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I. INTRODUCTION

The electrical/electronic (E/E) architecture of cars has
evolved from a single CAN bus to a domain-based model
with domain-specific buses and centralized gateways. With
increasing bandwidth demand resulting from the integration
of camera and multimedia applications, Ethernet becomes
a relevant network technology for in-vehicle networks [1].
Automotive Ethernet is based on 100Base-T1 over unshielded
twisted single pair (UTSP) cables. Today, automotive Ethernet
networks are still statically deployed and configured during the
manufacturing process like traditional bus systems. In order to
decouple hardware- and software-development cycles [2] dy-
namic in-vehicle networks are needed. We propose an SDN [3]
architecture for automotive Ethernet networks that can be
reconfigured after delivery to the customer or even during
operation. For Ethernet-based real-time communication, 802.1
Time Sensitive Networking (TSN) [4] can be used.

This paper is structured as follows. Section II describes use
cases for flexible in-vehicle networks. Section III presents a
novel SDN architecture for automotive Ethernets. Section IV
explains mechanisms for device and application discovery. We
conclude our work in Section V.

II. USE CASES

A use case that could particularly benefit from reconfig-
urable in-vehicle networks are trailers connected to cars or
trucks. Today, trailers are connected to the car electrically
using one of several standardised connectors using 5 to 22
pins. The connectors support only few fixed functions, e.g.,
tail lamps, stop lamps, turn signals or in rare cases electric
brakes. More sophisticated applications are not supported by
traditional trailer connectors. An automotive SDN architecture,
however, brings the ability to connect networked components
in the trailer to the car’s network. One of the most obvious
applications in this use case is connecting park distance control
(PDC) sensors or a rear view camera located in the trailer to
the car’s infotainment system.

Aside from feature use-cases like connecting trailers to
cars, an automotive SDN architecture can also change how
connected components are developed and serviced during their
life cycle. Traditionally, the feature set of a car and the
functionality of it’s components does not change after the car
is produced. If the software running on a component needs to
be patched, the car needs to be brought to a repair shop with

Fig. 1. Trailer connected to the in-vehicle network.

specialized diagnostic hardware. Adding new features with up-
dates is usually not possible at all as the car’s E/E architecture
is static and cannot be changed. In recent years, software in
cars has gotten more and more complex and the state of the
art of complex systems like driver-assistance changes rapidly.
This makes the ability to patch existing systems and add
new features to it via over-the-air (OTA) updates desirable.
An automotive SDN architecture gives manufacturers more
flexibility to develop updates and new features for cars as it
enables them to change the car’s data network. One example
is an update of a collision avoidance system. Originally, the
collision avoidance monitors traffic in front of the car using
a camera. The manufacturer then wants to update the system
and add a feature that monitors traffic behind the car while
reversing by checking the PDC sensors. Using a traditional
E/E architecture, this feature cannot be added as the collision
avoidance system has no access to the PDC sensors. Using an
SDN architecture, the network can be re-configured to clone
the packets coming from the PDC sensors and send the copies
to the collision avoidance system.

III. ARCHITECTURE

Figure 2 shows an overview of the proposed network
architecture. We use the topology introduced in [5] as a basis.

The in-car data plane connects all components and appli-
cations to each other and to the management system. Traffic
on the data plane is divided into hard real-time traffic, soft
real-time traffic, best-effort traffic and network configuration
traffic classes. Hard real-time traffic originates at safety-critical
components, e.g., the brake system, and must be transmitted
with bounded low latency. Soft real-time traffic is associated
with systems that are less critical and can operate in a
degraded state if the deadline is not met, e.g., light and
rain sensors. A rate limiter prevents faulty components from
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Fig. 2. Architecture overview.

flooding the network. Additionally, traffic of different classes
and possibly within a class are isolated from each other to
prevent faulty systems from impacting other systems and to
prevent malicious attacks from intruders.

Fig. 3. Car network with in-band controller.

Figure 3 shows a possible network topology. During normal
operation, the two links between the back and the front of
the car are bonded together using link aggregation. Different
scheduling variants can be used depending on the requirements
with regard to throughput and safety. Possible scheduling vari-
ants may be round-robin scheduling for creating one logical
link, distributing traffic on both links on a per-flow or per-
component basis or using 1+1 protection for redundancy only.
In case of a link failure, all traffic is redistributed to the
functioning link. If maximum throughput on the single link is
not sufficient, best-effort traffic can be dropped to guarantee a
safe operation of the car. Furthermore, it is possible to reduce
sensor rates to the minimal safe rate in order to reduce total
traffic.

The data plane is configured by the network controller
via in-band signalling. The network controller is connected
directly to one of the switches. The network controller fea-
tures a northbound interface that can be used by components
and applications to trigger certain re-configurations of the
network. Access to the northbound interface is regulated by
access control lists (ACLs) and different permission levels.
Configuration of the network is done using information from
an inventory of components (e.g., sensors, actuators, and
infotainment systems) and applications.

IV. DEVICE AND APPLICATION DISCOVERY

The ability to add new components to the car’s network,
e.g., a trailer as described in section II, requires a mechanism
for automated detection of new components and subsequent re-
configuration of the network. At the same time, the network
must not be compromised by malicious devices that are
connected to the network.

To prevent attacks from unidentified devices, all traffic
except for traffic on a dedicated and rate-limited discovery
channel is dropped by the switch on ports that have not
been in use so far. A device that gets connected to the
network communicates its identification and requirements to
the network by sending a signed manifest to the controller via
a broadcast message on the discovery channel. The switches
forward all packets sent on this channel to the network
controller. The controller then checks the manifest’s integrity
and trustworthiness by checking if the manifest’s signature is
valid and originates from a trusted manufacturer. In case the
device is deemed trustworthy, the controller then re-configures
the network according to the requirements in the manifest.

In addition to devices that are added to the car’s network,
new applications may be installed on devices. These applica-
tions might have requirements to the network as well. Dis-
covery of applications is performed similarly to the discovery
of devices by sending a signed manifest to the controller.
However, the manifest is not sent over a discovery channel by
the application itself, but by the device running the application
via the northbound interface.

V. CONCLUSION

Traditional in-vehicle networks are based on low bandwidth
technologies like CAN. They are statically deployed and
configured in the manufacturing process depending on the
vehicle configuration. In this work we presented use cases that
particularly benefits from configurable in-vehicle networks and
proposed an SDN based architecture for automotive Ethernets.
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