


# Online Reprogrammable Multi Tenant Switches

<u>Johannes Krude</u><sup>1</sup>, Jaco Hofmann<sup>2</sup>, Matthias Eichholz<sup>2</sup>, Klaus Wehrle<sup>1</sup>, Andreas Koch<sup>2</sup>, Mira Mezini<sup>2</sup>



DFG Collaborative Research Centre 1053 – MAKI Multi Mechanism Adaptation for the Future Internet

<sup>1</sup>RWTH Aachen University, <sup>2</sup>Technische Universität Darmstadt

ENCP '19, 2019-12-09



https://comsys.rwth-aachen.de/

#### • On switch ...

- ...stateful load balancer replaces hundreds of servers [SilkRoad 2017]
- …data aggregation speeds up databases [Lerner et.al. 2019, …]
- …paxos reduces coordination overhead [NetChain 2018, …]
- ...key-value caching improves throughput and latency [NetCache 2017, ...]



#### • On switch ...

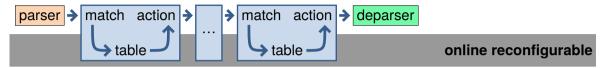
- ...stateful load balancer replaces hundreds of servers [SilkRoad 2017]
- …data aggregation speeds up databases [Lerner et.al. 2019, …]
- ...paxos reduces coordination overhead [NetChain 2018, ...]
- ▶ ...key-value caching improves throughput and latency [NetCache 2017, ...]

# Programmable Switch as a Service Image: Service <tr





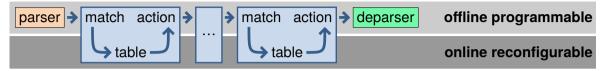







Runs a single P4 program

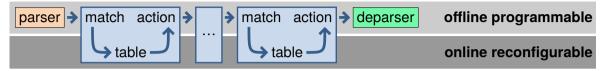







Runs a single P4 program








Krude et al

- Runs a single P4 program
- Reprogramming causes switch and network downtime





- Runs a single P4 program
- Reprogramming causes switch and network downtime

We propose to modify the programmable switch architecture

· To enable hot-pluggability of on-switch functions



# **Hot-Pluggability**

Definition

The ability to insert, modify, and remove on-switch functions without affecting other on-switch functions and packet forwarding.

Tenant 1:

Load Balancer

needs high availability

Tenant 2:

SQL group-by

lifetime of seconds

**Packet Forwarding** 

Programmable Switch



# **Hot-Pluggability**

Definition The ability to insert, modify, and remove on-switch functions without affecting other on-switch functions and packet forwarding.

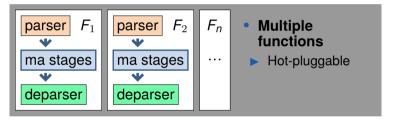
#### **Related Work**

- Use a dedicated switch for each application [PPS 2019]
- Put generalized functionality permanently onto switches [NetAccel 2019, Ports et al. 2019]
- Emulate P4 in Match-Action Tables [Hyper4 2016, HyperVDP 2019]
  - Excessive Resource Consumption

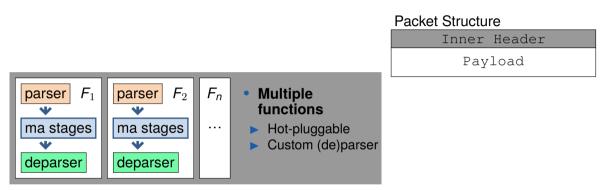


# **Hot-Pluggability**

Definition The ability to insert, modify, and remove on-switch functions without affecting other on-switch functions and packet forwarding.


#### **Related Work**

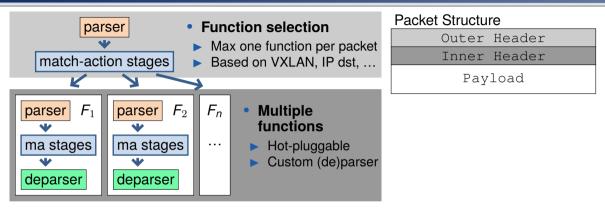
- Use a dedicated switch for each application [PPS 2019]
- Put generalized functionality permanently onto switches [NetAccel 2019, Ports et al. 2019]
- Emulate P4 in Match-Action Tables [Hyper4 2016, HyperVDP 2019]
  - Excessive Resource Consumption


We want: Switch Sharing & On-Demand Instantiation & Individual Customization



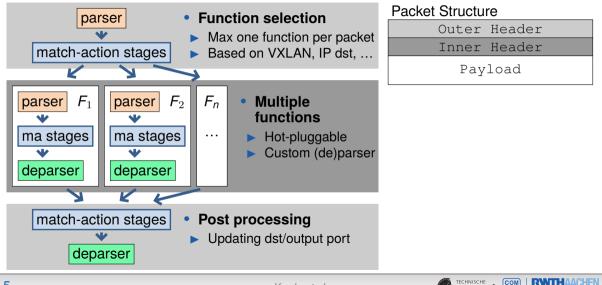


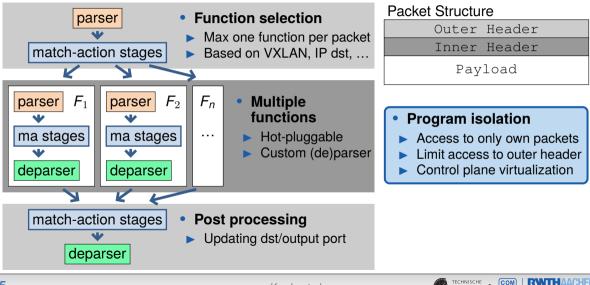










RWTH


SYS





СОМ





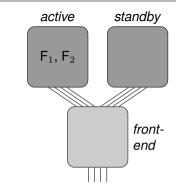
#### We present three different possible implementations

None of them yet implemented

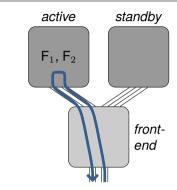
#### Multiple Switching ASICs ✓ Easily realizable

X No statefull functions

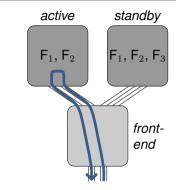
#### **Using FPGAs**


- Realizable with FPGA knowledge
- X Reduced Throughput

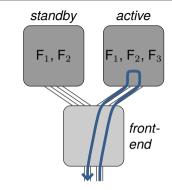
#### An ASIC extension


- X To be done by switching ASIC vendors
- High performance

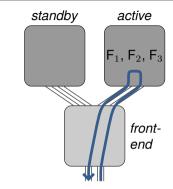




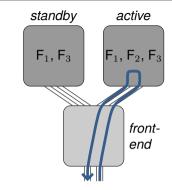


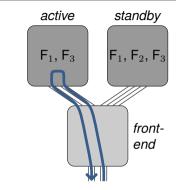




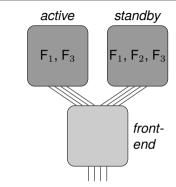





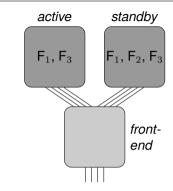




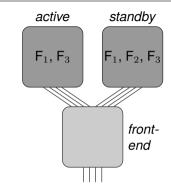








- Alternate between two switching ASICs
- Merge functions into single program






- Alternate between two switching ASICs
- Merge functions into single program
- Compiler provides isolation
  - Restricts access to outer headers
  - Control plane mapping from table memory to function



- Alternate between two switching ASICs
- Merge functions into single program
- Compiler provides isolation
  - Restricts access to outer headers
  - Control plane mapping from table memory to function

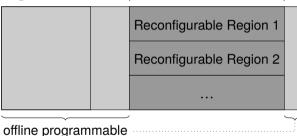


#### **Advantages**

/ Based on available hardware

#### Limitations

X Problematic for statefull functions



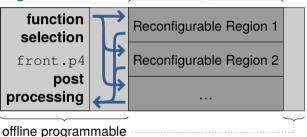

- P4 can be executed on FPGAs [P4 $\rightarrow$  NetFPGA, 2019]
- FPGAs support dynamic partial reconfiguration




- P4 can be executed on FPGAs [P4→ NetFPGA, 2019]
- FPGAs support dynamic partial reconfiguration

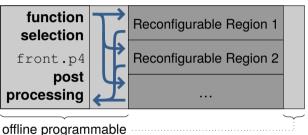
online reprogrammable




COM

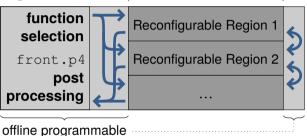
- P4 can be executed on FPGAs [P4→ NetFPGA, 2019]
- FPGAs support dynamic partial reconfiguration



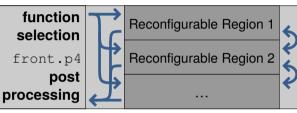



- P4 can be executed on FPGAs [P4→ NetFPGA, 2019]
- FPGAs support dynamic partial reconfiguration
- Isolation on FPGA level
  - Forward each packet to single region
  - Remove outer headers






- P4 can be executed on FPGAs [P4→ NetFPGA, 2019]
- FPGAs support dynamic partial reconfiguration
- Isolation on FPGA level
  - Forward each packet to single region
  - Remove outer headers
- Fixed sized reconfigurable regions






- P4 can be executed on FPGAs [P4→ NetFPGA, 2019]
- FPGAs support dynamic partial reconfiguration
- Isolation on FPGA level
  - Forward each packet to single region
  - Remove outer headers
- Fixed sized reconfigurable regions
  - Forward packets between regions
  - Split function across multiple regions



- P4 can be executed on FPGAs [P4→ NetFPGA, 2019]
- FPGAs support dynamic partial reconfiguration
- Isolation on FPGA level
  - Forward each packet to single region
  - Remove outer headers
- Fixed sized reconfigurable regions
  - Forward packets between regions
  - Split function across multiple regions



online reprogrammable

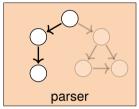
offline programmable

#### **Advantages**

- Readily available hardware
- Non-reconfigured regions keep state

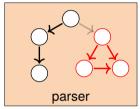
#### Limitations

X Limited throughput



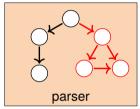



- Parser, matching, actions, and deparser are stored in SRAM and TCAM
  - Use per entry validity bit for atomic updating [CoPTUA 2004]



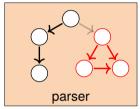

- Parser, matching, actions, and deparser are stored in SRAM and TCAM
  - Use per entry validity bit for atomic updating [CoPTUA 2004]
- Insertion/Removal order to avoid inconsistent states





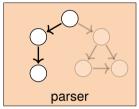

- Parser, matching, actions, and deparser are stored in SRAM and TCAM
  - Use per entry validity bit for atomic updating [CoPTUA 2004]
- Insertion/Removal order to avoid inconsistent states





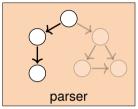

- Parser, matching, actions, and deparser are stored in SRAM and TCAM
  - Use per entry validity bit for atomic updating [CoPTUA 2004]
- Insertion/Removal order to avoid inconsistent states






- Parser, matching, actions, and deparser are stored in SRAM and TCAM
  - Use per entry validity bit for atomic updating [CoPTUA 2004]
- Insertion/Removal order to avoid inconsistent states

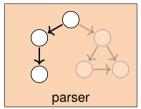





- Parser, matching, actions, and deparser are stored in SRAM and TCAM
  - Use per entry validity bit for atomic updating [CoPTUA 2004]
- Insertion/Removal order to avoid inconsistent states



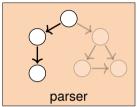


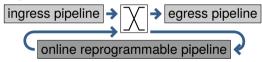

- Parser, matching, actions, and deparser are stored in SRAM and TCAM
  - Use per entry validity bit for atomic updating [CoPTUA 2004]
- Insertion/Removal order to avoid inconsistent states
- P4 compiler tracks switch occupation





#### An extension to current switching ASICs

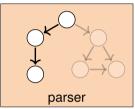

- Parser, matching, actions, and deparser are stored in SRAM and TCAM
  - Use per entry validity bit for atomic updating [CoPTUA 2004]
- Insertion/Removal order to avoid inconsistent states
- P4 compiler tracks switch occupation
- Isolation same as with multiple switching ASICs






#### An extension to current switching ASICs

- Parser, matching, actions, and deparser are stored in SRAM and TCAM
  - Use per entry validity bit for atomic updating [CoPTUA 2004]
- Insertion/Removal order to avoid inconsistent states
- P4 compiler tracks switch occupation
- Isolation same as with multiple switching ASICs
- Additional Pipeline for custom parser after function selection
  - Some switches already have an additional pipeline
  - Pipelines can share resources [RMT 2013]








#### An extension to current switching ASICs

- Parser, matching, actions, and deparser are stored in SRAM and TCAM
  - Use per entry validity bit for atomic updating [CoPTUA 2004]
- Insertion/Removal order to avoid inconsistent states
- P4 compiler tracks switch occupation
- Isolation same as with multiple switching ASICs
- Additional Pipeline for custom parser after function selection
  - Some switches already have an additional pipeline
  - Pipelines can share resources [RMT 2013]





#### Limitations

X Needs to be done by ASIC vendors

#### **Advantages**

/ Same performace as current ASICs





#### Conclusion

- Online reprogrammibility is needed for "Programmable Switches as a Service"
- · We propose an architecture for online reprogrammibility
  - ► No implementation yet



# Conclusion

- Online reprogrammibility is needed for "Programmable Switches as a Service"
- We propose an architecture for online reprogrammibility
  - No implementation yet

#### New interesting resource management questions

- Measuring & accounting resource usage
- Resource allocation
- Avoiding resource fragmentation



. . .