Content-based Publish/Subscribe in
Software-defined Networks

Helge Parzyjegla, Christian Wernecke, and Gero Miihl
Institute of Computer Science
University of Rostock, 18051 Rostock, Germany
{helge.parzyjegla, christian.wernecke, gero.muehl} @uni-rostock.de

Abstract—With SDN, content-based publish/subscribe can be
implemented on the network layer instead of using an applica-
tion layer broker network. We present two methods realizing
notification distribution with OpenFlow and P4, respectively.

I. INTRODUCTION

Publish/subscribe is a flexible communication mechanism
ideally suited for building loosely coupled distributed applica-
tions for the Internet of Things (IoT), the cloud, or a regular
data center. Application components interact with each other
by taking over the role of a publisher and/or a subscriber.
Publishers produce notifications containing the data they want
to share whereas subscribers consume notifications relevant
to them. To determine the relevance of a notification, a
subscriber creates a subscription. In the content-based model,
the subscription contains a filter selecting notifications based
on their individual content. Likewise, publishers may use an
advertisement with a filter to describe the content of the
notifications they are going to produce. The flexibility of
publish/subscribe finally results from the indirect and data-
centric communication making it easy to scale and extend
applications by replicating components and adding new ones.

To foster the loose coupling of application components,
the distribution of notifications is delegated to a separate
notification service. The notification service is often realized
by a set of cooperating brokers exchanging advertisements,
subscriptions, and notifications to ensure that a published
notification is delivered to all subscribers with a matching
subscription. Usually, brokers implement matching and routing
on the application level and forward notifications between
brokers using an overlay network. On the one hand, this
eases the realization of sophisticated content-based distribu-
tion strategies significantly, but, on the other hand, it also
introduces a considerable processing delay at each broker
(e. g., for traversing the network stack and the (de)serialization
of the notification’s content) and may lead to inefficiencies
if the overlay network does not fit the physical network
topology. Software-defined networking (SDN), however, en-
ables new implementations of content-based publish/subscribe.
With network elements (e. g., switches) becoming increasingly
intelligent, they can take over more and more dedicated broker
functions. Eventually, this allows for notification distribution
strategies realized completely on the network layer that dras-
tically reduce latency and increase network efficiency.

II. SDN-BASED NOTIFICATION DELIVERY

Although SDN-enabled switches feature processing capa-
bilities, they are not designed to inspect the content of a
notification. Hence, the SDN-based delivery of notifications
differs from a broker-based approach in that it requires an
additional preprocessing step. In fact, the SDN-based publish/
subscribe lifecycle works as described in the following.

First, publishers and subscribers both register at the SDN
controller. This way, the controller learns where all notification
sources and sinks are located in the network and can, thus,
construct appropriate delivery trees. The controller installs re-
quired forwarding rules at the switches and tells the publishers
about those subscriptions that may be matched by a notifica-
tion they produce. The publisher determines which individual
subscriptions match the notification’s content and labels the
notification correspondingly so that the switches can apply
the previously installed forwarding rules. The switches, then,
ensure that the notification eventually reaches all subscribers.
If advertisements and subscriptions are issued or revoked, the
SDN controller is informed again so that it can adapt delivery
trees and notify all affected publishers about the changes.

Based on this publish/subscribe lifecycle, we have imple-
mented two approaches for content-based publish/subscribe
in software-defined networks. They differ in terms of used
protocols and standards (i. e., OpenFlow vs. P4), the encoding
and storage of distribution information (i. e., protocol headers
and flow rules), and the accuracy of the notification delivery
(i.e., perfect vs. approximate with false positives).

A. Managing Forwarding Trees with OpenFlow

Our first approach [8] is implemented using OpenFlow [7],
which is currently the most prominent SDN standard. With
OpenFlow, however, we are restricted to the header fields of
existing protocols (e. g., UDP, IP) and those operations that are
defined for these fields in the OpenFlow standard. Since the
set of receivers of a notification is determined dynamically
from the notification’s content, it may be different for each
notification. Moreover, the number of receiver combinations
grows exponentially with an increasing number of subscribers
exceeding quickly the available label or address space of
network protocols. Therefore, we decided to encode the set
of receivers approximatively using a Bloom filter.

A Bloom filter [2] is a probabilistic data structure based
on a bit vector of fixed length that uses hashing to store the



members of a set, e. g., those subscriptions that are matched by
a notification. With a certain (small) probability, a membership
query may return a false positive, i.e., indicate a match
although the subscription does not match. We embed the
Bloom filter into the IPv6 source and destination addresses
which were not used otherwise resulting in a combined vector
of 256bits. Using subnet/bitmask operations, the switches
can examine individual bits of the Bloom filter and check
whether a subscription is matched. Based on these checks,
we install appropriate forwarding rules for each subscription
on the switches, which have to be updated whenever new
subscriptions are issued or existing subscriptions are revoked.

We have investigated and compared several optimizations
that exploit similarities between active subscriptions in order
to reduce the number of required forwarding rules as well as
the fraction of false positives [8]. The latter can be kept below
a certain threshold at the cost of increased network traffic by
distributing a notification with several messages. To cope with
the restricted storage capacity of the switches, we have also
developed a strategy to merge forwarding rules that, however,
leads to more false positives. Nevertheless, this strategy can be
combined with the optimizations above to mitigate the effect.

B. Multicast Source Routing with P4

Our second approach [9] is based on P4 [3] that can be
thought of as a next generation OpenFlow. P4 allows to define
and process custom protocol headers for publish/subscribe that
we use to realize a multicast source routing. The distribution
tree of a notification is encoded into a stack of message headers
that are added by the publisher. When a switch receives
such a notification, it examines the message headers to find
out to which of its connected neighbors (i.e., switches and
subscribers), it has to forward the message.

We have implemented several different methods to encode
the distribution tree into the notification message as well as
to process it on the switches. We evaluated the methods in
a larger emulated network and compared the results with
other approaches (e.g., unicast, broadcast, overlay network)
with regard to protocol overhead and notification delay. In
particular, the evaluation shows that the notification delays can
largely be reduced compared to an overlay network.

Please note that the P4 program for processing the header
stacks is static and does not depend on the set of active
subscriptions. Hence, the switches do not need to be updated
when subscriptions are issued or revoked which allows for
applications in highly dynamic environments. We also im-
plemented a hybrid approach [10] that uses header stacks to
dynamically extend stored forwarding trees. This is well suited
for scenarios with a stable subset of subscribers that receive a
large fraction of all published subscriptions so that maintaining
a forwarding tree actually pays off. For the latter, however, it
is crucial to correctly partition and classify the subscribers.

III. RELATED WORK

Bloom filters have many applications in distributed sys-
tems including publish/subscribe middleware. XSiena [4] en-

codes all matching subscription predicates into a Bloom filter
attached to the notification. Although this avoids a time-
consuming reevaluation of predicates at downstream brokers,
forwarding decisions are still taken on the application layer
causing a substantial delay. Lipsin [6] offers a network layer
approach that encodes all links of the notification’s distribution
tree into a Bloom filter enabling network elements to make
fast forwarding decisions. Lipsin was implemented using a
prototype of a NetFPGA-based router. In contrast, Pleroma [1]
works on SDN-capable switches using OpenFlow. It assumes
that the notification space can be divided into subspaces
which are mapped to binary strings representing IP multicast
address ranges so that they can be managed using standard
wildcard/masking operations without Bloom filters.

There have already been stateless multicast approaches
based on source routing. Being very space-efficient, COX-
cast [5] mathematically encodes the whole distribution tree
into a single identifier attached to the message header. Unfor-
tunately, it is not fully SDN-ready yet.

IV. CONCLUSIONS AND FUTURE WORK

We have presented two approaches to implement content-
based publish/subscribe with OpenFlow and P4, respectively.
Both approaches make all forwarding decisions on the network
layer enabling low notification latencies. For future work, we
want to investigate more efficient encodings tailored to given
application scenarios and supported by real-world data sets.

REFERENCES

[1] S. Bhowmik, M. A. Tariq, B. Koldehofe, F. Diirr, T. Kohler, and
K. Rothermel. High performance publish/subscribe middleware in
software-defined networks. IEEE/ACM Transactions on Networking,
25(3):1501-1516, June 2017.

[2] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
13:422-426, July 1970.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4:
Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review, 44(3):87-95, July 2014.

[4] Z. Jerzak and C. Fetzer. Bloom filter based routing for content-
based publish/subscribe. In 2nd International Conference on Distributed
Event-based Systems, DEBS *08, pages 71-81. ACM, 2008.

[5] W.-K. Jia. A scalable multicast source routing architecture for data
center networks. IEEE Journal on Selected Areas in Communications,
32(1):116-123, Jan. 2014.

[6] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and
P. Nikander. Lipsin: Line speed publish/subscribe inter-networking.
SIGCOMM Comput. Commun. Rev., 39(4):195-206, Aug. 2009.

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. OpenFlow. ACM SIGCOMM
Computer Communication Review, 38(2):69, 2008.

[8] H. Parzyjegla, C. Wernecke, G. Miihl, E. Schweissguth, and D. Timmer-
mann. Implementing content-based publish/subscribe with OpenFlow. In
Proceedings of the 34th ACM/SIGAPP Symposium on Applied Comput-
ing, SAC ’19, pages 1392-1395, New York, NY, USA, 2019. ACM.

[9]1 C. Wernecke, H. Parzyjegla, G. Miihl, P. Danielis, and D. Timmermann.

Realizing content-based publish/subscribe with P4. In 2018 IEEE

Conference on Network Function Virtualization and Software Defined

Networks (NFV-SDN 2018), pages 1-7, Piscataway, NJ, USA, Nov.

2018. IEEE.

C. Wernecke, H. Parzyjegla, G. Miihl, E. Schweissguth, and D. Tim-

mermann. Flexible notification forwarding for content-based publish/-

subscribe using P4. In 2019 IEEE Conference on Network Function

Virtualization and Software Defined Networks (NFV-SDN 2019), pages

1-5, Piscataway, NJ, USA, Nov. 2019. IEEE.

[10]



