EBERHARD KARLS
 UNIVERSITAT TUBINGEN
 Wirtschafts- Und
 SOZIALWISSENSCHAFTLICHE FAKULTÄT

Chair of Statistics, Econometrics and Empirical Economics Dr. Julie Schnaitmann

S414
Advanced Mathematical Methods

Exercises

Linear Algebra

ExERCISE 1 Vector product

Calculate for $\mathbf{v}^{\prime}=\left(\begin{array}{llll}-1 & 0 & 3 & -2\end{array}\right)$ and $\mathbf{w}=\left(\begin{array}{llll}2 & 3 & -1 & -3\end{array}\right)^{\prime}$ the following expressions:
a) $\mathbf{v}^{\prime} \mathbf{w}$
b) $\mathbf{v}^{\prime} \mathbf{v}$
c) $\mathbf{w}^{\prime} \cdot \mathbf{w} \cdot \mathbf{v}$
d) $\mathbf{w} \cdot \mathbf{v}^{\prime} \cdot \mathbf{w}$

In subtasks c) and d) consider the dimensions of the vectors in order to figure out which product has to be calculated first.

EXERCISE 2 Orthogonality

Determine the components x, y and z in a way, such that the vectors $\boldsymbol{v}_{1}=\left(\begin{array}{lll}1 & 2 & -1\end{array}\right)^{\prime}$, $\boldsymbol{v}_{2}=\left(\begin{array}{lll}4 & 2 & x\end{array}\right)^{\prime}$ and $\boldsymbol{v}_{3}=\left(\begin{array}{lll}y & z & 1\end{array}\right)^{\prime}$ are pairwise orthogonal to each other.

Exercise 3 Linear Combination

The vectors $\mathbf{v}_{\mathbf{1}}=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)^{\prime}, \mathbf{v}_{\mathbf{2}}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)^{\prime}$ and $\mathbf{v}_{\mathbf{3}}=\left(\begin{array}{lll}2 & -1 & 1\end{array}\right)^{\prime}$ are given. Show that the vector $\mathbf{w}=\left(\begin{array}{lll}1 & -2 & 5\end{array}\right)^{\prime}$ can be described as a linear combination of the vectors $\mathbf{v}_{1}, \mathbf{v}_{\mathbf{2}}$ and $\mathbf{v}_{\mathbf{3}}$.

Exercise 4 Matrix Multiplication

Decide whether the matrix multiplications $\mathbf{A} \cdot \mathbf{B}$ and $\mathbf{B} \cdot \mathbf{A}$ are possible and if so, carry them out.
a) $\mathbf{A}=\left(\begin{array}{rrr}2 & 1 & -1 \\ 0 & 4 & 2\end{array}\right)$
$\mathbf{B}=\left(\begin{array}{rrrr}-1 & 1 & 0 & 3 \\ 1 & 1 & 1 & 1 \\ 0 & 2 & -3 & 4\end{array}\right)$
b) $\quad \mathbf{A}=\left(\begin{array}{rrr}-2 & 1 & 2 \\ 1 & 2 & -3\end{array}\right)$
$\mathbf{B}=\left(\begin{array}{ll}3 & 2 \\ 1 & 2\end{array}\right)$
c) $\mathbf{A}=\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$
$\mathbf{B}=\left(\begin{array}{rrr}-2 & 0 & 1 \\ 4 & -1 & 2\end{array}\right)$
d) $\mathbf{A}=\left(\begin{array}{rrr}1 & -3 & 4 \\ 0 & 1 & -2 \\ 2 & 2 & -1\end{array}\right)$
$\mathbf{B}=\left(\begin{array}{rrr}3 & 5 & 2 \\ -4 & -9 & 2 \\ -2 & -8 & 1\end{array}\right)$
e) $\quad \mathbf{A}=\left(\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right)$
$\mathbf{B}=\left(\begin{array}{rr}3 & -5 \\ -1 & 2\end{array}\right)$
f) $\mathbf{A}=\left(\begin{array}{lll}1 & 5 & 0 \\ 2 & 6 & 6 \\ 3 & 7 & 4 \\ 0 & 8 & 2\end{array}\right) \quad \mathbf{B}=\mathbf{A}^{\prime}$

Exercise 5 Matrix Algebra

Apply the calculation rules for matrix algebra in order to simplify the following expressions:
a) $\mathbf{A}(\mathbf{B A})^{-1} \mathbf{B}$
b) $\left(\mathbf{A B}^{\prime}\right)^{\prime}\left(\mathbf{B A}^{\prime}\right)^{-1} \mathbf{C}$
c) $\mathbf{A} \mathbf{B}^{\prime}\left(\mathbf{B}^{-1}\right)^{\prime} \mathbf{A}^{-1}$

Exercise 6 Matrix Algebra

Solve each of the following matrix equations for \mathbf{X} applying the calculation rules for matrices:
a) $\mathbf{A}^{\prime} \mathbf{I}+\mathbf{X}^{\prime}=[\mathbf{A}(\mathbf{I}+\mathbf{B})]^{\prime}$
b) $(\mathbf{X A}+\mathbf{I X})^{\prime}=\mathbf{A}^{\prime}+\mathbf{I}$
c) $\mathbf{X}(\mathbf{A}+\mathbf{I})=\mathbf{I}+\mathbf{A}^{-1}$

I: appropriate identity matrix

ExERCISE 7 Determinant

Calculate the determinant for the following matrices:
a) $\quad \mathbf{A}=\left(\begin{array}{rr}4 & 1 \\ -4 & 2\end{array}\right)$
b) $\mathbf{B}=\left(\begin{array}{rrr}1 & -4 & -10 \\ 10 & -8 & 2 \\ 0 & -1 & 6\end{array}\right)$
c) $\mathbf{C}=\left(\begin{array}{rrr}-7 & 1 & -10 \\ 1 & 10 & 2 \\ 1 & 0 & 6\end{array}\right)$
d) $\mathbf{D}=\left(\begin{array}{rrrr}-3 & 0 & -8 & 7 \\ -7 & 1 & -4 & -10 \\ 1 & 10 & -8 & 2 \\ 1 & 0 & -1 & 6\end{array}\right)$
e) $\mathbf{E}=\mathbf{D}^{-1}$
f) $\mathbf{F}=\left(\begin{array}{rrrr}3 & 0 & 8 & -7 \\ 7 & -1 & 4 & 10 \\ -1 & -10 & 8 & -2 \\ -1 & 0 & 1 & -6\end{array}\right)$

Exercise 8 Determinant

The matrices

$$
\mathbf{A}=\left(\begin{array}{ccc}
0 & 1 & 3 \\
2 & 5 & 7 \\
3 & 0 & 1
\end{array}\right) \quad \text { and } \quad \mathbf{B}=\left(\begin{array}{ccc}
2 & 3 & 1 \\
0 & 2 & 5 \\
1 & 0 & 1
\end{array}\right)
$$

are given.
a) Compute the determinant of \mathbf{A}.
b) Compute the determinant of a matrix that we receive by interchanging the first and the third column of \mathbf{A} (second column \mathbf{A} unchanged). Compare your result to a).
c) Compute the determinant of \mathbf{A}^{\prime}. Compare your result to a).
d) Compute the determinant of $2 \cdot \mathbf{A}$. How can you compute this determinant more quickly?
e) Compute the determinant of \mathbf{B}.
f) Compute the determinant of $\mathbf{A B}$. Compare your result to a) and e).
g) Compute the determinant of $\mathbf{A}+\mathbf{B}$. Compare your result to $\operatorname{det}(\mathbf{A})+\operatorname{det}(\mathbf{B})$.

ExERCISE 9 Calculation of the Inverse

Calculate the inverse if possible:
a) $\mathbf{A}=\left(\begin{array}{rr}4 & 1 \\ -4 & 2\end{array}\right)$
b) $\mathbf{B}=\left(\begin{array}{rr}4 & 1 \\ -2 & -0,5\end{array}\right)$
c) $\mathbf{C}=\left(\begin{array}{rr}1 & 2 \\ 3 & -4\end{array}\right)$
d) $\mathbf{D}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 2 & -3 \\ 0 & -1 & 3\end{array}\right)$

Exercise 10 Rank, Regularity and Inverse

The following matrix is given:

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & -1 & 2 \\
1 & 0 & 3 \\
4 & 0 & 2
\end{array}\right)
$$

a) Determine the rank of the matrix.
b) Is the matrix \mathbf{A} regular or singular?
c) Calculate the inverse of \mathbf{A}, if possible.

Exercise 11 Linear Equation Systems

Determine for the following linear equation system the solution vector using
a) Gaussian Elimination
b) Matrix Inversion
c) Cramer's Rule

$$
\begin{aligned}
x_{2}+x_{3} & =-1 \\
3 x_{1}+4 x_{2}+5 x_{3} & =-2 \\
4 x_{1}+6 x_{2}+8 x_{3} & =-4
\end{aligned}
$$

EXERCISE 12 Rank of a matrix

Determine the rank of the following matrices using Gaussian Elimination:
a) $\mathbf{A}=\left(\begin{array}{rrrrr}2 & 1 & 0 & 1 & 2 \\ -1 & 2 & 1 & 0 & -1 \\ 0 & 4 & 1 & 2 & 1\end{array}\right)$
b) $\mathbf{B}=\left(\begin{array}{rrr}4 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & 0 & 3 \\ -1 & -1 & -1\end{array}\right)$

EXERCISE 13 Inverse of a matrix

Given the follwing matrix

$$
\mathbf{A}=\left(\begin{array}{ccc}
2 & 4 & -2 \\
4 & 9 & -3 \\
-2 & -3 & 7
\end{array}\right)
$$

Calculate the inverse A^{-1} using Gaussian Elimination.

Solution Exercise 1:

a) 1
b) 14
c) $\left(\begin{array}{c}-23 \\ 0 \\ 69 \\ -46\end{array}\right)$
d) $\left(\begin{array}{c}2 \\ 3 \\ -1 \\ -3\end{array}\right)$

Solution Exercise 2:
$\mathrm{x}=8, \mathrm{z}=2, \mathrm{y}=-3$
Solution Exercise 3:
$-6 \cdot \mathbf{v}_{1}+3 \cdot \mathbf{v}_{2}+2 \cdot \mathbf{v}_{3}=\mathbf{w}$
Solution Exercise 4:
a) Possible. $\mathbf{C}=\left(\begin{array}{cccc}-1 & 1 & 4 & 3 \\ 4 & 8 & -2 & 12\end{array}\right)$
b) Not possible. $\underset{(2 \times 2)}{\mathbf{B}} \cdot \underset{(2 \times 3)}{\mathbf{A}}=\left(\begin{array}{ccc}-4 & 7 & 0 \\ 0 & 5 & -4\end{array}\right)$
c) Not possible. $\underset{(2 \times 3)}{\mathbf{B}} \cdot \underset{(3 \times 1)}{\mathbf{A}}=\binom{0}{6}$
d) Possible, both sides. $7 \cdot \mathbf{I}$
e) Possible, both sides. I
f) Possible, both sides.

$$
\begin{aligned}
& \left(\begin{array}{cccc}
26 & 32 & 38 & 40 \\
32 & 76 & 72 & 60 \\
38 & 72 & 74 & 64 \\
40 & 60 & 64 & 68
\end{array}\right) \\
& \text { and }\left(\begin{array}{ccc}
14 & 38 & 24 \\
38 & 174 & 80 \\
24 & 80 & 56
\end{array}\right)
\end{aligned}
$$

Solution Exercise 5:
a) I
b) \mathbf{C}
c) \mathbf{I}

Solution Exercise 6:

a) $\mathbf{X}=\mathbf{A B}$
b) $\quad \mathbf{X}=\mathbf{I}$
c) $\quad \mathbf{X}=\mathbf{A}^{-1}$

Solution Exercise 7:

a) $|\mathbf{A}|=12$
b) $|\mathbf{B}|=294$
c) $|\mathbf{C}|=-324$
d) $|\mathbf{D}|=989$
e) $|\mathbf{E}|=\frac{1}{989}$
f) $|\mathbf{F}|=989$

Solution Exercise 8:
a) $|\mathbf{A}|=-26$
b) $\left|\begin{array}{lll}3 & 1 & 0 \\ 7 & 5 & 2 \\ 1 & 0 & 3\end{array}\right|=26$
c) $\left|\mathbf{A}^{\prime}\right|=-26$
d) $|2 \mathbf{A}|=-208$
e) $|\mathbf{B}|=17$
f) $|\mathbf{A B}|=-442$
g) $|\mathbf{A}+\mathbf{B}|=92$

Solution Exercise 9:

a) $\mathbf{A}^{-\mathbf{1}}=\frac{1}{12} \cdot\left(\begin{array}{cc}2 & -1 \\ 4 & 4\end{array}\right)$
b) \mathbf{B} is singular $\Leftrightarrow \mathbf{B}^{\mathbf{1}}$ doesn't exist!
c) $\mathbf{C}^{\mathbf{- 1}}=-\frac{1}{10}\left(\begin{array}{cc}-4 & -2 \\ -3 & 1\end{array}\right)$
d) $\mathbf{D}^{-\mathbf{1}}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & \frac{1}{3} & \frac{2}{3}\end{array}\right)$

Solution Exercise 10:

a) $R g(\mathbf{A})=3$.
b) \mathbf{A} is regular.
c) $\mathbf{A}^{-1}=\left(\begin{array}{ccc}0 & -0,2 & 0,3 \\ -1 & 0,6 & 0,1 \\ 0 & 0,4 & -0,1\end{array}\right)$.

Solution Exercise 11:

Solution vector: $x=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$

Solution Exercise 12:

a) The rank of the matrix is 3 .
b) The rank of the matrix is 3 .

Solution Exercise 13:

$$
\mathbf{A}^{-\mathbf{1}}=\left(\begin{array}{rrr}
6,75 & -2,75 & 0,75 \\
-2,75 & 1,25 & -0,25 \\
0,75 & -0,25 & 0,25
\end{array}\right)
$$

