
https://www.comsys.rwth-aachen.de/

Towards Executing

Computer Vision Functionality

on Programmable Network Devices

René Glebke, Johannes Krude, Ike Kunze,

Jan Rüth, Felix Senger, Klaus Wehrle

2. KuVS Fachgespräch on Network Softwarization, Online / Zoom, 2020-04-02

First presented at ACM CoNEXT ENCP’19, Orlando, FL, 2019-12-09

Paper available at

https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-glebke-in-network-cv.pdf

2
René Glebke, Johannes Krude, Ike Kunze, Jan Rüth, Felix Senger, Klaus Wehrle

inp@comsys.rwth-aachen.de

Common pattern in most current scenarios:

Few individual operations on many small items

In-Network Processing: State-of-the-art applications

 Programmable data planes enable scenarios that

require low latencies & high bandwidths

 Network operation & management

 Distributed algorithms & databases

 Partial offloading of application logic

 Industrial feedback control

 Load balancing Heavy-hitter identification DDoS mitigation

 Consensus Key-value caching MapReduce

Common pattern in most current scenarios:

Few individual operations on many small items

Common pattern in most current scenarios:

Few individual operations on many small items

Common pattern in most current scenarios:

Few individual operations on many small items

Common pattern in most current scenarios:

Few individual operations on many small items

3
René Glebke, Johannes Krude, Ike Kunze, Jan Rüth, Felix Senger, Klaus Wehrle

inp@comsys.rwth-aachen.de

Background: P4 Pipeline Architecture

 Match-action pipeline allows fixed-latency processing of packets

Parser Sequence of MAUs Deparser & Buffer+Metadata

Exact/range/ternary table matches

Header (section), metadata rewriting

Limited arithmetic, no floating point

Architecture-

dependent

4
René Glebke, Johannes Krude, Ike Kunze, Jan Rüth, Felix Senger, Klaus Wehrle

inp@comsys.rwth-aachen.de

In-Network Processing: State-of-the-art applications

 Programmable data planes enable scenarios that

require low latencies & high bandwidths

 Network operation & management

 Distributed algorithms & databases

 Partial offloading of application logic

 Industrial feedback control

 Load balancing Heavy-hitter identification DDoS detection

 Consensus Key-value caching MapReduce

Can other scenarios also benefit from INP?

Common pattern in most current scenarios:

Few individual operations on many small items

5
René Glebke, Johannes Krude, Ike Kunze, Jan Rüth, Felix Senger, Klaus Wehrle

inp@comsys.rwth-aachen.de

Can Computer Vision profit from In-Network Processing?

 Computer Vision pipelines also

require low latencies & high bandwidths

 Establishing themselves as critical system components

 Production: Collaborative robotics / assistance, quality assurance, safety, …

 Traffic: Crossroads monitoring (vehicle / pedestrian detection), …

 Such systems are becoming increasingly interconnected

 Data structure not INP compatible at first glimpse

 Camera images several OOM larger than packets

 Data may be split across packets Need to accumulate / share state

 Longer dwelling time of data on programmable network devices

 Complex calculations

 Matrix-vector / matrix-matrix multiplications

 Loops / iterative refinements

6
René Glebke, Johannes Krude, Ike Kunze, Jan Rüth, Felix Senger, Klaus Wehrle

inp@comsys.rwth-aachen.de

Convolution filters for edge detection

 Prominent processing step in CV: Edge detection

via response of convolution operation

 Given: Picture 𝑃 (grayscale, 𝑝 × 𝑞 pixels)

 Define: Filter 𝐹 (grayscale or binary, 𝑚 × 𝑛 pixels)

 Filter response: 𝑅Δ𝐷𝑖𝑟 𝑥, 𝑦 = 𝑖=1
𝑚 𝑗=1

𝑛 𝑃 𝑥 − 𝑖 + 𝑎, 𝑦 − 𝑗 + 𝑎 𝐹Δ𝐷𝑖𝑟(𝑖, 𝑗)

 Maximum response 𝑀 = 𝑅Δ𝐻 𝑥, 𝑦
2 + 𝑅Δ𝑉 𝑥, 𝑦

2

 Can be approximated: 𝑀 ∝ 𝑅Δ𝐻 𝑥, 𝑦 + 𝑅Δ𝑉(𝑥, 𝑦)

 Prewitt operator: Scharr (symmetric Sobel) operator:

-47 0 47

-162 0 162

-47 0 47

-1 -1 -1

0 0 0

1 1 1

-47 -162 -47

0 0 0

47 162 47

𝐹Δ𝐻 𝐹Δ𝑉 𝐹Δ𝐻 𝐹Δ𝑉

-1 0 1

-1 0 1

-1 0 1

-1 0 1

-1 0 1

-1 0 1

7
René Glebke, Johannes Krude, Ike Kunze, Jan Rüth, Felix Senger, Klaus Wehrle

inp@comsys.rwth-aachen.de

Applicability of edge detection filters on programmable network devices

 Prominent processing step in CV: Edge detection

via response of convolution operation

 Given: Picture 𝑃 (grayscale, 𝑝 × 𝑞 pixels)

 Define: Filter 𝐹 (grayscale or binary, 𝑚 × 𝑛 pixels)

 Filter response: 𝑅Δ𝐷𝑖𝑟 𝑥, 𝑦 = 𝑖=1
𝑚 𝑗=1

𝑛 𝑃 𝑥 − 𝑖 + 𝑎, 𝑦 − 𝑗 + 𝑎 𝐹Δ𝐷𝑖𝑟(𝑖, 𝑗)

 Maximum response 𝑀 = 𝑅Δ𝐻 𝑥, 𝑦
2 + 𝑅Δ𝑉 𝑥, 𝑦

2

 Can be approximated: 𝑀 ∝ 𝑅Δ𝐻 𝑥, 𝑦 + 𝑅Δ𝑉(𝑥, 𝑦)

 Prewitt operator: Scharr (symmetric Sobel) operator:

-47 0 47

-162 0 162

-47 0 47

-1 -1 -1

0 0 0

1 1 1

-47 -162 -47

0 0 0

47 162 47

𝐹Δ𝐻 𝐹Δ𝑉 𝐹Δ𝐻 𝐹Δ𝑉

-1 0 1

-1 0 1

-1 0 1

Independent of other pictures

Only local information needed

(surroundings of a pixel)

Only addition/subtraction

and multiplication of integers

Minimal global state (if any,

maximum 𝑀 for normalization)

Independent of other pictures

Only local information needed

(surroundings of a pixel)

Only addition/subtraction

and multiplication of integers

Minimal global state (if any,

maximum 𝑀 for normalization)

Common pattern in most current scenarios:

Few individual operations on many small items

8
René Glebke, Johannes Krude, Ike Kunze, Jan Rüth, Felix Senger, Klaus Wehrle

inp@comsys.rwth-aachen.de

Application scenario: A small line-following car

 Edge detection via INP should work in theory,

but does it work in practice?

 Given: Small autonomous car with mounted camera

 Goal: Car should follow sharply contrasting line

 Idea: P4 program scans for line in selected horizontal region

and car turns towards the line if threshold surpassed

-1 0 1

-1 0 1

-1 0 1

Turn rightForwardTurn left

Middle position between

two highest responses

9
René Glebke, Johannes Krude, Ike Kunze, Jan Rüth, Felix Senger, Klaus Wehrle

inp@comsys.rwth-aachen.de

An edge detection filter in P4: Communication pattern

 Each camera picture should yield

a new movement decision with minimal delay

 Challenge 1: Full pictures (still) do not fit into packets

 Solution: Harness locality of edge detection mechanism:

 Split picture into 𝑛 × 𝑛 chunks and

 Send in direction of filter application (custom UDP/IP protocol)

 Chunk size equal to filter size

(+) Can directly trigger filter upon arrival of chunk

(-) Large overhead (UDP/IP headers for 25 bytes of payload for best filter)

 Challenge 2: P4 cannot generate packets within the network

 Solution: Rewrite & reflect packet of last scanning region

(+) Minimum achievable latency

(-) Loss of packet causes missing control signal, susceptible to reordering

10
René Glebke, Johannes Krude, Ike Kunze, Jan Rüth, Felix Senger, Klaus Wehrle

inp@comsys.rwth-aachen.de

An edge detection filter in P4: Pipeline, step 1 (filtering)

 Problem structure allows for

drastic reduction of computation effort

 Challenge 1: Allow other tasks besides edge detection

(do not perform unnecessary operations)

 Solution: Check chunks, drop everything but scanning region

 Challenge 2: Filter undefined for “edges” of scanning region

(no data to perform convolution with)

 Solution: Assume scanning region is in single series of chunks

and only convolve center row of scanning region

Turn rightForwardTurn left

Middle position between

two highest responses

Turn rightForwardTurn left

Middle position between

two highest responses

around single line of pixels

Middle position between

two highest responses

11
René Glebke, Johannes Krude, Ike Kunze, Jan Rüth, Felix Senger, Klaus Wehrle

inp@comsys.rwth-aachen.de

Egress MAUs

Match (step) Action

Ingress buffers

 Real-world P4 pipelines do not allow single-step convolution calculation

 Solution: Column-wise calculation via looped ingress/egress program

An edge detection filter in P4: Pipeline, step 2 (convolution calculation)

Ingress MAUs

Match (step) Action

5 ColumnSum5
3 ColumnSum3
1 ColumnSum1

6 ReplyIfLast
4 ColumnSum4
2 ColumnSum2

1

2 ColumnSum2

Metadata

ColumnSum 0

Step 01236

423 ColumnSum3
ColumnSum1

Registers

MaxSum

MaxChunk 0190

1242

Per-step action (calculation)

x
6 ReplyIfLast

42

Sent as response

following last chunk

recirculate

12
René Glebke, Johannes Krude, Ike Kunze, Jan Rüth, Felix Senger, Klaus Wehrle

inp@comsys.rwth-aachen.de

Evaluation

 Real-world and synthetic benchmarks on

Netronome Agilio CX 2x25GbE SmartNICs

 2 connected NICs: 1 as car gateway/generator, 1 for P4

 Filter- & chunk sizes: Up to 10x10 pixels

 O(1): Pipeline lengths (in-/egress)

 O(𝑛): Table entries, calculations per action

 Good results at 5x5 already

 Throughput: 19 fps (5x5); 77 fps (10x10)

 Processing of last chunk at 5x5: 150µs (stddev 1.3ms)

 Processing of last chunk at 10x10: 187µs (stddev 0.6ms)

 13.7% drops at 5x5; none for 10x10 buffering / recirculation

Normal mode,

host w/wireless interface

P4 mode

13
René Glebke, Johannes Krude, Ike Kunze, Jan Rüth, Felix Senger, Klaus Wehrle

inp@comsys.rwth-aachen.de

Conclusion: Aiding Computer Vision via In-Network Processing

 Using INP, we can indeed offer (simple, prototypical)

CV-related functionality as a service in the network

 Thanks to an amenable structuration of the data

 Open questions / future work

Mathematical operations & filter sizes limited

 Harness table memory via better structure of data?

 Coexistence with other services in the network

 Ordering & dropping behavior assumptions (e.g., for recirculation)?

 Limited data sharing between packets subsampling only

 Limited (isolated) buffers for functionality in pipelines?

 We believe INP can assist in many

stream processing applications

14
René Glebke, Johannes Krude, Ike Kunze, Jan Rüth, Felix Senger, Klaus Wehrle

inp@comsys.rwth-aachen.de

Credits

 Picture on slides 2/4: Wikimedia / Victorgrigas
(adapted (cropped) from https://commons.wikimedia.org/w/index.php?title=File:Wikimedia_Foundation_Servers-

8055_22.jpg&oldid=218547099)

CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0/)

 Picture on slide 5: Wikimedia / Jeff Green/Rethink Robotics
(adapted (cropped) from https://commons.wikimedia.org/w/index.php?title=File:Acorn_Sales.jpg&oldid=300471544)

CC BY (https://creativecommons.org/licenses/by/4.0/)

 Pictures on slides 6/7: Wikimedia / Thorkild Tylleskar
(adapted (cropped / filtered) from

https://commons.wikimedia.org/w/index.php?title=File:WHO_HQ_main_building,_Geneva,_from_North.JPG&oldid=351921076)

CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0/)

 NIC on slide 12: Netronome.com

 Car/track pictures: Felix Senger, COMSYS, RWTH Aachen University
CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0/)

