

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT

Kommunikationsnetze

An SDN Architecture for Automotive Ethernets

M. Häberle, F. Heimgärtner, H. Löhr, N. Nayak, D. Grewe, S. Schildt, M. Menth

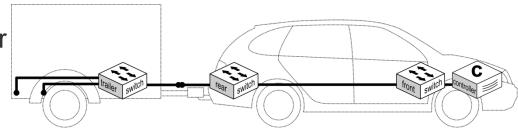
http://kn.inf.uni-tuebingen.de

- Motivation
- Evolution of E/E-Architectures
- Use Cases
 - Trailer Networks
 - Driver Assistance Systems
- Architecture
 - Overview
 - Data Plane
 - Management
- Operations
 - TSN Configuration
 - Discovery
 - Failover
- Security

- In-vehicle networks today
 - Low bandwidth technologies
 - Static configuration, determined during manufacturing
- Future
 - More bandwidth demand
 - Configuration changes after purchase
 - Plug-and-play add-on components
 - Downloadable features
- Reconfigurable networks required

Evolution of E/E-Architectures

- Distributed ECUs connected to single CAN bus
- Multiple CAN buses connected to central gateway
 - Additional application specific buses (LIN, MOST, FlexRay)
- Consolidation of functionality into more powerful devices
 - Domain model
 - ECUs separated into Domains (safety, comfort, infotainment,...)
 - One or more buses per domain connected to domain controller
 - Domain controllers connected by backbone network
 - Problem: wiring effort
 - Zone model
 - Zone controllers per location (front left/right, rear left/right,...)
 - ECUs connected to local zone controllers
 - Zone controllers interconnected by backbone network (mesh)
- Automotive Ethernet
- Time Sensitive Networking

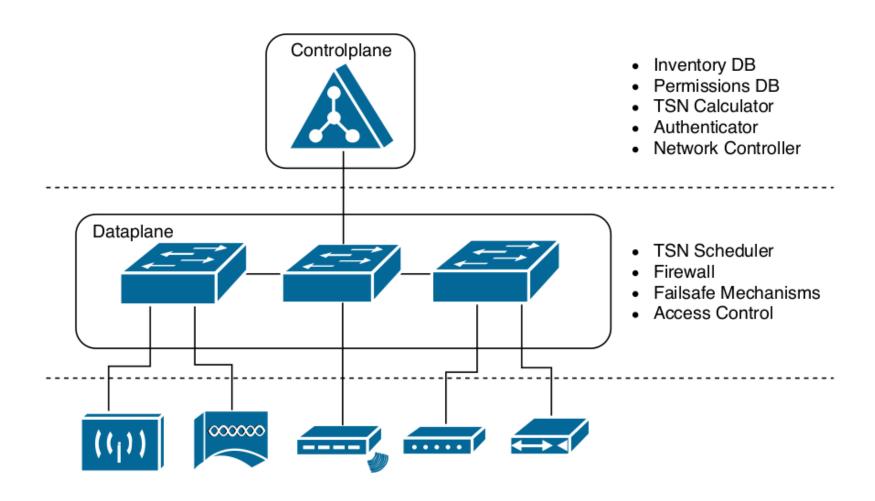


Use Case: Trailer Networks

- ▶ Trailer connection today
 - Electrical connection (5-22 pins)
 - Fixed function set (tail lamps, turn signals, electric brakes)

- Future
 - Switches in car and trailer
 - Ethernet connection

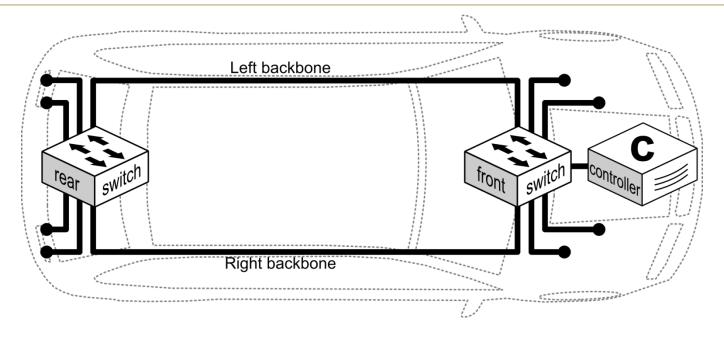
- Benefits from reconfigurable networks
 - Connection of networked components in trailer to vehicle
 - Cameras
 - Sensors (e.g., park distance control)
 - Actuators (e.g. electric brakes with TSN)
 - Sharing of uplink (e.g., Wi-Fi for caravans/camping trailers)



Use Case: Driver-Assistance Systems

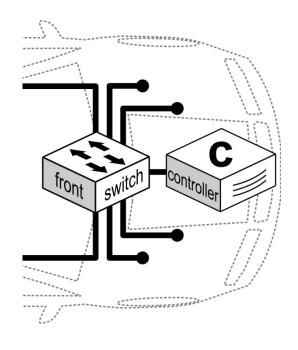
- Downloadable driver-assistance systems or OTA updates
- Benefits from reconfigurable networks
 - Change of data sources (sensors, etc.)
 - Reconfiguration of real-time streams
- Example: Update of collision avoidance system
 - Initial feature set
 - Check forward traffic only
 - Update
 - Check backward traffic while reversing
 - Needs access to reversing camera or PDC sensors
 - Re-configuration of network required

Automotive SDN Architecture



- Components
 - Scheduler
 - Rate limiter
 - Firewall
 - Fail-safe mechanisms
 - Redundant links
 - Access control
- Functionality
 - Interconnect components and applications
 - Connect components and applications to management system

- ▶ Traffic classes
 - Hard real-time
 - Safety-critical components
 - Fixed deadlines
 - Soft real-time
 - Less critical systems
 - Degraded operation possible with missed deadlines
 - Configuration
 - Management
 - Discovery
 - Best effort
 - Infotainment
 - All other traffic



- Two switches (front and rear switch)
- Two backbone links between front and rear
 - Link aggregation during normal operation
 - Rescheduling traffic to the operational link in case of link failure
 - 1+1 protection for selected critical flows

- Data plane configured by network controller
- Controller Directly connected to one of the switches
- In-band signaling
 - Reduced wiring effort
 - Extensibility (trailer use case)
- Northbound interface
 - Used to trigger reconfigurations
 - Access restricted by ACLs and permission levels

Operations: TSN Configuration

- Safety critical components require real-time communication
- Updates of Time Sensitive Networking (TSN) configuration
 - Allocation of bandwidth
 - Re-calculation of schedules
 - Path selection for 1+1 protection
- Hybrid scheduling
 - In-car controller calculates initial schedule
 - Guarantees for safety-critical systems
 - Non-optimal, with approximations
 - Cloud service is triggered for schedule calculation
 - Re-use cached schedule for same constellation
 - Compute optimal schedule if no cached schedule available

Operations: Discovery

- Discovery of devices based on signed manifest
 - Network ports of switches blocked initially, only discovery channel open
 - New device sends manifest via broadcast message on discovery channel
 - Contains information about device (identification, requirements to network, access to northbound API of controller required, ...)
 - Signed by manufacturer of device
 - External store of CA certificates, local cache
 - Controller re-configures network, gives access to northbound API if requirements of device are not static (e.g. if apps can be installed)
- Application discovery similar
 - Difference: Manifest sent by Host device via northbound API

Operations: Failover

- Single backbone link failure
 - Traffic is rerouted trough remaining backbone link
 - Pre-calculated outage schedule for TSN flows
- Controller failure
 - No reconfiguration possible anymore
 - Backup flows and schedules pre-computed for critical systems
 - Switches apply backup configuration if connection to controller lost
- Switch failure or double backbone link failure
 - Components enter fail-safe state
 - Backup systems to ensure safe stop of vehicle

- Devices and Applications
 - New devices can only access network for discovery
 - Manifest signed by trusted manufacturer required
 - Device sends app manifest to controller via northbound API
 - Central CA store contains CA certificates
- Network security
 - Specific flows between devices and applications
 - Firewall for outside connections
 - Filtering of uplink, V2X, Bluetooth, Wi-Fi
 - MACsec or AUTOSAR SecOc for integrity protection
 - Access restrictions for controller interfaces

- Legacy automotive networks
 - Low bandwidth
 - Static configuration
- New applications and use cases
 - Higher bandwidth demand
 - More flexibility needed
- Technology for future automotive networks
 - Automotive Ethernet
 - Time-Sensitive Networking
- SDN concepts for automotive ethernets
 - Configuration and management
 - Path selection
 - TSN Schedules
 - Access Control

Marco Häberle, MSc.

haeberle@informatik.uni-tuebingen.de
University of Tuebingen, Dept. of Computer Science
Chair of Communication Networks
Sand 13, 72076 Tuebingen, Germany
http://kn.inf.uni-tuebingen.de/