EBERHARD KARLS
 UNIVERSITAT TUBINGEN
 WIRTSCHAFTS- UND
 SOZIALWISSENSCHAFTLICHE FAKULTÄT

Chair of Econometrics, Statistics and Empirical Economics
Prof. Dr. Thomas Dimpfl

Preparatory Course for Mathematical Methods in Economics and Business

4. Exercise Sheet

Exercise 1 (Quadratic Functions)

Determine the equation of the parabola $y=a x^{2}+b x+c$ which runs through the three points $(1,-3),(0,-6)$, and $(3,15)$.

Exercise 2 (Composite Functions)

Given are the two functions $f(x)=2 x+4$ and $g(x)=\ln (x)$. For the following compositions, provide the functional equation. Specify the natural domain of the composite function (give a short explanation).
(a) $(f \circ g)(x)$
(b) $\quad(g \circ f)(x)$
(c) $\quad(f \circ f)(x)$
(d) $(g \circ g)(x)$
(e) $\quad f(x) \cdot g(x)$

Exercise 3 (Polynomial Division)

By means of polynomial division, determine the terms $\mathrm{q}(\mathrm{x})$ and $\mathrm{r}(\mathrm{x})$ of the following equations: $P(x)=q(x) Q(x)+r(x)$.
(a) $P(x)=x^{4}+1 \quad Q(x)=x^{2}+1$
(b) $\quad P(x)=x^{5}+3 x^{3}+7 x^{2}-3 \quad Q(x)=x^{2}+2 x+1$

For $P(x), Q(x), q(x)$ and $r(x)$ provide the degree of the polynomial.

Exercise 4 (Logarithmic Laws)

You don't have a pocket calculator at your disposal but you know that $\log _{10} 5.2=0.716$ applies with sufficient accuracy. Provide the following expressions:
(a) $\log _{10} 52$
(b) $\log _{10} 520$
(c) $\log _{10} 5.2^{2}$
(d) $\log _{10} 5200^{7}$

Exercise 5 (Logarithmic Laws)

Determine the following logarithms:
(a) $\log _{0.5 \pi} 1$
(b) $\log _{100} 5.2$
(c) $\log _{2}(1 / 8)$
(d) $\log _{1 / 2} 4$

Generalize the results from d), by showing that it generally applies: $\log _{1 / a} x=-\left(\log _{a} x\right)$.

Exercise 6 (Exponential and Logarithmic Functions)

Exponential functions can be easily transformed to another base:
Convert a^{x} into $e^{c x}$. How does chave to be defined such that it holds $a^{x}=e^{c x}$? Use this result to transform 10^{z} and $2^{(0.5 y)}$ to the base e.

Exercise 7 (Inverse Functions)

Check whether for $y=f(x)$ an inverse function $x=f^{-1}(y)$ exists and provide it if possible. ($D_{f}=\mathbb{R}$, in case not stated explicitly).
(a) $y=a+b \cdot x$
(b) $y=x^{2}$
(c) $\left.\left.\quad y=(1-x)^{2} \quad D_{f}=\right]-1,1\right]$
(d) $y=\frac{1}{1+e^{-x}}$

