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Abstract

In this paper, we explore self-distillation as a means to improve statistical dependency parsing
models for Dutch and German over purely supervised training. Self-distillation (Furlanello et al.
2018) trains a new student model on the output of an existing (weaker) teacher model. In contrast
to most previous work on self-distillation, we perform distillation using a large, unannotated corpus.

We show that in dependency parsing as sequence labeling (Spoustová and Spousta 2010, Strzyz
et al. 2019), self-distillation plus finetuning provides large improvements over models that use
supervised training. We carry out experiments on the German TüBa-D/Z universal dependency
(UD) treebank (Çöltekin et al. 2017) and the UD conversion of the Dutch Lassy Small treebank
(Bouma and van Noord 2017). We find that self-distillation improves German parsing accuracy of
a bidirectional LSTM parser from 92.23 to 94.33 Labeled Attachment Score (LAS). Similarly, on
Dutch we see improvement from 89.89 to 91.84 LAS.

1. Introduction

While modern statistical (Chen and Manning 2014, Kiperwasser and Goldberg 2016, Dozat and
Manning 2017) and SAVG-based1 parsers (Van Noord et al. 2006) have significantly pushed the state-
of-the-art in parsing, there is a certain subset of dependencies that have proven to be particularly
hard to parse. Table 1 shows the ten most frequent errors by UD relation (Nivre et al. 2020) of
baseline BiLSTM baseline parsers (Section 5) for Dutch and German. Further analysis reveals that
for Dutch and German approximately 21% and 25% of the attachment errors concern prepositional
phrase attachment errors, where the noun of the prepositional phrase is either attached to a verb
with the obl relation or to a noun with the nmod relation. Approximately 10% (Dutch) to over 12%
(German) concern subject-direct object ambiguities, which manifest in incorrect attachment of noun
phrases with the nsubj or obj labels. Resolving PP-attachment and subject-object ambiguities are
thus still the largest challenges when parsing Dutch and German.

These relations are particularly difficult to parse, because the correct attachment is not only
determined by syntactic constraints, but also by semantic preferences, or so-called selectional pref-
erences (Katz and Fodor 1963, Wilks 1975, Boguraev 1979). As shown by Van Noord (2007), hand-
corrected treebanks are generally too small to contain enough examples to model such selectional
preferences. However, Van Noord (2007) also demonstrates that when a parser analyzes the large
majority of attachments correctly, that selectional preferences can be modelled using the output of
the parser. The reason that a parser can predict most attachments correctly is that it can rely on
canonical word orders. For instance, the large majority of subjects and objects are attached correctly
because parsers can rely on the general preference in Dutch and German to order the subject before
the direct object.

In many prior works, machine-parsed data was used to extract PP attachment preferences (Hindle
and Rooth 1993, Pantel and Lin 2000, Mirroshandel et al. 2012), whereas other work used the same
principle to model attachment preferences for each dependency label in a label inventory (Johnson
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Relation % of errors
obl 11.14
nmod 9.97
fixed 7.79
parataxis 6.92
nsubj 5.69
amod 5.22
obj 4.72
conj 4.56
root 4.27
advmod 4.22

(a) Dutch

Relation % of errors
obl 14.73
nmod 10.19
conj 8.45
parataxis 6.70
nsubj 6.40
amod 6.40
obj 6.32
appos 4.98
root 4.73
advmod 4.64

(b) German

Table 1

and Riezler 2000, Van Noord 2007, Fischer et al. 2019). These works use relatively simple word-
based association strength metrics, such as point-wise mutual information or attachment probability.
However, these metrics suffer from the curse of dimensionality (Bengio et al. 2001), since there is a
large number of valid associations between heads, dependents, and dependency relations, which are
unlikely to be all seen sufficiently often in training corpora. Given this problem, it is likely that we
could improve on these approaches by modeling preferences based on word embeddings rather than
concrete words. For example, we would like a model to learn that the verb eat takes objects from
the subspace of edible things, rather than specific pairs such as eat rice or eat cauliflower.

There have been various attempts to adress the shortcomings of these simpler word-based associa-
tion scores by modeling attachment preferences using word embeddings. Skipgram-based embedding
models (Mikolov et al. 2013) use a probability function S(w, c) = σ(Ww, Cc) where W and C are
word and context embedding matrices. W and C are optimized such that S(w, c) = 1 if w and c
co-occur or S(w, c) = 0 otherwise. In most applications, C is discarded and W is used as a word
embedding matrix. However, the function S can be used as an indicator of association strength.
Kiperwasser and Goldberg (2015) use such a function in a graph-based dependency parser. They
find that the embedding-based scoring function improves over the baseline parsing model, but does
not outperform pointwise mutual information as a metric for association strength. Fischer et al.
(2019) reproduce this result in a transition-based dependency parser.

Van Noord, 2016 (personal communication) proposes another method for using word embeddings
to compute attachment preferences. For each head h governing over a dependent with the relation
r, h

r−→ ∗, a slot embedding is computed by taking the weighted average of the embeddings of
the words occuring in the slot ∗ in a large corpus. During parsing, the association scores of a
head h and candidate c with the relation r is computed as the cosine similarity between the slot
embedding of h

r−→ ∗ and the embedding of c. This approach is evaluated by using the scores in
Alpino’s maximum entropy disambiguation model (Van Noord et al. 2006). The results are similar
to what was found in other approaches that incorporated embeddings – the use of the embedding-
based metric improves over the baseline (90.73 concept accuracy over 90.44 CA), but use of the
embedding-based metric does not outperform the use of pointwise mutual information (90.84 CA).
Combining both embedding-based association scores with pointwise mutual information does lead
to a small improvement (90.87 CA).

While the use of embeddings for modelling selection preferences has, so far, not been more
succesful than the use of simpler word-based association scores, we believe that these approaches
have two important shortcomings. First, they use rely on functions that result in scalar values,
discarding the high-dimensional space that embeddings provide. Second, attachment preferences
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are learned as a separate step, rather than being fully integrated in the training of the parsing
model. The approach that we take in this paper to learn attachment preferences is very simple – we
train a model on the output of a baseline parser while it parses a large, unannotated, corpus. In this
process of so-called self-distillation the newly trained student model sees a wider variety of language
than the baseline teacher model that was trained on a small hand-corrected treebank. The hope
is that since the teacher predicts the large majority of dependency relations correctly, the student
model will learn regularities with regards to the attachment of previously unseen tokens. However,
in contrast to the prior approaches, the attachment preferences are not condensed into scalar values
and learning attachment preferences is fully integrated in model training.

The remainder of the paper is structured as follows. In Section 2 we will discuss prior work on
self-distillation in more detail. Section 3 describes methodology for encoding dependency relations
that we use in the experiments. Section 4 describes the network architectures that we will test self-
distillation with. Section 5 describes the experimental setup. Finally, the results of these experiments
are discussed in 6.

2. Self-distillation

Methods of training a model based on the imperfect output of another model have been around for
more than a decade. McClosky et al. (2006) and Huang and Harper (2009) found improvements
in constituency parsing by using model predictions on unlabelled data as additional training data.
More recently, van Noord et al. (2018) showed that semantic parsing can be improved by adding the
output of a symbolic semantic parser to the training data of a sequence to sequence neural network
model. Pütz and Glocker (2019) found that adding the output of a different parser to the training
data improves a transition-based semantic parser, especially in a low-resource setting.

Using model outputs as training targets for neural networks became known as knowledge distilla-
tion (Hinton et al. 2015). It was originally proposed as a model compression technique with the aim of
making large models more economical for inference or to enable their use on memory- or compute-
constrained devices (Tsai et al. 2019, Sanh et al. 2019, Anderson and Gómez-Rodŕıguez 2020).
Knowledge distillation commonly trains a large-scale teacher model and then distills this teacher
model into a smaller student model. Kuncoro et al. (2016) train an ensemble of 20 greedy stack
LSTM parsers and distill it into a single graph-based parser using a novel cost formulation.

In parallel, another strain of work explored knowledge distillation as a means to improve model
accuracy by distilling the teacher model into a student model of an equal or larger size (Furlanello
et al. 2018). Clark et al. (2019) extends this method to a multi-tasking setup, where they distill
multiple teacher models into a single student model. These born-again or self-distilled networks
often surpass their teacher models in accuracy without access to new information. A theoretical
explanation of this method is still lacking, although some advances have been made (Mobahi et al.
2020). In most prior work on self-distillation, the student model is trained on the same training data
that is used to train the teacher model. In contrast to such approaches, we explore self-distillation
on unlabeled data.

3. Parsing as sequence labeling

3.1 Introduction

In our experiments, we use the dependency parsing as sequence labeling scheme proposed by Spous-
tová and Spousta (2010) and Strzyz et al. (2019). In this scheme, each token is annotated with a
complex tag that encodes the position of the token’s head and its relation to the head. The position
of the head is encoded as the part-of-speech of the head and its relative offset in terms of that part
of speech. For example, a token annotated with the tag nsubj/verb/2 is attached to the second

93



succeeding verb with the nsubj relation. Figure 1 shows an example of a dependency tree and how
it would be encoded in this tagging scheme.

Hoe verspreidt u deze informatie ?

How spread you this information ?

advmod detnsubj

obj

punct
root

root/ROOT/-1advmod/VERB/1 nsubj/VERB/-1 det/NOUN/1 obj/VERB/-1 punct/VERB/-1

ADV VERB PRON DET NOUN PUNCT

Figure 1: A dependency graph with its encoding as complex tags. Each tag encodes: the relation
to the head; the part-of-speech of the head; the relative index of the head in part-of-speech tags.

This dependency labeling scheme has three benefits: (1) it can be used with a standard sequence
labeler and does not require a parsing architecture; (2) tagging and decoding of dependency tags
can be performed in O(n) time where n is the sentence length; and (3) the scheme can produce
non-projective dependencies. However, the scheme can only encode dependency graphs that obey
the single-headedness property.

In the remainder of this section, we discuss issues that arise during decoding. We also discuss the
part-of-speech inventory that we use in the dependency labels that were discussed in this section.

3.2 Issues in decoding

During training, an encoder is used to convert gold-standard dependency trees to dependency labels.
A standard sequence labeling architecture can then be trained on the pairings of inputs (such as
words and part-of-speech tags) and dependency labels. During prediction, the sequence labeler
predicts the top-n most probable labels for each token and a decoder constructs dependency edges
from these labels.

Decoding can fail in three different ways, which we will address now in more detail:

1. Failure to decode a tag. The head position in the assigned dependency label may not be
present in the sentence. For example, the label nsubj/verb/2 requires that there is a second
succeeding token tagged as verb. However, if no such token exists, no edge can be constructed
from this label. In such a case, we attempt to decode the next label from the best-n (n = 3)
labels. If none of the best-n labels could be decoded, we attach the token to root token of the
dependency graph.

2. Unrooted graph. If no token acts as the root of the dependency graph, we follow the strategy
proposed by Strzyz et al. (2019) and reattach the token with the highest probability to have a
root attachment in its best-n labels.2 If no such token exists, the leftmost token will be chosen
to act as the root of the graph.

3. Cyclic graph. It is possible that the decoded graph contains a cycle. In this case, we again
follow the strategy proposed by Strzyz et al. (2019) and reattach the left-most token in the
cycle to the the root token of the dependency graph.

After applying these post-processing steps, parsing will always result in a rooted, fully-spanning
tree.

2. Such a token would have the label root/root/-1.
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3.3 Part-of-speech inventory

Since part-of-speech tags are used as a part of the sequence labels, the granularity of the part-of-
speech inventory influences the performance of the model. A large part-of-speech inventory may
lead to a combinatory explosion of part-of-speech tags, dependency relations, and relative offsets.
Given the relatively modest size of hand-corrected treebanks, this can lead to data sparseness.

A small part-of-speech inventory, on the other hand, is less informative to the parser. For
example, if the part-of-speech tag set distinguishes finite verbs, infinitives, participles, and past
participles, it may help the parser to disambiguate verbal attachments such as clausal complements.

This trade-off between the granularity of tag sets and parser performance has been observed in
prior literature. For instance, Maier et al. (2014) compare three tag sets for German with differ-
ent grannularity. They observe that using too coarse-grained or too fine-grained tag inventories
decreases parsing performance. Our preliminary experiments with various tagsets have confirmed
these observations.

We will now describe the tag sets that we use for German an Dutch in more detail.

German For German, we use the UD conversion (Çöltekin et al. 2017) of the TüBa-D/Z treebank
that is described in more detail in Section 5. This treebank annotates each token with a univer-
sal part-of-speech tag (Nivre et al. 2020), an STTS3 tag (Schiller et al. 1999), and morphological
features (Telljohann et al. 2005). Table 2 lists the number of distinct dependency labels that are
generated when using universal part-of-speech tags, STTS tags, or concatenations of STTS tags
with morphological features. For each tag set, the number of dependency labels with ten or fewer
instances is also shown. When moving from universal part-of-speech tags to STTS tags, the number
of dependency labels and the number of sparse dependency labels grows relatively modestly com-
pared to the number of additional part-of-speech tags. However, adding morphological features to
the STTS tags does increase both the number of part-of-speech tags and the number of dependency
labels drastically. In further experiments, we will use the STTS tag set for German, since it provides
a good trade-off between grannularity and data availability.

Tag set POS tags <= 10 Dependency labels <= 10
Universal Tags 16 0 2,255 1,234
STTS 54 0 3,103 1,785
STTS + morph 562 122 9,688 6,231

Table 2: The number of part-of-speech tags and resulting dependency labels for each part-of-speech
inventory of the TüBa-D/Z UD treebank. Also listed is the number of part-of-speech and dependency
labels that occur fewer than 10 times in the treebank.

Dutch We conducted our experiments for Dutch on a UD conversion of the Lassy Small treebank
(Bouma and van Noord 2017). The treebank is described in more detail in Section 5. The conversion
provides universal and D-COI (Van Eynde 2005) part-of-speech tags. Both tag sets are on the
extreme ends when it comes to their inventory sizes. We have also generated a custom tag set that
was inspired by the STTS tag set by appending certain features of the D-COI tags to the universal
tags. The influence of the part-of-speech tag set on the set of dependency labels is shown in Table 3.
As for German, we pick the middle ground that the extended universal tag set provides.

4. Sequence labeling architectures

In our experiments, we compare two commonly-used sequence labeling architectures for neural pars-
ing, namely bidirectional LSTMs (Hochreiter and Schmidhuber 1997, Graves and Schmidhuber 2005)

3. Stuttgart-Tübingen Tag Set
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Tag set POS tags <= 10 Dependency labels <= 10
Universal Tags 16 0 2,096 1,203
Universal Tags extended 43 1 2,636 1,569
D-COI 214 40 4,650 2,950

Table 3: The number of part-of-speech tags and resulting dependency labels for each part-of-
speech inventory of the Lassy Small UD treebank. Also listed is the number of part-of-speech and
dependency labels that occur fewer than 10 times in the treebank.

and transformers (Vaswani et al. 2017). Doing so allows us to gauge whether self-distillation works
with different architectures. We will first discuss the input and output of the models, before describ-
ing the model architectures in more detail.

Input We represent each token as a concatenation of its word embedding and its part-of-speech tag
embedding. The word embeddings are trained with the structured skipgram model (Ling et al. 2015).
In contrast to the well-known skipgram model (Mikolov et al. 2013), the structured skipgram model
takes word order into account while training embeddings. This results in embeddings that are more
strongly tailored towards syntax tasks than embeddings trained using the skipgram model. We also
use subword embeddings (Bojanowski et al. 2017). Subword embeddings allow the model to learn
certain regularities for stems and affixes, as well as making it possible to compute embeddings for
unknown words after training.4 The part-of-speech embeddings are trained using the structured
skip-gram model without subword embeddings. The training data and hyperparameters for the
embeddings are described in Section 5.

Output Each model predicts dependency labels (Section 3.1) using a softmax classification layer.
We also experimented with a conditional random field (CRF) classification layer (Collobert et al.
2011). However, preliminary experiments did not show any improvements over a softmax classifica-
tion layer.

Bidirectional LSTM The first type of model architecture that we evaluate is Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber 1997). This is a type of recurrent neural network
that creates a contextual representation of a token based on the embedding of the token and a
hidden state that represents the contextualized representation of the preceding tokens. We use two
commonly-used extensions to LSTM. First, we concatenate the word representations from LSTMs
that are applied in sentence order and reverse sentence order (Graves and Schmidhuber 2005).
As a result of applying such a bidirectional LSTM (BiLSTM), a token’s representation contains
information from its left and right contexts. Second, we stack several bidirectional LSTMs (Graves
and Schmidhuber 2005). This allows the network to make increasingly powerful representations of
the input.

For models that use supervised training, we use 2 BiLSTM layers with 200-dimensional represen-
tations. For the self-distillation models, we use 3 BiLSTM layers with 400-dimensional representa-
tions. We use more shallow networks for purely supervised training, because we found that increasing
the number of layers decreased performance, possibly due to difficulties in backpropagation of weight
updates. Layer normalization (Ba et al. 2016) is applied after the BiLSTM.

Transformer The second type of architecture that we evaluate is the transformer network (Vaswani
et al. 2017). Recurrent neural networks, such as the LSTM, propagate longer-distance information
from token to token. In transformers, the representation of a token is directly based on all other
tokens using the self-attention mechanism. This mechanism computes per token an attention score
for all tokens in a sentence. The token’s representation is then based on the representations of all
words in the sentence, weighted by the attention scores.

4. The embedings are trained using finalfrontier: https://github.com/finalfusion/finalfrontier
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We use a standard transformer network as proposed by Vaswani et al. (2017) with 6 layers, 8
attentions heads, and 256 hidden units. We use an inner-layer dimensionality of 3072 in the pointwise
feed-forward neural network. Positions are encoded using sinusoidal position encoding.

5. Experimental setup

The main goal of our evaluation is to measure to which degree self-distillation improves parsing
accuracy. In order to do so, we need strong baseline models for each neural architecuture (Section 4)
to act as a teacher in self-distillation. The training procedure of these baseline models is described
in Section 5.1. We will then describe how we perform self-distillation in Section 5.2. Each distilled
model is finetuned on the supervised training set, as described in Section 5.3. Finally, we describe
the data sets in Section 5.4.

5.1 Baseline model

The transformer and BiLSTM baseline models for German and Dutch are trained on the training
partition of a treebank with gold-standard dependency relations and non-gold part-of-speech tags
(Section 5.4). A small development set is used to monitor training and refine the hyperparameters.

Both the BiLSTM and the transformer models were optimized using the Adam optimizer (Kingma
and Ba 2015). For both types of models we also found it to be highly beneficial to use linear warmup
of the learning rate during the initial stages of training to dampen the impact of large gradients on
updates (Ma and Yarats 2019). After warmup, we use a learning rate that is scaled if the accuracy
does not improve on the development set for a certain number of epochs. Training is ended using
early stopping. The other hyperparameters that are used during training of the baseline models can
be found in Appendix B.

5.2 Self-distillation

We apply a very simple form of self-distillation, where the student model is trained to predict the
highest-probability label assigned to a token by the teacher model. Thus, for each token in the data
that is used for self-distillation, we find the label l for token representation xn,

arg max
l

Pteacher(l|x...n−1, xn, xn+1...) (1)

where x...n−1 is the left context of xn and xn+1... the right context of xn. We then train the
student to predict the probability distribution Pstudent(l|x...n−1, xn, xn+1...) = 1 using the negative
log-likelihood as the objective function to be minimized.

We perform self-distillation during two iterations over the unannotated distillation data, after
which the network typically converged. As with the baseline models, we use linear warmup of the
learning rate. Then the learning rate decays linearly to zero during self-distillation. The hyperpa-
rameters used for distillation can be found in Appendix C.

5.3 Finetuning

After self-distillation, we finetune the model on the supervised training set. Finetuning continues
training using the final self-distillation model parameters, but then using gold-standard labels rather
than the output of the teacher model. We start finetuning of the BiLSTMs at a much lower learning
rate than for training the baseline models, since the parameters of the model are already in a good
starting state. Besides the lower starting learning rate, optimization is similarly to the baseline
models.

We have found that performing another round of self-distillation and finetuning can improve
performance of the model even further. From here on, we will refer to the model trained through
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one round of self-distillation plus finetuning as a first generation model and a model trained through
two rounds as a second generation model.

5.4 Data sets

German We use the universal dependencies (Çöltekin et al. 2017) conversion of the German TüBa-
D/Z treebank (Telljohann et al. 2005) release 11 for training the base models and finetuning the
distilled models. This treebank consists of 104,787 sentences and 1,959,474 tokens of newspaper text.
In order to train and evaluate the parser with non-gold part-of-speech tags, we obtain non-gold tags
through ten-fold jackknifing using a BiLSTM part-of-speech tagger. The data was shuffled for the
experiments and then split such that 70% of sentences are used for training, 10% for development,
and 20% as held-out data.

Self-distillation is performed on the the tokenized text of the Taz subcorpus of the Tübingen
German Dependency Treebank TüBa-D/DP treebank (TüBa-D/DP) (de Kok and Pütz 2019), which
consists of 29.9M sentences and 393.7M tokens. We have removed the sentences that are also part
of the TüBa-D/Z treebank. The sentences were shuffled before self-distillation.

The word and tag embeddings were trained using finalfrontier5 on the Taz, Wikipedia, and
Europarl subcorpora of the TüBa-D/DP (the hyperparameters are summarized in Appendix A).

Dutch The Dutch models were trained and finetuned on the Lassy Small treebank (Van Noord
et al. 2013). We converted Lassy Small to Universal Dependencies using the software provided with
Bouma and van Noord (2017). After the conversion, the treebank consists of 65,147 sentences and
1,095,087 tokens.6 We then transform the part-of-speech tags as discussed in Section 3.3. Finally,
we perform ten-fold jackknifing to generate non-gold part-of-speech tags and shuffle and split the
sentences following the same ratios as German (70%/10%/20% for train/dev/held-out).

Self-distillation is performed on the shuffled sentences of Lassy Large (Van Noord et al. 2013)
minus the sentences in Lassy Small, resulting in a corpus which consists of 47.6M sentences and
700M tokens. The word and tag embeddings were also trained on Lassy Large.

6. Results

German Table 4 summarizes the results for German dependency parsing using the LSTM models.
For each model, we report the Labeled Attachment Store (LAS) and the Unlabeled Attachment Score
(UAS). The UAS reports the percentage of tokens that were annotated with the correct head, while
the LAS reports the percentage of tokens that were annotated with the correct head and dependency
relation.

As discussed in the previous section, the baseline model is trained on the gold-standard data
set and acts as a teacher for the first round of self-distillation. Even without finetuning, the first
generation distilled model outperforms the baseline model with an improvement of 0.54 in Labeled
Attachment Score (LAS). The difference between the baseline model and the distilled model becomes
even more profound after finetuning, which increases the improvement over the baseline model by
1.07 LAS. Performing another round of distillation and finetuning using the first-generation distilled
model improves the accuracy by another 0.49 in LAS.

The German transformer model (Table 5) performs almost identically to the BiLSTM, showing
similar improvements after self-distillation.

Dutch The performance of the Dutch BiLSTM models is shown in Table 6. The accuracy of the
Dutch models is quite a bit lower than the German models. We believe that the difference can be
attributed both to the smaller size of the treebank (65,147 sentences in Lassy Small, compared to

5. https://github.com/finalfusion/finalfrontier/

6. A small number sentences were removed during conversion due to conversion errors.
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Model Generation LAS UAS
baseline 0 92.96 94.50
self-distillation 1 93.50 94.92
finetuned 1 94.03 94.92
self-distillation 2 94.29 95.56
finetuned 2 94.52 95.74

Table 4: Accuracy of the German BiLSTM models. Each round of self-distillation adds marked
improvements over the previous model.

Model Generation LAS UAS
baseline 0 92.91 94.41
self-distillation 1 93.62 94.96
finetuned 1 94.06 95.36
self-distillation 2 94.36 95.59
finetuned 2 94.50 95.73

Table 5: Accuracy of the German transformer models. Each round of self-distillation improves over
the previous model.

104,787 sentences in the TüBa-D/Z) and the fact that TüBa-D/Z contains text from a single domain
(newspaper text), while Lassy Small contains a mixture of different domains.

Model Generation LAS UAS
baseline 0 90.34 92.85
self-distillation 1 90.75 93.17
finetuned 1 91.43 93.71
self-distillation 2 91.75 93.93
finetuned 2 91.91 94.06

Table 6: Accuracy of the Dutch BiLSTM models. Each round of self-distillation improves over the
previous model.

Despite the lower performance of the Dutch models, the same trends can be observed as in
the German experiments. The first generation distilled and finetuned model improves over the
baseline with 1.09 LAS and the second generation model improves 0.48 LAS over the first generation
model. The improvements are remarkably similar to the improvements provided by self-distillation
for German, showing that self-distillation improves parsing performance in a consistent manner
between Dutch and German.

Finally, the Dutch transformer models, shown in Table 7, perform substantially worse than the
BiLSTM models. For instance, the baseline BiLSTM has an LAS that is 0.49 higher than that of
the baseline transformer. Since we did not observe such a difference between the German BiLSTM
and transformer models, it is likely that the smaller Dutch training set does not provide enough
data to realize the full potential of the deeper transformer network.

Despite posting lower scores, the improvements that self-distillation of the Dutch transformer
model provides are similar to all prior models – the first generation of self-distillation and finetuning
improves 1.07 in LAS over the baseline and the second generation adds another 0.73 in LAS. Fur-
thermore, the gap between the best BiLSTM model and the best transformer model has narrowed
to 0.26 LAS.
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Model Generation LAS UAS
baseline 0 89.85 92.41
self-distillation 1 90.53 92.93
finetuned 1 90.92 93.30
self-distillation 2 91.42 93.68
finetuned 2 91.65 93.87

Table 7: Accuracy of the Dutch transformer models. The transformer models are outperformed by
their BiLSTM counterparts. However, each round of self-distillation still improves over the previous
model.

Improvements in specific relations As discussed in Section 1, our use of self-distillation is
motivated by dependency relations that require selectional preferences to resolve. Since such prefer-
ences cannot be acquired broadly from small hand-annotated treebanks, our hope was that distilling
a new model on a large, unannotated corpus would improve correct prediction of such relations.
Table 8 shows the LAS deltas between the baseline Dutch BiLSTM parser and the distilled BiLSTM
parser for the ten dependency relations with the most frequent errors in the baseline parser. There
are sizable improvements for subject (1.71 LAS) and direct object attachments (1.43 LAS). Similarly
large improvements can be seen for prepositional phrase attachment, which covers a large part of
words attached with an nmod (1.44 LAS) or obl (2.22 LAS) relation. Distillation brings comparable
improvements to the German BiLSTM, as shown in Table 9.

Besides the specific cases of subject, object, and prepositional phrase attachment, we see large
improvements in accuracy all across the board. In fact, even larger improvements are observed for
the parataxis, fixed, and conj relations. From this it seems that the model benefits more generally
from seeing a larger variety of words in a larger variety of syntactic constellations.

Furthermore, the improvements are much larger than those reported by Van Noord (2007) and
Fischer et al. (2019), which use word-based lexical association scores. This shows that selectional
preferences can be captured better by models that use rich, contextualized word representations.

Relation Baseline LAS Self-distillation LAS ∆
parataxis 56.73 61.60 4.87
fixed 74.94 78.50 3.56
conj 77.99 81.53 3.54
obl 84.74 86.96 2.22
nsubj 92.41 94.12 1.71
nmod 84.32 85.76 1.44
obj 89.04 90.47 1.43
advmod 88.81 89.93 1.12
amod 93.49 93.99 0.50
root 95.97 96.07 0.10

Table 8: Improvements in LAS of the second generation distilled and finetuned Dutch BiLSTM
model for the relations with the most frequent errors (Table 1a)

.

7. Conclusion

Historically, parsers have only been trained on small hand-annotated data sets. This makes it
impossible for models to develop strong attachment preferences for combinations of words that do
not occur in the training data. In this paper, we have explored self-distillation on unannotated
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Relation Baseline LAS Self-distillation LAS ∆
parataxis 68.93 76.40 7.47
conj 81.46 86.18 4.72
nmod 81.67 84.33 2.66
appos 85.66 88.21 2.55
obl 87.23 89.71 2.48
obj 93.46 95.26 1.80
nsubj 94.56 96.18 1.62
amod 94.99 96.05 1.06
advmod 91.52 92.55 1.03
root 96.75 97.46 0.71

Table 9: Improvements in LAS of the second generation distilled and finetuned German BiLSTM
model for the relations with the most frequent errors (Table 1b)

.

data as a means for the model to learn attachment preferences on a wider variety of data. Our
experiments show that self-distillation can provide large improvements over strong baseline models
(1.57 LAS and 1.59 LAS for Dutch and German respectively).

An open question remains what improvement additional rounds of self-distillation will bring. We
have also not explored yet what effect the amount, genre, or quality of unannotated data has on
self-distillation.

Another interesting question is whether self-distillation also improves parsing models that start
from a pretrained model such as BERT (Devlin et al. 2019) or XLM-RoBERTa (Conneau et al. 2019).
We have only conducted some initial experiments to answer this question. These experiments also
show marked improvements after self-distillation of XLM-RoBERTa-based models, even though the
improvements are smaller than those described in this work.

The software used in the experiments and various distilled models for Dutch and German are
available through the stickeritis GitHub organization: https://github.com/stickeritis/
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TüBa-D/Z treebank of German to universal dependencies, Proceedings of the NoDaLiDa 2017
Workshop on Universal Dependencies (UDW 2017), Association for Computational Linguistics,
Gothenburg, Sweden, pp. 27–37. https://www.aclweb.org/anthology/W17-0404.

Conneau, Alexis, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek,
Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov (2019),
Unsupervised cross-lingual representation learning at scale.

de Kok, Daniël and Sebastian Pütz (2019), TüBa D/DP Stylebook.
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Appendix A. Embeddings hyperparameters

Hyper parameter Value
Model Structured skipgram
Minimum character n-gram length 3
Maximum character n-gram length 3
N-gram buckets 221

Context size 10
Dimensions 300
Minimum token count 15 (Dutch), 30 (German)
Epochs 15

Appendix B. Baseline model hyperparameters

B.1 BiLSTM

Hyper parameter Value
Layers 2
Hidden units 200
Input dropout 0.2
LSTM cell dropout 0.4
Initial learning rate 0.01
Learning rate patience 4
Learning rate scale 0.5
Warmup steps 2000
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B.2 Transformer

Hyper parameter Value
Layers 6
Hidden units 256
Attention heads 8
Pointwise feed-forward units 3072
Input dropout 0.1
Attention dropout 0.2
Hidden dropout 0.2
Pointwise feed-forward dropout 0.3
Activation ReLU
Position embeddings sinusoidal
Initial learning rate 3e−4

Learning rate patience 4
Learning rate scale 0.5
Warmup steps 200

Appendix C. Self-distillation model hyperparameters

C.1 BiLSTM

Hyper parameter Value
Layers 3
Hidden units 400
Input dropout 0.2
LSTM cell dropout 0.4
Initial learning rate 1e−3

Finetuning learning rate 1e−4

Learning rate patience 4
Learning rate scale 0.5
Warmup steps 2000
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C.2 Transformer

Hyper parameter Value
Layers 6
Hidden units 256
Attention heads 8
Pointwise feed-forward units 3072
Input dropout 0.1
Attention dropout 0.2
Hidden dropout 0.2
Pointwise feed-forward dropout 0.3
Activation ReLU
Position embeddings sinusoidal
Initial learning rate 4e−3

Finetuning learning rate 5e−5

Learning rate patience 1
Learning rate scale 0.95
Warmup steps 1000 (distillation), 2000 (finetuning)
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