CONTINUOUS SECURITY
TESTING FOR THE
AUTOMOTIVE DOMAIN

Simon Greiner, Hans L6hr,*Paul Duplys

Safety, Security, Privacy
Corporate Research
Robert Bosch GmbH *Now at SUSE

1st ITG Workshop on IT Security (ITSec) — University of Tiibingen — 2020-04-02

Continuous Security Testing for the Automotive Domain
Agenda

» Introduction
» Requirements for Automotive Software Testing and Analysis C r A E
» The CrATE Framework

» Software Testing and Analysis Methods
» Static Code Checking
» Static Analysis Based on Semantic Code Property Graphs

» Software Fuzzing
» Fuzzing Embedded Software: Preliminary Results

» Conclusion & Outlook

SoDA Project Team, Bosch Coroporate Research | 2019-10-17 BOSCH

Continuous Security Testing for the Automotive Domain
Introduction and Motivation

» Current general trends
» Increasing connectivity
» Increasing complexity

1 & T
| TAKING ACTION FOR YOU ||

» More software | HACKERS USE WIFI TO TAKE CONTROL OF VEHICLES | §bc ASTION
FO DU INTRUDERS CAN DISABLE BRAKES, STEER & KILL ENGINE |l "m
» Increasing (potential) safety impact of security incidents

» Software vulnerabilities
» Major root cause of real-world security incidents
» Need to be avoided or detected as early as possible

» Software security: becoming more and more important!

» Building secure and robust systems is essential

Rk turning Internet of Things
(not only) for automated driving

into Botnet of things
e

> Software security testing and analysis to find bugs early World's largest 1 Thps DDoS Attack launched from "

in the development cycle is a crucial building block 152,000 hacked Smart Devices in 2016

500A Project Team. Bosch Goraporate Fesearch | 2019-10-17 (image source: medium.com)
0 roject leam, boSCl oroporate Researcl -10- BoscH

Continuous Security Testing for the Automotive Domain

Requirements

» Suitable for embedded software

» Low-level languages (C, C++)
» Heterogeneous build environments
» Stateful programs

» Safety relevance
» Cross-domain tooling, different analysis methods

» Changing tool landscape
» Easy integration of new analysis tools / methods

SoDA Project Team, Bosch Coroporate Research | 2019-10-17

» Changes and updates expensive
» Continuous integration
» High degree of automation

» Ease of use for developers

» Separation of duties

BOSCH

Continuous Security Testing for the Automotive Domain

Input , Input .
—| -&@*docker D“%:/Q BE:

Smart Fuzzing for SW Components

|
A oo EEEREEN |
|

Continuous Integration & Testing

» CrATE: Extensible & Scalable Framework for
Automated SW Security Testing & Analysis

[> git push]

\

010010 <
] =
— 00

w
— & &

» Execute testing & analysis methods automatically

» Support different kinds of tools

Static SW Analyis Tool

Graph-Based SW Analysis Tool

] Further Testing

—{ *docker

and Analysis

» Generate report on findings and statistics

SoDA Project Team, Bosch Coroporate Research | 2019-10-17

—{ *’fdocker

] Methods

H%

BOSCH
Fy 000]

Continuous Security Testing for the Automotive Domain
The CrATE Platform

CrATE: Continuous secuRity Analysis and TEsting

inform
Developer «
commit & CrATE Bottle
X2
Version Control . CrATE Server : ake CrATE Reports
trigger ene!

CrATE Bottle

» The “CrATE Server’ orchestrates test executions (starts containers, etc.)

» Analysis methods in CrATE are called “Bottles”
» Several CrATE Bottles can run in parallel

» Reports on findings are generated from the results

SoDA Project Team, Bosch Coroporate Research | 2019-10-17 BOSCH

Continuous Security Testing for the Automotive Domain

The CrATE Bottles

CrATE Bottle: Analysis method integrated into CrATE

Bottle

+ config

Preprocessing

Source code
+ config (CrATE Server)

Preprocessing Result

Analysis 1

Reporter 1

Analysis N

Reporter N

Analysis Result

Report

» Preprocessing: prepares analysis, e.g., compiles & builds the software

» Several analysers can run in parallel, e.g., to fuzz different software components

» Results are integrated into a report

SoDA Project Team, Bosch Coroporate Research | 2019-10-17

BOSCH

Analyis Methods for CrATE
Static Code Checking

» “Simple” static code checking tools » Proof-of-Concept:
» Work on a purely syntactic level Open-source tools _
» Completely automated, simple to apply as CrATE Bottles
» Useful to check adherence to coding guidelines > cppcheck
and rules (e.g., detect forbidded functions) » flawfinder Flawfinder
> Examples: » CoBrA

— MISRA rules (subset)
— SEI CERT Secure Coding Guidelines

» False positives & usability vary according to specific _
tool and code base » Commercial tools

can be handled analogously

» Integration into CrATE is
straight-forward

» Out-of-scope: Verification tools

» Sophisticated static software analysis
(e.g., abstract interpretation, model checking)

» Many false positives

Code Browser

L nd Analyzer
» Hard to automate for application to a larger code base and aiyze

SoDA Project Team, Bosch Coroporate Research | 2019-10-17

BOSCH

Analyis Methods for CrATE
Code Property Graphs (CPGs)

Source: Fabian Yamaguchi, ShiftLeft

» Generate CPGs as a combination of different graphs

» Formulate search queries in the graph
» Goes beyond simple syntactic checking
» Can take control flow and data flow into account

» Queries can be used interactively
(see scientific literature) => Not well suited for CrATE

» Queries can be run as scripts => Usable in CrATE

9 SoDA Project Team, Bosch Coroporate Research | 2019-10-17

C/C++

Source

Fuzzy Parsing . Code

AT R A CFG Ld PDG
\ J
¥
3

Traversal written in
scala-based query language

telligent Search Queries

Additional

Code Property Graph ++ £__Ri Knowledge

Graph Database

(e.g., srcfile)

oo

<A
JOEFN

4

AST: Abstract Syntax Tree
CFG: Control Flow Graph

PDG: Program Dependency Graph

BOSCH

Analyis Methods for CrATE
Fuzzing of Software Components

» Fuzzing: Testing a program with a large number
of different inputs (deviating from spec, “random”)

» Fuzzer: Generates inputs, executes tests
» Goal: Find crashes, timeouts,

or other observable incorrect behavior
» Fuzz Wrapper:

» Test harness to fuzz a software component

» Needs to be implemented for each component Inout Software under Test
(derived from an abstract wrapper class) P Fuzz Wrapper

» Fuzzers in CrATE: afl, LibFuzzer

» Coverage-guided open-source fuzzers ‘
» Well-known, state-of-the-art tools

» Out of scope: T .
» Protocol fuzzing, black-box fuzzing of network interfaces Cras h/TImeOUt

v

-
Fuzzer ‘ arget

10 SoDA Project Team, Bosch Coroporate Research | 2019-10-17

BOSCH

CrATE Integration Process
Project Integration: Fuzzing as an Example

» Scales easily Part of re-usable CrATE

> *’!docker

> £ kubernetes

Pilot-specific extensions

Pre-processing

=ikt 4> B\)ild Environment

‘) git Analysis

— FuzzTestcases Implementation

||
EEE . .
S Execution Environment

— Build Target for FuzzTestcases l

— Inputs per FuzzTestcase - :
IS d Result Reporting

4 SoDA Project Team, Bosch Coroporate Research | 2019-10-17 BOSCH

Fuzzing Embedded Software with CrATE
Some Preliminary Results

» Inter-process communication middleware for ECUs
» Found bugs in early development version
» Communicated to project team, fixed in later versions

» Open-source logging library » Preliminary Conclusions

» Used in automotive projects at Bosch » Fuzzing can reveal bugs that are hard to

find with other methods

» Found bugs, communicated to open-source project .
& P Pro) » Scalable platform makes continuous

» Open-source parser (json format) fuzzing easy & painless
» Used in automotive projects at Bosch > Integration effort for a new project:

» Found bugs, communicated to open-source project ~ 1-2 days (roughly)

» Network communication library for ECUs
» Project integrated into CrATE, Fuzzing is just starting

» Flexibility of build architecture and Fuzz Wrapper
proved essential for successful integration

SoDA Project Team, Bosch Coroporate Research | 2019-10-17 BOSCH

Continuous Security Testing for the Automotive Domain

Conclusion & Outlook

» Security and robustness testing
for automotive software

» Early in the development cycle
» In a continuous integration pipeline

» CrATE: platform for continuous security testing
» Flexible, scalable
» Supports various analysis methods

» SW vulnerabilities can be detected early,
before code is released

» Acceptance in development teams requires
» High degree of automation
» Low entry barrier for project teams

SoDA Project Team, Bosch Coroporate Research | 2019-10-17

» Outlook

>

More pilot projects
to get more (representative) code

More analysis methods
Evaluation and benchmarking

Investigation of useful combinations of analysis
methods

— E.g., use results from code property graph-based
queries to guide a fuzzer?

BOSCH

THANK YOU!

... QUESTIONS?

