the evaluation. The variance in the judgments is tried to
overcome by averaging the ratings. Thus this procedure is labor-intensive.

e Nearest Neighbors: Here representatives from the generated images are
placed next to their nearest neighbors or at least the most similar-looking
real version of samples in the training data set. This procedure can
therefore help to detect whether the model is overfitting and additionally
promises a good context for evaluating how realistic a generated image
appears.
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For all empirical subjects in the deep learning field, the success of an objective
is determined by using evaluation metrics for performance measures which
are developed and widely accepted by the research community. In the case
of GANSs, convergence theory is still highly researched and no performance
metric is solidly established in the deep learning field [Bor18, LKM™17, BS18].

Considering these issues and the limited time frame of this work, the decision
was made to provide a way to visually evaluate the results of the DCGAN
test problems, yet not as a part of the automated benchmark process. The
qualitative evaluation method used is most related to the nearest neighbors
procedure, plus providing a way of visually tracking the progress of the model,
the reason for this occurrence is, that in a fixed setting this depends on
the optimizer, which is the true objective of the evaluation here. Following
implementations have been done:

e (Creating a vector in every run, that serves as input noise for the genera-
tors evaluation. Feeding this input vector into the generator, when the
evaluation starts and generate images out of it. As a visual evaluation of
one image is not as reliable as of various fakes, representatives of these
are arranged in an 8x8 grid. Which results in 64 generated images for
visual comparison.

e This grid of images is then saved as portable network graphics file in
every intended epoch to visually track the evolvement of the generator.
The images are saved in an extra folder within the path that is created to
save the output file in an organized folder hierarchy. The folder naming
provides a direct distinction between the test problem, the optimizer, the
number of epochs a model is trained for, along with the configuration of
the hyperparameters.

e On account of the number of epochs being relative to the amount of
training data available, the possibility to leave it the user’s decision at
which epoch a test problem shall be evaluated. This can be handed
over directly to the run() function, when starting the training for a test
problem.

e At the end of the training, an additional image is created, which offers
the opportunity to compare the final products of the generator directly
next to samples from the data set.

Quantitative Evaluation: The above evaluation method mainly serves to
detect the general functionality of a DCGAN test problem and therefore mode
collapses or overfitting. However, it can not sufficiently meet the requirements
of the DEEPOBS library, which demands a quantitative metric, to provide a
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reliable comparison of the optimizer. Therefore additional measurements are
taken into account.

Goodfellow used the average Log-Likelihood method in his original paper
[GPAM™14], which has generally been found not to be effective: ”Parzen
windows estimation of likelihood favors trivial models and is irrelevant to visual
fidelity of samples. Further, it fails to approximate the true likelihood in high
dimensional spaces or to rank models” [Bor18§].

Another approach that has to be named in this context because it seems very
promising and is still used widely in research, is the Inception score [SGZ"16].
Applying this metric requires a pre-trained model, for the image classification
of the generated images, which gives the probability of an image belonging to
each class. The inception score measures the variety of images and how much
the images ”look” like the distribution of a known class. In the event, that
both arguments are sufficient the score is high otherwise it will be low, meaning
the higher the inception score, the better is the quality of the generated images.
The actual output is a conditional label distribution p(y|x), with low entropy
in cases where the image contains meaningful information and a high entropy
for the marginal [ p(y|x = G(z))dz when the model creates varied images.
Salimans et al. combine these requirements and propose to exponentiate
results for easier comparison: exp(E,KL(p(y|x)||p(y))). Therefore they use
the Kullback-Leibler (KL) divergence, a formula to measure the similarity or
difference between to probability distributions.

Despite the appealing properties of this evaluation method, it suffers from
several limitations. Ali Borji investigated these in his paper [Bor18]. He states
that the Inception score lacks in the detection of overfitting and mode collapse,
along with the constraint of sensitivity to variations in image resolution. All
these are typical challenges that arise when training GANs.

The Frechet inception distance [HRUT17] is an improvement over the
inception score: ”FID performs well in terms of discriminability, robustness,
and computational efficiency. [...] It has been shown that FID is consistent
with human judgments and is more robust to noise than IS.” [Bor18]. This metric
uses the INCEPTION-V 3 model to extract features from a hidden layer to model
the data distribution of these features. This is done by using a multivariate
Gaussian distribution with mean m and covariance C' to measure the distance
d between the distribution of the real (mgutq, Caata) and the generated images

(m.,C.),

d2<<mza 02)7 (mdatm Cdata)) - ||mz - mdam| |§ + TT(CZ + Cdata — 2<Cszata)1/2)-

(3.2)
The T'r denotes the sum of all diagonal elements. The lower the FID score, the
more the images match the statistical properties of real images.

The FID has some limitations, as it is by means of its definition assuming
that features in an image are of Gaussian distribution, which can not be
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guaranteed in principle or that the detection of overfitting is not solved with
the original FID implementation. Still, it is a very promising approach to
evaluate the performance of an optimizer in DEEPOBS. It is possible to
integrate it in the automatized benchmark process and preparations to simplify
the implementation have been done, however, the time frame of this thesis did
not allow further investigations in this first release of GANs in DEEPOBS. The
evolvement of quantitative evaluation methods for GANs is a critical direction
for scientists. It directly impacts the development of the DEEPOBS library, in
the sense of the need to continuously improve the benchmark process regarding
state-of-the-art approaches on the evaluation of generative models.
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Chapter 4

Experiments

4.1 Examining the novel test problems

For a wholesome introduction of the novel class of test problems, the basic
functionality of the DCGAN concept within the DEEPOBS architecture is to
be proved (4.1). The performance of the test problems is visually measured
from their respective output, indicating the correctness of all aspects of the
implementation (4.1.2). Not only the results of the generator within the DEEP-
OBS environment are illustrated, but a direct comparison with representatives
from the training data set is provided (4.1, 4.2) and in one case is supplemented
by a comparison (4.3), with results from the PyTorch tutorial [NI17].

4.1.1 Setting for the evaluation

For a meaningful analysis of the DCGAN test problems, the optimizer, and
the training parameters proposed in the original paper [AR16], are used for the
training process. Though in the paper only data sets with colored images have
been used, the setting may apply for the test problems using grey-scaled data
sets as well. The beta parameters of the ADAM optimizer, are adjusted to (0.5,
0.999), which is a slight variation to the default settings (0.9,0.999), for which
the authors found out that it destabilizes the training and results in oscillation
[AR16]. In addition, the learning rate (Ir) is changed to 0.0002, as the default
value of 0.001 is too high for good performance [AR16].

Further, the training of a DCGAN, and GANSs, in general, is also highly
sensitive to changes in the batch size. Thus the choice for this parameter is
based on the guidelines of the paper as well, where a batch size of 128 turned
out to be appropriate for stable training. The epochs at which the generator of
a test problem is evaluated in this part of the section depends on the amount
of available training data.
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4.1.2 Results

The first two figures (Figure 4.1 and Figure 4.2) offer a direct comparison
between an 8x8 grid of images from the training data set next to generated
images of the DCGAN model. Figure 4.1 shows the test problems for the data

sets MNIST and F-MNIST, which both have one color channel and have been
trained for 20 epochs each.
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(b) fmnist_dcgan

Figure 4.1: Representatives of the training data set and the generated images
from the DCGAN model next to each other for the test problems a) mnist_dcgan
and b) fmnist_dcgan. Both models have been trained for 20 epochs.

Based on the visual assessment, all DCGAN test problems respectively, create
images that match the training data. Especially in Figure 4.1 distinguishing real
from generated images is not an easy task for a human judge. The mnist_dcgan
creates mostly clear numbers with a few slightly blurred exceptions and the
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(b) celebA_dcgan

Figure 4.2: Representatives of the training data set and the generated images
from the DCGAN model next to each other for the two data sets a) AFHQ and b)
CELEBA, both with three color channels. The afhqg_dcgan has been trained for
40 epochs, whereas the celebA_dcgan has been trained only for 5 epochs.
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fmnist_dcgan can create sharp pictures of clothes, some of which leave the
question unanswered whether some extravagant designer has been at work
here or a GAN. However, the colored images from the afhqg-dcgan and the
celeba_dcgan can still easily be classified as fake. One can see the features
that form the face of an animal or a human being, which allow to assign a
picture to a dedicated class in the data set, for example, cats or dogs.

Figure 4.3 offers an additional way of visual comparison by putting the results
of the implementation from the PyTorch tutorial in relation to the results from
the afhq_dcgan test problem. Both models are trained for five epochs on the
CELEBA data set, to allow a reasonable comparison of the progress of the test
problems. Though a visual assessment, can not offer an exact estimation, none
of the test problems seems to outperform the other.

In the purpose of this section, the visual presentation of the capabilities of the
DCGAN test problems does not need an additional quantitative method, in
order to confirm the functionality in the DEEPOBS environment. The images
in the figures (Figure 4.1, Figure 4.2 and Figure 4.3) demonstrate, that each of
the novel test problems can generate data, which tends to match the training
data when using a specific optimizer and hyperparameter setting.

(a) PyTorch tutorial (b) DEEPOBS implementation

Figure 4.3: Results from the celeba_dcgan test problem a) in the PyTorch
tutorial [NI17] compared with b) the results from the DEEPOBS implementation,
both after five epochs of training.
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4.2 Illustrating the training characteristics

In the implementation, the unique challenges and weaknesses of a GAN’s train-
ing process, such as hyperparameter sensitivity (4.2.1) or mode collapse, have
been discussed. In the experiments, with the optimizer SGD, MOMENTUM,
and ADAM, different hyperparameters have been used, to visually track the
progress of the respective optimizer for the four novel test problems. During
these experiments, the results of the above-mentioned weaknesses showed up in
the training process and can be observed, by interpreting the images (Figure 4.4,
Figure 4.5, and Figure 4.6) created during the training.

4.2.1 Hyperparameter sensitivity

The high sensitivity towards the training parameters, mentioned in the im-
plementation (Section 3.2), became particularly visible when using ADAM or
MOMENTUM, with different values for the beta or momentum term.

The generated images are illustrated in grids of 8x8 pictures, starting with the
first evaluations in the top row, from left to right, and proceeds with the next
two evaluation steps in the bottom row, again from the left to the right side.

For ApAM, all hyperparameters are equal to the setting in Section 4.2, except
for the beta parameter, which is changed back to the default value of 0.9.
The afhg_-dcgan seems to learn some features, that appear as blurred areas
with high contrast. One can see, that there is no mode collapse, as every
image in the twentieth epoch looks different (Figure 4.4a). The celeba_dcgan
creates images that clearly show abstract representations of faces (Figure 4.4b).
Though the images indicate an improvement of the optimizer, there is a big
performance drop compared to the test problems, using ADAM with an adjusted
beta parameter (Figure 4.4).

The MOMENTUM optimizer the learning rate has been adjusted to 0.001, as
it has shown to accelerate performance, compared to a learning rate of 0.0002.
All other hyperparameters remain at their default values for the beginning,
which means the momentum term has a value of 0.9. Figure 4.5 shows the
results, achieved with the DCGAN test problems.

The mnist_dcgan and the fmnist_dcgan hardly allow any interpretation of the
patterns in the generated images. Though for both, the images show a slightly
different pattern after the fifth and the fifteenth epoch, no features at all can
be detected. A human judge is not able to tell, which images are generated
early in the training or at the end.

The afhq_dcgan test problem (Figure 4.5b) appears to be stuck in the oscilla-
tions, described in the DCGAN paper to show up when the momentum term
is not reduced [AR16]. Indeed the output of the tenth and the thirtieth epoch
look similar, just like the twentieth and the fortieth output.
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(a) afhqg_dcgan at 5, 10, 15 and 20 epochs  (b) celeba_dcgan at 2, 3, 4 and 5 epochs

Figure 4.4: Running ADAM with default settings and a learning rate of
0.0002 on DCGAN test problems with three color channels afhqg_-dcgan and
celeba _dcgan. Showing the generated images at different steps of the training
process.

Now the momentum term has been adjusted to 0.5, to enhance the difference
in performance. Looking at Figure 4.6, the improvement is huge. Not only
do the test problems, learn the features from the training data, but the goal
of the generators can be classified. Particularly the mnist dcgan generates
handwritten numbers (Figure 4.6a), mostly similar to the data set. The
afhqg_dcgan already generates images, in which animal faces can be identified,
but a further classification of the classes of animals is not possible.

At last, SGD is run on the test problems, using the same learning rate as it is
chosen for MOMENTUM above shown in Figure 4.7.

Themnist_dcgan and the fmnist_dcgan, which are trained for the same amount
of epochs and are generally considered as the easier test problems, generate
more or less noise. On the right side of the bottom row in Figure 4.7a, the
pixels appear to be organized according to some structure, but as every image
looks the same, it is not yet possible to decide whether the model learns very
slow with SGD or whether this is the illustration of mode collapse.

What is unusual here, is that the afhq_dcgan, which is considered to be more
complex, achieves to learn different features (Figure 4.7b). Although, it is not
yet possible to identify what the generator tries to generate, without knowing
the training data.
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(a) MNIST top row and FMNIST bottom row (b) afhq_dcgan at 10, 20, 30 and 40 epochs

Figure 4.5: Running the MOMENTUM optimizer with a learning rate of 0.001
and default MOMENTUM parameter of 0.9 on DCGAN test problems. The
image on the left a) shows the two test problems using grey-scaled images, at
epoch 5 and 10. On the right side, the output of the afhq dcgan is placed,
trained till the fortieth epoch.
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(a) MNIST at epochs 2, 5, 10, and 15. (b) afhg-dcgan at epochs 10, 20, 30, and 40

Figure 4.6: Running the MOMENTUM optimizer with a learning rate of
0.001 and an adjusted momentum term of 0.5 on DCGAN test problems. The
image on the left a) shows the fmnist_dcgan problem at epoch 2, 5, 10, and
15. On the right side, the output of the afhq_dcgan is placed, trained till the
fortieth epoch.
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(a) MNIST top row and FMNIST bottom row (b) afhqg_dcgan at 5, 10, 15 and 20 epochs

Figure 4.7: Running SGD with a learning rate of 0.001 on DCGAN test
problems. The image on the left a) shows the two test problems using greyscaled
images, at epoch 5 and 20, respectively. On the right side, the output of the
afhq_dcgan is placed, trained until the twentieth epoch.

4.2.2 GANs can be deceptive

Another weakness of the training process of GANSs, is that even though the
output of a model appears to progress in the right direction, this can collapse
within one epoch.

In the experiments, this effect was detected twice, with the fmnist_dcgan and
the celeba_dcgan. Both have been trained with the MOMENTUM optimizer,
with an adjusted learning rate of 0.001 and a momentum term of 0.5.

In the first thirteen evaluation steps, the generator of the fmnist_dcgan learns
to map the distribution of the input data quite well (Figure 4.8). From there
on, the model suddenly collapses and generates nothing but noise. The same
effect, even though less severe, appeared with the celeba_dcgan (Figure 4.9).
In the first epoch, the generator learned some patterns of different colors. With
a more detailed look, one can see a pixelated shape of a head, in most images.
The output of the first epoch is the initial noise vector for the generator, and
is only presented to enhance the progress in the first epoch.

These experiments let the question arise, whether a model is able to rehabilitate
from this stage, which is left open for future examinations.



4.2. ILLUSTRATING THE TRAINING CHARACTERISTICS 35

Figure 4.8: The fmnist_dcgan, using the MOMENTUM optimizer. The top
row shows the images generated at epoch 2, 4, 6, and 8. In the second row,
epochs 10, 12, 13, and 14, are presented, from left to right. With a value of
0.5 for the momentum term, the model learns to match the distribution of the
training data but collapses after the fourteenth epoch.

Figure 4.9: The celeba dcgan, using the MOMENTUM optimizer. The
top row, shows the images generated at epoch 0, 1, and 2. In the second row,
epochs 3, 4, and 5 are presented, from left to right. With a value of 0.5 for the
momentum term, the model first seems to learn some features, but then quickly
collapses.
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Chapter 5

Conclusion and Outlook

The main contribution of this work is the implementation of a novel class of test
problems as an additional representation for deep generative models, within the
deep learning optimizer benchmark, DEEPOBS. This was achieved by several
steps within this work:

e Finding and integrating a stable and standardized model architecture,
that requires less time-consuming training, while striking a class of test
problems that can serve as a representation for real-world applications
and tasks.

e Creating four instances of this new class of test problems for the PyTorch
framework in DEEPOBS.

e Implementing the process for adversarial training of DCGANSs in the
DEEPOBS environment, which is not trivial due to the fact, that the
original training protocol does not apply for this architecture. The
DCGAN demands alternating update steps for the two optimizers to
improve the performance of the generator and the discriminator in concert,
and therefore a whole new training procedure had to be integrated.

e Finding an appropriate evaluation method for the DCGAN test problems
was a challenging part, in light of the fact that convergence theory of these,
is still extensively researched. In this work, quantitative and qualitative
methods have been investigated in detail, before deciding to stay with
the implementation of qualitative methods at first.

e With the experiments !, the functionality of the DCGAN concept,
within the DEEPOBS environment was proven, for each of the new test
problems. Further, the hyperparameter sensitivity that is typical for

'For an overview of all experiments, done in the context of this work, see:
https://github.com/Vanessa-Ts/DeepOBS_BA
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GAN:Ss is illustrated by examples from the experiments. These come
along with results, that enhance the fragility of the training process, in
the form of models that collapse, despite of the fact, that these initially
developed promisingly.

For a better overall insight on the implementations of this thesis, an updated
version of Table 1.1, is shown in Table 5.1. It illustrates these new test problems,
dedicated to the generation tasks marked in orange, as well as the far more
equal distribution of test problems in general over the two frameworks. In
total four new test problems have been introduced, for the new class within
the generation tasks, along with eight classification problems for PyTorch.

The decision to implement particularly a version of a GAN, supplements the
diversity of tasks in DEEPOBS, with a unique model architecture as well as a
completely different training and evaluation process.

Offering state-of-the-art models and tasks of the deep learning field, for the
evaluation of new optimizer, is essential for the benchmark suite, as it indicates
the significance of an optimizer’s results within this environment. Therefore
the transfer of the classification tasks to the PyTorch framework and especially
the introduction of a novel class of test problems directly strengthens the
competitiveness of the library.

Despite this progress, the implementation of this work has room for improve-
ments. Though qualitative evaluation methods guarantee a reliable classifica-
tion, whether an image appears realistic or not, they have several drawbacks
within an optimizer benchmark. Qualitative techniques do allow a classifica-
tion of optimizer when the performances differ greatly but not when an exact
comparison of almost similar images is needed. Further, the process of human
judges examining images to benchmark optimizer in the long run is neither
realistic nor can be automated.

5.1 Future Work

The implementation of a GAN model in DEEPOBS enables new challenges,
on which an optimizer can be tested, in order to prove its quality. For example,
researchers from the Max Planck Institute for Intelligent Systems, who work
with GANSs, suggest applying the RMSPROP? optimizer [MGN18] for the
training. Investigating the performance of this one with the DCGAN test
problems, is an interesting setting, for future experiments.

Further, there is no unified measurement in DEEPOBS by now, that allows an

exact comparison of an optimizer’s performance across all generation tasks. A
more precise evaluation and comparison, of the respective optimizer, could be

Zhttp:/ /www.cs.toronto.edu/ tijmen/csc321/slides/lecture_slides lec6.pdf
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Table 5.1: Status update on the overview of the test problems included in the
DEEPOBS library, separated by data set and model, and whether there exists
an implementation in the TensorFlow or the PyTorch framework. The colors
illustrate the new distribution of classes of test problems. Image classification

is still the most common, image generation
with variable complexity. Natural language processing
represented class of tasks and the 2D problems

is now represented six times
stays so far the least
remain unchanged as well.

Wide ResNet-16-4
Wide ResNet-40-4

Wide Residual Network [ZK16]
Wide Residual Network [ZK16]

Data set Model Description Framework
Noisy Beale Noisy version of Beale function
2D Noisy Branin Noisy verson of the Branin function
Noisy Rosenbrock Noisy version of the Rosenbrock function
Quadratic Deep 100dim ill-conditioned noisy quadratic
Log. Reg. Logistic regression O
MNIST [LBBHOS] MLP Four layer fully-connected network O
2c2d Two conv. and two fully-connected layers O
VAE Variational Autoencoder O
DCGAN Deep convolutional generative adversarial net O
Log. Reg. Logistic regression O
Fastion MNIST [XRV17] MLP Four layer fully-connected network O
2c2d Two conv. and two fully-connected layers O
VAE Variational Autoencoder O
DCGAN Deep convolutional generative adversarial net O
AFHQ DCGAN Deep convolutional generative adversarial net O
CELEBA DCGAN Deep convolutional generative adversarial net O
3c3d Three conv. and three fully-connected layers O
Crrar-10 [Kri09] VGG 16 Adapted version of VGG16 [SZ15] O
VGG 19 Adapted version of VGG19 O
3c3d Three conv. and three fully-connected layers O
VGG 16 Adapted version of VGG16 O
CIraR-100 [Kri09] VGG 19 Adapted version of VGG19 O
All-CNN-C The all convolutional net from [SDBR14] O
O
O
O
O

3c3d Three conv. and three fully-connected layers
SVHN [NtWCT11]

Wide ResNet-16-4 Wide Residual Network

VGG 16 Adapted version of VGG16
IMAGENET [DDS+09] VGG 19 Adapted version of VGG19

Inception-v3

Inception-v3 net as described by Szegedy et al. [SVI+ 16]

Tolstoi

CharRNN

Recurrent NN for character-level language modeling

achieved with the addition of quantitative metrics, such as the FID [HRU"17],
explained in Section 3.2.5. Applying this metric to the generated samples
of a VAE would close the gap between the different evaluation metrics for

generative models in DEEPOBS.

In addition, combining this work with the FID calculation can extend the
possibilities, for researchers in the deep learning field, to investigate performance
and convergence of GANSs, in a highly automated and unified environment. As
many optimizers and training settings for GANs tend to fail, in the form of
non-convergence (Section 4.2), it would be preferable to find reliable termination



40 CHAPTER 5. CONCLUSION AND OUTLOOK

conditions for the training process of DCGAN test problems in DEEPOBS,
that indicate this effect. Implementing such a quantification is left open for
future extensions, as further analysis and experiments are demanded here,
which is beyond the scope of this work.

In order to increase the value and significance and competition of the results of
the benchmark, there are still various test problems and classes of these same to
extend DeepOBS with. The DCGAN is only one of the various architectures
within the family of GANs and there exist many more interesting classes within
the deep learning field, such as reinforcement learning [SDG16].

With the extensions stated above, this work can help to further investigate the
notion of the deep learning community that some optimizers perform better in
certain kinds of tasks.
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