EBERHARD KARLS
 UNIVERSITAT TUBINGEN
 Wirtschafts- Und
 SOZIALWISSENSCHAFTLICHE FAKULTÄT

Chair of Econometrics, Statistics and Empirical Economics
Prof. Dr. Thomas Dimpfl

Preparatory Course for Mathematical Methods in Economics and Business

2. Exercise Sheet

Exercise 1 (Linear Equations)

Solve the following equations for the unknown x :
(a) $\frac{1}{x-1}=\frac{3}{2 x+3}$
(b) $\sqrt{3-x}=2$
(c) $\sqrt[5]{5-x}=-2$
(d) $(x-6)^{\frac{1}{3}}=2$

Exercise 2 (Quadratic Equations)

State the solution set \mathbb{L} for the following equations for $x \in \mathbb{R}$:
(a) $x^{2}-10=3 x$
(b) $3 \frac{x^{3}-5}{x^{2}+5}=3 x-5$

Exercise 3

Solve the following equations for the indicated variable:
(a) $\alpha x-a=\beta x-b$ for x
(b) $\sqrt{K} \cdot\left(\frac{1}{2} \frac{r}{w} K\right)^{\frac{1}{4}}=Q$ for K
(c) $\frac{1}{s}+\frac{1}{T}=\frac{1}{t}$ for s
(d) $\frac{x-2 y+x z}{x-z}=4 y$ for z

Exercise 4 (Inequalities / Intervals)

For which x do the following inequalities hold?
(a) $-3 x+2<5$
(b) $\frac{x-1}{x+3} \leq 0$

Exercise 5 (Inequalities / Intervals)

Determine the solution set for the following inequalities:
(a) $\frac{x-2}{4-x} \geq 0 ; \quad x \in \mathbb{R} \backslash\{4\}$
(b) $\frac{3 x-1}{2 x+1} \leq 3 ; \quad x \in \mathbb{R} \backslash\left\{-\frac{1}{2}\right\}$
(c) $\frac{5 x^{2}-1}{x+1} \leq 2 x-1 \quad x \in \mathbb{R} \backslash\{-1\}$
(d) $|x+1| \leq \frac{1}{2}|x|+1 ; \quad x \in \mathbb{R}$

Exercise 6 (Absolute Values)

Determine x such that:
(a) $|3-2 x|=5$
(b) $|x-2| \leq 1$
(c) $|x|>\sqrt{2}$
(d) $\left|x^{2}-2\right| \leq 1$

