

Wirtschafts- und Sozialwissenschaftliche Fakultät

Chair of Statistics, Econometrics and Empirical Economics Dr. Julie Schnaitmann

> S414 Advanced Mathematical Methods Exercises

> > WS 2022/23

LINEAR ALGEBRA

EXERCISE 1 Vector product

Calculate for $\mathbf{v}' = (-1 \ 0 \ 3 \ -2)$ and $\mathbf{w} = (2 \ 3 \ -1 \ -3)'$ the following expressions: a) $\mathbf{v}'\mathbf{w}$ b) $\mathbf{v}'\mathbf{v}$ c) $\mathbf{w}' \cdot \mathbf{w} \cdot \mathbf{v}$ d) $\mathbf{w} \cdot \mathbf{v}' \cdot \mathbf{w}$

In subtasks c) and d) consider the dimensions of the vectors in order to figure out which product has to be calculated first.

EXERCISE 2 Orthogonality

Determine the components x, y and z in a way, such that the vectors $v_1 = (1 \ 2 \ -1)'$, $v_2 = (4 \ 2 \ x)'$ and $v_3 = (y \ z \ 1)'$ are pairwise orthogonal to each other.

EXERCISE 3 Linear Combination

The vectors $\mathbf{v_1} = (1 \ 1 \ 1)'$, $\mathbf{v_2} = (1 \ 2 \ 3)'$ and $\mathbf{v_3} = (2 \ -1 \ 1)'$ are given. Show that the vector $\mathbf{w} = (1 \ -2 \ 5)'$ can be described as a linear combination of the vectors $\mathbf{v_1}$, $\mathbf{v_2}$ and $\mathbf{v_3}$.

EXERCISE 4 Matrix Multiplication

Decide whether the matrix multiplications $\mathbf{A} \cdot \mathbf{B}$ and $\mathbf{B} \cdot \mathbf{A}$ are possible and if so, carry them out.

a) $\mathbf{A} = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 4 & 2 \end{pmatrix}$	$\mathbf{B} = \left(\begin{array}{rrrrr} -1 & 1 & 0 & 3\\ 1 & 1 & 1 & 1\\ 0 & 2 & -3 & 4\end{array}\right)$
b) $\mathbf{A} = \begin{pmatrix} -2 & 1 & 2 \\ 1 & 2 & -3 \end{pmatrix}$	$\mathbf{B} = \left(\begin{array}{cc} 3 & 2\\ 1 & 2 \end{array}\right)$
c) $\mathbf{A} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$	$\mathbf{B} = \left(\begin{array}{rrr} -2 & 0 & 1\\ 4 & -1 & 2 \end{array}\right)$
d) $\mathbf{A} = \begin{pmatrix} 1 & -3 & 4 \\ 0 & 1 & -2 \\ 2 & 2 & -1 \end{pmatrix}$	$\mathbf{B} = \begin{pmatrix} 3 & 5 & 2 \\ -4 & -9 & 2 \\ -2 & -8 & 1 \end{pmatrix}$
e) $\mathbf{A} = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$	$\mathbf{B} = \left(\begin{array}{cc} 3 & -5 \\ -1 & 2 \end{array}\right)$
f) $\mathbf{A} = \begin{pmatrix} 1 & 5 & 0 \\ 2 & 6 & 6 \\ 3 & 7 & 4 \\ 0 & 8 & 2 \end{pmatrix}$	$\mathbf{B}=\mathbf{A}'$

EXERCISE 5 Matrix Algebra

Apply the calculation rules for matrix algebra in order to simplify the following expressions:

```
a) \mathbf{A}(\mathbf{B}\mathbf{A})^{-1}\mathbf{B} b) (\mathbf{A}\mathbf{B}')'(\mathbf{B}\mathbf{A}')^{-1}\mathbf{C} c) \mathbf{A}\mathbf{B}'(\mathbf{B}^{-1})'\mathbf{A}^{-1}
```

EXERCISE 6 Matrix Algebra

Solve each of the following matrix equations for **X** applying the calculation rules for matrices: $\mathbf{A} = \mathbf{A} \mathbf{A} + \mathbf{N} \mathbf{A} = [\mathbf{A} \mathbf{A} \mathbf{A} + \mathbf{D})^{T}$

a)
$$\mathbf{A'I} + \mathbf{X'} = [\mathbf{A}(\mathbf{I} + \mathbf{B})]'$$

b) $(\mathbf{XA} + \mathbf{IX})' = \mathbf{A'} + \mathbf{I}$

c) $\mathbf{X}(\mathbf{A} + \mathbf{I}) = \mathbf{I} + \mathbf{A}^{-1}$

I: appropriate identity matrix

EXERCISE 7 Determinant

Calculate the determinant for the following matrices:

a)
$$\mathbf{A} = \begin{pmatrix} 4 & 1 \\ -4 & 2 \end{pmatrix}$$
 b) $\mathbf{B} = \begin{pmatrix} 1 & -4 & -10 \\ 10 & -8 & 2 \\ 0 & -1 & 6 \end{pmatrix}$
c) $\mathbf{C} = \begin{pmatrix} -7 & 1 & -10 \\ 1 & 10 & 2 \\ 1 & 0 & 6 \end{pmatrix}$ d) $\mathbf{D} = \begin{pmatrix} -3 & 0 & -8 & 7 \\ -7 & 1 & -4 & -10 \\ 1 & 10 & -8 & 2 \\ 1 & 0 & -1 & 6 \end{pmatrix}$
e) $\mathbf{E} = \mathbf{D}^{-1}$ f) $\mathbf{F} = \begin{pmatrix} 3 & 0 & 8 & -7 \\ 7 & -1 & 4 & 10 \\ -1 & -10 & 8 & -2 \\ -1 & 0 & 1 & -6 \end{pmatrix}$

EXERCISE 8 Determinant

The matrices

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 2 & 5 & 7 \\ 3 & 0 & 1 \end{pmatrix} \quad \text{and} \qquad \mathbf{B} = \begin{pmatrix} 2 & 3 & 1 \\ 0 & 2 & 5 \\ 1 & 0 & 1 \end{pmatrix}$$

are given.

- a) Compute the determinant of **A**.
- b) Compute the determinant of a matrix that we receive by interchanging the first and the third column of **A** (second column **A** unchanged). Compare your result to a).
- c) Compute the determinant of \mathbf{A}' . Compare your result to a).
- d) Compute the determinant of $2 \cdot \mathbf{A}$. How can you compute this determinant more quickly?
- e) Compute the determinant of **B**.
- f) Compute the determinant of **A B**. Compare your result to a) and e).
- g) Compute the determinant of $\mathbf{A} + \mathbf{B}$. Compare your result to $det(\mathbf{A}) + det(\mathbf{B})$.

EXERCISE 9 Calculation of the Inverse

Calculate the inverse if possible:

a)
$$\mathbf{A} = \begin{pmatrix} 4 & 1 \\ -4 & 2 \end{pmatrix}$$
 b) $\mathbf{B} = \begin{pmatrix} 4 & 1 \\ -2 & -0, 5 \end{pmatrix}$
c) $\mathbf{C} = \begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix}$ d) $\mathbf{D} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & -3 \\ 0 & -1 & 3 \end{pmatrix}$

EXERCISE 10 Rank, Regularity and Inverse

The following matrix is given:

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 0 & 3 \\ 4 & 0 & 2 \end{pmatrix}$$

- a) Determine the rank of the matrix.
- b) Is the matrix **A** regular or singular?
- c) Calculate the inverse of **A**, if possible.

EXERCISE 11 Linear Equation Systems

Determine for the following linear equation system the solution vector using

- a) Gaussian Elimination
- b) Matrix Inversion
- c) Cramer's Rule

EXERCISE 12 Rank of a matrix

Determine the rank of the following matrices using Gaussian Elimination:

a)
$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 0 & 1 & 2 \\ -1 & 2 & 1 & 0 & -1 \\ 0 & 4 & 1 & 2 & 1 \end{pmatrix}$$
 b) $\mathbf{B} = \begin{pmatrix} 4 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & 0 & 3 \\ -1 & -1 & -1 \end{pmatrix}$

~

EXERCISE 13 Inverse of a matrix

Given the follwing matrix

$$\mathbf{A} = \begin{pmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{pmatrix}$$

Calculate the inverse A^{-1} using Gaussian Elimination.

Solution Exercise 1:

a) 1

c)
$$\begin{pmatrix} -23\\0\\69\\-46 \end{pmatrix}$$

d)
$$\begin{pmatrix} 2\\3\\-1\\-3 \end{pmatrix}$$

Solution Exercise 2: x=8, z=2, y=-3 Solution Exercise 3: $-6 \cdot \mathbf{v}_1 + 3 \cdot \mathbf{v}_2 + 2 \cdot \mathbf{v}_3 = \mathbf{w}$

Solution Exercise 4:

a) Possible.
$$\mathbf{C} = \begin{pmatrix} -1 & 1 & 4 & 3 \\ 4 & 8 & -2 & 12 \end{pmatrix}$$

b) Not possible. $\mathbf{B}_{(2\times2)} \cdot \mathbf{A}_{(2\times3)} = \begin{pmatrix} -4 & 7 & 0 \\ 0 & 5 & -4 \end{pmatrix}$
c) Not possible. $\mathbf{B}_{(2\times3)} \cdot \mathbf{A}_{(3\times1)} = \begin{pmatrix} 0 \\ 6 \end{pmatrix}$
d) Possible, both sides. $7 \cdot \mathbf{I}$
e) Possible, both sides. \mathbf{I}
f) Possible, both sides.

)	Possible,		both sides.	
	(26)	32	38	40
	32	76	72	60
	38	72	74	64
	$\setminus 40$	60	64	68/
		/14	38	24
	and	38	174	80
		$\setminus 24$	80	56/

Solution Exercise 5:

- a) \mathbf{I}
- b) **C**
- c) **I**

Solution Exercise 6:

- a) $\mathbf{X} = \mathbf{AB}$
- b) $\mathbf{X} = \mathbf{I}$
- c) $\mathbf{X} = \mathbf{A}^{-1}$

Solution Exercise 7:

- a) $|\mathbf{A}| = 12$
- b) $|\mathbf{B}| = 294$
- c) $|\mathbf{C}| = -324$
- d) $|\mathbf{D}| = 989$
- e) $|\mathbf{E}| = \frac{1}{989}$
- f) $|\mathbf{F}| = 989$

Solution Exercise 8:

- a) $|\mathbf{A}| = -26$ b) $\begin{vmatrix} 3 & 1 & 0 \\ 7 & 5 & 2 \\ 1 & 0 & 3 \end{vmatrix} = 26$
- c) $|\mathbf{A}'| = -26$
- d) $|2\mathbf{A}| = -208$
- e) $|\mathbf{B}| = 17$
- f) |AB| = -442
- g) $|\mathbf{A} + \mathbf{B}| = 92$

Solution Exercise 9:

a)
$$\mathbf{A^{-1}} = \frac{1}{12} \cdot \begin{pmatrix} 2 & -1 \\ 4 & 4 \end{pmatrix}$$

b) **B** is singular \Leftrightarrow **B**⁻¹ doesn't exist!

c)
$$\mathbf{C}^{-1} = -\frac{1}{10} \begin{pmatrix} -4 & -2 \\ -3 & 1 \end{pmatrix}$$

d) $\mathbf{D}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & \frac{1}{3} & \frac{2}{3} \end{pmatrix}$

Solution Exercise 10:

- a) Rg(A) = 3.
- b) **A** is regular.

c)
$$\mathbf{A}^{-1} = \begin{pmatrix} 0 & -0, 2 & 0, 3 \\ -1 & 0, 6 & 0, 1 \\ 0 & 0, 4 & -0, 1 \end{pmatrix}$$
.

Solution Exercise 11: Solution vector: $x = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$

Solution Exercise 12:

a) The rank of the matrix is 3.

b) The rank of the matrix is 3.

Solution Exercise 13:

$$\mathbf{A^{-1}} = \begin{pmatrix} 6,75 & -2,75 & 0,75\\ -2,75 & 1,25 & -0,25\\ 0,75 & -0,25 & 0,25 \end{pmatrix}$$