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Abstract
Numerical analysis is the branch of mathematics that studies algorithms that compute
approximations of well-defined, but analytically-unknown mathematical quantities. Sta-
tistical inference, on the other hand, studies which judgments can be made on unknown
parameters in a statistical model. By interpreting the unknown quantity of interest as
a parameter and providing a statistical model that relates it to the available numerical
information (the ‘data’), we can thus recast any problem of numerical approximation
as statistical inference. In this way, the field of probabilistic numerics introduces new
‘uncertainty-aware’ numerical algorithms that capture all relevant sources of uncertainty
(including all numerical approximation errors) by probability distributions.
While such recasts have been a decades-long success story for global optimization and

quadrature (under the names of Bayesian optimization and Bayesian quadrature), the
equally important numerical task of solving ordinary differential equations (ODEs) has
been, until recently, largely ignored. With this dissertation, we aim to further shed
light on this area of previous ignorance in three ways: Firstly, we present a first rig-
orous Bayesian model for initial value problems (IVPs) as statistical inference, namely
as a stochastic filtering problem, which unlocks the employment of all Bayesian filters
(and smoothers) to IVPs. Secondly, we theoretically analyze the properties of these new
ODE filters, with a special emphasis on the convergence rates of Gaussian (Kalman)
ODE filters with integrated Brownian motion prior, and explore their potential for (ac-
tive) uncertainty quantification. And, thirdly, we demonstrate how employing these
ODE filters as a forward simulator engenders new ODE inverse problem solvers that
outperform classical ‘uncertainty-unaware’ (‘likelihood-free’) approaches.
This core content is presented in Chapter 2. It is preceded by a concise introduction

in Chapter 1 which conveys the necessary concepts and locates our work in the research
environment of probabilistic numerics. The final Chapter 3 concludes with an in-depth
discussion of our results and their implications.
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Kurzfassung
Die numerische Analysis ist der Zweig der Mathematik, der sich mit Algorithmen be-
schäftigt, welche Approximationen von wohldefinierten, aber analytisch unbekannten
mathematischen Größen berechnet. Die inferentielle Statistik studiert hingegen, welche
Aussagen über die unbekannten Parameter von statistischen Modellen getroffen werden
können. Indem wir die unbekannte Lösung eines numerischen Problems als einen solchen
Parameter interpretieren und indem wir ein statistisches Modell konstruieren (das diesen
Parameter in einen Zusammenhang mit den verfügbaren Informationen stellt), können
wir jedes numerische Problem als statistische Inferenz reinterpretieren. Auf diese Art
führt das Gebiet Probabilistische Numerik neue ‘unsicherheitsbewusste’ numerische Me-
thoden ein, welche alle relevanten Quellen von Unsicherheit (inklusive der numerischen
Unsicherheit) berücksichtigen.
Während solche Umformulierungen bereits seit Jahrzehnten für globale Optimierung

und Quadratur (unter den Namen Bayesian Optimization und Bayesian Quadrature)
eine Erfolgsgeschichte sind, wurde die ebenso wichtige Lösung von Ordinary Differential
Equations (ODEs) bis vor kurzem weitgehend ignoriert. Mit dieser Dissertation wollen
wir diese Wissenslücke mit drei Beiträgen füllen: Erstens präsentieren wir ein erstes rigo-
roses bayesianisches Modell für Anfangswertprobleme (AWPe) als statistische Inferenz
- nämlich als stochastisches Filterproblem. Dies ermöglicht die Anwendung aller baye-
sianischer Filter (und Glätter) für AWPe. Zweitens analysieren wir die Eigenschaften
von diesen neuen ODE Filtern - mit einer besonderen Betonung auf die Konvergenzra-
ten von Gauß (Kalman) ODE Filtern mit einer integrierten Brownschen Bewegung als
Prior - und untersuchen ihr Potential für (aktive) Unsicherheitsquantifizierung. Drittens
demonstrieren wir, wie die Anwendung dieser ODE Filter als Vorwärtslöser neue Algo-
rithmen für Inversprobleme ergibt, welche die Sampleeffizienz und Geschwindigkeit von
klassischen ‘unsicherheitsunbewussten’ (‘likelihoodfreien’) Algorithmen übertreffen.
Dieser Kerninhalt wird in Kapitel 2 präsentiert. Eine konzise Einleitung ist in Ka-

pitel 1 zu finden, welche die nötigen Konzepte vermittelt und unsere Forschung in den
Kontext der probabilistischen Numerik einordnet. Das finale Kapitel 3 schließt mit einer
Diskussion unserer Ergebnisse und derer Implikationen.
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Preface
We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

—T. S. Eliot (Four Quartets, “Little Gidding”)

Imagine, dear reader, a group of scientists at a coffee break of a conference for compu-
tational mathematics. Everybody is relaxed and, perhaps, tired from a jetlag, waiting
for the coffee to kick in. One of the scientist (probably a younger one) is colloquially say-
ing to her colleagues: "The true solution of a numerical problem is unknown, otherwise
no approximation (and hence no numerical method) would be needed." Her colleagues
sleepily nod along to this boring truism, but their drowsiness disappears as she goes
on: "Statistics is, amongst other things, the science of inferring unknown parameters.
Hence, both numerics and statics are concerned with estimating unknown quantities."
As her colleagues begin to listen with interests (some of them have never thought of this
clear parallel), they become more tense as she continues: "Hence, if we can provide a
statistical model in which the true solution is a parameter, we can employ methods from
statistical inference to compute a (posterior) probability distribution that captures our
incomplete knowledge of the true solution, including the uncertainty. In many cases,
classical numerical approximations can then be viewed as point estimates that are con-
tained in this probability distribution as a mean or mode." If she (notwithstanding the
increasing tension of some of her colleagues) would have the audacity to assert "Numeri-
cal analysis is but a subset of statistical inference which prioritizes worst-case bounds!",
passionate push-back (at least from the senior numerical analysts in the room) would
be guaranteed.
This fictional scenario is an archetype for the many (often tense) discussions my

probabilistic-numerics colleagues and I have experienced with other scientists. While
virtually everybody would agree with the first sentence of the above fictional quote,
many very capable scientists would not follow along to the statement that statistical
inference can be used for numerical problems. Even more would disagree with the claim
that numerical analysis is a subset of statistical inference. Since the argumentative steps
seem watertight to me, such conversations never failed to fascinate and bewilder me. In
particular with very senior scientists, it made me feel a little bit like the prisoner in the

2



Acknowledgments

unexpected hanging paradox (Chow, 1998) who concludes that what happens to him (his
hanging) is logically impossible.
Of course, people will explain why, in their view, the above arguments are wrong or

misguided. To begin with, they might have the following fundamental objections (we
omit some less-convincing misconceptions here): They might assert that it is, generally,
absurd to use statistics for deterministic objects, and that the only true statistical model
would be a Dirac measure on the true solution which, however, is unknown. Or they
might claim that, since there is (a priori) no true statistical model, any model will
bias the final approximation. Or they might posit that the information (read: function
evaluations) used by numerical methods cannot be treated as data because "data has to
be collected or measured", or point out that numerics might not be a strict subset of
statistics since the solution of finite numerical problems is known if enough compute is
available.
While these arguments are great starts for further thought, I believe that they ulti-

mately do not hold up to scrutiny. This is not the right place to give a detailed refutation;
but many of the relevant arguments can be found in Hennig et al. (2015), Oates and
Sullivan (2019), and (to some extent) also in Ritter (2000).
The oppositional scientists might also point out different tendencies and emphases

in statistics and numerics: They might argue that, unlike statistics, numerics tends to
focus on well-posed problems, and that therefore uncertainty quantification (UQ) is not
as central to numerics. They might go on to posit that, due to relying on an oftentimes-
slow data collection process, computational cost is less important in statistics, leading to
costly methods, and that noise in the data makes UQ in statistics more essential than in
numerics. They might say that statistics uses reproducing kernel Hilbert spaces (RKHS)
to classify problems, while numerics settles for more elementary function spaces. They
might point out that the statistical model is an additional modeling assumption on top
of the inevitable function space, and that the quality of the posterior UQ will depend
on this choice (leading to complex trade-offs between computational cost and statistical
expressiveness of the prior). Or, they might point out that numerical algorithms are
optimized for the worst case, while statistics has the average case in mind.
These arguments, however, are not a rejection (and maybe are in fact an implicit

acceptance?) of the basic arguments put forward above. They contain very important
distinctions which we try to comprehend and take up in our research. In fact, all of the
research presented in this thesis are informed and fueled by such considerations.
Lastly, and least productively, the opposing scientists might enumerate what prob-

abilistic numerics (PN) has not achieved yet—enumerating algorithms and bounds for
specific numerical problems. But Rome wasn’t built in one day, and there is really no
need to respond to this charge.
Maybe you can, dear reader, imagine how mystified these arguments have left me,

who has (over the years of my PhD) become convinced that PN unifies statistics and
numerics and offers (what I call) the three promises of PN :
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1. more flexible classification of problems by statistical model selection,

2. comprehensive uncertainty quantification, and

3. invention of new average-case-optimal algorithms,

all of which are covered (for the example of ODEs) in this thesis.
In some communities, the jury is still out on which side of the argument prevails, but

I, for one, am sure that we will eventually be acquitted of our iconoclasm of numerical
analysis. This dissertation is thus written in the spirit of an enthusiastic ‘Yes’ to PN.
If it makes the logic and the three promises of PN more visible to you, dear reader, its
goal will be met.

— Hans Kersting, Tübingen, September 2020

How to read this thesis: Chapter 1 contains a concise introduction to today’s
research environment of probabilistic numerics for ODEs—within the larger context
of modern numerical analysis and machine learning. We advise any reader unfamiliar
with PN to read it. No knowledge of our published papers, which are attached in the
Appendix, is required for the introduction. The summary (Chapter 2) and discussion
(Chapter 3) are based on all publications. Therefore, it might be necessary for the reader
to familiarize themself with the Appendix, to understand these chapters in full detail.
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1 Introduction
Ordinary differential equations (ODEs) are important all over science and engineering.
Originally introduced by Newton (1671), the vast list of their applications today includes:
trajectories of objects in classical mechanics, action potentials in brains, radioactive de-
cay in nuclear power plants, continuous limits of deep neural networks, shortest paths
on Riemannian manifolds, predator-prey dynamics in ecosystems and the spread of pan-
demics. Formally, the trajectory of such a system x : [0,T ] → Rd is described by an
ODE, written

ẋ(t) = f (x(t)) , ∀t ∈ [0,T ], (1.1)

for some final time T > 0, with a vector field f : Rd → Rd capturing the mechanics
of the system.1 Under the assumptions of the (global) Picard–Lindelöf theorem (Kelley
and Peterson, 2010, Corollary 8.35), the solution x is well-defined given any fixed initial
value x(0) ∈ Rd. An ODE, eq. (1.1), together with an initial condition x(0) = a ∈ Rd
is therefore a well-posed problem called initial value problem (IVP). The solution is
often summarized in a so-called flow map Φt(a) = x(t), where x(t) is the solution of
eq. (1.1) with x(0) = a. In this dissertation, we restrict our attention to IVPs. Note,
however, that our results can be applied to boundary value problems (BVPs), where a
final condition x(T ) = b ∈ Rd is added, via shooting methods (Press et al., 2007, Section
18.1).

1.1 The paradigm of classical numerics
Almost all of numerical analysis (‘numerics’) is built on, what we propose to call, a
worst-case uncertainty-unaware paradigm.
The classical paradigm is worst-case in precisely the sense of Ritter (2000) which

we are going to concisely exemplify for ODEs next. To this end, we consider explicit
RK methods as an example (but analogous arguments hold for all other methods). As
presented in more detail in Hairer et al. (1987, Chapter II), RK methods are designed to
have the fastest-shrinking convergence rates, given a certain amount of s ∈ N evaluations
of f per step. For an integration step 0 → h of size h > 0, they compute a numerical
estimate x̂(h) as follows: First, for i ∈ {1, . . . , s}, function evaluations are collected

1We only consider, without loss of generality, the autonomous case f(x(t)) but all claims below apply
to the more general case f(x(t), t).
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0
c2 a21

c3 a31 a32
... ... ... . . .
cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

Figure 1.1: Butcher tableau for explicit Runge–Kutta methods, see eqs. (1.2) and (1.3).

according to

yi = f

x0 + h
i−1∑
j=1

aijyj

 , (1.2)

which are then used to linearly predict forward in time:

x̂(h) = x0 + h
s∑
i=1

biyi. (1.3)

The coefficients a21, a31, a32, . . . , as1, as2, . . . , as,s−1, b1, . . . , bs, c2, . . . , cs ∈ R are usually
summarized in a Butcher tableau; see Figure 1.1.
But how are these coefficients chosen? To see this, let us first recursively define

f (i) : Rd → Rd by f (0)(a) := a, f (1)(a) := f(a) and f (i)(a) := [∇xf
(i−1) · f ](a). Now,

differentiating the ODE, eq. (1.1), (i− 1)-times by the chain rule yields

x(i)(t) = f (i−1)(t)
(
x(0)(t)

)
, (1.4)

as proved in Appendix C.15. Hence, the Taylor expansion of x around some time t ∈
[0,T ] is given by

x(t+ h) =
∞∑
i=0

hi

i! f
(i)
(
x(0)(t)

)
. (1.5)

The coefficients in the Butcher Tableau, Figure 1.1, are chosen such that x̂(h), matches
as many summands of the Taylor expansion, eq. (1.5), with t = 0, as possible. In
other words, they are chosen such that the maximal numerical error ‖x(h) − x̂(h)‖ is
in O(hp) (by Taylor’s theorem, if applicable), with p ∈ N as high as possible. How
p grows with s is depicted in Figure 1.2. RK methods are therefore designed to have
the (asymptotically) smallest error for the worst-case f with bounded pth order partial
derivatives (so that Taylor’s theorem is applicable).
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p 1 2 3 4 5 6 7 8
min s 1 2 3 4 6 7 9 11

Figure 1.2: The minimal amount of stages s for O(hp) convergence in explicit RK meth-
ods; see Butcher (2008, Section 32).

To see why we also call the classical paradigm uncertainty-unaware, recall that
Hermite interpolation (Spitzbart, 1960) fits a polynomial of least-possible order using
both observations of the function and its (higher) derivative. Hence, RK methods of
order p can also be thought of (iteratively) performing Hermite interpolation, with{(

t,x(i)(t) != f (i)(x̂(t))
)

; i = 0, . . . , p
}

(1.6)

as data, in every step t→ t+h. However, except for the first integration step 0→ h, the
starting value x̂(t) is only an estimate of the true x(t). Accordingly, the data of eq. (1.6)
is inexact or ‘noisy’ as the != is only a true equality if x̂(t) = x(t). In reality, however,
the numerical error ‖x̂(t)− x(t)‖ can accumulate quickly; see e.g. Figure 7.1. in Hairer
et al. (1987). Hence, for t > 0, RK methods falsely make the implicit assumption that
f (i)(x̂(t)) = x(i)(t), i.e. that they extrapolate with exact data. In other words, they
are unaware of their numerical uncertainty. Figure 1.3 shows that this effect matters by
comparing the Runge–Kutta method (RK4) with the corresponding 4th order Hermite
polynomial (Hermite4) with exact data, i.e. with{(

t,x(i)(t) != f (i)(x(t))
)

; i = 0, . . . , 4
}

(1.7)

instead of eq. (1.6). This is to say that Hermite4 receives the data that RK4 assumes
to receives and does not suffer from the numerical uncertainty x̂(t) 6= x(t) that RK4
ignores. It does not exhibit uncertainty-unawareness because it has access to certain
data. Unsurprisingly, the Hermite4 method outperforms RK4 in all cases of Figure 1.3
which shows that the underlying assumptions of classical numerics are too optimistic. As
x(t) and hence f (i)(x(t)) are unknown, we cannot remove the uncertainty (like Hermite4
does), but we can model it and build more robust ‘uncertainty-aware’ solvers. In fact,
the first paper of this thesis (Kersting and Hennig, 2016) in Appendix A introduces such
a solver.

1.2 The paradigm of probabilistic numerics
As an alternative, probabilistic numerics (PN) proposes an average-case uncertainty-
aware paradigm.
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Figure 1.3: This figure shows how RK4 and Hermite4 perform on the linear and Van
der Pol ODE. The linear system is given by ẋ(t) = x(t), x(0) = x0 and the Van der Pol
system by (x1(t),x2(t)) = (µ(x1(t) − 1

3x1(t)3 − x2(t), x1(t)
µ

), x(0) = (2,−5), µ = 5. The
left column shows the trajectories. The right column shows the maximal error up to
time t.
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1.2 The paradigm of probabilistic numerics

X Z

Q

information Z

QoI operator Q numerical method B

Figure 1.4: A conceptual diagram of numerical methods. Details in text.

This approach is best understood in a Bayesian framework although it can also be
realized in a non-Bayesian way, e.g. by sampling-based ODE solvers as discussed in
Appendix C.1.2.
The idea of Bayesian numerical analysis, as first specified by Diaconis (1988), was

recently derived from measure-theoretic principles by Cockayne et al. (2019) in a rigorous
way. We here give an intuitive high-level summary.
Let us first, with the help of Figure 1.4, think conceptually about what a numerical

method is: Assume that our numerical task is to infer some quantity of interest (QoI) in
Q, e.g. the final point x(T ) ∈ Rd of some ODE. This QoI is a feature of some unknown
function x ∈ X , e.g. the entire solution x : [0,T ] → Rd. The QoI can be extracted
from x by applying the information operator Q : X → Q to x, which is the projection
Q(x) := x(T ) for ODEs. We can collect information on x in the information space Z via
the information operator Z, e.g. information on ẋ(t) ∈ Rd via evaluations of f(x(t)) ∈ Rd
in the spirit of eq. (1.6). Now, a numerical method B is just an algorithm that receives
information in Z as an input and constructs an approximation of the QoI in Q as an
output. It usually does this by mapping the information back through Z to construct
an approximation x̂ of x and, then approximate the QoI by Q(x̂); cf. above-mentioned
Runge–Kutta methods.
A (Bayesian) probabilistic numerical method (PNM) performs these steps in the fol-

lowing principled way. It explicitly starts with a prior p(x) over X and then (actively)
collects information z ∈ Z according to some policy depending on p(x) and Z, e.g. it
queries Z at some points in x (for instance the mean of p(x)). Given the information
z, the probability of x given z is captured by some likelihood p(x | z). Application of
Bayes’ rule

p(x | z) ∝ p(z | x)p(x) (1.8)

9



1 Introduction

now yields a posterior p(x | z). The final output of the PNM is then the pushforward
of p(x | z) through Q, i.e. Q∗(p(x | z)); cf. Definition 2.5 in Cockayne et al. (2019) for a
more rigorous version.
Computing the pushforward Q∗ is trivial and straightforward. The interesting and

difficult part is computing the posterior p(x | z). However, by eq. (1.8), its tractability
only depends on the prior p(x) and the likelihood p(z | x). We will now explain how
the prior and likelihood are key to understanding how probabilistic numerics is both an
average-case and uncertainty-aware paradigm.
The prior p(x): Average-case numerical analysis (Ritter, 2000) is concerned with

finding approximations to a numerical problems which are optimal when the numerical
problem is sampled from a certain prior. For example, it is known that quicksort has
optimal complexity of all permutations when a uniform prior over all permutations is
assumed (Hoare, 1961). For non-finite problems, uniform priors do not exist; but these
problems can still be equipped with (subjective) priors. Due to its excellent computa-
tional properties, Gaussian process (GP) priors are especially popular. For example,
the GP-regression posterior mean is known to be average-case optimal for any GP prior
(Rasmussen and Williams, 2006, Section 2.2). Consequently, Bayesian quadrature—
which simply adds a QoI operator Q which integrates the estimated function—is also
average-case optimal (O’Hagan, 1991) for any GP prior. For ODEs, however, the prior
cannot be put on the problem definition f but on the solution x because GP regression
should be performed on x and not on f . It is still average-case numerics in an important
sense though: If the vector field f(x(t), t) of the ODE does not depend on x(t), then
solving the ODE is equivalent to solving the integral

∫
f(x, s) ds, for any x ∈ Rd. It can,

in fact, be shown that Bayesian ODE filters perform Bayesian quadrature for such vector
fields and are therefore average-case optimal on this subclass of ODEs; cf. Wang et al.
(2018).
The likelihood p(z | x): The likelihood p(x | z) links the unknown function x ∈ X

to the data z ∈ Z. In many cases, it is simply a Dirac measure at some exact evaluation
of x at some input; for example in the case of GP regression (or Bayesian quadrature)
with exact observations. In the case of ODEs, we do not have exact evaluations, but
can only construct observations of the derivatives of x(t) at some t ∈ [0,T ] through
evaluations of f(x̂(t)), as explained in Section 1.1. If we use normal distributions, this
implies a likelihood of the form

p(z | x) = N (z; f(x̂(t)),V ) (1.9)

where z is treated as information on the derivative ẋ(t) and the variance V is supposed
to model the error ‖f(x(t))− f(x̂(t))‖. Therefore, this non-Dirac likelihood models
the import of the numerical uncertainty (x̂(t) 6= x(t)) that classical numerical analysis
ignores. Therefore, we say that probabilistic numerics is (unlike classical numerics)
uncertainty-aware.
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1.3 Numerics of ODEs: a solved topic?

ODEs are—due to the century-long relentless work of analysts of the caliber of Leibniz,
Bernoulli and Richardson—analytically well-understood; see Kelley and Peterson (2010)
or Teschl (2012) for a comprehensive summary of the accumulated analytical theory. The
numerical analysis, however, was (absent modern computers) largely ignored until the
20th: While Leonhard Euler (1768) (still mostly interested in the analysis of ODEs)
invented the first numerical ODE solver now called Euler’s Method and Bashforth and
Adams (1883) introduced a generalization today known as multi-step methods, the inter-
est in numerical solvers grew in the 20th century alongside the relevance of computers.
The most important breakthrough was provided by Runge–Kutta (RK) methods, an-
other generalization of Euler’s method by Runge (1895) and Kutta (1901), which collect
multiple vector field evaluations along a single integration step; see Section 1.1. RK
methods are the basis of today’s single-step methods. As the third industrial revolution
(aka digital revolution) took off in the second half of the 20th and computers became
omnipresent, RK methods were further developed, by the likes of NASA’s Apollo pro-
gram (Fehlberg, 1969), and are still the general go-to solution for most applications. In
the past decades, excellent comprehensive books on the numerics of ODEs have been
published; see e.g. Hairer et al. (1987), Hairer and Wanner (1996), Deuflhard and Borne-
mann (2002), and Butcher (2008). Many numerical analysts therefore consider ODEs
to be a solved topic.

1.4 The new challenges and chances of machine
learning

The inventors of classical methods for ODEs, however, did not foresee the advent of
the Fourth Industrial Revolution (Schwab, 2017), in general, and of data-driven ma-
chine learning (ML) in particular. Therefore, we argue here, classical solvers may not
be prepared for the next generation of computer science. The shortcomings are twofold:
Firstly, classical solvers are not designed to interact with statistics and, by extension,
with ML systems. Hence, we consider them suboptimal for some ML tasks; see Sec-
tion 1.4.1 below. Secondly, classical solvers are formulated in the paradigm of classical
numerics (see Section 1.1) and have not utilized the recent successes of other paradigms
from ML (and statistics). Hence, we think that methods from ML can be used to solve
ODEs; see Section 1.4.2 below. Some of the arguments presented next have been, in
more generic form, made in Hennig et al. (2015) and Oates and Sullivan (2019).
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1.4.1 Challenges: Why do we need novel numerical methods
for ML tasks?

"Most of what is being called “AI” today, particularly in the public sphere, is
what has been called “Machine Learning” (ML) for the past several decades.
ML is an algorithmic field that blends ideas from statistics, computer science
and many other disciplines to design algorithms that process data, make pre-
dictions and help make decisions." —Michael Jordan (2018)

Machine learning is a data-driven field: without data, no predictions; without predic-
tions, no improved decision making. The more noisy the data is, the more important is
statistics in general and uncertainty quantification (Sullivan, 2015) in particular. How-
ever, this statistical uncertainty is not the only relevant kind of uncertainty.
Uncertainty can be subdivided into two high-level categories: aleatoric and epistemic

uncertainty.2 Aleatoric uncertainty signifies any unknown outcome that is truly stochas-
tic, i.e. that is thought of as coming from as a random outcome that could be different
if repeated—such as a random number, a dice role or some phenomena in stochastic
quantum mechanics. On the contrary, all unknown outcomes that are thought of as
non-stochastic (aka deterministic) are subsumed under epistemic uncertainty—such as
the expected arrival time of a journey, a free model parameter or tomorrow’s weather.3
In ML, both sources of uncertainty play an important role (Gal, 2016). While the

aleatoric uncertainty is usually comprehensively treated by modeling the noise inher-
ent in the observations and (potentially) random numbers, the epistemic uncertainty is
often reduced to model uncertainty; see e.g. Kendall and Gal (2017). This, however,
completely ignores the numerical uncertainty from imprecise numerical approximations.
This uncertainty can be significant (Hennig et al., 2015). For example, most of Bayesian
machine learning relies on Bayesian model averaging which has to rely on quadrature
in many cases (Fragoso et al., 2018). The uncertainty from the quadrature is, however,
largely ignored—which the PN-method Bayesian quadrature can remedy (Briol et al.,
2019).
Although ODEs are not as ubiquitous in ML as quadrature, they too add to the

numerical uncertainty in many situations.4 In fact, ODE inverse problems are a ML
task on their own as they appear whenever the parameters of a dynamical system are
inferred. This thesis contains a paper (Kersting et al., 2020b) in Appendix D which

2Note that this dichotomy resembles the difference between frequentism and Bayesianism: aleatoric
uncertainty assumes a repeatable frequentist experiment while epistemic uncertainty captures the
Bayesian belief distribution of some observer.

3The ongoing debate whether true randomness exists is beside the point, since this definition is only
concerned with how uncertainty is thought of. A random number, for example, is created by a de-
terministic random numbers generator, and it nevertheless makes sense to think of it as stochastic—
since it would be futile to model the underlying physics.

4To see the import of numerical uncertainty from another angle, note that numerical uncertainty is
an instance of logical uncertainty which is relevant for AI safety (Soares and Fallenstein, 2014).
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shows how PN can combine aleatoric and numerical uncertainty in such problems. Other
prominent cases of ODEs in ML include Hamiltonian Monte Carlo (Betancourt, 2017),
neural ODEs (Chen et al., 2018) and optimization (Scieur et al., 2017). In all of these
algorithms, statistical uncertainty interact with numerical uncertainty. Consider, for
example, the case of stochastic optimization.
Example (stochastic gradient descent): The gradient descent algorithm for an

objective function F has a well-known numerical interpretation as the integration of the
gradient flow IVP, given by

ẋ(t) = −∇F (x), x(0) = x0, (1.10)

using Euler’s method. Stochastic gradient descent algorithms, however, only receive eval-
uations of ∇F as information (Bottou et al., 2018, Section 3.2). This means that they
perform Euler steps with inaccurate information on the derivative. In other words, the
aleatoric (statistical) uncertainty from the gradient estimate is fed into Euler’s method
which will translate it into epistemic (numerical) uncertainty. Here, too, a joint treat-
ment of statistical and numerical uncertainty by PN might lead to better algorithms.

1.4.2 Chances: Is solving ODEs a ML task?
Judea Pearl (2018) recently caused a small scandal in the ML community by claiming
that "all the impressive achievements of deep learning amount to just curve fitting".
While we do not fully agree with this provocative statement, it nicely highlights our
next point: If much (most?) of ML is a particularly efficient way of curve fitting (aka
regression), then all curve fitting tasks should be ML tasks. Since ODE solvers fit the
solution curve x : [0,T ] → Rd, the application of ML regression-techniques to ODEs
should engender new solvers.
This insight has, in recent years, been brought to bear not only by us: ODE solvers

based on kernel ridge regression and deep learning have been introduced by Saitoh and
Sawano (2016, Chapter 5) and Raissi et al. (2019) respectively. Our work uses Gaussian
Process (GP) regression (Rasmussen and Williams, 2006, Section 2.2) instead, because
the Bayesian paradigm comes with particular benefits over classical numerics (as we
explained in Section 1.2) and GPs are the only Bayesian non-parametric regression
technique with permissible computational cost (Ghahramani, 2013, Section 4). Maybe
other regression techniques, such as regression trees (Segal, 1992), can also be applied
to ODEs in this spirit.
The rest of the thesis consists of a summary and discussion of our published papers

which are, in full, attached in the Appendix. In particular, we will concisely summarize
how thinking about ODEs as a ML task leads to the efficient class of ODE solvers
now called ODE filters and discuss how this research leads to the three promises of
probabilistic numerics listed in the Preface.
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2 Summary

Before we summarize our contribution to Bayesian ODE filters, we first set the stage
by recalling Bayesian filtering for generic time series. This is didactically advantageous
because ODEs are just an example of a continuous signal x : [0,T ] → Rd which is
discretized by an ODE solver.

2.1 Gaussian filtering for generic time series

In signal processing, it is usually assumed that the signal is hidden but measurements
{yi; i = 1, . . . ,N} of the discretized state {xi; i = 1, . . . ,N} are available. These states
and measurements are modeled in a probabilistic state space model (SSM) consisting of

a dynamic model xi ∼ p(xi | xi−1), and (2.1)
a measurement model yi ∼ p(yi | xi). (2.2)

The dynamic model is usually thought of stemming from a continuous prior on x :
[0,T ]→ Rd. The measurement model is equivalent to a likelihood for the data provided
by the measurements. Unless very specific information is available, this prior is chosen
to be a linear time-invariant (LTI) stochastic differential equation (SDE), written

p(x) ∼ X(t) = FX(t) dt+ L dB(t), (2.3)

with Gaussian initial distribution N (m0,P0) on X(0), where the drift and diffusion
matrices F ,L ∈ RD×D define the deterministic and stochastic part of the dynamics
respectively. The unique solution of eq. (2.3) is a GP with mean m : [0,T ] → RD and
covariance matrix P : [0,T ]→ RD×D given by

m(t) = A(t)m(0), and (2.4)
P (t) = A(t)P (0)A(t)ᵀ +Q(t), (2.5)

where (A,Q) can be derived from (F ,L) in closed form; see eqs. (C.76) and (C.77). Ac-
cordingly, (F ,L) parametrize the prior p(x). Choosing the prior via (F ,L) is fully anal-
ogous to prior selection for GP regression, as e.g. described in Rasmussen and Williams
(2006, Chapter 5), but restricted to Gauss–Markov processes; see Section 2.3. If the
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Algorithm 1 Generic Bayesian Filtering
1: Input: data {yi; i = 1, . . . ,N}, initial distribution N (m0,P0), SSM eqs. (2.1)

and (2.2), i = 1
2: repeat
3: i = i+ 1
4: compute predictive distribution p(xi | y1:i−1) by eq. (2.1) from p(xi−1 | y1:i−1)
5: compute filtering distribution p(xi | y1:i) by eq. (2.2) from p(xi | y1:i−1)
6: until i = N

measurement model is Gaussian as well, i.e.

p(yi | xi) = N (yi;Hxi,R), (2.6)

for matrices H,R, posterior distributions can be computed by very efficient algorithms:
The filtering distribution p(xi | y1:i) can be computed by Gaussian (Kalman) filtering in
linear time O(N). The full posterior p(xi | y1:N) can be obtained by running Rauch—
Tung—Striebel (RTS) smoothing afterwards which maintains linear cost—much faster
than the cubic cost of Rasmussen and Williams (2006). If the measurement model
is non-linear or non-Gaussian, non-linear filtering (and smoothing) techniques can be
used to approximate the filtering and posterior distributions by Gaussian (e.g. extend-
ed/unscented Kalman filter) or sampling-based (e.g. particle filtering) approximations.
A generic Bayesian Filtering algorithm is presented in Algorithm 1. More information
on generic Bayesian filtering and smoothing can, e.g., be found in Anderson and Moore
(1979) and Särkkä (2013).
Example (Kalman Filtering): This example is instructive to build intuition and

see how fast Bayesian Filtering can be. Kalman Filtering computes exact filtering dis-
tributions p(xi | y1:i), i = 1, . . . ,N , in the framework of Algorithm 1 if the dynamic
and measurement models are both linear and Gaussian. This is the case when the
dynamic and measurement model can be written as p(xi | xi−1) = N (Axi−1,Q) and
p(yi | xi) = N (yi;Hxi,R). In this case, the predictive and filtering distributions are
Gaussians (Särkkä, 2013, Theorem 4.2), written

p(xk | y1:k−1) = N (xk;m−k ,P−k ), and p(xk | y1:k) = N (yk;mk,Pk). (2.7)

Both the prediction step (Line 4) and the update step (Line 5) of Algorithm 1 are now
cheap linear algebra computations.

• The prediction step is

m−k = Amk−1, P−k = APk−1A
ᵀ. (2.8)
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• The update step is

vk = yk−Hm−k , Sk = HP−k H
ᵀ +R, Kk = P−k H

ᵀS−1
k , (2.9)

mk = m−k +Kkvk, Pk = P−k −KkSkK
ᵀ
k . (2.10)

These steps are of cubic cost in D (due to the inversion of Sk), and (more importantly)
linear cost in N .

2.2 Two new constructions of state space models for
ODEs

As an efficient Bayesian model for a temporal function, a probabilistic SSM is perfect
for the Bayesian paradigm of PN, as discussed in Section 1.2. In our work, we have
introduced two distinct ways to define such a SSM for ODEs—published in Kersting
and Hennig (2016) and Tronarp et al. (2019a). While both use the same dynamic model
(prior), they employ a different measurement model (likelihood). While the first model
from Kersting and Hennig (2016) is more intuitive (as it resembles the internal logic
of classical solvers), the second model from Tronarp et al. (2019a) is more rigorous
and general. Since the first one creates (like RK methods; recall eq. (1.2)) ‘data’ by
evaluating the vector field f , we call it a SSM with generated data. The second one does
not, and instead conditions ‘on the ODE itself’ as we will see below. Accordingly, we
call it a a SSM without data.

2.2.1 A dynamic model for ODEs

As explained above, the dynamic model is determined by choosing the drift and diffusion
matrices F ,L ∈ RD×D of the SDE, eq. (2.3). This prior, the D-dimensional stochastic
process X : [0,T ]→ RD (the solution of the SDE), is only a suitable model if the ODE
solution x : [0,T ]→ Rd can be linearly extracted from X:

x(t) ∼ H0X(t), for some H0 ∈ Rd×D. (2.11)

Moreover, to incorporate information on the derivative, ẋ(t) also has to be linearly
extractable:

ẋ(t) ∼ HX(T ) for some H ∈ Rd×D. (2.12)

Given (H0,H), we can flexibly define the SDE prior, eq. (2.3), by choosing (F ,L). We
discuss these choices below in Section 2.3. The dynamic model for ODEs is therefore,
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like in eqs. (2.4) and (2.5), given by

p (x(t+ h) | x(t)) = N (x(t+ h);A(h)x(t),Q(h)) , (2.13)

with some initial distribution p (x(0)) = N (x(0);m(0),P (0)).

2.2.2 A Gaussian state space model for ODEs with generated
data

In our first publication (Kersting and Hennig, 2016), the SSM is completed with gen-
erated data. This means that at any time t ∈ [0,T ], given some estimate p(x(t)) =
N (x(t);m−(t),P−(t)) of x(t), we can ‘generate’ data yt on ẋ(t) via the equation

ẋ(t) eq. (1.1)= f(x(t)) ≈ f(m−(t)) =: yt, (2.14)

where the ≈ holds because m−(t) ≈ x(t). In other words, we choose

p (ẋ(t) | x(t)) = N (ẋ(t); yt,R) , (2.15)

where R ≥ 0 is an additional hyperparameter for the covariance (matrix) of yt as an
estimator of ẋ(t). (See Section 2.4 for a discussion of how R can be chosen.) The
complete SSM is now given by the dynamic model in eq. (2.13) and the measurement
model in eq. (2.6).

Why is this not a rigorous model?

The process of generating data resembles what classical ODE solvers do. Classical
ODE solvers also construct observations (‘data’) of derivatives by evaluating f at some
estimate x̂(t). The analogy becomes clear when one compares the data generation,
eq. (2.14), with the interpolation data RK methods receive from eq. (1.6). But this
intuitive construction, comes at a cost regarding rigor.
The goal of Bayesian inference is to approximate the posterior as uniquely defined

by Bayes’ rule. To apply Bayes’ rule, three distinct objects are required: the prior,
the likelihood, and the data. These three components are supposed to be different and
independent of each other. In our first SSM, however, both the likelihood and the data
depend on the prior. To see this, recall from eq. (2.8) that the predictive mean m− is
the mean of the predictive distribution p(xi | y1:i−1) which is a conditioned version of the
prior p(x) defined by the SDE, eq. (2.3). Hence, yt = f(m−t ) (the data) and Hm−t (part
of the likelihood) depend on the prior.
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Algorithm 2 Bayesian ODE Filtering
1: Input: IVP(xi,m,T ), step size h > 0, SSM eqs. (2.13) and (2.17), t = 0
2: repeat
3: compute predictive distribution p(x(t + h) | z(0 : t)) by eq. (2.13) from

p(x(t) | z(t))
4: compute filtering distribution p(x(t+ h) | z(t+ h)) by eq. (2.17) from p(x(t+

h) | z(t))
5: t = t+ h
6: until t+ h > T

2.2.3 A flexible state space models for ODEs without data
To design a rigorous model, we thus have to remove the dependence of data and likelihood
on the prior. But at any time t > 0, all estimates will have been computed by some
extrapolation scheme which will inevitably depend on the chosen model. Hence, the
only information independent of the prior is the ODE, ẋ(t) = f(x(t)), itself. Since
both a model H0X(t) of x(t) and HX(t) of ẋ(t) are contained in the state space by
construction, eqs. (2.11) and (2.12), insertion of these models into the ODE yields the
following information

Z(t) := f (H0X(t))−HX(t) = 0. (2.16)

This is to say that, at any time t ∈ [0,T ], we observe that the difference between the
implied derivative of our solution estimate HX(t) and our derivative estimate H0X(t)
ought to be zero, according to our ODE. In the diagram of Figure 1.4, the image of the
information operator Z is thus {0} ⊂ Rd. The likelihood is accordingly defined by

p(z(t) | x(t)) = N (0; f(x(t))− ẋ(t),R), (2.17)

with data z(t) ≡ 0, for all t ∈ [0,T ]. We introduced this SSM in more detail in Tronarp
et al. (2019a); see Appendix B.2. Moreover, we showed that this rigorous model is more
flexible and contains the earlier models by Schober et al. (2019) and Kersting and Hennig
(2016); see Propositions B.2.3 and B.2.4 in Appendix B.2.
Equipped with this general SSM, we can now define Bayesian ODE Filtering, see

Algorithm 2—which is completely analogous to Algorithm 1, except for the input (i.e. the
problem and the SSM).

A unified Bayesian framework for ODE filters

In Tronarp et al. (2019a), we show that ODE Filtering with this more general SSM unifies
all existing ODE filters and Bayesian quadrature with Markov kernels; see Appendix B.
In Proposition B.2.1, we show that Gaussian ODE filtering (plus smoothing) applied
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to an ODE whose vector field only depends on time t (but not on x(t)) reproduces the
Bayesian quadrature approximation posterior; cf. Theorem 1 in Wang et al. (2018). In
Proposition B.2.3, we show that ODE filtering in the first SSM in the sense of Schober
et al. (2019), with R = 0 in eq. (2.15), can be reproduced in this framework. As shown
in Proposition B.2.4, the same holds true for ODE filtering with R > 0 as introduced
by Kersting and Hennig (2016).

2.3 New priors for flexible model selection
In all of our publications, except for Kersting and Mahsereci (2020) which models Fourier
components, we restrict our attention to SSMs that model the first first q derivatives
of x(t). This is to say that we model the vector-valued function of x and its q first
derivatives by the (q + 1)-dimensional X =

(
X(0), . . . ,X(q)

)ᵀ
which solves

dX(t) =
(
dX(0)(t), . . . , dX(q−1)(t), dX(q)(t)

)ᵀ
(2.18)

=


0 1 0 . . . 0
... . . . . . . 0
... . . . 0 1
c0 . . . . . . cq




X(0)(t)

...
X(q−1)(t)
X(q)(t)

 dt+


0
...
0
σ

 dB(t). (2.19)

This class of SDEs, parametrized by c = (c0, . . . , cq), coincides with the GPs with Matérn
kernel (Hartikainen and Särkkä, 2010) which is unsurprising since Matérn processes
of this form are the standard model for Gauss–Markov processes with q continuous
derivatives. Our publications do not consider all choices of c, but restrict their attention
to c = (0, . . . , 0,−θ), θ ≥ 0—i.e. to the q-times Integrated Ornstein Uhlenbeck processes
(IOUP) and their special case, the q-times Integrated Brownian motion (IBM), if θ = 0.
The IBM prior has been known to be particularly useful for ODEs, since Schober

et al. (2014) proved that individual steps of q-stage RK methods coincide with a GP
posterior mean with q-times IBM kernel for q ∈ {1, 2, 3} (and a likelihood analogous
to the one introduced in Section 2.2.2). The deep reason for this is that the predictive
mean m−(t+ h) is a Taylor expansion of the previous filtering mean m(t), i.e.

m−(t+ h) eq. (2.4)= A(h)m(t) eq. (C.79)=
q+1∑
i=0

hi

i!m
(i)(t), (2.20)

where m(i)(t) is the filtering mean estimate of x(i)(t), which resembles the logic of RK
methods from eq. (1.5).1 Interestingly, the drifting (biased) q-times IOUP prior can

1Note that we here assume w.l.o.g. that d = 1; see Appendix C.12 for a justification for the underlying
independent-dimensions assumption.
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outperform the RK-like IBM prior on problems with bounded vector fields f (Magnani
et al., 2017), while staying close enough to Taylor predictions to maintain O(hq+1) local
convergence rates. (It is currently not known under which conditions the IOUP prior
has the same convergence rates as IBM; see Remark C.6.3.) The q-times IBM prior is
an uninformative prior because it assumes a constant (i.e. non-drifting) qth derivative
while the other derivatives are fixed by the fundamental theorem of calculus (as captured
by the 1s on the off-diagonal of eq. (2.19)). The IOUP prior introduces a drift on the
qth derivative which is more informative and therefore suboptimal in the worst-case, but
potentially better in the average-case when the dynamical system is on-average expected
to drift back to some equilibrium level. It remains to be seen if ODEs can be categorized
such that the whole Matérn family, eq. (2.18), becomes useful.

In a more radical deviation from classical numerics, we also introduced a SSM that
employs Fourier instead of Taylor expansions as predictions (Kersting and Mahsereci,
2020)—with the hope that this will be useful for periodic ODEs such as the Van-der-Pol,
FitzHugh–Nagumo, and Lotka–Volterra oscillators. While the above models the sum-
mands of the Taylor expansion, this SSM accordingly models the first J ∈ N summands
of the Fourier expansion (as well as the first J summands of the derivative). Its dynamic
model (prior) is defined by the SDE from eq. (2.3) with

F = diag(F1, . . . ,FJ), with blocks Fj =
[

0 −jw0
jw0 0

]
, q = 1, . . . , J and (2.21)

L = 0 ∈ R2(J+1)×2(J+1), (2.22)

where w0 > 0 is the angular velocity. Notably, the SDE does not have a zero diffusion L,
since (unlike Taylor coefficients) Fourier coefficients are global and do not change with
t ∈ [0,T ]. The solution x(t) and its derivative ẋ(t) can now be extracted, as described
in eqs. (2.11) and (2.12), by use of

H0 = [1, 0, 1, 0, . . . , 1, 0] ∈ R1×2(J+1), and (2.23)
H =

[
0, 0, 0,−1w0, 0,−2w0, . . . , 0,−Jw0

]
∈ R1×2(J+1).

This prior can be completed by both the intuitive and rigorous measurement model.
The details of the construction are given in Appendix E. The resulting Fourier filters
are, however, not practical yet and rely on support from IBM filters to learn in the
beginning of the time interval; see Appendix E.4. We, however, believe that they will
become functional in the future because the proposed SSM is an approximation of the
periodic kernel (the standard model for periodic signals), as proved in (Solin and Särkkä,
2014).
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2.4 Better probabilistic calibration by
uncertainty-awareness

Recall from eq. (1.6) that classical solvers ignore the uncertainty stemming from the
fact that almost always ẋ(t) 6= f(x̂(t)), for t > 0. The significance of this uncertainty-
unawareness is demonstrated above in Figure 1.2. In Kersting and Hennig (2016), we
therefore rectified this shortcoming by modeling this mismatch probabilistically. In the
intuitive SSM from Section 2.2.2, we first observe that, given a predictive distribution
N (m−t ,P−t ) over x(t) at some time t ∈ [0,T ], the true implied distribution over ẋ(t) is
given by the pushforward measure f∗

(
N (m−t ,P−t )

)
. Since f is non-linear, conditioning

on it is intractable. We therefore propose to moment-match this pushforward measure
to a Gaussian, i.e. use the approximation

N
(∫

f(ξ) dN (ξ;m−t ,P−t ),
∫

[ffᵀ](ξ) dN (ξ;m−t ,P−t )
)
≈ f∗

(
N (m−t ,P−t )

)
(2.24)

instead. The integrals in eq. (2.24) have to be approximated by numerical quadrature
which adds numerical uncertainty on top—in particular since only few evaluations of f
are affordable for each t. Hence, we propose to use Bayesian Quadrature (Briol et al.,
2019) for the approximation, which captures this uncertainty probabilistically. In full
PN-spirit, the posterior BQ-variance estimate of the expectation integral is added to
the existing variance from extrapolation. The resulting algorithm, Bayesian Quadra-
ture ODE Filtering, in deed shows more adaptive and flexible uncertainty calibration,
compared to the variance-less (R = 0; see eq. (2.15)) measurement model from Schober
et al. (2019); see Appendix A.4.

2.5 New algorithms for ODE inverse problems
The all-inclusive managing of uncertainty (numerical and statistical) through compu-
tational chains with multiple steps is a long-term vision of PN (Hennig et al., 2015,
Chapter 3(d)). The most elementary such chain involving ODEs, is an ODE inverse
problem where the parameter θ ∈ Rn of a parametrized ODE, written

ẋ(t) = f (x(t), θ) , x(0) = x0 ∈ Rd, (2.25)

is to be inferred from noisy data

z(ti) := x(ti) + εi ∈ Rd, εi ∼ N (0, Σi), (2.26)

at times 0 ≤ t1 < · · · < tM ≤ T . Such problems are ill-posed which is to say that two
parameters θ1 6= θ2 might fit the data equally well. Therefore, they rather fall under
the rubric of statistics (or machine learning) than numerical analysis. Accordingly,
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most existing work on ODE inverse problems deals with the statistical variances Σi,
i = 1, . . . ,M elaborately while tacitly passing over the numerical uncertainty. In other
words, they treat ODE inverse problems as ‘likelihood-free inference’ (Cranmer et al.,
2020) in that they do not model the likelihood of their numerical ODE solutions. The
most popular inverse problem solvers do this by computing the likelihood for a parameter
θ as if the likelihood of the forward map, p(xθ | θ), was a Dirac distribution δ(xθ − x̂θ)
(ignoring that x̂ 6= x). This means that it employs the uncertainty-unaware likelihood

p(z | θ) =
∫
p(z | xθ)p(xθ | θ) dxθ =

∫
p(z | xθ)δ(xθ − x̂θ) dxθ = N (z; x̂θ, Σ) , (2.27)

where xθ denotes the solution of eq. (2.25) for some fixed θ. If we instead use the
(posterior) filtering distribution p(xθ | θ) = N (xθ;mθ,P ), we obtain the uncertainty-
aware likelihood

p(z | θ) =
∫
p(z | xθ)N (xθ;mθ,P ) dxθ = N (z;mθ,P + Σ) (2.28)

in which the numerical and statistical variances, P and Σ, add up as they should; see
Figure D.2 for an illustration of how this likelihood is more suitable.

But we do not stop here, as the previous uncertainty-aware PN approaches did; see
Appendix D.3.1 for a comparative discussion of the preceding work. We recall that, for
every data time point ti the filtering distribution p(xi |y1:i)) = N (mi,Pi) is the posterior
of a GP with mean

mθ(ti) = x0 +
[
K∂ ∂(h : ti) +R · Ili

]−1
k∂(h : ti, ti)f(m−θ (0 : ti)), (2.29)

where k∂ = ∂k(t, t′)/∂t′ and k∂ ∂ = ∂2k(t, t′)/∂t∂t′ are derivatives of the kernel k. Hence,
if we assume that f(x, θ) = ∑n

i=1 xiθi and omit the import of ∇f under the chain rule,
we can derive an estimator J of the Jacobian of the map θ 7→ mθ which only involves
quantities that the Gaussian ODE filter computes anyway. This estimator then gives
rise to cheap estimators of the gradient and Hessian of the log-likelihood E, namely

∇̂θE(z) := −Jᵀ [P + Σ]−1 [z −mθ] , and (2.30)
∇̂2
θE(z) := Jᵀ [P + ΣIM ]−1 J . (2.31)

These two advantages (uncertainty-awareness and gradient information) can then be
used to construct better sampling and optimization methods for ODE inverse problems
that outperform existing ‘likelihood-free’ methods; see Appendix D for details of theory
and experiments.
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2.6 Theoretical analysis of ODE filters
Lastly, we support the above practical and conceptual advances by theory that comprises
both analogues to classical theory and new PN-specific results. The former cover the
two main pillars of numerics, namely convergence rates and stability; the latter covers
connections between existing PN methods and the calibration of the posterior uncer-
tainty. The following results are all contingent to modest regularity assumptions on f
which are stated in the respective appendices.

2.6.1 Classical theory for ODE filters
In numerical analysis, the two main quality criteria for ODE solvers are convergence
speed and numerical stability. The convergence rates of Gaussian (Kalman) ODE
filters are analyzed in Kersting et al. (2020a). It turns out that both the q-times IBM
and the IOUP prior (as their extrapolations do not deviate from Taylor expansions too
much) have polynomial local convergence rates of order O(hq), for all q ∈ N and all
measurements variances R ≥ 0 in the intuitive SSM of Section 2.2.2; see Theorem C.6.2.
Moreover, if the variance R shrinks at least at rate O(hq), the global convergence rate
for q = 1 is O(hq) as proved in Theorem C.7.7, and our experiments suggest that this
first global result might generalize to q ∈ {2, 3, . . . }.
Concerning numerical stability, we show in Theorem B.3.5 that the Gaussian

(Kalman) ODE filter is A-stable, which is to say that the numerical solution of a linear
ODE with negative eigenvalues converges to zero as t→∞ (Dahlquist, 1963).

2.6.2 Uncertainty calibration in ODE filters
If the prior SDE, eq. (2.3), has a non-zero diffusion matrix L, the posterior uncertainty
of any ODE filter scales with the standard deviation σ > 0 of the Brownian motion. In
parallel work, a local (i.e. adaptive, step-wise) maximum-likelihood estimate for σ has
been provided by (Schober et al., 2019, Section 4). In Proposition B.4.1, we provide a
global maximum-likelihood that does not have to be adapted in every step. Moreover, we
analyze both the uncertainty calibration for the Gaussian (Kalman) ODE filter and the
non-parametric particle filter. In Theorem C.8.1, we show that (in the above-detailed
case where we proved that the global truncation error of the Gaussian ODE filtering
mean is inO(hq)) the Bayesian credible intervals (aka. multiples of the posterior standard
deviation) shrink at exactly the same rate as well. For particle filtering, we show (in the
weak sense) that the expected error of the particle approximation of the true filtering
distribution shrinks as O(1/

√
J), where J is the amount of particles; see Theorem B.2.6.
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In our research, we set out to investigate which benefits the paradigm of probabilis-
tic numerics brings to ODEs. We found out that ODEs can be efficiently solved by
Bayesian ODE filtering. To this end, we provided a rigorous probabilistic state space
model (SSM) that unlocks all Bayesian filters for ODEs ( Gaussian or non-Gaussian) in
Tronarp et al. (2019a). Via the underlying SSM (prior and likelihood) and the choice of
intra-algorithmic approximations (in the measurement model), we can create both al-
gorithms which have very similar properties to classical methods (for a small overhead)
and completely new ones which defy all conventions. To advance both undertakings, we
showed that the q-times integrated Brownian motion (IBM) gives convergence rates com-
parable with classical methods, as it uses Taylor expansion predictions (Kersting et al.,
2020a), and introduced a filter that employs Fourier predictions instead which might
turn out to be useful for periodic systems (Kersting and Mahsereci, 2020). Moreover,
we provided one of the first demonstrations for the long-term vision that passing un-
certainties through computational chains by PN (Hennig et al., 2015, Section 3(d)) can
improve performance: In Kersting et al. (2020b), we showed that the uncertainty-aware
likelihood provided by a Gaussian ODE filter speeds up solutions of inverse problems
by providing more suitable parameters and thereby reducing the amount of necessary
forward solutions.
The research field of PN in general, and of ODE filters in particular, is still in its early

stages. While some foundational ground is provided by this thesis (as well as by the one
of Schober (2018)), there are still many open questions. In this final chapter, we discuss
which research questions immediately arise from our work in Section 3.1 and how our
results advance the three promises of PN from the Preface in Section 3.2.

3.1 Future research
The presented material might pave the way to new advances in theory, the development
of algorithms, and applications.

3.1.1 Theory
Our theoretical contributions (pertaining to convergence rates, stability analysis, and
uncertainty quantification) lead to further research questions. Firstly, the proofs of
the global convergence rates in Kersting et al. (2020a, Theorem 14) for Kalman ODE
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filters are limited to the case of q = 1 and q-times IBM prior. There are, however,
both conceptual (e.g., the Taylor expansion predictions of IBM priors) and experimental
reasons (see Figure C.2) to believe that these rates might extend to q ∈ {2, 3, . . . }.
Therefore, an attempt to generalize the proofs might bear fruits. We believe that the
bottleneck for such results is a generalization of Proposition C.7.2. Such an analysis
might also lead to a generalization of the uncertainty calibration in Kersting et al.
(2020a, Theorem 15). Furthermore, the convergence rates of other ODE filters (e.g.,
the extended and unscented Kalman filter) should be examined. The latest analysis
(Tronarp et al., 2020), includes a convergence analysis for all q ∈ N for the maximum
a posteriori (MAP) estimate, which can be computed with the more-costly iterated
extended Kalman ODE smoother. It remains to be seen if such convergence rates also
apply to the filtering mean, which we considered in Kersting et al. (2020a).
Moreover, an extension of the stability analysis of Tronarp et al. (2019a), which used

the concept of A-stability, is called for. In particular, it would be important to investigate
the stricter concepts of L-stability and B-stability (Hairer et al., 1987, Chapters IV.3
and IV.12) for ODE filters.
To fully capture the competitive performance, an average-case analysis à la Ritter

(2000) might be necessary. In a worst-case sense (at least for SSM that model the q first
derivatives of x), one can never outperform (iterated) qth Taylor expansions as performed
by the Gaussian ODE filter with q-times IBM prior. However, for specific ODEs, a
‘biased’ deviation of Taylor expansions might be appropriate, as we postulate in Magnani
et al. (2017) for bounded derivative fields and in Kersting and Mahsereci (2020) for
oscillators. An average-case analysis might capture the utility of such approximations,
but seems difficult for the following reason: Such an analysis would employ a prior p(f)
instead of a prior p(x) which the SSM defines via eq. (2.18). Hence, we would have to
match a prior p(f) to a prior p(x) which would require computing the pushforward of
p(f) through the map f 7→ x. This computations is intractable, as it would require
computing the ODE solution x for all f in the support of p(f). It seems difficult to find
good approximations here. As a first step, it might however suffice to categorize problems
by p(x) and match properties of f (e.g. by the amount of its continuous derivatives) to
this prior on x.
Furthermore, it is conceivable that more equivalences with classical methods can be

added to the known ones from (Schober et al., 2019). These equivalences are usually
shown for the steady state (because otherwise the Kalman gains keep changing), and
the new steady states from Kersting et al. (2020a, Proposition 10) might therefore help
to identify more such equivalences.
Lastly, it should be analyzed whether Bayesian ODE filters can be viewed as an

approximation of a Bayesian probabilistic numerical method as defined in Cockayne
et al. (2019, Definition 2.2). So far, no probabilistic ODE solver has satisfied this strict
definition (because it is unclear how the information of f(x̂(t)) relates to x since x 6= x̂).
Since the ‘true’ posterior which considers all possibilities of information is well-defined,
it should be possible to rank probabilistic methods by how precisely they approximate
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this posterior; cf. Wang et al. (2018).

3.1.2 Development of algorithms

For forward problems, our foundational work in Tronarp et al. (2019a) already spans
a vast domain of forward problem solvers, namely all Bayesian filters and smoothers
as, e.g., collected in Särkkä (2013). Hence, future research can endlessly continue to
invent new ODE solvers by translating methods from the ever-expanding literature of
Bayesian filters and smoothers to ODEs. Although such future research might create
very well-performing methods, it is (from a theoretical viewpoint) trivial.
It is more interesting to ask if ODE filters can go beyond signal-processing filters.

And, here, the answer seems to be "Yes!" for the following reason: Conventional signal-
processing filters receive ‘data’ from an external sensor, while ODE filters construct
either the data (in the intuitive SSM of Kersting and Hennig (2016); see eq. (2.14)),
or the likelihood (in the rigorous SSM of Tronarp et al. (2019a); see eq. (2.17)), by
evaluating f . The vector field f , unlike external data collections, has a known structure
which can be exploited. In particular, if f(t,x) is independent of time t, and if x(t)
passes through a time point such that x(s) ≈ x(t), for some s < t, the evaluations of f
collected at time s will contain similar information on ẋ(t) as on ẋ(s) (for which they
were collected).
Let us consider this in more detail in the intuitive SSM (see Section 2.2.2): A

Gaussian ODE Filter computes sequences of predictive distributions {N (m−i ,P−i );
i = 1, . . . ,N} and filtering distributions {N (mi,Pi); i = 1, . . . ,N}. Given a pre-
dictive distribution, the implied data on ẋ(ih) is given by the pushforward measure
p(ẋ(ih)) = f∗(N (m−i ,P−i )). To maintain the Gaussian framework, Kersting and Hennig
(2016) propose to approximate this intractable measure by a moment-matched Gaus-
sian, as we recall from eq. (2.24). This means that the information on the sequence
{x(ih); mi,Pi}

N
(
yi :=

∫
f(ξ) dN (ξ;m−i ,P−i ),

∫
[ffᵀ](ξ) dN (ξ;m−i ,P−i )

)
≈ f∗

(
N (m−t ,P−t )

)
.

(3.1)

Therefore, we have a sequence of estimators

{yi =
∫
f(ξ) dN (ξ;m−i ,P−i ); i = 1, . . . ,N} (3.2)

of {ẋ(ih); i = 1, . . . ,N} which have to be approximated by quadrature rules, i.e.

yi =
n∑
j=1

w
(j)
i f

(
ξ

(j)
i

)
. (3.3)
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3.1 Future research

For each individual integral, it is known how to optimally choose the weights {w(j)
i }nj=1

and states {ξ(j)
i }nj=1 for both classical (Press et al., 2007) and Bayesian quadrature (Briol

et al., 2019). Here, however, we have a series of related intervals where only the Gaussian
measure with respect to which f is integrated changes. Hence, we can re-use previous
evaluations {f(ξ(j)

i ); j = 1, . . . ,nj} to compute yk, at a later time k > i. To this end,
one could first select a subset of states {ξ(j)

i ; j = 1, . . . ,nj, i = 1, . . . , k − 1}, and
then complement it with additional states {ξ(j)

k ; j = 1, . . . ,nj}. The optimal weights to
compute yk are then implied by this choice of states (Novak and Wozniakowski, 2010).
To go even further, the series of integrals from eq. (3.2) could also be interpreted as a
series of integrals with related integrands

g(ξ) := f(ξ) ·N (ξ;m−i ,P−i ) (3.4)

which could then be jointly treated as a Bayesian quadrature problem for multiple related
integrals, following Xiaoyue et al. (2018) and Gessner et al. (2019).
Maybe one could even try to predict how useful certain evaluations f(ξ) are at any

point t ∈ [0,T ] in the algorithm. The earlier the time t, the more useful such an
evaluation would be because it can be re-used. Such a line of investigation might lead to
an adaptive version of Mohammadi et al. (2019), where all evaluations of f are performed
in the first step to learn a model of the flow map to extrapolate forward.
More ideas for this kind of active learning of ODE filtering (i.e. the designed collection

of information from evaluating f) could be borrowed from the literature on active learn-
ing for GP regression (Seo et al., 2000), Bayesian Optimization (Mockus and Mockus,
1991) and Bayesian Quadrature (Osborne et al., 2012).
On a separate note, it should be explored which statistical estimators are most useful.

Within Gaussian filters, one can either focus on the filtering mean (as we have in our
publications), the smoothing mean, or the MAP estimate (Tronarp et al., 2020, Section
2.3) which are all computed by different methods. In the case of particle filters, one
could also consider the modes of a distribution as an estimator.

Inverse problem

All ODE filters can, of course, be part of inverse problem solvers as well—including those
to be invented by the above-described means. In fact, Kersting et al. (2020b) provides
a detailed framework in which any ODE filter can be incorporated into both (gradient-
based) optimization and sampling methods. Hence, each new ODE filter implies a new
ODE inverse problem solver. This vast horizon of possibilities has only been explored
by Kersting et al. (2020b), i.e. only for Kalman ODE filters with IBM prior. While
the insertion of other Gaussian filters (with different SSMs and approximation methods)
might outperform this first approach, particle filtering (Tronarp et al., 2019a, Section 2.7)
might provide a more significant advance since it can represent arbitrary distributions
on x(t) by samples.
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3 Discussion and Conclusion

To see this, recall that both Conrad et al. (2017) and Abdulle and Garegnani (2020)
employ sampling-based probabilistic ODE solvers, in a Bayesian inverse problem frame-
work, to sample from a non-Gaussian distribution of possible numerical approximations
of x. Since, in both cases, the target density of different sample solutions is not known,
they have to use a pseudo-marginal Metropolis–Hastings algorithm (Andrieu et al., 2010)
to approximate the posterior distribution. The exact same framework could be used with
the particle filter as a forward map which would eliminate the need to run a forward
map multiple times. This would probably provide an alternative sampling-based way,
to prevent numerical over-confidence in ODE inverse problems. Such a method would,
thus, combine the filtering of Kersting et al. (2020b) and the pseudo-marginal sampling
of Conrad et al. (2017) and Abdulle and Garegnani (2020).

3.1.3 Further applications

One of the main visions of PN is to propagate uncertainty through computational chains
(Hennig et al., 2015, Section 3(d)), and inverse problems are, as discussed in the preced-
ing paragraph, an elementary example of such problems. There is a huge number of such
chains, allover science and engineering, and (when no real data is involved) the passing
of numerical uncertainty along such chains seems straightforward, once the error of all
subroutines are quantified by (Gaussian) probability measures. Maybe a more interest-
ing case are computational chains which link ODEs with data, such as in data-centric
engineering (Girolami, 2020). It remains to be seen in which such settings a joint treat-
ment of numerical and statistical uncertainty with the help of PN can be recommended.
Due to our strong experimental results for ODE inverse problems (Kersting et al., 2020b,
Section 7), we expect them to be plentiful.
A promising next step could be taken by solving the ODEs of a geodesics manifold

that was learned from data (Hauberg, 2018). This would go beyond our work, in a
fundamental way, because the uncertainty in the data would directly translate into
uncertainty over the vector field f , i.e. into model uncertainty. In the intuitive SSM of
Section 2.2.3, this model uncertainty can be added to the measurement variance R—as
discussed in Kersting et al. (2020a, Section 2.3).
On a separate note, our work on inverse problems could also spin off other applica-

tions. First, the Jacobian estimator J of the forward map, as defined in eq. (D.11),
approximates the true gradient ∇θx of x with respect to θ. Hence, this estimator could
be used in lieu of sensitivity analysis (Rackauckas et al., 2018) in all settings where
such gradients are required—such as neural ODEs (Chen et al., 2018). Secondly, simi-
lar inverse problem solvers could be developed, via the method of lines (Schiesser and
Griffiths, 2009) for PDEs, and, via the probabilistic solver of John et al. (2019), for
boundary value problems.
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3.2 Conclusion: the three promises of PN

3.2 Conclusion: the three promises of PN
To close the arch of this thesis, we finally return to the punch line of the Preface: our
advances of the three promises of PN, namely

1. more flexible classification of problems by statistical model selection,

2. comprehensive uncertainty quantification, and

3. invention of new average-case-optimal algorithms.

Firstly (i), our recast of ODEs as a stochastic filtering problem has introduced a com-
plete and rigorous Bayesian model, a probabilistic state space model, as we detailed in
Section 2.2. This has unlocked new ways to classify initial value problems. By choosing
the prior p(x), on the solution x (via the dynamic model), we can include our prior belief
over the regularity and geometric properties of x, as we exemplified in categorizing ODEs
with bounded derivatives under an integrated Ornstein–Uhlenbeck prior and oscillating
ODEs under a Fourier prior (periodic kernel); see Section 2.3. For the case when nothing
is known a priori, we have identified the integrated Brownian Motion prior as the go-to
solution—because its Taylor-expansion predictions yield similar worst-case guarantees
as classical models, as we explained in Section 2.6. Such classifications might make a
paradigm shift from a worst-case to an average-case treatment of ODEs possible.
Secondly (ii), these ODE filters compute a full posterior measure over x which can be

used to quantify uncertainty: In the case of Gaussian ODE filters, one can construct,
e.g., 0.95 Bayesian credible intervals of [mt−2

√
Pt,mt+2

√
Pt] for x(t) from the filtering

distribution N (mt,Pt). For non-Gaussian filters, there is no standard way to represent
the uncertainty and the right uncertainty will depend on the exact shape (e.g., number
of modes) of the posterior. For both cases, we have, however, provided first theoretical
results on the posterior uncertainty calibration; see Section 2.6.2. For Gaussian filters,
we have, moreover, described new ways to model the uncertainty over the information
on ẋ(t) due to uncertainty over f , or where to evaluate it, by smart design of the
likelihood (measurement model); see Section 2.4. This might pave the way to a joint
handling of numerical (epistemic) and statistical (aleatoric) uncertainty, as we explained
in Section 3.1.3.
Thirdly (iii), the interpretation of ODEs as filtering problems unlocks a simple recipe

to invent new probabilistic ODE solvers: take a Bayesian filter (or smoother) from the
signal processing literature and apply it to ODEs. We have only used this recipe for
the most elementary filters so far (see Appendix B for a complete list), and expect to
see new such inventions in the future. Moreover, the explicit knowledge of gathering
information on ẋ(t) via evaluations of f enables us to go beyond knowledge of signal
processing by exploiting techniques from active learning. All of these inventions imme-
diately engender new inverse problem solvers; see Section 3.1.2. In machine learning,
the use of ODE filters could lead to more uncertainty-aware and robust algorithms, as
discussed in Section 1.4.1.
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3 Discussion and Conclusion

We hope that the attentive reader will now be able to clearly see the benefits of PN
and relate to the mystification of our imaginary scientist from the Preface.
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A Active Uncertainty Calibration in
Bayesian ODE Solvers (Kersting
and Hennig, 2016)

Abstract: There is resurging interest, in statistics and machine learning, in solvers for
ordinary differential equations (ODEs) that return probability measures instead of point
estimates. Recently, Conrad et al. introduced a sampling-based class of methods that
are ‘well-calibrated’ in a specific sense. But the computational cost of these methods is
significantly above that of classic methods. On the other hand, Schober et al. pointed
out a precise connection between classic Runge–Kutta ODE solvers and Gaussian filters,
which gives only a rough probabilistic calibration, but at negligible cost overhead. By
formulating the solution of ODEs as approximate inference in linear Gaussian SDEs,
we investigate a range of probabilistic ODE solvers, that bridge the trade-off between
computational cost and probabilistic calibration, and identify the inaccurate gradient
measurement as a crucial source of uncertainty. We propose the novel filtering-based
method Bayesian Quadrature filtering (BQF) which uses Bayesian quadrature to ac-
tively learn the imprecision in the gradient measurement by collecting multiple gradient
evaluations.

A.1 Introduction

The numerical solution of an initial value problem (IVP) based on an ordinary differential
equation (ODE)

u(n)(t) = f
(
t,u(t), . . . ,u(n−1)(t)

)
, u(0) = u0 ∈ RD, (A.1)

of order n ∈ N, with u : R → RD, f : [0,T ] × RnD → RD, T > 0, is an essential
topic of numerical mathematics, because ODEs are the standard model for dynamical
systems. Solving ODEs with initial values is an exceedingly well-studied problem (see
Hairer et al., 1987, for a comprehensive presentation) and modern solvers are designed
very efficiently. Usually, the original ODE (A.1) of order n is reduced to a system of n
ODEs of first order

u′(t) = f(t,u(t)), u(0) = u0 ∈ RD, (A.2)
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which are solved individually. The most popular solvers in practice are based on some
form of Runge–Kutta (RK) method (as first introduced in Runge (1895) and Kutta
(1901)) which employ a weighted sum of a fixed amount of gradients in order to itera-
tively extrapolate a discretized solution. That is, these methods collect ‘observations’
of approximate gradients of the solved ODE, by evaluating the vector field f at an
estimated solution, which is a linear combination of previously collected ‘observations’:

yi = f

t+ cih,u0 +
∑
j<i

wijyj

 . (A.3)

The final extrapolation step is a weighted sum of these gradients:

û(t+ h) = u(t) +
∑
i<s

biyi. (A.4)

The weights of s-stage RK methods of p-th order are carefully chosen so that the nu-
merical approximation û and the Taylor series of the exact solution u coincide up to the
term hp, thereby yielding a local truncation error of high polynomial order,

‖u(t0 + h)− û(t0 + h)‖ = O(hp+1), (A.5)

for h → 0. One can prove that s ≥ p in general, but for p ≤ 4 there are RK methods
with p = s. Hence, allowing for more function evaluations can drastically improve the
speed of convergence to the exact solution.
The polynomial convergence is impressive and helpful; but it does not actually quan-

tify the inevitable epistemic uncertainty over the accuracy of the approximate solution
û for a concrete non-vanishing step-size h. One reason one may be concerned about this
in machine learning is that ODEs are often one link of a chain of algorithms performing
some statistical analysis. When employing classic ODE solvers and just plugging in the
solution of the numerical methods in subsequent steps, the resulting uncertainty of the
whole computation is ill-founded, resulting in overconfidence in a possibly wrong solu-
tion. It is thus desirable to model the epistemic uncertainty. Probability theory provides
the framework to do so. Meaningful probability measures of the uncertainty about the
result of deterministic computations (such as ODE solvers) can then be combined with
probability measures modeling other sources of uncertainty, including ‘real’ aleatoric
randomness (from e.g. sampling). Apart from quantifying our certainty over a compu-
tation, pinning down the main sources of uncertainty could furthermore improve the
numerical solution and facilitate a more efficient allocation of the limited computational
budget.
A closed framework to measure uncertainty over numerical computations was proposed

by Skilling (1991) who pointed out that numerical methods can be recast as statistical
inference of the latent exact solution based on the observable results of tractable compu-
tations. In this spirit, Hennig and Hauberg (2014) phrased this notion more formally, as
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Gaussian process (GP) regression. Their algorithm class, however, could not guarantee
the high polynomial convergence orders of Runge–Kutta methods. In parallel devel-
opment, Chkrebtii et al. (2016) also introduced a probabilistic ODE solver of similar
structure (i.e. based on a GP model), but using a Monte Carlo updating scheme. These
authors showed a linear convergence rate of their solver, but again not the high-order
convergence of classic solvers.
Recently, Schober et al. (2014) solved this problem by finding prior covariance func-
tions which produce GP ODE solvers whose posterior means exactly match those of the
optimal Runge–Kutta families of first, second and third order. While producing only
a slight computational overhead compared to classic Runge–Kutta, this algorithm—as
any GP-based algorithm—only returns Gaussian measures over the solution space.
In contrast, Conrad et al. (2017) recently provided a novel sampling-based class of ODE
solvers which returns flexible non-Gaussian measures over the solution space, but creates
significant computational overhead by running the whole classic ODE solvers multiple
times over the whole time interval [0,T ] in order to obtain meaningful approximations
for the desired measure.
For practitioners, there is a trade-off between the desire for quantified uncertainty on the
one hand, and low computational cost on the other. The currently available probabilistic
solvers for ODEs either provide only a roughly calibrated uncertainty (Schober et al.,
2014) at negligible overhead or a more fine-grained uncertainty supported by theoretical
analysis (Conrad et al., 2017), at a computational cost increase so high that it rules
out most practical applications. In an attempt to remedy this problem, we propose an
algorithm enhancing the method of Schober et al. (2014) by improving the gradient mea-
surement using modern probabilistic integration methods. By modeling the uncertainty
where it arises, i.e. the imprecise prediction of where to evaluate f , we hope to gain
better knowledge of the propagated uncertainty and arrive at well-calibrated posterior
variances as uncertainty measures.

A.2 Background

A.2.1 Sampling-based ODE solvers
The probabilistic ODE solver by Conrad et al. (2017) modifies a classic deterministic
one-step numerical integrator Ψh (e.g. Runge–Kutta or multiderivative methods, cf.
Hairer et al. (1987)) and models the discretization error of Ψh by adding suitably scaled
i.i.d. Gaussian random variables {ξk}k=0,...,K after every step. Hence, it returns a discrete
solution {Uk}k=0,...,K on a mesh {tk = kh}k=0,...,K according to the rule

Uk+1 = Ψh(Uk) + ξk. (A.6)

This discrete solution can be extended into a continuous time approximation of the ODE,
which is random by construction and can therefore be interpreted as a draw from a non-
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parametric probability measure Qh on the solution space C1 ([0,T ],Rn), the Banach
space of continuously differentiable functions. This probability measure can then be
interpreted as a notion of epistemic uncertainty about the solution. This is correct in so
far as, under suitable assumptions, including a bound on the variance of the Gaussian
noise, the method converges to the exact solution, in the sense that Qh contracts to the
Dirac measure on the exact solution δu with the same convergence rate as the original
numerical integrator Ψh, for h→ 0: If (ξk,h)Nk=1 ∼ N (0, Var(h)) with Var(h) = O(h2q+1),
then

sup
0≤kh≤T

Eh ‖uk − Uk‖2 ≤ σ · h2q. (A.7)

This is a significant step towards a well-founded notion of uncertainty calibration for
ODE solvers: It provides a probabilistic extension to classic method which does not
break the convergence rate of these methods.
In practice, however, the precise shape of Qh is not known and Qh can only be in-

terrogated by sampling, i.e. repeatedly running the entire probabilistic solver. After S
samples, Qh can be approximated by an empirical measure Qh(S). In particular, the
estimated solution and uncertainty can only be expressed in terms of statistics of Qh(S),
e.g. by the usual choices of the empirical mean and empirical variance respectively or
alternatively by confidence intervals. For S → ∞, Qh(S) converges in distribution to
Qh which again converges in distribution to δu for h→ 0:

Qh(S) S→∞→ Qh
h→0→ δu. (A.8)

The theoretical mathematics in Conrad et al. (2017) only concerns the convergence of
the latent probability measures {Qh}h>0. Only the empirical measures {Qh(S)}S∈N,
however, can be observed. Consequently, it remains unclear whether the empirical mean
of Qh(S) for a fixed step-size h > 0 converges to the exact solution as S → ∞ and
whether the empirical variance of Qh(S) is directly related, in an analytical sense, to the
approximation error. In order to extend the given convergence results to the practically
observable measures {Qh(S)}S∈N an analysis of the first convergence in (A.8) remains
missing. The deterministic algorithm proposed below avoids this problem, by instead
constructing a (locally parametric) measure from prior assumptions.
The computational cost of this method also seems to mainly depend on the rate of

convergence of Qh(S) → Qh which determines how many (possibly expensive) runs of
the numerical integrator Ψh over [0,T ] have to be computed and how many samples
have to be stored for a sufficient approximation of Qh. Furthermore, we expect that
in practice the mean of Qh, as approximated by Qh(S) might not be the best possible
approximation, since in one step the random perturbation of the predicted solution by
Gaussian noise ξk worsens our solution estimate with a probability of more than 1/2,
since—due to the full support of Gaussian distributions—the numerical sample solution
is as likely to be perturbed away from as towards the exact solution and—due to the
tails of Gaussian distributions—it can also be perturbed way past the exact solution
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with positive probability.

A.2.2 A framework for Gaussian filtering for ODEs
Describing the solution of ODEs as inference in a joint Gaussian model leverages state-
space structure to achieve efficient inference. Therefore, we employ a Gauss–Markov
prior on the state-space: A priori we model the solution function and (q−1) derivatives
(u, u̇,u(2), . . . ,u(q−1)) : [0,T ]→ RqD as a draw from a q-times integrated Wiener process
X = (Xt)t∈[0,T ] = (X(1)

t , . . . ,X(q)
t )Tt∈[0,T ], i.e. the dynamics of Xt are given by the linear

stochastic differential equation (Karatzas and Shreve, 1991; Øksendal, 2003):

dXt = FXtdt+ LdWt, (A.9)
X0 = ξ, ξ ∼ N (m(0),P (0)), (A.10)

with constant drift F ∈ Rq×q and diffusion L ∈ Rq given by

F =



0 f1 0 . . . 0
0 0 f2 . . . 0
... . . . . . . ...
0 . . . 0 fq−1
0 . . . 0 0

 , L =



0
0
...
0
σ

 (A.11)

for all t ∈ [0,T ] and some f1, . . . , fq−1 ∈ R, where Wt denotes a q-dimensional Wiener
process (q ≥ n). Hence, we are a priori expecting that u(q) behaves like a Brownian
motion with variance σ2 and that u(i) is modeled by (q − 1 − i)-times integrating this
Brownian motion. The fact that the (i + 1)-th component is the derivative of the i-th
component in our state space is captured by a drift matrix with non-zero entries only on
the first off-diagonal. The entries f1, . . . , fq−1 are damping factors. A standard choice is
e.g. fi = i. Without additional information, it seems natural to put white noise on the
q-th derivative as the first derivative which is not captured in the state space. This gives
rise to Brownian noise on the (q−1)-th derivative which is encoded in the diffusion matrix
scaled by variance σ2. Hence, we consider the integrated Wiener process a natural prior.
For notational simplicity, only the case of scalar-valued functions, i.e.D = 1, is presented
in the following. The framework can be extended to D ≥ 2 in a straightforward way by
modeling the output dimensions of f as independent stochastic processes.
Since X is the strong solution of a linear equation (A.9) with normally distributed

initial value X0, it follows from the theory of linear SDEs (Karatzas and Shreve, 1991)
thatX is a uniquely-determined Gauss–Markov process. This enables Bayesian inference
in a highly efficient way by Gaussian filtering (Saatci, 2011)). For time invariant linear
SDEs like (A.9), the fixed matrices for Gaussian filtering can be precomputed analytically
(Särkkä, 2006).
In addition, Schober et al. (2014) showed that for q ≤ 3 inference in this linear SDE
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yields Runge–Kutta steps.

Equipped with this advantageous prior we can perform Bayesian inference. The lin-
earity and time-invariance of the underlying SDE permits to formulate the computation
of the posterior as a Kalman filter (KF) (cf. (Särkkä, 2013) for a comprehensive intro-
duction) with step size h > 0. The prediction step of the KF is given by

m−t+h = A(h)mt, (A.12)
P−t+h = A(h)PtA(h)T +Q(h), (A.13)

with matrices A(h),Q(h) ∈ Rq×q with entries

A(h)i,j = exp(hF )i,j = χj≥i
hj−i

(j − i)!

j−i−1∏
k=0

fi+k

 ,

Q(h)i,j =σ2

q−1−i∏
k1=0

fi+k1

 ·
q−1−j∏

k2=0
fj+k2

 ·
h2q+1−i−j

(q − i)!(q − j)!(2q + 1− i− j) . (A.14)

It is followed by the update step

z = y −Hm−t+h, (A.15)
S = HP−t+hH

T +R, (A.16)
K = P−t+hH

TS−1, (A.17)
mt+h = m−t+h +Kz, (A.18)
Pt+h = P−t+h −KHP−t+h, (A.19)

where H = eTn ∈ R1×q is the n-th unit vector.

Between the prediction and update step the n-th derivative of the exact solution ∂
n
u

∂x
n

at time t+h as a measurement for the n-th derivative and the noise of this measurement
are estimated by the variable y and R. In order to derive precise values of y and R from
the Gaussian prediction N (mt+h,Pt+h), we would have to compute the integrals

y =
∫
f(t+ h,m−t+h + x)N (x; 0,P−t+h) dx (A.20)

and

R =
∫
f(t+ h,m−t+h + x)f(t+ h,m−t+h + x)T ·
N (x; 0,P−t+h) dx− yyT , (A.21)
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which are intractable for most choices of f . Below we investigate different ways to
address the challenge of accurately approximating these integrals while not creating too
much computational overhead.

A.2.3 Measurement generation options for Gaussian filtering

Schober et al. (2014) as, to the best of our knowledge, the first ones to point out the
connection between Gaussian filtering and probabilistic ODE solvers, presents an algo-
rithm which simply evaluates the gradient at the predicted mean, which is equivalent to
setting y to be equal to its maximum likelihood estimator:

y = f(t+ h,m−t+h), R = 0. (A.22)

While ensuring maximum speed, this is clearly not an ideal measurement. In our
atomless predicted probability measure N (m−t+h,P−t+h) the mean predictor m−t+h is dif-
ferent from its exact value (u(0)(t+h), . . . ,u(n)(t+h))T almost surely. Hence, for a non-
constant f the estimate will be inaccurate most of the times. In particular this method
deals poorly with ‘skewed’ gradient fields (a problem that leads to a phenomenon known
as ‘Lady Windermeres fan’ (Hairer et al., 1987)). To get a better estimate of the exact
value of y, more evaluations of f seem necessary.
Therefore, we want to find numerical integration methods which capture y and R with

sufficient precision, while using a minimal number of evaluations of f . Possible choices
are:

(i) Monte Carlo integration by sampling:

y = 1
N

N∑
i=1

f(t+ h,xi), (A.23)

R = 1
N

N∑
i=1

f(t+ h,xi)f(t+ h,xi)T − yyT , (A.24)

xi ∼ N (m−t+h,P−t+h), (A.25)

(which is not the same as the sampling over the whole time axis in (Conrad et al.,
2017)).

(ii) Approximation by a first-order Taylor series expansion:

f(t+ h,m−t+h + x)
' f(t+ h,m−t+h) +∇f(t+ h,m−t+h + x) · x (A.26)
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and thereby deriving moments of the linear transform of Gaussian distributions:

y = f(t+ h,m−t+h), (A.27)
R = ∇f(t+ h,m−t+h)P−t+h∇f(t+ h,m−t+h)T . (A.28)

(iii) Integration by Bayesian quadrature with Gaussian weight function:

y = αTK−1
(
f(x1), . . . , f(xn)

)T
, (A.29)

R =
∫ ∫

k(x,x′)w(x)w(x′) dxdx′ − αTK−1α. (A.30)

with w(x) = N (x;m−t+h,P−t+h), kernel matrix K ∈ RN×N with Ki,j = k(xi,xj)
and α = (α(1), . . . ,α(N))T ∈ RN with α(i) =

∫
k(x,xi)w(x) dx for a predefined

covariance function k and evaluation points (xi)i=1,...,N (cf. section A.2.4).

Our experiments, presented in Section A.3, suggest that BQ is the most useful option.
Monte Carlo integration by sampling behaves poorly if the trajectory of the numerical

solution passes through domain areas (as e.g. in the spikes of oscillators governed by non-
stiff ODEs) where f takes highly volatile values since the random spread of samples from
the domain are likely to return a skewed spread of values resulting in bad predictions of
y with huge uncertainty R. Hence, the posterior variance explodes and the mean drifts
back to its zero prior mean, i.e. mt → 0 and ‖Pt‖ → ∞, for t→∞. Thus, we consider
this method practically useless.
One may consider it a serious downside of Taylor-approximation based methods that

the gradient only approximates the shape of f and thereby its mapping of the error
on an ‘infinitesimally small neighborhood’ of m−t+h. Hence, it might ignore the exact
value of y completely, if the mean prediction is far off. However, for a highly regular
f (e.g. Lipschitz-continuous in the space variable) this gradient approximation is very
good.
Moreover, the approximation by a first-order Taylor series expansion needs an approx-

imation of the gradient, which explicit ODE solvers usually do not receive as an input.
However, in many numerical algorithms (e.g. optimization) the gradient is provided any-
way. Therefore the gradient might already be known in real-world applications. While
we find this method promising when the gradient is known or can be efficiently com-
puted, we exclude it from our experiments because the necessity of a gradient estimate
breaks the usual framework of ODE solvers.
In contrast, Bayesian quadrature avoids the risk of a skewed distortion of the samples

for Monte Carlo integration by actively spreading a grid of deterministic sigma-points. It
does not need the gradient of f and still can encode prior knowledge over f by the choice
of the covariance function if more is known (Briol et al., 2019). The potential of using
Bayesian quadrature as a part of a filter was further explored by Prüher and Šimandl
(2015), however in the less structured setting of nonlinear filtering where additional
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inaccuracy from the linear approximation in the prediction step arises. Moreover, Särkkä
et al. (2016) recently pointed out that BQ can be seen as sigma-point methods and
gave covariance functions and evaluation points which reproduce numerical integration
methods known for their favorable behavior (for example Gauss–Hermite quadrature,
which is used for a Gaussian weight function).
Due to these advantages, we propose a new class of BQ-based probabilistic ODE filters

named BQ Filtering.

A.2.4 Bayesian quadrature filtering

The crucial source of error for filtering-based ODE solvers is the calculation of the
gradient measurement y and its variance R (c.f. Section A.2.2). We propose the novel
approach to use BQ to account for the uncertainty of the input and thereby estimate y
and R. This gives rise a novel class of filtering-based solvers named BQ Filter (BQF).
As a filtering-based method, one BQF-step consists of the KF prediction step (A.12)–
(A.13), the calculation of y and R by BQ and the KF update step (A.15)–(A.19).
The KF prediction step outputs a Gaussian belief N (m−t+h,P−t+h) over the exact so-

lution u(t + h). This input value is propagated through f yielding a distribution over
the gradient at time t + h. In other words, our belief over ∇f(t + h,u(t + h)) is equal
to the distribution of Y := f(t,X), with uncertain input X ∼ N (m−t+h,P−t+h). For gen-
eral f the distribution of Y will be neither Gaussian nor unimodal (as e.g. in Figure
A.1). But it is possible to compute the moments of this distribution under Gaussian as-
sumptions on the input and the uncertainty over f (see for example Deisenroth (2009)).
The equivalent formulation of prediction under uncertainty clarifies as numerical inte-
gration clarifies the connection to sigma-point methods, i.e. quadrature rules (Särkkä
et al., 2016). Quadrature is as extensively studied and well-understood as the solution
of ODEs. A basic overview can be found in Press et al. (2007). Marginalizing over X
yields an integral with Gaussian weight function

E[Y ] =
∫
f(t+ h,x)N (x;m−t+h,P−t+h)︸ ︷︷ ︸

=:w(x)

dx, (A.31)

which is classically solved by quadrature, i.e. evaluating f at a number of evaluation
points (xi)i=1,...,N and calculating a weighted sum of these evaluations. BQ can be
interpreted as a probabilistic extension of these quadrature rules in the sense that their
posterior mean estimate of the integral coincides with classic quadrature rules, while
adding a posterior variance estimate at low cost (Särkkä et al., 2016).
By choosing a kernel k over the input space of f and evaluation points (xi)i=1,...,N , the

function f is approximated by a GP regression (Rasmussen and Williams, 2006) with
respect to the function evaluations (f(xi))i=1,...,N , yielding a GP posterior over f with
mean mf and covariance kf denoted by GP(f). The integral is then approximated by
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integrating the GP approximation, yielding the predictive distribution for I[f ]:

I[f ] ∼
∫

GP(f)(x) ·N (x;m−t+h,P−t+h) dx. (A.32)

The uncertainty arising from the probability measure over the input is now split up
in two parts: the uncertainty over the input value x ∼ N (0, I) and the uncertainty over
the precise value at this uncertain input, which can only be approximately inferred by
its covariance with the evaluation points (xi)i=1,...,N , i.e. by GP(f). These two kinds of
uncertainty are depicted in Figure A.1. From the predictive distribution in (A.32), we
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Figure A.1: Prediction of function f(x) = 8 sin(x) + x2 (red) under uncertain input
x ∼ N (x; 1, 1) (density in blue). GP(f) (black) derived from Gaussian grid evaluation
points with N = 3 (blue crosses) as mean ± 2 standard deviation. True distribution of
prediction in blue. Gaussian fit to true distribution in yellow and predicted distribution
by BQ in green with crosses at means.

can now compute a posterior mean and variance of I[f ] which results in a weighted sum
for the mean

y := E [I[f ]] = αTK−1
(
f(x1), . . . , f(xn)

)T
(A.33)

with

α(i) =
∫
k(x,xi)N (x; 0, I) dx (A.34)
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and variance

R := Var [I(f)]

=
∫ ∫

k(x,x′)w(x)w(x′) dxdx′ − αTK−1α, (A.35)

where K ∈ RN×N denotes the kernel matrix, i.e. Ki,j = k(xi,xj).

The measurement generation in BQF is hence completely defined by the two free
choices of BQ: the kernel k and the evaluation points (xi)i=1,...,n. By these choices, BQ
and thereby the measurement generation in BQF is completely defined. For the squared
exponential kernel (Rasmussen and Williams, 2006)

k(x,x′) = θ2 exp
(
− 1

2λ2‖x− x′‖2
)

, (A.36)

with lengthscale λ > 0 and output variance θ2 > 0, it turns out that y and R can be
computed in closed form and that many classic quadrature methods which are known
for their favorable properties can be computed in closed form (Särkkä et al., 2016),
significantly speeding up computations. For the scalar case nD = 1, we obtain for
(A.34) by straightforward computations:

α(i) = λθ2√
λ2 + σ2

exp
(
− (xi − µ)2

2(λ2 + σ2)

)
, (A.37)

and ∫ ∫
k(x,x′)w(x)w(x′) dxdx′ = θ2√

1 + 2σ2/λ2
(A.38)

Hence, our BQ estimate for y is given by the sigma-point rule

y ≈
N∑
i=1

Wif(t+ h,xi) (A.39)

with easily computable weights
Wi = [αTK−1]i. (A.40)

Also the variance R takes a convenient shape

R = θ2√
1 + 2σ2/λ2

− αTK−1α. (A.41)

For nD > 1, we get slightly more complicated formulas which are given in Deisenroth
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(2009).
The other free choice in BQ, the evaluation points (xi)i=1,...,n, can also be chosen freely

in every step of BQF. Usually, the nodes of BQ chosen are chosen so that the variance
of the integral estimate is minimized (cf. Briol et al. (2019)). For this algorithm, the
uncertainty has to be measured, not minimized though. Hence, we propose just to take
a uniform grid scaled by N (m−t+h,P−t+h) to measure the uncertainty in a comprehensive
way.
Another promising choice is given by the roots of the physicists’ version of the Hermite

polynomials, since they yield Gauss–Hermite quadrature (GHQ), the standard numerical
quadrature against Gaussian measures, as a posterior mean for a suitable covariance
function (Särkkä et al., 2016). For GHQ, efficient algorithms to compute the roots and
the weights are readily available (Press et al., 2007).

A.2.5 Computational cost
All of the presented algorithms buy their probabilistic extension to classic ODE solvers
by adding computational cost, sometimes more sometimes less. In most cases, evaluation
of the vector field f forms the computational bottleneck, so we will focus on it here. Of
course, the internal computations of the solver adds cost as well. Since all the models
discussed here have linear inference cost, though, this additional overhead is manageable.
The ML-algorithm by Schober et al. (2014) is the fastest algorithm. By simply recasting
a Runge–Kutta step as Gaussian filtering, rough probabilistic uncertainty is achieved
with negligible computational overhead.
For the sampling method, the calculation of one individual sample of Qh amounts to
running the entire underlying ODE solver once, hence the overall cost is S times the
original cost.
In contrast, the BQ-algorithm only has to run through [0,T ] once, but has to invert
a ND × ND covariance matrix to perform Bayesian quadrature with N evaluation
points. Usually, N will be small, since BQ performs well for a relatively small number
of function evaluations (as e.g. illustrated by the experiments below). However, if the
output dimension D is very large, Bayesian quadrature—like all quadrature methods—is
not practical. BQ thus tends to be faster for small D, while MC tends to be faster for
large D.
When considering these computational overheads, there is a nuanced point to be made

about the value-to-cost trade-off of constructing a posterior uncertainty measure. If a
classic numerical solver of order p is allotted a budget of M times its original one, it can
use it to reduce its step-size by a factor of M , and thus reduce its approximation error
by an order Mp. It may thus seem pointless to invest even such a linear cost increase
into constructing an uncertainty measure around the classic estimate. But, in some
practical settings, it may be more helpful to have a notion of uncertainty on a slightly
less precise estimate than to produce a more precise estimate without a notion of error.
In addition, classic solvers are by nature sequential algorithms, while the probabilistic
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extensions (both the sampling-based and Gaussian-filtering based ones) can be easily
parallelized. Where parallel hardware is available, the effective time cost of probabilistic
functionality may thus be quite limited (although we do not investigate this possibility
in our present experiments).
With regards to memory requirements, the MC-method needs significantly more stor-

age, since it requires saving all sample paths, in order to statistically approximate the
entire non-parametric measure Qh on C1([0,T ],R). The BQ-algorithm only has to save
the posterior GP, i.e. a mean and a covariance function, which is arguably the minimal
amount to provide a notion of uncertainty. If MC reduces the approximation of Qh to
its mean and variance, it only requires this minimal storage as well.

A.3 Experiments
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Figure A.2: Solution estimates constructed on the Van der Pol oscillator (A.42). True
solution in red. Mean estimates of ML, MC and BQ in black, green, blue, respectively.
Uncertainty measures (drawn at two times standard deviation) as thin lines of the same
color.

This section explores applications of the probabilistic ODE solvers discussed in Section
A.2. The sampling-based algorithm by (Conrad et al., 2017) will be abbreviated as MC,
the maximum-likelihood Gaussian filter ((Schober et al., 2014)) as ML and our novel
BQ-based filter (BQF) as BQ. In particular, we assess how the performance of the purely
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Figure A.3: Plot of errors of the mean estimates at t = 18 of the methods MC (green)
and BQ (blue) as a function of the allowed function evaluations. Maximum likelihood
error in black. Single runs of the probabilistic MC solver as green crosses. Average over
all runs as green line.

deterministic class of Gaussian filtering based solvers compares to the inherently random
class of sampling-based solvers.
We experiment on the Van der Pol oscillator (Hairer et al., 1987), a non-conservative

oscillator with non-linear damping, which is a standard example for a non-stiff dynamical
system. It is governed by the equation

∂2u

∂t2
= µ(1− u2)∂u

∂t
− u, (A.42)

where the parameter µ ∈ R indicates the non-linearity and the strength of the damping.
We set µ = 5 on a time axis [10, 60], with initial values (u(10), u̇(10)) = (2, 10).
All compared methods use a model of order q = 3, and a step size h = 0.01. This

induces a state-space model given by a twice-integrated Wiener process prior (cf. (A.9))
which yields a version of ML close to second-order Runge–Kutta (Schober et al., 2014).
The same solver is used as the underlying numerical solver Ψh in MC. For the noise
parameter, which scales the deviation of the evaluation point of f from the numerical
extrapolation (i.e. the variance of the driving Wiener process for ML and BQ, and the
variance of ξk for MC), we choose σ2 = 0.1. The drift matrix F of the underlying
integrated Wiener process is set to the default values fi = i for i = 1, . . . , q − 1. The
covariance function used in BQ is the widely popular squared exponential (A.36), with
lengthscale λ = 1 and output variance θ2 = 1. (Since all methods use the same model,
this tuning does not favor one algorithm over the other. In practice all these parameters
should of course be set by statistical estimation.).
For a fair comparison in all experiments, we allow MC and BQ to make the same

amount of function evaluations per time step. If MC draws N samples, BQ uses N
evaluation points. The first experiment presents the solutions of the presented algorithms
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Figure A.4: Plot of errors of the mean estimates at t = 54 of the methods MC (green)
and BQ (blue) as a function of the allowed function evaluations. Maximum likelihood
error in black. Single runs of the probabilistic MC solver as green crosses. Average over
all runs as green line.

on the van der Pol oscillator (A.42) on the whole time axis in one plot, when we allow
BQ and MC to make five function evaluations. Then, we examine more closely how the
error of each methods changes as a function of the number of evaluations of f in Figure
A.3 and Figure A.4.

A.3.1 Solution measures on Van Der Pol oscillator
Figure A.2 shows the solution estimates constructed by the three solvers across the
time domain. In all cases, the mean estimates roughly follow the exact solution (which
e.g. Gaussian filtering with Monte Carlo integration by sampling (A.23)–(A.25) does not
achieve). A fundamental difference between the filtering-based methods (ML and BQ)
and the sampling-based MC algorithm is evident in both the mean and the uncertainty
estimate.
While the filtering-based methods output a trajectory quite similar to the exact solu-

tion with a small time lag, the MC algorithm produces a trajectory of a more varying
shape. Characteristic points of the MC mean estimate (such as local extrema) are placed
further away from the exact value than for filtering-based methods.
The uncertainty estimation of MC appears more flexible as well. ML and BQ pro-

duce an uncertainty estimate which runs parallel to the mean estimate and appears
to be strictly increasing. It appears to increase slightly in every step, resulting in an
uncertainty estimate, which only changes very slowly. The solver accordingly appears
overconfident in the spikes and underconfident in the valleys of the trajectory. The un-
certainty of MC varies more, scaling up at the steep parts of the oscillator and decreasing
again at the flat parts, which is a desirable feature.
Among the class of filtering-based solvers, the more refined BQ method outputs a

better mean estimate with more confidence than ML.
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A.3.2 Quality of estimate as a function of allowed evaluations
Figure A.3 and Figure A.4 depict the value of the error of the mean approximation as a
function of the allowed function evaluations N (i.e. N evaluation points for BQ and N
samples for MC) at time points t1 = 18 and t2 = 54. Since the desired solution measure
Qh for MC can only be statistically approximated by the N samples, the mean estimate
of MC is random. For comparison, the average of five MC-runs is computed.
At the early time point t1 = 18, all trajectories are still close together and the methods

perform roughly the same, as we allow more evaluations. There is a slight improvement
for BQ with more evaluations, but the error remains above the one of ML error.
At the later time t2 = 54, BQ improves drastically when at least five evaluations are

allowed, dropping much below the ML error.
The average error by MC appears to be not affected by the number of samples. The

ML error is constant, because it always evaluates only once.

A.4 Discussion
The conducted experiments provide an interesting basis to discuss the differences be-
tween filtering-based methods (ML and BQ) and the sampling-based MC algorithm. We
make the following observations:

(i) Additional samples do not improve the random mean estimate of MC in expecta-
tion:
Since the samples of MC are independent and identically distributed, the expecta-
tion of the random mean estimate of MC is the same, regardless of the amounts of
samples. This property is reflected in Figure A.3 and Figure A.4, by the constant
green line (up to random fluctuation). Additional samples are therefore only useful
to improve the uncertainty calibration.

(ii) The uncertainty calibration of MC appears more adaptive than of ML and BQ:
Figure A.2 suggests that MC captures the uncertainty more flexibly: It appropri-
ately scales up in the steep parts of the oscillator, while expressing high confidence
in the flat parts of the oscillator. The exact trajectory is inside the interval between
mean± 2 standard deviations, which is not the case for BQ and ML. Moreover, MC
produces a more versatile measure. The filtering-based methods appear to produce
a strictly increasing uncertainty measure by adding to the posterior uncertainty
in every step. MC avoids this problem by sampling multiple time over the whole
time interval. We deem the resulting flexibility a highly desirable feature. BQ also
outputs a meaningful uncertainty measure and we expect that adding Bayesian
smoothing (Särkkä, 2013) would enable filtering-based methods to produce more
adaptive measures as well.
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(iii) The expected error of MC-samples (and their mean) is higher than the error of
ML:
In the experiments, MC produced a higher error for the mean estimate, compared
to both ML and BQ. We expect that this happens on all dynamical systems by
construction: Given Uk, the next value Uk+1 of a MC-sample is calculated by
adding Gaussian noise ξk to the ML-extrapolation starting in Uk (cf. equation
(A.6)). Due to the symmetry and full support of Gaussian distributions, the
perturbed solution has a higher error than the unperturbed prediction, which
coincides with the ML solution. Hence, every MC-sample accumulates with every
step a positive expected error increment compared to the ML estimate. By the
linearity of the average, the mean over all samples inherits the same higher error
than the ML mean (and thereby also than the error of the more refined BQ mean).

Summing up, we argue that—at their current state—filtering-based methods appear
to produce a ‘better’ mean estimate, while sampling-based methods produce in some
sense a ‘better’ uncertainty estimate. Many applications might put emphasis on a good
mean estimate, while needing a still well-calibrated uncertainty quantification. Our
method BQF provides a way of combining a precise mean estimate with a meaningful
uncertainty calibration. Sampling-based methods might not be able to provide this due
to their less accurate mean estimate. For future work (which is beyond the scope of this
paper), it could be possible to combine the advantages of both approaches in a unified
method.

A.5 Conclusion
We have presented theory and methods for the probabilistic solution of ODEs which
provide uncertainty measures over the solution of the ODE, contrasting the classes of
(deterministic) filtering-based and (random) sampling-based solvers. We have provided
a theoretical framework for Gaussian filtering as state space inference in linear Gaussian
SDEs, highlighting the prediction of the gradient as the primary source of uncertainty.
Of all investigated approximations of the gradient, Bayesian Quadrature (BQ) produces
the best results, by actively learning the shape of the vector field f through determin-
istic evaluations. Hence, we propose a novel filtering-based method named Bayesian
Quadrature Filtering (BQF), which employs BQ for the gradient measurement.
For the same amount of allowed gradient evaluations, the mean estimate of BQF

appears to outperform the mean estimate of state-of-the-art sampling-based solvers on
the Van der Pol oscillator, while outputting a better calibrated uncertainty than other
filtering-based methods.
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Abstract: We formulate probabilistic numerical approximations to solutions of ordinary
differential equations (ODEs) as problems in Gaussian process (GP) regression with non-
linear measurement functions. This is achieved by defining the measurement sequence
to consist of the observations of the difference between the derivative of the GP and the
vector field evaluated at the GP—which are all identically zero at the solution of the
ODE. When the GP has a state-space representation, the problem can be reduced to a
non-linear Bayesian filtering problem and all widely-used approximations to the Bayesian
filtering and smoothing problems become applicable. Furthermore, all previous GP-
based ODE solvers that are formulated in terms of generating synthetic measurements of
the gradient field come out as specific approximations. Based on the non-linear Bayesian
filtering problem posed in this paper, we develop novel Gaussian solvers for which we
establish favourable stability properties. Additionally, non-Gaussian approximations to
the filtering problem are derived by the particle filter approach. The resulting solvers
are compared with other probabilistic solvers in illustrative experiments.

B.1 Introduction
We consider an initial value problem (IVP), that is, an ordinary differential equation
(ODE)

ẏ(t) = f (y(t), t) , ∀t ∈ [0,T ], y(0) = y0 ∈ Rd, (B.1)
with initial value y0 and vector field f : Rd × R+ → Rd. Numerical solvers for IVPs
approximate y : [0,T ] → Rd and are of paramount importance in almost all areas of
science and engineering. Extensive knowledge about this topic has been accumulated in
numerical analysis literature, for example, in Hairer et al. (1987), Deuflhard and Borne-
mann (2002), and Butcher (2008). However, until recently, a probabilistic quantification
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of the inevitable uncertainty–for all but the most trivial ODEs–from the numerical error
over their outputs has been omitted.
Moreover, ODEs are often part of a pipeline surrounded by preceding and subse-

quent computations, which are themselves corrupted by uncertainty from model mis-
specification, measurement noise, approximate inference or, again, numerical inaccuracy
(Kennedy and O’Hagan, 2002). In particular, ODEs are often integrated using esti-
mates of its parameters rather than the correct ones. See Zhang et al. (2018) and
Chen et al. (2018) for recent examples of such computational chains involving ODEs.
The field of probabilistic numerics (PN) (Hennig et al., 2015) seeks to overcome this
ignorance of numerical uncertainty and the resulting overconfidence by providing proba-
bilistic numerical methods. These solvers quantify numerical errors probabilistically and
add them to uncertainty from other sources. Thereby, they can take decisions in a more
uncertainty-aware and uncertainty-robust manner (Paul et al., 2018).
In the case of ODEs, one family of probabilistic solvers (Skilling (1991), Hennig and

Hauberg (2014), and Schober et al. (2014)) first treated IVPs as Gaussian process (GP)
regression (Rasmussen and Williams, 2006, Chapter 2). Then, Kersting and Hennig
(2016) and Schober et al. (2019) sped up these methods by regarding them as stochastic
filtering problems (Øksendal, 2003). These completely deterministic filtering methods
converge to the true solution with high polynomial rates (Kersting et al., 2020a). In their
methods data for the ’Bayesian update’ is constructed by evaluating the vector field f
under the GP predictive mean of y(t) and linked to the model with a Gaussian likelihood
(Schober et al., 2019, Section 2.3). See also Wang et al. (2018, Section 1.2) for alternative
likelihood models. This conception of data implies that it is the output of the adopted
inference procedure. More specifically, one can show that with everything else being
equal, two different priors may end up operating on different measurement sequences.
Such a coupling between prior and measurements is not standard in statistical problem
formulations, as acknowledged in Schober et al. (2019, Section 2.2). It makes the model
and the subsequent inference difficult to interpret. For example, it is not clear how to
do Bayesian model comparisons (Cockayne et al., 2019, Section 2.4) when two different
priors necessarily operate on two different data sets for the same inference task.
Instead of formulating the solution of Eq. (B.1) as a Bayesian GP regression problem,

another line of work on probabilistic solvers for ODEs comprising the methods from
Chkrebtii et al. (2016), Conrad et al. (2017), Teymur et al. (2016), Lie et al. (2019), Ab-
dulle and Garegnani (2020), and Teymur et al. (2018) aims to represent the uncertainty
arising from the discretization error by a set of samples. While multiplying the compu-
tational cost of classical solvers with the amount of samples, these methods can capture
arbitrary (non-Gaussian) distributions over the solutions and can reduce over-confidence
in inverse problems for ODEs—as demonstrated in Conrad et al. (2017, Section 3.2.),
Abdulle and Garegnani (2020, Section 7), and Teymur et al. (2018). These solvers can be
considered as more expensive, but statistically more expressive. This paper contributes
a particle filter as a sampling-based filtering method at the intersection of both lines of
work, providing a previously missing link.
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The contributions of this paper are the following: Firstly, we circumvent the issue of
generating synthetic data, by recasting solutions of ODEs in terms of non-linear Bayesian
filtering problems in a well defined state-space model. For any fixed-time discretisation,
the measurement sequence and likelihood are also fixed. That is, we avoid the coupling
of prior and measurement sequence, that is for example present in Schober et al. (2019).
This enables application of all Bayesian filtering and smoothing techniques to ODEs as
described, for example, in Särkkä (2013). Secondly, we show how the application of
certain inference techniques recovers the previous filtering-based methods. Thirdly, we
discuss novel algorithms giving rise to both Gaussian and non-Gaussian solvers.
Fourthly, we establish a stability result for the novel Gaussian solvers. Fifthly, we dis-

cuss practical methods for uncertainty calibration, and in the case of Gaussian solvers,
we give explicit expressions. Finally, we present some illustrative experiments demon-
strating that these methods are practically useful both for fast inference of the unique
solution of an ODE as well as for representing multi-modal distributions of trajectories.

B.2 Bayesian inference for initial value problems
Formulating an approximation of the solution to Eq. (B.1) at a discrete set of points
{tn}Nn=0 as a problem of Bayesian inference requires, as always, three things: a prior
measure, data, and a likelihood, which define a posterior measure through Bayes’ rule.
We start with examining a continuous-time formulation in Section B.2.1, where Bayesian

conditioning should, in the ideal case, give a Dirac measure at the true solution of Eq.
(B.1) as the posterior. This has two issues: (1) conditioning on the entire gradient field
is not feasible on a computer in finite time and (2) the conditioning operation itself is
intractable. Issue (1) is present in classical Bayesian quadrature (Briol et al., 2019) as
well. Limited computational resources imply that only a finite number of evaluations
of the integrand can be used. Issue (2) turns, what is linear GP regression in Bayesian
quadrature, into non-linear GP regression. While this is unfortunate, it appears reason-
able that something should be lost as the inference problem is more complex.
With this in mind, a discrete-time non-linear Bayesian filtering problem is posed in

Section B.2.2, which targets the solution of Eq. (B.1) at a discrete set of points.

B.2.1 A continuous-time model
Like previous works mentioned in Section B.1, we consider priors given by a GP

X(t) ∼ GP (x̄, k) ,

where x̄(t) is the mean function and k(t, t′) is the covariance function. The vector X(t)
is given by

X(t) =
[(
X(1)(t)

)T
, . . . ,

(
X(q+1)(t)

)T
]T

, (B.2)
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where X(1)(t) and X(2)(t) model y(t) and ẏ(t), respectively. The remaining q − 1 sub-
vectors in X(t) can be used to model higher order derivatives of y(t) as done by Schober
et al. (2019) and Kersting and Hennig (2016). We define such priors by a stochastic
differential equation (Øksendal, 2003), that is,

X(0) ∼ N
(
µ−(0), Σ−(0)

)
, (B.3a)

dX(t) =
[
FX(t) + u

]
dt+ L dB(t), (B.3b)

where F is a state transition matrix, u is a forcing term, L is a diffusion matrix, and
B(t) is a vector of standard Wiener processes.
Note that for X(2)(t) to be the derivative of X(1), F , u, and L are such that

dX(1)(t) = X(2)(t) dt. (B.4)

The use of an SDE—instead of a generic GP prior—is computationally advantageous
because it restricts the priors to Markov processes due to Øksendal (2003, Theorem
7.1.2). This allows for inference with linear time-complexity in N , while the time-
complexity is N3 for GP priors in general (Hartikainen and Särkkä, 2010).
Inference requires data, and an associated likelihood. Previous authors, such as

Schober et al. (2019) and Chkrebtii et al. (2016), put forth the view of the prior mea-
sure defining an inference agent, which cycles through extrapolating, generating mea-
surements of the vector field, and updating. Here we argue that there is no need for
generating measurements, since re-writing Eq. (B.1) yields the requirement

ẏ(t)− f(y(t), t) = 0. (B.5)

This suggests that a measurement relating the prior defined by Eq. (B.3) to the solution
of Eq. (B.1) ought to be defined as

Z(t) = X(2)(t)− f(X(1)(t), t). (B.6)

While conditioning the process X(t) on the event Z(t) = 0 for all t ∈ [0,T ] can be
formalised using the concept of disintegration (Cockayne et al., 2019), it is intractable
in general and thus impractical for computer implementation. Therefore, we formulate
a discrete-time inference problem in the sequel.

B.2.2 A discrete-time model

In order to make the inference problem tractable, we only attempt to condition the
process X(t) on Z(t) = z(t) , 0 at a set of discrete time-points, {tn}Nn=0. We consider
a uniform grid, tn+1 = tn + h, though extending the present methods to non-uniform
grids can be done as described in Schober et al. (2019). In the sequel, we will denote
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a function evaluated at tn by subscript n, for example zn = z(tn). From Eq. (B.3) an
equivalent discrete-time system can be obtained (Grewal and Andrews, 2001, Chapter
3.7.3) 1. The inference problem becomes

X0 ∼ N (µF0 , ΣF
0 ), (B.7a)

Xn+1 | Xn ∼ N
(
A(h)Xn + ξ(h),Q(h)

)
, (B.7b)

Zn | Xn ∼ N
(
ĊXn − f(CXn, tn),R

)
, (B.7c)

zn , 0, n = 1, . . . ,N , (B.7d)

where zn is the realisation of Zn. The parameters A(h), ξ(h), and Q(h) are given by

A(h) = exp(Fh), (B.8a)

ξ(h) =
∫ h

0
exp(F (h− τ))u dτ , (B.8b)

Q(h) =
∫ h

0
exp(F (h− τ))LLT exp(FT(h− τ)) dτ . (B.8c)

Furthermore, C = [I 0 . . . 0] and Ċ = [0 I 0 . . . 0]. That is, CXn = X(1)
n and

ĊXn = X(2)
n . A measurement variance, R, has been added to Z(tn) for greater generality,

which simplifies the construction of particle filter algorithms. The likelihood model in Eq.
(B.7c) has previously been used in the gradient matching approach to inverse problems
to avoid explicit numerical integration of the ODE (see, e.g., Calderhead et al. (2008)).
The inference problem posed in Eq. (B.7) is a standard problem in non-linear GP

regression (Rasmussen andWilliams, 2006), also known as Bayesian filtering and smooth-
ing in stochastic signal processing (Särkkä, 2013). Furthermore, it reduces to Bayesian
quadrature when the vector field does not depend on y. This is Proposition B.2.1 below.
Proposition B.2.1. Let X(1)

0 = 0, f(y(t), t) = g(t), y(0) = 0, and R = 0. Then the
posteriors of {X(1)

n }Nn=1 are Bayesian quadrature approximations for∫ nh

0
g(τ) dτ , n = 1, . . . ,N . (B.9)

A proof of Proposition B.2.1 is given in Appendix B.7.
Remark B.2.2. The Bayesian quadrature method described in Proposition B.2.1 con-
ditions on function evaluations outside the domain of integration for n < N . This
corresponds to the smoothing equations associated with Eq. (B.7). If the integral on
the domain [0,nh] is only conditioned on evaluations of g inside the domain then the
filtering estimates associated with Eq. (B.7) are obtained.

1Here ‘equivalent’ is used in the sense that the probability distribution of the continuous-time process
evaluated on the grid coincides with the probability distribution of the discrete-time process (Särkkä,
2006, Page 17).
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B.2.3 Gaussian filtering

The inference problem posed in Eq. (B.7) is a standard problem in statistical signal
processing and machine learning, and the solution is often approximated by Gaussian
filters and smoothers (Särkkä, 2013). Let us define z1:n = {zl}nl=1 and the following
conditional moments

µFn , E[Xn | z1:n], (B.10a)
ΣF
n , V[Xn | z1:n], (B.10b)
µPn , E[Xn | z1:n−1], (B.10c)
ΣP
n , V[Xn | z1:n−1], (B.10d)

where E[· | z1:n] and V[· | z1:n] are the conditional mean and covariance operators given
the measurements Z1:n = z1:n. Additionally, E[· | z1:0] = E[· ] and V[· | z1:0] = V[· ] by
convention. Furthermore, µFn and ΣF

n are referred to as the filtering mean and covariance,
respectively. Similarly, µPn and ΣP

n are referred to as the predictive mean and covariance,
respectively. In Gaussian filtering, the following relationships hold between µFn and ΣF

n ,
and µPn+1 and ΣP

n+1:

µPn+1 = A(h)µFn + ξ(h), (B.11a)
ΣP
n+1 = A(h)ΣF

nA
T(h) +Q(h), (B.11b)

which are the prediction equations (Särkkä, 2013, Eq. 6.6). The update equations, re-
lating the predictive moments µPn and ΣP

n with the filter estimate, µFn , and its covariance
ΣF
n , are given by (Särkkä, 2013, Eq. 6.7)

Sn = V
[
ĊXn − f(CXn, tn) | z1:n−1

]
+R, (B.12a)

Kn = C
[
Xn, ĊXn − f(CXn, tn) | z1:n−1

]
S−1
n , (B.12b)

ẑn = E
[
ĊXn − f(CXn, tn) | z1:n−1

]
, (B.12c)

µFn = µPn +Kn(zn − ẑn), (B.12d)
ΣF
n = ΣP

n −KnSnK
T
n , (B.12e)

where the expectation (E), covariance (V) and cross-covariance (C) operators are with
respect to Xn ∼ N (µPn , ΣP

n ). Evaluating these moments is intractable in general, though
various approximation schemes exist in literature. Some standard approximation meth-
ods shall be examined below. In particular, the methods of Schober et al. (2019) and
Kersting and Hennig (2016) come out as particular approximations to Eq. (B.12).
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B.2.4 Taylor-series methods

A classical method in filtering literature to deal with non-linear measurements of the
form in Eq. (B.7) is to make a first order Taylor-series expansion, thus turning the
problem into a standard update in linear filtering. However, before going through the
details of this it is instructive to interpret the method of Schober et al. (2019) as an even
simpler Taylor-series method. This is Proposition B.2.3 below.

Proposition B.2.3. Let R = 0 and approximate f(CXn, tn) by its zeroth order Taylor
expansion in Xn around the point µPn

f
(
CXn, tn

)
≈ f

(
CµPn , tn

)
. (B.13)

Then, the approximate posterior moments are given by

Sn ≈ ĊΣP
n Ċ

T +R, (B.14a)
Kn ≈ ΣP

n Ċ
TS−1

n , (B.14b)
ẑn ≈ ĊµPn − f

(
CµPn , tn

)
, (B.14c)

µFn ≈ µPn +Kn(zn − ẑn), (B.14d)
ΣF
n ≈ ΣP

n −KnSnK
T
n , (B.14e)

which is precisely the update by Schober et al. (2019).

A First Order Approximation. The approximation in Eq. (B.14) can be refined by
using a first order approximation, which is known as the extended Kalman filter (EKF)
in signal processing literature (Särkkä, 2013, Algorithm 5.4). That is,

f
(
CXn, tn

)
≈ f

(
CµPn , tn

)
+ Jf

(
CµPn , tn

)
C
(
Xn − µPn

)
,

(B.15)

where Jf is the Jacobian of y → f(y, t). The filter update is then

C̃n = Ċ − Jf
(
CµPn , tn

)
C, (B.16a)

Sn ≈ C̃nΣP
n C̃

T
n +R, (B.16b)

Kn ≈ ΣP
n C̃

T
nS
−1
n , (B.16c)

ẑn ≈ ĊµPn − f
(
CµPn , tn

)
, (B.16d)

µFn ≈ µPn +Kn(zn − ẑn), (B.16e)
ΣF
n ≈ ΣP

n −KnSnK
T
n . (B.16f)
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Hence the extended Kalman filter computes the residual, zn − ẑn, in the same manner
as Schober et al. (2019). However, as the filter gain, Kn, now depends on evaluations of
the Jacobian, the resulting probabilistic ODE solver is different in general.
While Jacobians of the vector field are seldom exploited in ODE solvers, they play a

central role in Rosenbrock methods, (Rosenbrock (1963) and Hochbruck et al. (2009)).
The Jacobian of the vector field was also recently used by Teymur et al. (2018) for
developing a probabilistic solver.
Although the extended Kalman filter goes as far back as the 1960s (Jazwinski, 1970),

the update in Eq. (B.16) results in a probabilistic method for estimating the solution
of (B.1) that appears to be novel. Indeed, to the best of the authors’ knowledge, the
only Gaussian filtering based solvers that have appeared so far are those by Kersting
and Hennig (2016), Magnani et al. (2017), and Schober et al. (2019).

B.2.5 Numerical quadrature
Another method to approximate the quantities in Eq. (B.12) is by quadrature, which
consists of a set of nodes {Xn,j}Jj=1 with weights {wn,j}Jj=1 that are associated to the
distribution N (µPn , ΣP

n ). These nodes and weights can either be constructed to integrate
polynomials up to some order exactly (see, e.g., McNamee and Stenger (1967) and Golub
and Welsch (1969)), or by Bayesian quadrature (Briol et al., 2019). In either case, the
expectation of a function ψ(Xn) is approximated by

E[ψ(Xn)] ≈
J∑
j=1

wn,jψ(Xn,j). (B.17)

Therefore, by appropriate choices of ψ the quantities in Eq. (B.12) can be approximated.
We shall refer to filters using a third degree fully symmetric rule (McNamee and Stenger,
1967) as Unscented Kalman filters (UKF), which is the name that was adopted when
it was first introduced to the signal processing community (Julier et al., 2000). For a
suitable cross-covariance assumption and a particular choice of quadrature, the method
of Kersting and Hennig (2016) is retrieved. This is Proposition B.2.4.

Proposition B.2.4. Let {Xn,j}Jj=1 and {wn,j}Jj=1 be the nodes and weights, correspond-
ing to a Bayesian quadrature rule with respect to N (µPn , ΣP

n ). Furthermore, assume
R = 0 and that the cross-covariance between ĊXn and f(CXn, tn) is approximated as
zero,

C
[
ĊXn, f(CXn, tn) | z1:n−1

]
≈ 0. (B.18)

Then the probabilistic solver proposed in Kersting and Hennig (2016) is a Bayesian
quadrature approximation to Eq. (B.12).

A proof of Proposition B.2.4 is given in Appendix B.8.
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While a cross-covariance assumption of Proposition B.2.4 reproduces the method of
Kersting and Hennig (2016), Bayesian quadrature approximations have previously been
used for Gaussian filtering in signal processing applications by Prüher and Šimandl
(2015), which in this context gives a new solver.

B.2.6 Affine vector fields
It is instructive to examine the particular case when the vector field in Eq. (B.1) is
affine. That is,

f(y(t), t) = Λ(t)y(t) + ζ(t). (B.19)
In such a case, Eq. (B.7) becomes a linear Gaussian system, which is solved exactly by
a Kalman filter. The equations for implementing this Kalman filter are precisely Eq.
(B.11) and Eq. (B.12), although the latter set of equations can be simplified. Define
Hn = Ċ − Λ(tn)C, then the update equations become

Sn = HnΣP
nH

T
n +R, (B.20a)

Kn = ΣP
nH

T
nS
−1
n , (B.20b)

µFn = µPn +Kn

(
ζ(tn)−Hnµ

P
n

)
(B.20c)

ΣF
n = ΣP

n −KnSnK
T
n . (B.20d)

Lemma B.2.5. Consider the inference problem in Eq. (B.7) with an affine vector
field as given in Eq. (B.19). Then the EKF reduces to the exact Kalman filter, which
uses the update in Eq. (B.20). Furthermore, the same holds for Gaussian filters using a
quadrature approximation to Eq. (B.12), provided that it integrates polynomials correctly
up to second order with respect to the distribution N (µPn , ΣP

n ).

Proof. Since the Kalman filter, the EKF, and the quadrature approach all use Eq. (B.11)
for prediction, it is sufficient to make sure that the EKF and the quadrature approxima-
tion compute Eq. (B.12) exactly, just as the Kalman filter. Now the EKF approximates
the vector field by an affine function for which it computes the moments in Eq. (B.12)
exactly. Since this affine approximation is formed by a truncated Taylor series, it is exact
for affine functions and the statement pertaining to the EKF holds. Furthermore, the
Gaussian integrals in Eq. (B.12) are polynomials of degree at most two for affine vector
fields and are therefore computed exactly by the quadrature rule by assumption.

B.2.7 Particle filtering
The Gaussian filtering methods from Section B.2.3 may often suffice. However, there are
cases where more sophisticated inference methods may be preferable, for instance, when
the posterior becomes multi-modal due to chaotic behavior or ‘numerical bifurcations’.
That is, when it is numerically unknown whether the true solution is above or below a
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certain threshold that determines the limit behaviour of its trajectory. While sampling
based probabilistic solvers such as those of Chkrebtii et al. (2016), Conrad et al. (2017),
Teymur et al. (2016), Lie et al. (2019), Abdulle and Garegnani (2020), and Teymur et al.
(2018) can pick up such phenomena, the Gaussian filtering based ODE solvers discussed
in Section B.2.3 cannot. However, this limitation may be overcome by approximating
the filtering distribution of the inference problem in Eq. (B.7) with particle filters that
are based on a sequential formulation of importance sampling (Doucet et al., 2001).

A particle filter operates on a set of particles, {Xn,j}Jj=1, a set of positive weights
{wn,j}Jj=1 associated to the particles that sum to one and an importance density, g(xn+1 |
xn, zn). The particle filter then cycles through three steps (1) propagation, (2) re-
weighting, and (3) re-sampling (Särkkä, 2013, Chapter 7.4).

The propagation step involves sampling particles at time n + 1 from the importance
density:

Xn+1,j ∼ g(xn+1 | Xn,j, zn). (B.21)
The re-weighting of the particles is done by a likelihood ratio with the product of the
measurement density and the transition density of Eq. (B.7), and the importance den-
sity. That is, the updated weights are given by

ρ(xn+1,xn) = p(zn+1 | xn+1)p(xn+1 | xn)
g(xn+1 | xn, zn+1) , (B.22a)

wn+1,j ∝ ρ
(
Xn+1,j,Xn,j

)
wn,j, (B.22b)

where the proportionality sign indicates that the weights need to be normalised to sum
to one after they have been updated according to Eq. (B.22). The weight update is
then followed by an optional re-sampling step (Särkkä, 2013, Chapter 7.4). While not
re-sampling in principle yields a valid algorithm, it becomes necessary in order to avoid
the degeneracy problem for long time series (Doucet et al., 2001, Chapter 1.3). The
efficiency of particle filters depends on the choice of importance density. In terms of
variance, the locally optimal importance density is given by (Doucet et al., 2001)

g(xn | xn−1, zn) ∝ p(zn | xn)p(xn | xn−1). (B.23)

While Eq. (B.23) is almost as intractable as the full filtering distribution, the Gaussian
filtering methods from Section B.2.3 can be used to make a good approximation. For
instance, the approximation to the optimal importance density using Eq. (B.14) is given
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by

Sn = ĊQ(h)ĊT +R, (B.24a)
Kn = Q(h)ĊTS−1

n , (B.24b)
ẑn = ĊA(h)xn−1 − f

(
CA(h)xn−1, tn

)
, (B.24c)

µn = A(h)xn−1 +Kn(zn − ẑn), (B.24d)
Σn = Q(h)−KnSnK

T
n , (B.24e)

g(xn | xn−1, zn) = N (xn;µn, Σn). (B.24f)

An importance density can be similarly constructed from Eq. (B.16), resulting in:

C̃n = Ċ − Jf
(
CA(h)xn−1, tn

)
C, (B.25a)

Sn = C̃nQ(h)C̃T
n +R, (B.25b)

Kn = Q(h)C̃T
nS
−1
n , (B.25c)

ẑn = ĊA(h)xn−1 − f
(
CA(h)xn−1, tn

)
, (B.25d)

µn = A(h)xn−1 +Kn(zn − ẑn), (B.25e)
Σn = Q(h)−KnSnK

T
n , (B.25f)

g(xn | xn−1, zn) = N (xn;µn, Σn). (B.25g)

Note that we have assumed ξ(h) = 0 in Eqs. (B.24) and (B.25), which can be extended to
ξ(h) 6= 0 by replacingA(h)xn−1 withA(h)xn−1+ξ(h). We refer the reader to Doucet et al.
(2000, Section II.D.2) for a more thorough discussion on the use of local linearisation
methods to construct importance densities.
We conclude this section with a brief discussion on the convergence of particle filters.

The following theorem is given by Crisan and Doucet (2002).

Theorem B.2.6. Let ρ(xn+1,xn) in Eq. (B.22a) be bounded from above and denote the
true filtering measure associated with Eq. (B.7) at time n by pRn and let p̂R,J

n be its particle
approximation using J particles with importance density g(xn+1 | xn, zn+1). Then, for
all n ∈ N0, there exists a constant cn independent of J such that for any bounded Borel
function φ : Rd(q+1) → R the following bound holds

EMC[(〈p̂R,J
n ,φ〉 − 〈pRn ,φ〉)2]1/2 ≤ cnJ

−1/2‖φ‖, (B.26)

where 〈p,φ〉 denotes φ integrated with respect to p and EMC denotes the expectation over
realisations of the particle method, and ‖·‖ is the supremum norm.

Theorem B.2.6 shows that we can decrease the distance (in the weak sense) between
p̂R,J
n and pRn by increasing J . However, the object we want to approximate is p0

n (the
exact filtering measure associated with Eq. (B.7) for R = 0) but setting R = 0 makes
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the likelihood ratio in Eq. (B.22a) ill-defined for the proposal distributions in Eqs.
(B.24) and (B.25). This is because, when R = 0, then p(zn+1 | xn+1)p(xn+1 | xn) has
its support on the surface Ċxn+1 = f(Cxn+1, tn+1) while Eqs. (B.24) or (B.25) imply
that the variance of ĊXn+1 or C̃n+1Xn+1 will be zero with respect to g(xn+1 | xn, zn+1),
respectively. That is, g(xn+1 | xn, zn+1) is supported on a hyperplane. It follows that
the null-sets of g(xn+1 | xn, zn+1) are not necessarily null-sets of p(zn+1 | xn+1)p(xn+1 |
xn) and the likelihood ratio in Eq. (B.22a) can therefore be undefined. However, a
straightforward application of the triangle inequality together with Theorem B.2.6 gives

EMC[(〈p̂R,J
n ,φ〉 − 〈p0

n,φ〉)2]1/2 ≤ EMC[(〈p̂R,J
n ,φ〉 − 〈pRn ,φ〉)2]1/2 + EMC[(〈pRn ,φ〉 − 〈p0

n,φ〉)2]1/2

= EMC[(〈p̂R,J
n ,φ〉 − 〈pRn ,φ〉)2]1/2 +

∣∣∣〈pRn ,φ〉 − 〈p0
n,φ〉

∣∣∣
≤ cnJ

−1/2‖φ‖+
∣∣∣〈pRn ,φ〉 − 〈p0

n,φ〉
∣∣∣. (B.27)

The last term vanishes as R→ 0. That is, the error can be controlled by increasing the
number of particles J and decreasing R. Though a word of caution is appropriate, as
particle filters can become ill-behaved in practice if the likelihoods are too narrow (too
small R). However, this also depends on the quality of the proposal distribution.
Lastly, while Theorem B.2.6 is only valid if ρ(xn+1,xn) is bounded, this can be ensured

by either inflating the covariance of the proposal distribution or replacing the Gaussian
proposal with a Student’s t proposal (Cappé et al., 2005, Chapter 9).

B.3 A stability result for Gaussian filters

ODE solvers are often characterised by the properties of their solution to the linear test
equation

ẏ(t) = λy(t), y(0) = 1, (B.28)
where λ is some complex number. A numerical solver is said to be A-stable if the
approximate solution tends to zero for any fixed step size h whenever the real part of λ
resides in the left half-plane (Dahlquist, 1963). Recall that if y0 ∈ Rd and Λ ∈ Rd×d then
the ODE ẏ(t) = Λy(t), y(0) = y0 is said to be asymptotically stable if limt→∞ y(t) = 0,
which is precisely when the real part of eigenvalues of Λ are in the left half-plane. That
is, A-stability is the notion that a numerical solver preserves asymptotic stability of
linear time-invariant ODEs.
While the present solvers are not designed to solve complex valued ODEs, a real

system equivalent to Eq. (B.28) is given by

ẏ(t) = Λtesty(t), yT(0) = [1 0], (B.29)
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where λ = λ1 + iλ2 and

Λtest =
[
λ1 −λ2
λ2 λ1

]
. (B.30)

However, to leverage classical stability results from the theory of Kalman filtering we
investigate a slightly different test equation, namely

ẏ(t) = Λy(t), y(0) = y0, (B.31)

where Λ ∈ Rd×d is of full rank. In this case Eqs. (B.11) and (B.20) give the following
recursion for µPn

µPn+1 = (A(h)− A(h)KnH)µPn , (B.32a)
µFn = (I−KnH)µPn , (B.32b)

where we recall that H = Ċ −CΛ and zn = 0. If there exists a limit gain limn→∞Kn =
K∞ then asymptotic stability of the filter holds provided that the eigenvalues of (A(h)−
A(h)K∞H) are strictly within the unit circle (Anderson and Moore, 1979, Appendix C,
page 341). That is, limn→∞ µ

P
n = 0 and as a direct consequence limn→∞ µ

F
n = 0.

We shall see that the Kalman filter using an IWP(q) prior is asymptotically stable.
For the IWP(q) process on Rd we have u = 0, L = eq+1⊗Γ1/2, and F = (∑q

i=1 eie
T
i+1)⊗ I,

where ei ∈ Rd is the ith canonical eigenvector, Γ1/2 is the symmetric square root of
some positive semi-definite matrix Γ ∈ Rd×d, I ∈ Rd×d is the identity matrix, and ⊗ is
Kronecker’s product. By using Eq. (B.8), the properties of Kronecker products, and the
definition of the matrix exponential the equivalent discrete-time system is given by

A(h) = A(1)(h)⊗ I, (B.33a)
ξ(h) = 0, (B.33b)
Q(h) = Q(1)(h)⊗ Γ, (B.33c)

where A(1)(h) ∈ R(q+1)×(q+1) and Q(1)(h) ∈ R(q+1)×(q+1) are given by (Kersting et al.,
2020a, Appendix A)2

A
(1)
ij (h) = Ii≤j

hj−i

(j − i)! , (B.34a)

Q
(1)
ij (h) = h2q+3−i−j

(2q + 3− i− j)(q + 1− i)!(q + 1− j)! , (B.34b)

and Ii≤j is an indicator function. Before proceeding we need to introduce the notions
of stabilisability and detectability from Kalman filtering theory. These notions can be

2Note that Kersting et al. (2020a) uses indexing i, j = 0, . . . , q while we here use i, j = 1, . . . , q + 1.
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found in Anderson and Moore (1979, Appendix C).

Definition B.3.1 (Complete Stabilisability). The pair [A,G] is completely stabilisable
if wTG = 0 and wTA = ηwT for some constant η implies |η| < 1 or w = 0.

Definition B.3.2 (Complete Detectability). 3 [A,H] is completely detectable if [AT,HT]
is completely stabilisable.

Before we state the stability result of this section the following two lemmas are useful.

Lemma B.3.3. Consider the discretised IWP(q) prior on Rd as given by Eq. (B.33).
Let h > 0 and Γ be positive definite. Then, the d × d blocks of Q(h), denoted by
Qi,j(h), i, j = 1, 2, . . . , q + 1 are of full rank.

Proof. From Eq. (B.33c) we have Qi,j(h) = Q
(1)
i,j (h)Γ. From Eq. (B.34b) and h > 0 we

have Q(1)
i,j (h) > 0, and since Γ is positive definite it is of full rank. It then follows that

Qi,j(h) is of full rank as well.

Lemma B.3.4. Let A(h) be the transition matrix of an IWP(q) prior as given by Eq.
(B.33a) and h > 0, then A(h) has a single eigenvalue given by η = 1. Furthermore, the
right-eigenspace is given by

span[e1, e2, . . . , ed],
where ei ∈ R(q+1)d are canonical basis vectors, and the left-eigenspace is given by

span[eqd+1, eqd+2, . . . , e(q+1)d].

Proof. Firstly, from Eqs. (B.33a) and (B.34a) it follows that A(h) is block upper-
triangular with identity matrices on the block diagonal, hence the characteristic equation
is given by

det(A(h)− ηI) = (1− η)(q+1)d = 0, (B.35)
we conclude that the only eigenvalue is η = 1. To find the right-eigenspace let wT =
[wT

1 ,wT
2 , . . . ,wT

q+1], wi ∈ Rd, i = 1, 2, . . . , q + 1 and solve A(h)w = w, which by using
Eqs. (B.33a) and (B.34a) can be written as

(A(h)w)l =
q+1−l∑
r=0

hr

r!wr+l, l = 1, 2, . . . , q + 1, (B.36)

where (·)l is the lth sub-vector of dimension d. Starting with l = q + 1 we trivially
have wq+1 = wq+1. For l = q we have wq + wq+1h = wq but h > 0, hence wq+1 = 0.
Similarly for l = q − 1 we have wq−1 = wq−1 +wqh+wq+1h

2/2 = wq−1 +wqh+ 0 · h2/2.
Again since h > 0 we have wq = 0. By repeating this argument we have w1 = w1

3Anderson and Moore (1979) denotes the measurement matrix by HT while we denote it by H. With
this in mind our notion of complete detectability does not differ from Anderson and Moore (1979).
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and wi = 0, i = 2, 3, . . . , q + 1. Therefore all eigenvectors w are of the form wT =
[wT

1 , 0T, . . . , 0T] ∈ span[e1, e2, . . . , ed]. Similarly, for the left eigenspace we have

(wTA(h))l =
l−1∑
r=0

hr

r!w
T
l−r, l = 1, 2, . . . , q + 1. (B.37)

Starting with l = 1 we have trivially that wT
1 = wT

1 . For l = 2 we have wT
2 +wT

1 h = wT
2 but

h > 0, hence w1 = 0. For l = 3 we have wT
3 = wT

3 +wT
2 h+wT

1 h
2/2 = wT

3 +wT
2 h+0T ·h2/2

but h > 0 hence w2 = 0. By repeating this argument we have wi = 0, i = 1, . . . , q and
wq+1 = wq+1. Therefore, all left eigenvectors are of the form wT = [0T, . . . , 0T,wT

q+1] ∈
span[eqd+1, eqd+2, . . . , e(q+1)d].

We are now ready to state the main result of this section. Namely, that the Kalman
filter that produces exact inference in Eq. (B.7) for linear vector fields is asymptotically
stable if the linear vector field is of full rank.

Theorem B.3.5. Let Λ ∈ Rd×d be a matrix with full rank and consider the linear ODE

ẏ(t) = Λy(t). (B.38)

Consider estimating the solution of Eq. (B.38) using an IWP(q) prior with the same
conditions on Γ as in Lemma B.3.3. Then the Kalman filter estimate of the solution to
Eq. (B.38) is asymptotically stable.

Proof. From Eq. (B.7) we have that the Kalman filter operates on the following system

Xn+1 = A(h)Xn +Q1/2(h)Wn+1, (B.39a)
Zn = HXn, (B.39b)

where H = [−Λ, I, 0, . . . , 0] and Wn are i.i.d. standard Gaussian vectors. It is suffi-
cient to show that [A(h),H] is completely detectable and [A(h),Q1/2(h)] is completely
stabilisable (Anderson and Moore, 1979, Chapter 4, page 77). We start by showing
complete detectability. If we let wT = [wT

1 , . . . ,wT
q+1], wi ∈ Rd, i = 1, 2, . . . , q + 1,

then by Lemma B.3.4 we have that wTAT(h) = ηwT for some η implies that ei-
ther w = 0 or wT = [wT

1 , 0T, . . . , 0T] for some w1 ∈ Rd and η = 1. Furthermore,
wTHT = −wT

1 ΛT + wT
2 = 0 implies that w2 = Λw1. However, by the previous argu-

ment, we have w2 = 0, therefore 0 = Λw1 but Λ is full rank by assumption so w1 = 0.
Therefore, [AT(h),HT] is completely detectable. As for complete stabilisability, again
by Lemma B.3.4, we have wTA(h) = ηwT for some η, which implies either w = 0 or
wT = [0T, . . . , 0T,wT

q+1] and η = 1. Furthermore, since the nullspace of Q1/2(h) is the
same as the nullspace of Q(h), we have that wTQ1/2(h) = 0 is equivalent to wTQ(h) = 0,
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which is given by

wTQ(h) =
[
wT
q+1Qq+1,1(h) . . . wT

q+1Qq+1,q+1(h)
]

= 0,

but by Lemma B.3.3 the blocks Qi,j(h) have full rank so wq+1 = 0 and thus w = 0.
To conclude, we have that [A(h),Q1/2(h)] is completely stabilisable and [A(h),H] is
completely detectable and therefore the Kalman filter is asymptotically stable.
Corollary B.3.6. In the same setting as Theorem B.3.5, the EKF and UKF are asymp-
totically stable.

Proof. Since the vector field is linear and therefore affine Lemma B.2.5 implies that EKF
and UKF reduce to the exact Kalman filter, which is asymptotically stable by Theorem
B.3.5.

It is worthwhile to note that Λtest is of full rank for all [λ1 λ2]T ∈ R2 \ {0}, and
consequently Theorem B.3.5 and Corollary B.3.6 guarante A-stability for the EKF and
UKF in the sense of Dahlquist (1963)4. Lastly, a peculiar fact about Theorem B.3.5 is
that it makes no reference to the eigenvalues of Λ (i.e. the stability properties of the
ODE). That is, the Kalman filter will be asymptotically stable even if the underlying
ODE is not, provided that, Λ is of full rank. This may seem awkward but it is rarely the
case that the ODE that we want to integrate is unstable, and even in such a case most
solvers will produce an error that grows without a bound as well. Though all of the
aforementioned properties are at least partly consequences of using IWP(q) as a prior
and they may thus be altered by changing the prior.

B.4 Uncertainty calibration
In practice the model parameters, (F ,u,L), might depend on some parameters that
need to be estimated for the probabilistic solver to report appropriate uncertainty in
the estimated solution to Eq. (B.1). The diffusion matrix L is of particular importance
as it determines the gain of the Wiener process entering the system in Eq. (B.3) and
thus determines how ’diffuse’ the prior is. Herein we shall only concern ourselves with
estimating L, though, one might anticipate future interest in estimating F and u as well.
However, let us start with a few words on the monitoring of errors in numerical solvers
in general.

B.4.1 Monitoring of errors in numerical solvers
An important aspect of numerical analysis is to monitor the error of a method. While
the goal of probabilistic solvers is to do so by calibration of a probabilistic model, the

4Some authors require stability on the line λ1 = 0 as well (Hairer and Wanner, 1996). Due to the
exclusion of origin EKF and UKF cannot be said to be A-stable in this sense.
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approach of classical numerical analysis is to examine the local and global errors. The
global error can be bounded but is typically impractical for monitoring error (Hairer
et al., 1987, Chapter II.3). A more practical approach is to monitor (and control)
the accumulation of local errors. This can be done by using two step sizes together
with Richardson extrapolation (Hairer et al., 1987, Theorem 4.1). Though, perhaps
more commonly this is done via embedded Runge–Kutta methods (Hairer et al., 1987,
Chapter II.4) or the Milne device Byrne and Hindmarsh (1975).
In the context of filters, the relevant object in this regard is the scaled residual

S−1/2
n (zn − ẑn). Due to its role in the prediction-error decomposition, which is defined

below, it directly monitors the calibration of the predictive distribution. Schober et al.
(2019) showed how to use this quantity to effectively control step sizes in practice. It
was also recently shown in (Kersting et al., 2020a, Section 7), that in the case of q = 1,
fixed σ2 (amplitude of the Wiener process) and Integrated Wiener Process prior, the
posterior standard deviation computed by the solver of Schober et al. (2019) contracts
at the same rate as the worst-case error as the step size goes to zero—thereby preventing
both under- and over-confidence.
In the following we discuss effective strategies for calibrating L when it is given by

L = σL̆ for fixed L̆ thus providing a probabilistic quantification of the error in the
proposed solvers.

B.4.2 Uncertainty calibration for affine vector fields
As noted in Section B.2.6, the Kalman filter produces the exact solution to the inference
problem in Eq. (B.7) when the vector field is affine. Furthermore, the marginal likelihood
p(z1:N) can be computed during the execution of the Kalman filter by the prediction error
decomposition (Schweppe, 1965), which is given by:

p(z1:N) = p(z1)
N∏
n=2

p(zn | z1:n−1)

=
N∏
n=1

N (zn; ẑn,Sn).
(B.40)

While the marginal likelihood in Eq. (B.40) is certainly straightforward to compute
without adding much computational cost, maximising it is a different story in general.
In the particular case when the diffusion matrix L and the initial covariance Σ0 are
given by re-scaling fixed matrices L = σL̆ and Σ0 = σ2Σ̆0 for some scalar σ > 0, then
uncertainty calibration can be done by a simple post-processing step after running the
Kalman filter, as is shown in Proposition B.4.1 below.

Proposition B.4.1. Let f(y, t) = Λ(t)y + ζ(t), Σ0 = σ2Σ̆0, L = σL̆, R = 0 and denote
the equivalent discrete-time process noise covariance for the prior model (F ,u, L̆) by
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Q̆(h). Then the Kalman filter estimate to the solution of

ẏ(t) = f(y(t), t)

that uses the parameters (µF0 , Σ0,A(h), ξ(h),Q(h)) is equal to the Kalman filter estimate
that uses the parameters (µF0 , Σ̆0,A(h), ξ(h), Q̆(h)). More specifically, if we denote the
filter mean and covariance at time n using the former parameters by (µFn , ΣF

n ) and the
corresponding filter mean and covariance using the latter parameters by (µ̆Fn , Σ̆F

n ), then
(µFn , ΣF

n ) = (µ̆Fn ,σ2Σ̆F
n ). Additionally, denote the predicted mean and covariance of the

measurement Zn by z̆n and S̆n, respectively, when using the parameters (µF0 , Σ̆0,A(h),
ξ(h), Q̆(h)). Then the maximum likelihood estimate of σ2, denoted by σ̂2

N , is given by

σ̂2
N = 1

Nd

N∑
n=1

(zn − z̆n)TS̆−1
n (zn − z̆n). (B.41)

Proposition B.4.1 is just an amalgamation of statements from Tronarp et al. (2019b).
Nevertheless, we provide an accessible proof in Appendix B.9.

B.4.3 Uncertainty calibration for non-affine vector fields

For non-affine vector fields the issue of parameter estimation becomes more complicated.
The Bayesian filtering problem is not solved exactly and consequently any marginal
likelihood will be approximate as well. Nonetheless, a common approach in the Gaussian
filtering framework is to approximate the marginal likelihood in the same manner as the
filtering solution is approximated (Särkkä, 2013, Chapter 12.3.3), that is:

p(z1:N) ≈
N∏
n=1

N (zn; ẑn,Sn), (B.42)

where ẑn and Sn are the quantities in Eq. (B.12) approximated by some method (e.g.
EKF). Maximising Eq. (B.42) is a common approach in signal processing (Särkkä, 2013)
and referred to as quasi maximum likelihood in time series literature (Lindström et al.,
2015). Both Eq. (B.14) and Eq. (B.16) can be thought of as Kalman updates for
the case where the vector field is approximated by a piece-wise affine function, without
modifying Σ0, Q(h), and R. For instance the affine approximation of the vector field
due to the EKF on the discretisation interval [tn, tn+1) is given by

ζ̂n(t) = f
(
CµPn , tn

)
− Jf

(
CµPn , tn

)
CµPn , (B.43a)

Λ̂n(t) = Jf
(
CµPn , tn

)
, (B.43b)

f̂n(y, t) = Λ̂n(t)y + ζ̂n(t). (B.43c)
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While the vector field is approximated by a piece-wise affine function, the discrete-time
filtering problem Eq. (B.7) is still simply an affine problem, without modifications of
Σ0, Q(h), and R. Therefore, the results of Proposition B.4.1 still apply and the σ2

maximising the approximate marginal likelihood in Eq. (B.42) can be computed in the
same manner as in Eq. (B.41).
On the other hand, it is clear that dependence on σ2 in Eq. (B.12) is non-trivial in

general, which is also true for the quadrature approaches of Section B.2.5. Therefore,
maximising Eq. (B.42) for the quadrature approaches is not as straightforward. How-
ever, by Taylor series expanding the vector field in Eq. (B.12) one can see that the
numerical integration approaches are roughly equal to the Taylor series approaches pro-
vided that Σ̆P

n is small. Therefore, we opt for plugging in the corresponding quantities
from the quadrature approximations into Eq. (B.41) in order to achieve computationally
cheap calibration of these approaches.

Remark B.4.2. A local calibration method for σ2 is given by (Schober et al., 2019, Eq.
(45)), which in fact corresponds to an h-dependent prior, with the diffusion matrix in
Eq. (B.3) L = L(t) being piece-wise constant over integration steps. Moreover, Schober
et al. (2019) had to neglect the dependence of ΣP

n on the likelihood. Here we prefer the
estimator given in Eq. (B.41) since it is attempting to maximise the likelihood from the
globally defined probability model in Eq. (B.7), and it succeeds for affine vector fields.

More advanced methods for calibrating the parameters of the prior can be developed
by combining the Gaussian smoothing equations (Särkkä, 2013, Chapter 10) with the
expectation maximisation method (Kokkala et al., 2014) or variational Bayes (Taniguchi
et al., 2017).

B.4.4 Uncertainty calibration of particle filters
If calibration of Gaussian filters was complicated by having a non-affine vector field,
the situation for particle filters is even more challenging. There is, to the authors’
knowledge, no simple estimator of the scale of the Wiener process (such as Proposition
B.4.1) even for the case of affine vector fields. However, the literature on parameter
estimation using particle methods is vast so we proceed to point the reader towards some
alternatives. In the class of off-line methods, Schön et al. (2011) uses a particle smoother
to implement an expectation maximisation algorithm, while Lindsten (2013) uses a
particle Markov chain Monte Carlo methods to implement a stochastic approximation
expectation maximisation algorithm. One can also use the iterated filtering method of
Ionides et al. (2011) to get a maximum likelihood estimator, or particle Markov chain
Monte Carlo (Andrieu et al., 2010).
On the other hand, if on-line calibration is required then the gradient based recursive

maximum likelihood estimator by Doucet and Tadić (2003) can be used, or the on-line
version of iterated filtering by Lindström et al. (2012). Furthermore, Storvik (2002)
provides an alternative for on-line calibration when sufficient statics of the parameters
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are finite dimensional and can be computed recursively in n. An overview on parameter
estimation using particle filters was also given by Kantas et al. (2009).

B.5 Experimental results

In this section we evaluate the different solvers presented in this paper in different sce-
narios. Though before we proceed to the experiments we define some summary metrics
with which assessments of accuracy and uncertainty quantification can be made. The
root mean square error (RMSE) is often used to assess accuracy of filtering algorithms
and is defined by

RMSE =

√√√√ 1
N

N∑
n=1
‖y(nh)− CµFn ‖2.

In fact y(nh)−CµFn is precisely the global error at time tn (Hairer et al., 1987, Eq. (3.16)).
As for assessing the uncertainty quantification, the χ2-statistics is commonly used (Bar-
Shalom et al., 2001). That is, in a linear Gaussian model the following quantities

(
y(nh)− CµFn

)T
[CΣF

nC
T]−1

(
y(nh)− CµFn

)
, n = 1, . . . ,N ,

are i.i.d. χ2(d). For a trajectory summary we define the average χ2-statistics as

χ̄2 = 1
N

N∑
n=1

(
y(nh)− CµFn

)T
[CΣF

nC
T]−1

(
y(nh)− CµFn

)
.

For an accurate and well calibrated model the RMSE is small and χ̄2 ≈ d. In the succeed-
ing discussion we shall refer to a method producing χ̄2 < d or χ̄2 > d as underconfident
or overconfident, respectively.

B.5.1 Linear systems

In this experiment we consider a linear system given by

Λ =
[
λ1 −λ2
λ2 λ1

]
, (B.44a)

ẏ(t) = Λy(t), y(0) = e1. (B.44b)

This makes for a good test model as the inference problem in Eq. (B.7) can be solved
exactly, and consequently its adequacy can be assessed. We compare exact inference
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by the Kalman filter (KF)5 (see Section B.2.6) with the approximation due to Schober
et al. (2019) (SCH) (see Proposition B.2.3) and the covariance approximation due to
Kersting and Hennig (2016) (KER) (see Proposition B.2.4). The integration interval is
set to [0, 10] and all methods use an IWP(q) prior for q = 1, 2, . . . , 6, and the initial
mean is set to E[X(j)(0)] = Λj−1y(0) for j = 1, . . . , q + 1, with variance set to zero
(exact initialisation). The uncertainty of the methods is calibrated by the maximum
likelihood method (see Proposition B.4.1), and the methods are examined for 10 step
sizes uniformly placed on the interval [10−3, 10−1].
We examine the parameters λ1 = 0 and λ2 = π (half a revolution per unit of time

with no damping). The RMSE is plotted against step size in Figure B.1. It can be seen
that SCH is a slightly better than KF and KER for q = 1 and small step sizes, and KF
becomes slightly better than SCH for large step size while KER becomes significantly
worse than both KF and SCH. For q > 1, it can be seen that the RMSE is significantly
lower for KF than for SCH/KER in general with performance differing between one
and two orders of magnitude. Particularly, the superior stability properties of KF are
demonstrated (see Theorem B.3.5) for q > 3 where both SCH and KER produce massive
errors for larger step sizes.
Furthermore, the average χ2-statistic is shown in Figure B.2. All methods appear to

be overconfident for q = 1 with SCH performing best, followed by KER. On the other
hand, for 1 < q < 5, SCH and KER remain overconfident for the most part, while KF
is underconfident. Our experiments also show that unsurprisingly all methods perform
better for smaller |λ2| (frequency of the oscillation). However, we omit visualising this
here.
Finally, a demonstration of the error trajectory for the first component of y and the

reported uncertainty of the solvers is shown in Figure B.3 for h = 10−2 and q = 2.
Here it can be seen that all methods produce similar errors bars, though SCH and KER
produce errors that oscillate far outside their reported uncertainties.

B.5.2 The logistic equation
In this experiment the logistic equation is considered:

ẏ(t) = ry(t) (1− y(t)) , y(0) = 1 · 10−1, (B.45)

which has the solution:
y(t) = exp(rt)

1/y0 − 1 + exp(rt) . (B.46)

In the experiments r is set to r = 3. We compare the zeroth order solver (Proposi-
tion B.2.3) (Schober et al., 2019) (SCH), the first order solver in Eq. (B.16) (EKF),

5Again note that the EKF and appropriate numerical quadrature methods are equivalent to this
estimator here (see Lemma B.2.5).
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Figure B.1: RMSE of KF, SCH, and KER on the undamped oscillator using IWP(q)
priors for q = 1, . . . , 6 plotted against step size.
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Figure B.2: Average χ2-statistic of KF, SCH, and KER on the undamped oscillator
using IWP(q) priors for q = 1, . . . , 6 plotted against step size. The expected χ2-statistic
is shown in black (E).
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Figure B.3: The errors (solid lines) and ± 2 standard deviation bands (dashed) for KF,
SCH, and KER on the undamped oscillator with q = 2 and h = 10−2. A line at 0 is
plotted in solid black.
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a numerical integration solver based on the covariance approximation in Proposition
B.2.4 (Kersting and Hennig, 2016) (KER), and a numerical integration solver based on
approximating Eq. (B.12) (UKF). Both numerical integration approaches use a third
degree fully symmetric rule (see McNamee and Stenger, 1967). The integration interval
is set to [0, 2.5] and all methods use an IWP(q) prior for q = 1, 2, . . . , 4, and the initial
mean of X(1), X(2), and X(3) are set to y(0), f(y(0)), and Jf (y(0))f(y(0)), respectively
(correct values), with zero covariance. The remaining state components X(j), j > 3 are
set to zero mean with unit variance. The uncertainty of the methods is calibrated by
the quasi maximum likelihood method as explained in Section B.4.3, and the methods
are examined for 10 step sizes uniformly placed on the interval [10−3, 10−1].
The RMSE is plotted against step size in Figure B.4. It can be seen that EKF and

UKF tend to produce smaller errors by more than an order of magnitude than SCH and
KER in general, with the notable exception of the UKF behaving badly for small step
sizes and q = 4. This is probably due to numerical issues for generating the integration
nodes, which requires the computation of matrix square roots (Julier et al., 2000) that
can become inaccurate for ill-conditioned matrices. Additionally, the average χ2-statistic
is plotted against step size in Figure B.5. Here it appears that all methods tend to be
underconfident for q = 1, 2, while SCH becomes overconfident for q = 3, 4.
A demonstration of the error trajectory and the reported uncertainty of the solvers is

shown in Figure B.3 for h = 10−1 and q = 2. SCH and KER produce similar errors and
they are hard to discern in the figure. The same goes for EKF and UKF. Additionally,
it can be seen that the solvers produce qualitatively different uncertainty estimates.
While the uncertainty of EKF and UKF first grows to then shrink as the the solution
approaches the fixed point at y(t) = 1, the uncertainty of SCH grows over the entire
interval with the uncertainty of KER growing even faster.

B.5.3 The FitzHugh—Nagumo model
The FitzHugh–Nagumo model is given by:

[
ẏ1(t)
ẏ2(t)

]
=
c
(
y1(t)− y

3
1(t)
3 + y2(t)

)
−1
c

(y1(t)− a+ by2(t))

 , (B.47)

where we set (a, b, c) = (.2, .2, 3) and y(0) = [−1 1]T. As previous experiments showed
that the behaviour of KER and UKF are similar to SCH and EKF, respectively, we
opt for only comparing the latter to increase readability of the presented results. As
previously, the moments of X(1)(0), X(2)(0), and X(3)(0) are initialised to their exact
values and the remaining derivatives are initialised with zero mean and unit variance.
The integration interval is set to [0, 20] and all methods use an IWP(q) prior for q =
1, . . . , 4 and the uncertainty is calibrated as explained in Section B.4.3. A baseline
solution is computed using MATLAB’s ode45 function with an absolute tolerance of
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Figure B.4: RMSE of SCH, EKF, KER, and UKF on the logistic equation using IWP(q)
priors for q = 1, . . . , 4 plotted against step size.
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Figure B.5: Average χ2-statistic of SCH, EKF, KER, and UKF on the logistic equation
using IWP(q) priors for q = 1, . . . , 4 plotted against step size. The expected χ2-statistic
is shown in black (E).

10−15 and relative tolerance of 10−12, all errors are computed under the assumption that
ode45 provides the exact solution. The methods are examined for 10 step sizes uniformly
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Figure B.6: The errors (solid lines) and ± 2 standard deviation bands (dashed) for KF,
SCH, and KER on the logistic with q = 2 and h = 10−1. A line at 0 is plotted in solid
black.

placed on the interval [10−3, 10−1].
The RMSE is shown in Figure B.7. For q = 1 EKF produces an error orders of

magnitude larger than SCH and for q = 2 both methods produce similar errors until the
step size grows too large, causing SCH to start producing orders of magnitude larger
errors than EKF. For q = 3, 4 EKF is superior in producing lower errors and additionally
SCH can be seen to become unstable for larger step-sizes (at h ≈ 5 · 10−2 for q = 3 and
at h ≈ 2 ·10−2 for q = 4). Furthermore, the averaged χ2-statistic is shown in Figure B.8.
It can be seen that EKF is overconfident for q = 1 while SCH is underconfident. For
q = 2 both methods are underconfident while EKF remains underconfident for q = 3, 4
but SCH becomes overconfident for almost all step sizes.
The error trajectory for the first component of y and the reported uncertainty of the

solvers is shown in Figure B.9 for h = 5·10−2 and q = 2. It can be seen that both methods
have periodically occurring spikes in their errors with EKF being larger in magnitude but
also briefer. However, the uncertainty estimate of the EKF is also spiking at the same
time giving an adequate assessments of its error. On the other hand, the uncertainty
estimate of SCH grows slowly and monotonically over the integration interval, with the
error estimate going outside the two standard deviation region at the first spike (slightly
hard to see in the figure).

B.5.4 A Bernoulli equation

In this following experiment we consider a transformation of Eq. (B.45), η(t) =
√
y(t),

for r = 2. The resulting ODE for η(t) now has two stable equilibrium points η(t) = ±1
and an unstable equilibrium point at η(t) = 0. This makes it a simple test domain
for different sampling-based ODE solvers, because different types of posteriors ought
to arise. We compare the proposed particle filter using both the proposal Eq. (B.24)
(PF(1)) and EKF proposals (Eq. (B.25)) (PF(2)) with the method by (Chkrebtii et al.,
2016) (CHK) and the one by (Conrad et al., 2017) (CON) for estimating η(t) on the
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Figure B.7: RMSE of SCH and EKF on the FitzHugh–Nagumo model using IWP(q)
priors for q = 1, . . . , 4 plotted against step size.
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Figure B.8: Average χ2-statistic of SCH and EKF on the FitzHugh–Nagumo model using
IWP(q) priors for q = 1, . . . , 4 plotted against step size.

interval t ∈ [0, 5] with initial condition set to η0 = 0. Both PF and CHK use and
IWP(q) prior and set R = κh2q+1. CON uses a Runge–Kutta method of order q with
perturbation variance h2q+1/[2q(q!)2] as to roughly match the incremental variance of
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Figure B.9: The errors (solid lines) and ± 2 standard deviation bands (dashed) for KF,
SCH, and KER on the FitzHugh–Nagumo model with q = 2 and h = 5 · 10−2. A line at
0 is plotted in solid black.

the noise entering PF(1), PF(2), and CHK, which is determined by Q(h) and not R.
First we attempt to estimate y(5) = 0 for 10 step sizes uniformly placed on the interval

[10−3, 10−1] with κ = 1 and κ = 10−10. All methods use 1000 samples/particles and they
estimate y(5) by taking the mean over samples/empirical measures. The estimate of y(5)
is plotted against the step size in Figure B.10. In general, the error increases with the
step size for all methods, though most easily discerned in Figures B.10b and B.10d.
All in all it appears that CHK, PF(1), and PF(2) behave similarly with regards to the
estimation, while CON appears to produce a bit larger errors. Furthermore, the effect
of κ appears to be the greatest on PF(1) and PF(2) as best illustrated in Figure B.10c.
Additionally, kernel density estimates for the different methods are made for time

points t = 1, 3, 5 for κ = 1, q = 1, 2 and h = 10−1, 5 · 10−2. In Figure B.11 kernel density
estimates for h = 10−1 are shown. At t = 1 all methods produce fairly concentrated uni-
modal densities that then disperse as time goes on, with CON being a least concentrated
and dispersing quicker followed by PF(1)/PF(2) and then last CHK. Furthermore, CON
goes bimodal as time goes on, which is best seen in for q = 1 in Figure B.11e. On the
other hand, the alternatives vary between unimodal (CHK in B.11f, also to some degree
PF(1) and PF(2)), bimodal (PF(1) and CHK in Figure B.11e), and even mildly trimodal
(PF(2) in Figure B.11e).
Similar behaviour of the methods is observed for h = 5 · 10−2 in Figure B.11, though

here all methods are generally more concentrated.

B.6 Conclusion and discussion
In this paper, we have presented a novel formulation of probabilistic numerical solution of
ODEs as a standard problem in GP regression with a non-linear measurement function,
and with measurements that are identically zero. The new model formulation enables the
use of standard methods in signal processing to derive new solvers, such as EKF, UKF,
and PF. We can also recover many of the previously proposed sequential probabilistic
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Figure B.10: Sample mean estimate of the solution at T = 5.

ODE solvers as special cases.
Additionally, we have demonstrated excellent stability properties of the EKF and

UKF on linear test equations, that is, A-stability has been established. The notion of
A-stability is closely connected with the solution of stiff equations, which is typically
achieved with implicit or semi-implicit methods (Hairer and Wanner, 1996). In this
respect our methods (EKF and UKF) most closely fit into the class of semi-implicit
methods such as the methods of Rosenbrock type (Hairer and Wanner, 1996, Chapter
IV.7). Though it does seem feasible the proposed methods can be nudged towards the
class of implicit methods by means of iterative Gaussian filtering (Bell and Cathey, 1993;
Garcia-Fernandez et al., 2015; Tronarp et al., 2018).
While the notion of A-stability has been fairly successful in discerning between meth-

ods with good and bad stability properties, it is not the whole story (Alexander, 1977,
Section 3). This has lead to other notions of stability such as L-stability and B-stability
(Hairer and Wanner, 1996, Chapter IV.3 and IV.12). It is certainly an interesting ques-
tion whether the present framework allows for the development of methods satisfying
these more strict notions of stability.
An advantage of our model formulation is the decoupling of the prior from the like-

lihood. Thus future work would involve investigating how well the exact posterior to
our inference problem approximates the ODE and then analysing how well different ap-
proximate inference strategies behave. However, for h → 0, we expect that the novel
Gaussian filters (EKF,UKF) will exhibit polynomial worst-case convergence rates of the
mean and its credible intervals, that is, its Bayesian uncertainty estimates, as has already
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Figure B.11: Kernel density estimates of the solution of the Bernoulli equation for h =
10−1 and κ = 1. Mind the different scale of the axes.

been proved in (Kersting et al., 2020a) for 0-th order Taylor-series filters with arbitrary
constant measurement variance R (see Section B.2.4).

Our Bayesian recast of ODE solvers might also pave the way toward an average-case
analysis of these methods, which has already been executed in (Ritter, 2000) for the
special case of Bayesian quadrature. For the PF, a thorough convergence analysis simi-
lar to Chkrebtii et al. (2016), Conrad et al. (2017), Abdulle and Garegnani (2020) and
Del Moral (2004) appears feasible. However, the results on spline approximations for
ODEs (see, e.g., Loscalzo and Talbot, 1967) might also apply to the present methodol-
ogy via the correspondence between GP regression and spline function approximations
(Kimeldorf and Wahba, 1970).
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Figure B.12: Kernel density estimates of the solution of the Bernoulli equation for h =
5 · 10−2 and κ = 1. Mind the different scale of the axes.
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B.7 Supplement I: Proof of Proposition B.2.1

In this section we prove Proposition B.2.1. First note that, by Eq. (B.4), we have

dC
[
X(1)(t),X(2)(s)

]
dt

= C
[
X(2)(t),X(2)(s)

]
, (B.48)

where C is the cross-covariance operator. That is the cross-covariance matrix between
X(1)(t) and X(2)(t) is just the integral of the covariance matrix function of X(2). Now
define

(X(i))T =
[(
X

(i)
1

)T
. . .

(
X

(i)
N

)T
]

, i = 1, . . . , q + 1, (B.49a)

gT =
[
gT(h) . . . gT(Nh)

]
, (B.49b)

zT =
[
zT

1 . . . zT
N

]
. (B.49c)

Since Equation (B.3) defines a Gaussian process we have that X(1) and X(2) are jointly
Gaussian distributed and from Eq. (B.48) the blocks of C[X(1), X(2)] are given by

C
[
X(1), X(2)

]
n,m

=
∫ nh

0
C
[
X(2)(t),X(2)(mh)

]
dt

which is precisely the kernel mean, with respect to the Lebesgue measure on [0,nh],
evaluated at mh, see (Briol et al., 2019, Section 2.2). Furthermore,

V
[
X(2)

]
n,m

= C
[
X(2)(nh),X(2)(mh)

]
,

that is, the covariance matrix function (referred to as kernel matrix in Bayesian quadra-
ture literature (Briol et al., 2019)) evaluated at all pairs in {h, . . . ,Nh}. From Gaussian
conditioning rules we have for the conditional means and covariance matrices given
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X(2) − g = 0, denoted by ED[X(1)(nh)] and VD[X(1)(nh)], respectively, that

ED

[
X(1)(nh)

]
= E

[
X(1)(nh)

]
+ wn

(
z + g− E

[
X(2)

])
= E

[
X(1)(nh)

]
+ wn

(
g− E

[
X(2)

])
,

VD

[
X(1)(nh)

]
= V

[
X(1)(nh)

]
−wnV

[
X(2)

]
wT
n ,

where we used the fact that z = 0 by definition and wn are the Bayesian quadrature
weights associated to the integral of g over the domain [0,nh], given by (see Briol et al.
(2019, Proposition 1))

wT
n = V

[
X(2)

]−1


C
[
X(1)(nh),X(2)(h)

]T
...

C
[
X(1)(nh),X(2)(Nh)

]T
 .

B.8 Supplement II: Proof of Proposition B.2.4

To prove Proposition B.2.4, expand the expressions for Sn and Kn as given by Eq.
(B.12):

Sn = ĊΣP
n Ċ

T + V
[
f(CXn, tn) | z1:n−1

]
− ĊC

[
Xn, f(CXn, tn) | z1:n−1

]
− C

[
Xn, f(CXn, tn) | z1:n−1

]T
ĊT

≈ ĊΣP
n Ċ

T + V
[
f(CXn, tn) | z1:n−1

]
Kn =

(
ΣP
n Ċ

T − C
[
Xn, f(CXn, tn) | z1:n−1

])
S−1
n

≈ ΣP
n Ċ

TS−1
n ,

where in the second steps the approximation C[Xn, f(CXn, tn) | z1:n−1] ≈ 0 was used.
Lastly, recall that zn , 0, hence the update equations become

Sn ≈ ĊΣP
n Ċ

T + V
[
f(CXn, tn) | z1:n−1

]
, (B.52a)

Kn ≈ ΣP
n Ċ

TS−1
n , (B.52b)

µFn ≈ µPn +Kn

(
E
[
f(CXn, tn) | z1:n−1

]
− ĊµPn

)
, (B.52c)

ΣF
n ≈ ΣP

n −KnSnK
T
n . (B.52d)
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When E[f(CXn, tn) | z1:n−1] and V[f(CXn, tn) | z1:n−1] are approximated by Bayesian
quadrature using a squared exponential kernel and a uniform set of nodes translated
and scaled by µPn and ΣP

n , respectively, the method of Kersting and Hennig (2016) is
obtained.

B.9 Supplement III: Proof of Proposition B.4.1

Note that (µ̆Fn , Σ̆F
n ) is the output of a misspecified Kalman filter (Tronarp et al., 2019b,

Algorithm 1). We indicate that a quantity from Eqs. (B.11) and (B.12) is computed
by the misspecified Kalman filter by .̆ For example µ̆Pn is the predictive mean of the
misspecified Kalman filter. If ΣF

n = σ2Σ̆F
n and µ̆Fn = µFn holds then for the prediction

step we have

µPn+1 = A(h)µFn + ξ(h) = A(h)µ̆Fn + ξ(h) = µ̆Pn+1,
ΣP
n+1 = A(h)ΣF

nA
T(h) +Q(h),

= σ2
(
A(h)Σ̆F

nA
T(h) + Q̆(h)

)
,

= σ2Σ̆P
n+1,
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where we used the fact that Q(h) = σ2Q̆(h), which follows from L = σL̆ and Eq. (B.8).
Furthermore, recall that Hn+1 = Ċ − Λ(tn+1)C, which for the update gives

Sn+1 = Hn+1ΣP
n+1H

T
n+1

= σ2Hn+1Σ̆P
n+1H

T
n+1

= σ2S̆n+1.
Kn+1 = ΣP

n+1H
T
n+1S

−1
n+1

= σ2Σ̆P
n+1H

T
n+1[σ2S̆n+1]−1

= Σ̆P
n+1H

T
n+1S̆

−1
n+1

= K̆n+1.
ẑn+1 = Hn+1µ

P
n+1 − ζ(tn)

= Hn+1µ̆
P
n+1 − ζ(tn)

= z̆n+1,
µFn+1 = µPn+1 +Kn+1(zn+1 − ẑn+1)

= µ̆Pn+1 + K̆n+1(zn+1 − z̆n+1)
= µ̆Fn+1.

ΣF
n+1 = ΣP

n+1 −Kn+1Sn+1K
T
n+1

= σ2
(

Σ̆P
n+1 − K̆n+1S̆n+1K̆

T
n+1

)
= σ2Σ̆F

n+1.

It thus follows by induction that µFn = µ̆Fn , ΣF
n = σ2Σ̆F

n , ẑn = z̆n, and Sn = σ2S̆n for
n ≥ 0. From Eq. (B.40) we have that the log-likelihood is given by

log p(z1:N) = log
N∏
n=1

N (zn; ẑn,Sn)

= log
N∏
n=1

N (zn; z̆n,σ2S̆n)

= −Nd2 log σ2 −
N∑
n=1

(zn − z̆n)TS̆−1
n (zn − z̆n)

2σ2 .

Taking the derivative of log-likelihood with respect to σ2 and setting it to zero gives the
following estimating equation

0 = −Nd
2σ2 + 1

2(σ2)2

N∑
n=1

(zn − z̆n)TS̆−1
n (zn − z̆n),
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which has the following solution

σ2 = 1
Nd

N∑
n=1

(zn − z̆n)TS̆−1
n (zn − z̆n).

92



C Convergence Rates of Gaussian
ODE Filters (Kersting et al.,
2020a)

Abstract: A recently-introduced class of probabilistic (uncertainty-aware) solvers for or-
dinary differential equations (ODEs) applies Gaussian (Kalman) filtering to initial value
problems. These methods model the true solution x and its first q derivatives a priori
as a Gauss–Markov process X, which is then iteratively conditioned on information
about ẋ. This article establishes worst-case local convergence rates of order q + 1 for a
wide range of versions of this Gaussian ODE filter, as well as global convergence rates
of order q in the case of q = 1 and an integrated Brownian motion prior, and analyses
how inaccurate information on ẋ coming from approximate evaluations of f affects these
rates. Moreover, we show that, in the globally convergent case, the posterior credible
intervals are well calibrated in the sense that they globally contract at the same rate as
the truncation error. We illustrate these theoretical results by numerical experiments
which might indicate their generalizability to q ∈ {2, 3, . . . }.

C.1 Introduction
A solver of an initial value problem (IVP) outputs an approximate solution x̂ : [0,T ]→
Rd of an ordinary differential equation (ODE) with initial condition:

x(1)(t) := dx

dt
(t) = f (x(t)) , ∀t ∈ [0,T ], (C.1)

x(0) = x0 ∈ Rd.

(Without loss of generality, we simplify the presentation by restricting attention to the
autonomous case.) The numerical solution x̂ is computed by iteratively collecting infor-
mation on x(1)(t) by evaluating f : Rd → Rd at a numerical estimate x̂(t) of x(t) and
using these approximate evaluations of the time derivative to extrapolate along the time
axis. In other words, the numerical solution (or estimator) x̂ of the exact solution (or
estimand) x is calculated based on evaluations of the vector field f (or data). Accord-
ingly, we treat x̂ itself as an estimator, i.e. a statistic that translates evaluations of f
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into a probability distribution over C1([0,T ];Rd), the space of continuously differentiable
functions from [0,T ] to Rd.
This probabilistic interpretation of numerical computations of tractable from intractable

quantities as statistical inference of latent from observable quantities applies to all nu-
merical problems and has been repeatedly recommended in the past (Poincaré, 1896;
Diaconis, 1988; Skilling, 1991; O’Hagan, 1992; Ritter, 2000). It employs the language
of probability theory to account for the epistemic uncertainty (i.e. limited knowledge)
about the accuracy of intermediate and final numerical computations, thereby yielding
algorithms which can be more aware of—as well as more robust against—uncertainty
over intermediate computational results. Such algorithms can output probability mea-
sures, instead of point estimates, over the final quantity of interest. This approach, now
called probabilistic numerics (PN) (Hennig et al., 2015; Oates and Sullivan, 2019), has
in recent years been spelled out for a wide range of numerical tasks, including linear
algebra, optimization, integration and differential equations, thereby working towards
the long-term goal of a coherent framework to propagate uncertainty through chained
computations, as desirable, e.g., in statistical machine learning.
In this paper, we determine the convergence rates of a recent family of PN methods

(Schober et al., 2014; Kersting and Hennig, 2016; Magnani et al., 2017; Schober et al.,
2019; Tronarp et al., 2019a) which recast an IVP as a stochastic filtering problem (Øk-
sendal, 2003, Chapter 6), an approach that has been studied in other settings (Jazwinski,
1970), but has not been applied to IVPs before. These methods assume a priori that
the solution x and its first q ∈ N derivatives follow a Gauss–Markov process X that
solves a stochastic differential equation (SDE).
The evaluations of f at numerical estimates of the true solution can then be regarded

as imperfect evaluations of ẋ, which can then be used for a Bayesian update of X. Such
recursive updates along the time axis yield an algorithm whose structure resembles that
of Gaussian (Kalman) filtering (Särkkä, 2013, Chapter 4). These methods add only
slight computational overhead compared to classical methods (Schober et al., 2019) and
have been shown to inherit local convergence rates from equivalent classical methods in
specific cases (Schober et al., 2014; Schober et al., 2019). These equivalences (i.e. the
equality of the filtering posterior mean and the classical method) are only known to hold
in the case of the integrated Brownian motion (IBM) prior and noiseless evaluations of
f (in terms of our later notation, the case R ≡ 0), as well as under the following
restrictions:
Firstly, for q ∈ {1, 2, 3}, and if the first step is divided into sub-steps resembling those

of Runge–Kutta methods, an equivalence of the posterior mean of the first step of the
filter and the explicit Runge–Kutta method of order q was established in Schober et al.
(2014) (but for q ∈ {2, 3} only in the limit as the initial time of the IBM tends to −∞).
Secondly, it was shown by Schober et al. (2019) that, for q = 1, the posterior mean after
each step coincides with the trapezoidal rule if it takes an additional evaluation of f at
the end of each step, known as P(EC)1. The same paper shows that, for q = 2, the filter
coincides with a third-order Nordsieck method (Nordsieck, 1962) if the filter is in the
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steady state, i.e. after the sequence of error covariance matrices has converged. These
results neither cover filters with the integrated Ornstein–Uhlenbeck process (IOUP) prior
(Magnani et al., 2017) nor non-zero noise models on evaluations of f .
In this paper, we directly prove convergence rates without first fitting the filter to

existing methods, and thereby lift many of the above restrictions on the convergence
rates. While the more-recent work by Tronarp et al. (2020) also provide convergence
rates of estimators of x in the Bayesian ODE filtering/smoothing para-digm, they con-
cern the maximum a posteriori estimator (as computed by the iterated extended Kalman
ODE smoother), and therefore differ from our convergence rates of the filtering mean
(as computed by the Kalman ODE filter).

C.1.1 Contribution
Our main results—Theorems C.6.2 and C.7.7—provide local and global convergence
rates of the ODE filter when the step size h goes to zero. Theorem C.6.2 shows local
convergence rates of hq+1 without the above-mentioned previous restrictions—i.e. for a
generic Gaussian ODE filter for all q ∈ N, both IBM and IOUP prior, flexible Gaussian
initialization (see Assumptions C.2 and C.3), and arbitrary evaluation noise R ≥ 0. As
a first global convergence result, Theorem C.7.7 establishes global convergence rates of
hq in the case of q = 1, the IBM prior and all fixed measurement uncertainty models
R of order p ∈ [1,∞] (see Assumption C.4). This global rate of the worst-case error
is matched by the contraction rate of the posterior credible intervals, as we show in
Theorem C.8.1. Moreover, we also give closed-form expressions for the steady states in
the global case and illustrate our results as well as their possible generalizability to q ≥ 2
by experiments in Appendix C.9.

C.1.2 Related work on probabilistic ODE solvers
The Gaussian ODE filter can be thought of as a self-consistent Bayesian decision agent
that iteratively updates its prior beliefX over x : [0,T ]→ Rd (and its first q derivatives)
with information on ẋ from evaluating f .1 For Gauss–Markov priors, it performs exact
Bayesian inference and optimally (with respect to the L2-loss) extrapolates along the
time axis. Accordingly, all of its computations are deterministic and—due to its re-
striction to Gaussian distributions—only slightly more expensive than classical solvers.
Experiments demonstrating competitive performance with classical methods are pro-
vided in Schober et al. (2019, Section 5).

1Here, the word ‘Bayesian’ describes the algorithm in the sense that it employs a prior over the
quantity of interest and updates it by Bayes rule according to a prespecified measurement model (as
also used in Skilling (1991); Chkrebtii et al. (2016); Kersting and Hennig (2016)). The ODE filter
is not Bayesian in the stronger sense of Cockayne et al. (2019), and it remains an open problem
to construct a Bayesian solver in this strong sense without restrictive assumptions, as discussed in
Wang et al. (2018).
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Another line of work (comprising the methods from Chkrebtii et al. (2016); Conrad
et al. (2017); Teymur et al. (2016); Lie et al. (2019); Abdulle and Garegnani (2020); Tey-
mur et al. (2018)) introduces probability measures to ODE solvers in a fundamentally
different way—by representing the distribution of all numerically possible trajectories
with a set of sample paths. To compute these sample paths, Chkrebtii et al. (2016)
draws them from a (Bayesian) Gaussian process (GP) regression; Conrad et al. (2017);
Teymur et al. (2016); Lie et al. (2019); Teymur et al. (2018) perturb classical esti-
mates after an integration step with a suitably scaled Gaussian noise; and Abdulle and
Garegnani (2020) perturbs the classical estimate instead by choosing a stochastic step-
size. While Conrad et al. (2017); Teymur et al. (2016); Lie et al. (2019); Abdulle and
Garegnani (2020); Teymur et al. (2018) can be thought of as (non-Bayesian) ‘stochastic
wrappers’ around classical solvers, which produce samples with the same convergence
rate, Chkrebtii et al. (2016) employs—like the filter—GP regression to represent the
belief on x. While the Gaussian ODE filter can convergence with polynomial order (see
results in this paper), However, Chkrebtii et al. (2016) only show first-order conver-
gence rates and also construct a sample representation of numerical errors, from which
samples are drawn iteratively. A conceptual and experimental comparison between the
filter and Chkrebtii et al. (2016) can be found in Schober et al. (2019). An additional
numerical test against Conrad et al. (2017) was given by Kersting and Hennig (2016).
Moreover, Tronarp et al. (2019a) recently introduced a particle ODE filter, which com-
bines a filtering-based solver with a sampling-based uncertainty quantification (UQ),
and compared it numerically with Conrad et al. (2017) and Chkrebtii et al. (2016).
All of the above sampling-based methods can hence represent more expressive, non-

Gaussian posteriors (as e.g. desirable for bifurcations), but multiply the computational
cost of the underlying method by the number of samples. ODE filters are, in contrast, not
a perturbation of known methods, but novel methods designed for computational speed
and for a robust treatment of intermediate uncertain values (such as the evaluations
of f at estimated points). Unless parallelization of the samples in the sampling-based
solvers is possible and inexpensive, one can spend the computational budget for gen-
erating additional samples on dividing the step size h by the number of samples, and
can thereby polynomially decrease the error. Its Gaussian UQ, however, should not be
regarded as the true UQ—in particular for chaotic systems whose uncertainty can be
better represented by sampling-based solvers, see e.g. Conrad et al. (2017, Figure 1)
and Abdulle and Garegnani (2020, Figure 2)—but as a rough inexpensive probabilis-
tic treatment of intermediate values and final errors which is supposed to, on average,
guide the posterior mean towards the true x. Therefore, it is in a way more similar
to classical non-stochastic solvers than to sampling-based stochastic solvers and, unlike
sampling-based solvers, puts emphasis on computational speed over statistical accuracy.
Nevertheless, its Gaussian UQ is sufficient to make the forward models in ODE inverse
problems more ‘uncertainty-aware’; see Kersting et al. (2020b, Section 3).
Accordingly, the convergence results in this paper concern the convergence rate of the

posterior mean to the true solution, while the theoretical results from Teymur et al.
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(2016); Chkrebtii et al. (2016); Conrad et al. (2017); Lie et al. (2019); Abdulle and
Garegnani (2020); Teymur et al. (2018) provide convergence rates of the variance of the
non-Gaussian empirical measure of samples (and not for an individual sample).

C.1.3 Relation to filtering theory

While Gaussian (Kalman) filtering was first applied to the solution of ODEs by Kersting
and Hennig (2016) and Schober et al. (2019), it has previously been analysed in the
filtering, data assimilation as well as linear system theory community. The convergence
results in this paper are concerned with its asymptotics when the step size h (aka time
step between data points) goes to zero. In the classical filtering setting, where the
data comes from an external sensor, this quantity is not treated as a variable, as it is
considered a property of the data and not, like in our case, of the algorithm. Accordingly,
the standard books lack such an analysis for h→ 0—see Jazwinski (1970); Anderson and
Moore (1979); Maybeck (1979) for filtering, Law et al. (2015); Reich and Cotter (2015)
for data assimilation and Callier and Desoer (1991) for linear system theory—and we
believe that our convergence results are completely novel. It is conceivable that, also for
these communities, this paper may be of interest in settings where the data collection
mechanism can be actively chosen, e.g. when the frequency of the data can be varied or
sensors of different frequencies can be used.

C.1.4 Outline

The paper begins with a brief introduction to Gaussian ODE filtering in Appendix C.2.
Next, Appendices C.3 and C.5 provide auxiliary bounds on the flow map of the ODE
and on intermediate quantities of the filter respectively. With the help of these bounds,
Appendices C.6 and C.7 establish local and global convergence rates of the filtering mean
respectively. In light of these rates, Appendix C.8 analyses for which measurement noise
models the posterior credible intervals are well calibrated. These theoretical results are
experimentally confirmed and discussed in Appendix C.9. Appendix C.10 concludes
with a high-level discussion.

C.1.5 Notation

We will use the notation [n] := {0, . . . ,n − 1}. For vectors and matrices, we will use
zero-based numbering, e.g. x = (x0, . . . ,xd−1) ∈ Rd. For a matrix P ∈ Rn×m and
(i, j) ∈ [n] × [m], we will write Pi,: ∈ R1×m for the ith row and P:,j for the jth column
of P . A fixed but arbitrary norm on Rd will be denoted by ‖ · ‖. The minimum and
maximum of two real numbers a and b will be denoted by a ∧ b and a ∨ b respectively.
Vectors that span all q modeled derivatives will be denoted by bold symbols, such as x.
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C.2 Gaussian ODE filtering

This section defines how a Gaussian filter can solve the IVP eq. (C.1). In the various
subsections, we first explain the choice of prior on x, then describe how the algorithm
computes a posterior output from this prior (by defining a numerical integrator Ψ),
and add explanations on the measurement noise of the derivative observations. To
alternatively understand how this algorithm can be derived as an extension of generic
Gaussian filtering in probabilistic state space models, see the concise presentation in
(Kersting et al., 2020b, Supplement A).

C.2.1 Prior on x

In PN, it is common (Hennig et al., 2015, Section 3(a)) to put a prior measure on the
unknown solution x. Often, for fast Bayesian inference by linear algebra (Rasmussen and
Williams, 2006, Chapter 2), this prior is Gaussian. To enable GP inference in linear time
by Kalman filtering (Särkkä, 2013, Chapter 4.3), we further restrict the prior to Markov
processes. As discussed in Särkkä and Solin (2019, Chapter 12.4), a wide class of such
Gauss–Markov processes can be captured by a law of the (strong) solution (Øksendal,
2003, Chapter 5.3) of a linear SDE with Gaussian initial condition. Here—as we, by
eq. (C.1), have information on at least one derivative of x—the prior also includes the
first q ∈ N derivatives. Therefore, for all j ∈ [d], we define the vector of time derivatives
by Xj =

(
X

(0)
j , . . . ,X(q)

j

)ᵀ
. We define Xj as a (q + 1)-dimensional stochastic process

via the SDE

dXj(t) =
(
dX

(0)
j (t), . . . , dX(q−1)

j (t), dX(q)
j (t)

)ᵀ
(C.2)

=


0 1 0 . . . 0
... . . . . . . 0
... . . . 0 1
c0 . . . . . . cq




X

(0)
j (t)
...

X
(q−1)
j (t)
X

(q)
j (t)

 dt+


0
...
0
σj

 dBj(t),

driven by mutually independent one-dimensional Brownian motions {Bj; j ∈ [d]} (in-
dependent of X(0)) scaled by σj > 0, with initial condition Xj(0) ∼ N (mj(0),Pj(0)
). We assume that

{
Xj(0); j ∈ [d]

}
are independent. In other words, we model the

unknown ith derivative of the jth dimension of the solution x of the IVP eq. (C.1), de-
noted by x(i)

j , as a draw from a real-valued, one-dimensional GP X
(i)
j , for all i ∈ [q + 1]

and j ∈ [d], such that X(q)
j is defined by (c0, . . . , cq) as well as the Brownian motion

scale σj and X
(i−1)
j is defined to be the integral of X(i)

j . Note that, by the inde-
pendence of the components of the d-dimensional Brownian motion, the components
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{{
Xj(t); 0 ≤ t ≤ T

}
; j ∈ [d]

}
of {X(t); 0 ≤ t ≤ T} are independent2. The (strong)

solution of eq. (C.2) is a Gauss–Markov process with mean mj : [0,T ] → Rq+1 and
covariance matrix Pj : [0,T ]→ R(q+1)×(q+1) given by

mj(t) = A(t)mj(0), (C.3)
Pj(t) = A(t)Pj(0)A(t)ᵀ +Q(t), (C.4)

where the matrices A(t), Q(t) ∈ R(q+1)×(q+1) yielded by the SDE eq. (C.2) are known in
closed form Särkkä (2006, Theorem 2.9) (see eq. (C.77)). The precise choice of the prior
stochastic process X depends on the choice of (c0, . . . , cq) ∈ Rq+1 in eq. (C.2). While
the below algorithm works for all choices of c, we restrict our attention to the case of

(c0, . . . , cq) := (0, . . . , 0,−θ), for some θ ≥ 0, (C.5)

where the q-times integrated Brownian motion (IBM) and the q-times integrated Ornstein–
Uhlenbeck process (IOUP) with drift parameter θ is the unique solution of eq. (C.2),
in the case of θ = 0 and θ > 0 respectively (Karatzas and Shreve, 1991, Chapter 5:
Example 6.8). In this case, the matrices A and Q from eqs. (C.3) and (C.4) are given
by

A(t)ij =
Ii≤j

t
j−i

(j−i)! , if j 6= q,
t
q−i

(q−i)! − θ
∑∞
k=q+1−i

(−θ)k+i−q−1
t
k

k! , if j = q,
(C.6)

Q(t)ij = σ2 t2q+1−i−j

(2q + 1− i− j)(q − i)!(q − j)! + Θ
(
t2q+2−i−j) . (C.7)

(Derivations of eqs. (C.6) and (C.7), as well as the precise form ofQ without Θ(t2q+2−i−j),
are presented in Appendix C.11.) Hence, for all i ∈ [q + 1], the prediction of step size h
of the ith derivative from any state u ∈ Rq+1 is given by

[A(t)u]i =
q∑
k=i

tk−i

(k − i)!uk − θ
 ∞∑
k=q+1−i

(−θ)k+i−q−1

k! tk

uq. (C.8)

2More involved correlation models of
{{
Xj(t); 0 ≤ t ≤ T

}
; j ∈ [d]

}
are straightforward to incorpo-

rate into the SDE eq. (C.2), but seem complicated to analyse. Therefore, we restrict our attention
to independent dimensions. See Appendix C.12 for an explanation of this restriction. Note that one
can also use a state space vector X(t) which models other features of x(t) than the derivatives, as
demonstrated with Fourier summands in Kersting and Mahsereci (2020).
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C.2.2 The algorithm

To avoid the introduction of additional indices, we will define the algorithm Ψ for
d = 1; for statements on the general case of d ∈ N we will use the same symbols
from eq. (C.10)–eq. (C.15) as vectors over the whole dimension—see e.g. eq. (C.31)
for a statement about a general r ∈ Rd. By the independence of the dimensions of
X, due to eq. (C.2), extension to d ∈ N amounts to applying Ψ to every dimension
independently (recall Footnote 2). Accordingly, we may in many of the below proofs
w.l.o.g. assume d = 1. Now, as previously spelled out in Kersting and Hennig (2016);
Schober et al. (2019), Bayesian filtering of X—i.e. iteratively conditioning X on the
information on X(1) from evaluations of f at the mean of the current conditioned X(0)—
yields the following numerical method Ψ. Let m(t) = (m(0)(t), . . . ,m(q)(t))ᵀ ∈ Rq+1

be an arbitrary state at some point in time t ∈ [0,T ] (i.e. m(i)(t) is an estimate for
x(i)(t)), and let P (t) ∈ R(q+1)×(q+1) be the covariance matrix of x(i)(t). For t ∈ [0,T ],
let the current estimate of x(t) be a normal distribution N (m(t),P (t)), i.e. the mean
m(t) ∈ Rq+1 represents the best numerical estimate (given data {y(h), . . . , y(t)}, see
eq. (C.12)) and the covariance matrix P (t) ∈ R(q+1)×(q+1) its uncertainty. For the time
step t→ t+h of size h > 0, the ODE filter first computes the prediction step consisting
of predictive mean

m−(t+ h):= A(h)m(t) ∈ Rq+1, (C.9)

and predictive covariance

P−(t+ h) := A(h)P (t)A(h)ᵀ +Q(h) ∈ R(q+1)×(q+1), (C.10)

with A and Q generally defined by eq. (C.77) and, in the considered particular case of
eq. (C.5), by eqs. (C.6) and (C.7). In the subsequent step, the following quantities are
computed first: the Kalman gain

β(t+ h) = (β(0)(t+ h), . . . , β(q)(t+ h))ᵀ

:= P−(t+ h):1

(P−(t+ h))11 +R(t+ h)
∈ R(q+1)×1, (C.11)

the measurement/data on ẋ

y(t+ h) := f
(
m−,(0)(t+ h)

)
∈ R, (C.12)

and innovation/residual

r(t+ h) := y(t+ h)−m−,(1)(t+ h) ∈ R. (C.13)
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Here, R denotes the variance of y (the ‘measurement noise’) and captures the squared
difference between the data y(t+h) = f(m−(t+h)) that the algorithm actually receives
and the idealised data ẋ(t+h) = f(x(t+h)) that it ‘should’ receive (see Appendix C.2.3).
Finally, the mean and the covariance matrix are conditioned on this data, which yields
the updated mean

ΨP (t),h(m(t)) := m(t+ h)
= m−(t+ h) + β(t+ h)r(t+ h), (C.14)

and the updated covariance

P (t+ h) := P−(t+ h)− P−(t+ h):,1P
−(t+ h)1,:

P−(t+ h)11 +R(t+ h)
. (C.15)

This concludes the step t→ t+h, with the Gaussian distribution N (m(t+h),P (t+h))
over x(t+h). The algorithm is iterated by computingm(t+ 2h) := ΨP (t+h),h(m(t+h))
as well as repeating eq. (C.10) and eq. (C.15), with P (t + h) instead of P (t), to obtain
P (t + 2h). In the following, to avoid notational clutter, the dependence of the above
quantities on t, h and σ will be omitted if their values are unambiguous. Parameter
adaptation reminiscent of classical methods (e.g. for σ s.t. the added variance per step
coincide with standard error estimates) have been explored in Schober et al. (2019,
Section 4).
This filter is essentially an iterative application of Bayes rule (see e.g. Särkkä (2013,

Chapter 4)) based on the prior X on x specified by eq. (C.2) (entering the algorithm
via A and Q) and the measurement model y ∼ N (ẋ,R). Since the measurement model
is a likelihood by another name and therefore forms a complete Bayesian model together
with the priorX, it remains to detail the measurement model (recall appendix C.2.1 for
the choice of prior). Concerning the data generation mechanism for y eq. (C.12), we only
consider the maximum-a-posteriori point estimate of ẋ(t) given N (m−,(0)(t),P−00(t)); a
discussion of more involved statistical models for y as well as an algorithm box for the
Gaussian ODE filter can be found in Schober et al. (2019, Subsection 2.2). Next, for lack
of such a discussion for R, we will examine different choices of R—which have proved
central to the UQ of the filter (Kersting and Hennig, 2016) and will turn out to affect
global convergence properties in Appendix C.7.

C.2.3 Measurement noise R
Two sources of uncertainty add to R(t): noise from imprecise knowledge of x(t) and f .
Given f , previous integration steps of the filter (as well as an imprecise initial value)
inject uncertainty about how close m−(t) is to x(t) and how close y = f(m−(t)) is to
ẋ(t)) = f(x(t)). This uncertainty stems from the discretization error ‖m−,(0)(t)− x(t)‖
and, hence, tends to increase with h. Additionally, there can be uncertainty from a
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misspecified f , e.g. when f has estimated parameters, or from numerically imprecise
evaluations of f , which can be added to R—a functionality which classical solvers do
not possess. In this paper, since R depends on h via the numerical uncertainty on x(t), we
analyse the influence of noise R of order p ∈ [1,∞] (see Assumption C.4) on the quality
of the solution to illuminate for which orders of noise we can trust the solution to which
extent and when we should, instead of decreasing h, rather spend computational budget
on specifying or evaluating f more precisely. The explicit dependence of the noise on its
order p in h resembles, despite the fundamentally different role of R compared to additive
noise in Conrad et al. (2017); Abdulle and Garegnani (2020), the variable p in Conrad
et al. (2017, Assumption 1) and Abdulle and Garegnani (2020, Assumption 2.2) in the
sense that the analysis highlights how uncertainty of this order can still be modeled
without breaking the convergence rates. (Adaptive noise models are computationally
feasible (Kersting and Hennig, 2016) but lie outside the scope of our analysis.)

C.3 Regularity of flow
Before we proceed to the analysis of Ψ, we provide all regularity results necessary for
arbitrary q, d ∈ N in this section.

Assumption C.1. The vector field f ∈ Cq(Rd;Rd) is globally Lipschitz and all its
derivatives of order up to q are uniformly bounded and globally Lipschitz, i.e. there exists
some L > 0 such that ‖Dαf‖∞ ≤ L for all multi-indices α ∈ Nd0 with 1 ≤ ∑

i αi ≤ q,
and ‖Dαf(a)−Dαf(b)‖ ≤ L‖a− b‖ for all multi-indices α ∈ Nd0 with 0 ≤ ∑i αi ≤ q.

Assumption C.1 and the Picard–Lindelöf theorem imply that the solution x is a well-
defined element of Cq+1([0,T ];Rd). For i ∈ [q + 1], we denote d

i
x

dt
i by x(i). Recall that,

by a bold symbol, we denote the vector of these derivatives: x ≡ (x(0), . . . ,x(q))ᵀ. In
particular, the solution x of eq. (C.1) is denoted by x(0). Analogously, we denote the
flow of the ODE eq. (C.1) by Φ(0), i.e. Φ(0)

t (x0) ≡ x(0)(t), and, for all i ∈ [q + 1], its ith

partial derivative with respect to t by Φ(i), so that Φ(i)
t (x0) ≡ x(i)(t).

Lemma C.3.1. Under Assumption C.1, for all a ∈ Rd and all h > 0,∥∥∥∥∥Φ(i)
h (a)−

q∑
k=i

hk−i

(k − i)!Φ
(k)
0 (a)

∥∥∥∥∥ ≤ Khq+1−i. (C.16)

Here, and in the sequel, K > 0 denotes a constant independent of h and θ which may
change from line to line.

Proof. By Assumption C.1, Φ(q+1) exists and is bounded by ‖Φ(q+1)‖ ≤ L, which can
be seen by applying the chain rule q times to both sides of eq. (C.1). Now, applying
‖Φ(q+1)‖ ≤ L to the term Φ(q+1)

τ (a) (for some τ ∈ (0,h)) in the Lagrange remainder of
the (q − i)th-order Taylor expansion of Φ(i)

h (a) yields eq. (C.16).
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Lemma C.3.2. Under Assumption C.1 and for all sufficiently small h > 0,

sup
a6=b∈Rd

∥∥∥Φ(0)
h (a)− Φ(0)

h (b)
∥∥∥

‖a− b‖ ≤ 1 + 2Lh. (C.17)

Proof. Immediate corollary of Teschl (2012, Theorem 2.8).

Global convergence (Appendix C.7) will require the following generalization of Lemma
C.3.2.

Lemma C.3.3. Let q = 1. Then, under Assumption C.1 and for all sufficiently small
h > 0,

sup
a6=b∈Rd

|||Φh(a)−Φh(b)|||h
‖a− b‖ ≤ 1 +Kh, (C.18)

where, given the norm ‖ · ‖ on Rd and h > 0, the new norm ||| · |||h on R(q+1)×d is defined
by

|||a|||h :=
q∑
i=0

hi
∥∥∥ai,:∥∥∥ . (C.19)

Remark C.3.4. The necessity of ||| · |||h stems from the fact that—unlike other ODE
solvers—the ODE filter Ψ additionally estimates and uses the first q derivatives in its
state m ∈ R(q+1)×d, whose development cannot be bounded in ‖ · ‖, but in ||| · |||h. The
norm ||| · |||h is used to make rigorous the intuition that the estimates of the solution’s
time derivative are ‘one order of h worse per derivative’.

Proof. We bound the second summand of

|||Φh(a)−Φh(b)|||h
eq. (C.19)=

∥∥∥∥Φ(0)
h (a)− Φ(0)

h (b)
∥∥∥∥︸ ︷︷ ︸

≤(1+2Lh)‖a−b‖, by eq. (C.17)

+ h

∥∥∥∥ Φ(1)
h (a)︸ ︷︷ ︸

=f
(

Φ(0)
h (a)

)− Φ(1)
h (b)︸ ︷︷ ︸

=f
(

Φ(0)
h (b)

)
∥∥∥∥

(C.20)

by
∥∥∥f (Φ(0)

h (a)
)
− f

(
Φ(0)
h (b)

)∥∥∥ Ass. C.1
≤ (C.21)

L
∥∥∥Φ(0)

h (a)− Φ(0)
h (b)

∥∥∥ eq. (C.17)
≤ L(1 + 2Lh) ‖a− b‖ .

Inserting eq. (C.21) into eq. (C.20) concludes the proof.
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C.4 The role of the state misalignments δ
In Gaussian ODE filtering, the interconnection between the estimates of the ODE so-
lution x(t) = x(0)(t) and its first q derivatives {x(1)(t), . . . ,x(q)(t)} is intricate. From
a purely analytical point of view, every possible estimate m(t) of x(t) comes with a
fixed set of derivatives, which are implied by the ODE, for the following reason: Clearly,
by eq. (C.1), the estimate m(1)(t) of x(1)(t) ought to be f(m(t)). More generally (for
i ∈ [q + 1]) the estimate m(i)(t) of x(i)(t) is determined by the ODE as well. To see
this, let us first recursively define f (i) : Rd → Rd by f (0)(a) := a, f (1)(a) := f(a) and
f (i)(a) := [∇xf

(i−1) · f ](a). Now, differentiating the ODE, eq. (C.1), (i− 1)-times by the
chain rule yields

x(i)(t) = f (i−1)(t)
(
x(0)(t)

)
, (C.22)

which implies that m(i)(t) ought to be f (i−1)(t)
(
m(0)(t)

)
Since

Φ(i)
0

(
m(0)(nh)

)
= f (i−1)

(
m(0)(nh)

)
(C.23)

(which we prove in Appendix C.15), this amounts to requiring that

m(i)(t) != Φ(i)
0

(
m(0)(nh)

)
. (C.24)

Since Φ(i)
0 is (recall Appendix C.3) the ith time derivative of the flow map Φ(0) at t = 0,

this simply means that m(i)(t) would be set to the ‘true’ derivatives in the case where
the initial condition of the ODE, eq. (C.1), is x(0) = m(0)(t) instead of x(0) = x0—or,
more loosely speaking, that the derivative estimates m(i)(t) are forced to comply with
m(0)(t), irrespective of our belief x(i)(t) ∼ N (m(i)(t),Pii(t)). The Gaussian ODE filter,
however, does not use this (intractable) analytical approach. Instead, it jointly models
and infers x(0)(t) and its first q derivatives {x(1)(t), . . . ,x(q)(t)} in a state space X, as
detailed in Appendix C.2. The thus-computed filtering mean estimates m(i)(t) depend
not only on the ODE but also on the statistical model—namely on the prior (SDE)
and measurement noise R; recall Appendices C.2.1 and C.2.3. In fact, the analytically-
desirable derivative estimate, eq. (C.24), is, for i = 1, only satisfied if R = 0 (which can
be seen from eq. (C.14)), and generally does not hold for i ≥ 2 since both f (i−1) and
Φ(i) are inaccessible to the algorithm. The numerical example in Appendix C.13 clarifies
that δ(i) is likely to be strictly positive, even after the first step 0→ h.
This inevitable mismatch, between exact analysis and approximate statistics, moti-

vates the following definition of the ith state ith state misalignment at time t:

δ(i)(t) :=
∥∥∥m(i)(t)− Φ(i)

0

(
m(0)(t)

)∥∥∥ ≥ 0. (C.25)

Intuitively speaking, δ(i)(t) quantifies how large this mismatch is for the ith derivative
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at time t. Note that δ(i)(t) = 0 if and only if eq. (C.24) holds—i.e. for i = 1 iff R = 0
(which can be seen from eq. (C.14)) and only by coincidence for i ≥ 2 since both f (i−1)

and Φ(i)
0 are inaccessible to the algorithm. (Since Φ(0)

0 = Id, δ(0)(t) = 0 for all t.)
The possibility of δ(i) > 0, for i ≥ 1, is inconvenient for the below worst-case analysis

since (if eq. (C.24) held true and δ(i) ≡ 0) the prediction step of the drift-less IBM
prediction (θ = 0) would coincide with a Taylor expansions of the flow map Φ(i)

0 ; see
eq. (C.8). But, because δ(i) 6= 0 in general, we have to additionally bound the influence
of δ ≥ 0 which complicates the below proofs further.
Fortunately, we can locally bound the import of δ(i) by the easy Lemma C.6.1 and

globally by the more complicated Lemma C.7.4 (see Appendix C.7.3). Intuitively, these
bounds demonstrate that the order of the deviation from a Taylor expansion of the state
m = [m(0), . . . ,m(q)] due to δ is not smaller than the remainder of the Taylor expansion.
This means, more loosely speaking, that the import of the δ(i) is swallowed by the Taylor
remainder. This effect is locally captured by Lemma C.5.1 and globally by Lemma C.7.5.
The global convergence rates of δ(i)(T ), as provided by Lemma C.7.5, are experimentally
demonstrated in Appendix C.14.

C.5 Auxiliary bounds on intermediate quantities

Recall from eq. (C.5) that θ = 0 and θ > 0 denote the cases of IBM and IOUP prior
with drift coefficient θ respectively. The ODE filter Ψ iteratively computes the filtering
mean m(nh) = (m(0)(nh), . . . ,m(q)(nh))ᵀ ∈ R(q+1) as well as error covariance matrices
P (nh) ∈ R on the mesh {nh}T/hn=0. (Here and in the following, we assume w.l.o.g. that
T/h ∈ N.) Ideally, the truncation error over all derivatives

ε(nh) := (ε(0)(nh), . . . , ε(q)(nh))ᵀ := m(nh)− x(nh), (C.26)

falls quickly as h → 0 and is estimated by the standard deviation
√
P00(nh). Next, we

present a classical worst-case convergence analysis over all f satisfying Assumption C.1;
see Appendix C.10 for a discussion of the desirability and feasibility of an average-case
analysis. To this end, we bound the added error of every step by intermediate values,
defined in eqs. (C.11) and (C.13),

∆(i)((n+ 1)h) :=
∥∥∥Ψ(i)

P (nh),h(m(nh))− Φ(i)
h

(
m(0)(nh)

)∥∥∥ (C.27)
eq. (C.14)
≤

∥∥∥(A(h)m(nh))i − Φ(i)
h

(
m(0)(nh)

)∥∥∥︸ ︷︷ ︸
=:∆−(i)((n+1)h)

+
∥∥∥β(i)((n+ 1)h)

∥∥∥ ‖r((n+ 1)h)‖ , (C.28)
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and bound these quantities in the order ∆−(i), r, β(i). These bounds will be needed
for the local and global convergence analysis in Appendices C.6 and C.7 respectively.
Note that, intuitively, ∆−(i)((n+1)h) and ∆(i)((n+1)h) denote the additional numerical
error which is added in the (n + 1)th step to the ith derivative of the predictive mean
m−,(i)(t+ h) and the updated mean m(i)(t+ h), respectively.

Lemma C.5.1. Under Assumption C.1, for all i ∈ [q + 1] and all h > 0,

∆−(i)((n+ 1)h) ≤K
[
1 + θ

∥∥∥m(q)(nh)
∥∥∥]hq+1−i

+
q∑
k=i

hk−i

(k − i)!δ
(k)(nh). (C.29)

Proof. We may assume, as explained in Appendix C.2.2, without loss of generality that
d = 1. We apply the triangle inequality to the definition of ∆−(i)((n + 1)h), as defined
in eq. (C.28), which, by eq. (C.8), yields

∆−(i)((n+ 1)h) ≤ (C.30)
q∑
k=i

hk−i

(k − i)!δ
(k)(nh) +Kθ

∣∣∣m(q)(nh)
∣∣∣hq+1−i

+
∣∣∣∣∣
q∑
l=i

hl−i

(l − i)!Φ
(l)
0

(
m(0)(nh)

)
− Φ(i)

h

(
m(0)(nh)

)∣∣∣∣∣︸ ︷︷ ︸
≤Khq+1−i, by eq. (C.16)

.

Lemma C.5.2. Under Assumption C.1 and for all sufficiently small h > 0,

‖r((n+ 1)h)‖ ≤K
[
1 + θ

∥∥∥m(q)(nh)
∥∥∥]hq

+K
q∑

k=1

hk−1

(k − 1)!δ
(k)(nh). (C.31)

Proof. See Appendix C.16.

To bound the Kalman gains β(nh), we first need to assume that the orders of the
initial covariance matrices are sufficiently high (matching the latter required orders of
the initialization error; see Assumption C.3).

Assumption C.2. The entries of the initial covariance matrix P (0) satisfy, for all
k, l ∈ [q + 1], ‖P (0)k,l‖ ≤ K0h

2q+1−k−l, where K0 > 0 is a constant independent of h.

We make this assumption, as well as Assumption C.3, explicit (instead of just making
the stronger assumption of exact initializations with zero variance), because it high-
lights how statistical or numerical uncertainty on the initial value effects the accuracy
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of the output of the filter—a novel functionality of PN with the potential to facilitate a
management of the computational budget across a computational chain with respect to
the respective perturbations from different sources of uncertainty (Hennig et al., 2015,
Section 3(d)).

Lemma C.5.3. Under Assumption C.2, for all i ∈ [q+1] and for all h > 0, ‖β(i)(h)‖ ≤
Kh1−i.

Proof. Again, w.l.o.g. d = 1. Application of the orders of A and Q from eqs. (C.6)
and (C.7), the triangle inequality and Assumption C.2 to the definition of P− in eq. (C.10)
yields

∣∣∣P−(h)k,l

∣∣∣ eq. (C.10)≤
∣∣∣[A(h)P (0)A(h)ᵀ]k,l

∣∣∣+ ∣∣∣Q(h)k,l

∣∣∣
eqs. (C.6),(C.7)

≤ K

 q∑
a=k

q∑
b=l

∣∣∣P (0)a,b

∣∣∣ha+b−k−l

+ 2θ
q−1∑
b=l

∣∣∣P (0)q,b
∣∣∣

+ θ2
∣∣∣P (0)q,q

∣∣∣+ h2q+1−k−l


Ass. C.2
≤ K[1 + θ + θ2]h2q+1−k−l. (C.32)

Recall that P and Q are (positive semi-definite) covariance matrices; hence, P−(h)1,1 ≥
Kh2q−1. Inserting these orders into the definition of β(i) (eq. (C.11)), recalling that R ≥
0, and removing the dependence on θ by reducing the fraction conclude the proof.

C.6 Local convergence rates
With the above bounds on intermediate algorithmic quantities (involving state misalign-
ments δ(i)) in place, we only need an additional assumption to proceed—via a bound on
δ(i)(0)—to our first main result on local convergence orders of Ψ.

Assumption C.3. The initial errors on the initial estimate of the ith derivative m(i)(0)
satisfy ‖ε(i)(0)‖ = ‖m(i)(0)−x(i)(0)‖ ≤ K0h

q+1−i. (This assumption is, like Assumption
C.2, weaker than the standard assumption of exact initializations.)

Lemma C.6.1. Under Assumptions C.1 and C.3, for all i ∈ [q + 1] and for all h > 0,
δ(i)(0) ≤ Khq+1−i.
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Proof. The claim follows, using Assumptions C.1 and C.3, from

δ(i)(0) ≤
∥∥∥m(i)(0)− x(i)(0)

∥∥∥︸ ︷︷ ︸
=‖ε(i)(0)‖≤K0h

q+1−i

+
∥∥∥f (i−1)

(
x(0)(0)

)
− f (i−1)

(
m(0)(0)

)∥∥∥︸ ︷︷ ︸
≤L‖ε(0)(0)‖≤LK0h

q+1

. (C.33)

Now, we can bound the local truncation error ε(0)(h) as defined in eq. (C.26).
Theorem C.6.2 (Local Truncation Error). Under Assumptions C.1, C.2 and C.3 and
for all sufficiently small h > 0,∥∥∥ε(0)(h)

∥∥∥ ≤ |||ε(h)|||h ≤ K
[
1 + θ

∥∥∥m(q)(0)
∥∥∥]hq+1. (C.34)

Proof. By the triangle inequality for ||| · |||h and subsequent application of Lemma C.3.3
and Assumption C.3 to the second summand of the resulting inequality, we obtain

|||ε(h)|||h ≤
∣∣∣∣∣∣∣∣∣ΨP (0),h (m(0))−Φh

(
x(0)(0)

)∣∣∣∣∣∣∣∣∣
h︸ ︷︷ ︸

=
∑q

i=0 h
i∆(i)(h), by eq. (C.27)

+
∣∣∣∣∣∣∣∣∣Φh

(
x(0)(0)

)
−Φh

(
m(0)(0)

)∣∣∣∣∣∣∣∣∣
h︸ ︷︷ ︸

≤(1+Kh)‖ε(0)(0)‖≤Khq+1

. (C.35)

The remaining bound on ∆(i)(h), for all i ∈ [q + 1] and sufficiently small h > 0, is
obtained by insertion of the bounds from Lemmas C.5.1 to C.5.3 (in the case of n = 0),
into eq. (C.28):

∆(i)(h) ≤ K
[
1 + θ

∥∥∥m(q)(0)
∥∥∥]hq+1−i

+K
q∑

k=1

hk−1

(k − 1)!δ
(k)(nh) (C.36)

Lemma C.6.1
≤ K

[
1 + θ

∥∥∥m(q)(0)
∥∥∥]hq+1−i. (C.37)

Insertion of eq. (C.37) into eq. (C.35) and ‖ε(0)(h)‖ ≤ |||ε(h)|||h (by eq. (C.19)) concludes
the proof.
Remark C.6.3. Theorem C.6.2 establishes a bound of order hq+1 on the local truncation
error ε(0)(h) on x(h) after one step h. Moreover, by the definition eq. (C.19) of ||| · |||h,
this theorem also implies additional bounds of order hq+1−i on the error ε(i)(h) on the
ith derivative x(i)(h) for all i ∈ [q + 1]. Such derivative bounds are (to the best of
our knowledge) not available for classical numerical solvers, since they do not explicitly
model the derivatives in the first place. These bounds could be be useful for subsequent
computations based on the ODE trajectory (Hennig et al., 2015).
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Unsurprisingly, as the mean prediction (recall eq. (C.8)) deviates from a pure qth order
Taylor expansion by Kθ‖m(q)(0)‖hq+1 for an IOUP prior (i.e. θ > 0 in eq. (C.5)), the
constant in front of the local hq+1 convergence rate depends on both θ and m(q)(0) in the
IOUP case. A global analysis for IOUP is therefore more complicated than for IBM:
Recall from eq. (C.8) that, for q = 1, the mean prediction for x((n+ 1)h) is(

m−,(0)((n+ 1)h)
m−,(1)((n+ 1)h)

)
eq. (C.8)= (C.38)m(0)(nh) + hm(1)(nh)− θ

[
h

2

2! + O(h3)
]
m(1)(nh)

e−θhm−,(1)(nh)

 ,

which pulls both m−,(0) and m−,(1) towards zero (or some other prior mean) compared
to the prediction given by its Taylor expansion for θ = 0. While this is useful for ODEs
converging to zero, such as ẋ = −x, it is problematic for diverging ODEs, such as ẋ = x
(Magnani et al., 2017). As shown in Theorem C.6.2, this effect is asymptotically negli-
gible for local convergence, but it might matter globally and, therefore, might necessitate
stronger assumptions on f than Assumption C.1, such as a bound on ‖f‖∞ which would
globally bound {y(nh); n = 0, . . . ,T/h} and thereby {m(1)(nh); n = 0, . . . ,T/h} in
eq. (C.38). It is furthermore conceivable that a global bound for IOUP would depend on
the relation between θ and ‖f‖∞ in a nontrivial way. The inclusion of IOUP (θ > 0)
would hence complicate the below proofs further. Therefore, we restrict the following first
global analysis to IBM (θ = 0).

C.7 Global analysis
As explained in Remark C.6.3, we only consider the case of the IBM prior, i.e. θ = 0,
in this section. Moreover, we restrict our analysis to q = 1 in this first global analysis.
Although we only have definite knowledge for q = 1, we believe that the convergence
rates might also hold for higher q ∈ N—which we experimentally test in Appendix C.9.1.
Moreover, we believe that proofs analogous to the below proofs might work out for higher
q ∈ N and that deriving a generalized version of Proposition C.7.2 for higher q is the
bottleneck for such proofs. (See Appendix C.10 for a discussion of these restrictions.)
While, for local convergence, all noise models R yield the same convergence rates in

Theorem C.6.2, it is unclear how the order of R in h (as described in Appendix C.2.3)
affects global convergence rates: E.g., for the limiting case R ≡ Kh0, the steady-state
Kalman gains β∞ would converge to zero (see eqs. (C.43) and (C.44) below) for h→ 0,
and hence the evaluation of f would not be taken into account—yielding a filter Ψ which
assumes that the evaluations of f are equally off, regardless of h > 0, and eventually
just extrapolates along the prior without global convergence of the posterior mean m.
For the opposite limiting case R ≡ limp→∞Kh

p ≡ 0, it has already been shown in
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Schober et al. (2019, Proposition 1 and Theorem 1) that—in the steady state and for
q = 1, 2—the filter Ψ inherits global convergence rates from known multistep methods
in Nordsieck form Nordsieck (1962). To explore a more general noise model, we assume
a fixed noise model R ≡ Khp with arbitrary order p.
In the following, we analyse how small p can be in order for Ψ to exhibit fast global

convergence (cf. the similar role of the order p of perturbations in Conrad et al. (2017,
Assumption 1) and Abdulle and Garegnani (2020, Assumption 2.2)). In light of Theo-
rem C.6.2, the highest possible global convergence rate is O(h)—which will indeed be
obtained for all p ∈ [1,∞] in Theorem C.7.7. Since every extrapolation step of Ψ from t
to t+h depends not only on the current state, but also on the covariance matrix P (t)—
which itself depends on all previous steps—Ψ is neither a single-step nor a multistep
method. Contrary to Schober et al. (2019), we do not restrict our theoretical analysis
to the steady-state case, but provide our results under the weaker Assumptions C.2 and
C.3 that were already sufficient for local convergence in Theorem C.6.2—which is made
possible by the bounds eqs. (C.48) and (C.49) in Proposition C.7.2.

C.7.1 Outline of global convergence proof
The goal of the following sequence of proofs in Appendix C.7 is Theorem C.7.7. It
is proved by a special version of the discrete Grönwall inequality (Clark, 1987) whose
prerequisite is provided in Lemma C.7.6. This Lemma C.7.6 follows from Lemma C.3.3
(on the regularity of the flow map Φt) as well as Lemma C.7.5 which provides a bound
on the maximal increment of the numerical error stemming from local truncation errors.
For the proof of Lemma C.7.5, we first have to establish

(i) global bounds on the Kalman gains β(0) and β(1) by the inequalities eqs. (C.48)
and (C.49) in Proposition C.7.2, and

(ii) a global bound on the state misalignment δ(1) in Lemma C.7.4.

In Appendices C.7.2 to C.7.4, we will collect these inequalities in the order of their
numbering to subsequently prove global convergence in Appendix C.7.5.

C.7.2 Global bounds on Kalman gains
Since we will analyse the sequence of covariance matrices and Kalman gains using con-
tractions in Proposition C.7.2, we first introduce the following generalization of Banach
fixed-point theorem (BFT).

Lemma C.7.1. Let (X , d) be a non-empty complete metric space, Tn : X → X , n ∈ N,
a sequence of Ln-Lipschitz continuous contractions with supn Ln ≤ L̄ < 1. Let un be the
fixed point of Tn, as given by BFT, and let limn→∞ un = u∗ ∈ X . Then, for all x0 ∈ X ,
the recursive sequence xn := Tn(xn−1) converges to u∗ as n→∞.
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Proof. See Appendix C.17.

In the following, we will assume that T is a multiple of h.

Proposition C.7.2. For constant R ≡ Khp with p ∈ [0,∞], the unique (attractive)
steady states for the following quantities are

P−,∞
11 := lim

n→∞P
−
11(nh) (C.39)

= 1
2

(
σ2h+

√
4σ2Rh+ σ4h2

)
,

P∞11 := lim
n→∞P11(nh) (C.40)

=

(
σ2h+

√
4σ2Rh+ σ4h2

)
R

σ2h+
√

4σ2Rh+ σ4h2 + 2R
,

P−,∞
01 := lim

n→∞P
−
01(nh) (C.41)

= σ4h2 + (2R + σ2h)
√

4σ2Rh+ σ4h2 + 4Rσ2h

2(σ2h+
√

4σ2Rh+ σ4h2)
h,

P∞01 := lim
n→∞P01(nh) (C.42)

= R
√

4Rσ2h+ σ4h2

σ2h+
√

4σ2Rh+ σ4h2
h,

β∞,(0) := lim
n→∞ β

(0)(nh) (C.43)

=

√
4Rσ2h+ σ4h2

σ2h+
√

4σ2Rh+ σ4h2
h, and

β∞,(1) := lim
n→∞ β

(1)(nh) (C.44)

= σ2h+
√

4σ2Rh+ σ4h2

σ2h+
√

4σ2Rh+ σ4h2 + 2R
.
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If furthermore Assumption C.2 holds, then, for all sufficiently small h > 0,

max
n∈[T/h+1]

P−11(nh) ≤ Kh1∧ p+1
2 , (C.45)

max
n∈[T/h+1]

P11(nh) ≤ Khp∨
p+1

2 , (C.46)

max
n∈[T/h+1]

‖P01(nh)‖ ≤ Khp+1, (C.47)

max
n∈[T/h+1]

∥∥∥β(0)(nh)
∥∥∥ ≤ Kh, and (C.48)

max
n∈[T/h+1]

∥∥∥1− β(1)(nh)
∥∥∥ ≤ Kh(p−1)∨0. (C.49)

All of these bounds are sharp in the sense that they fail for any higher order in the
exponent of h.

Remark C.7.3. The recursions for P (nh) and P−(nh) given by eqs. (C.10) and (C.15)
follow a discrete algebraic Riccati equation (DARE)—a topic studied in many related
settings (Lancaster and Rodman, 1995). While the asymptotic behavior eq. (C.39) of
the completely detectable state X(1) can also be obtained using classical filtering theory
(Anderson and Moore, 1979, Chapter 4.4), the remaining statements of Proposition
C.7.2 also concern the undetectable state X(0) and are, to the best of our knowledge, not
directly obtainable from existing theory on DAREs or filtering (which makes the following
proof necessary). Note that, in the special case of no measurement noise (R ≡ 0),
eqs. (C.43) and (C.44) yield the equivalence of the filter in the steady state with the
P(EC)1 implementation of the trapezoidal rule, which was previously shown in Schober
et al. (2019, Proposition 1). For future research, it would be interesting to examine
whether insertion of positive choices of R into eqs. (C.43) and (C.44) can reproduce
known methods as well.

Proof. See Appendix C.18.

C.7.3 Global bounds on state misalignments
For the following estimates, we restrict the choice of p to be larger than q = 1.

Assumption C.4. The noise model is chosen to be R ≡ Khp, for p ∈ [q,∞] = [1,∞],
where Kh∞ := 0.

Before bounding the added deviation of Ψ from the flow Φ per step, a global bound
on the state misalignments defined in eq. (C.25) is necessary. The result of the following
lemma is discussed in Appendix C.14.
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Lemma C.7.4. Under Assumptions C.1, C.2, C.3 and C.4, and for all sufficiently small
h > 0,

max
n∈[T/h+1]

δ(1)(nh) ≤ Kh. (C.50)

Proof. See Appendix C.19.

See Lemma C.7.4 for a experimental demonstration of eq. (C.33).

C.7.4 Prerequisite for discrete Grönwall inequality

Equipped with the above bounds, we can now prove a bound on the maximal increment
of the numerical error stemming from local truncation errors which is needed to prove
eq. (C.56), the prerequisite for the discrete Grönwall inequality.

Lemma C.7.5. Under Assumptions C.1, C.2, C.3, and C.4 and for all sufficiently small
h > 0,

max
n∈[T/h+1]

∣∣∣∣∣∣∣∣∣ΨP (nh),h (m(nh))−Φh

(
m(0)(nh)

)∣∣∣∣∣∣∣∣∣
h

≤ Kh2. (C.51)

Proof. By eq. (C.19), we have∣∣∣∣∣∣∣∣∣ΨP (nh),h (m(nh))−Φh

(
m(0)(nh)

)∣∣∣∣∣∣∣∣∣
h

= S1(h) + hS2(h), (C.52)

with S1(h) and S2(h) defined and bounded by

S1(h) :=
∥∥∥Ψ(0)

h (m(nh))− Φ(0)
h

(
m(0)(nh)

)∥∥∥
eq. (C.28)
≤ ∆−(0)((n+ 1)h)︸ ︷︷ ︸

eq. (C.29)
≤ Kh

2+δ(0)(nh)+hδ(1)(nh)

+
∥∥∥β(0)((n+ 1)h)

∥∥∥︸ ︷︷ ︸
eq. (C.48)
≤ Kh

‖r((n+ 1)h)‖︸ ︷︷ ︸
eq. (C.31)
≤ Kh+(1+Kh)δ(1)(nh)

, (C.53)
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and, analogously,

S2(h) :=
∥∥∥Ψ(1)

h (m(nh))− Φ(1)
h

(
m(0)(nh)

)∥∥∥
eq. (C.28)
≤ ∆−(1)((n+ 1)h)︸ ︷︷ ︸

eq. (C.29)
≤ Kh+δ(1)(nh)

+
∥∥∥β(1)((n+ 1)h)

∥∥∥︸ ︷︷ ︸
eq. (C.11)
≤ 1

‖r((n+ 1)h)‖︸ ︷︷ ︸
eq. (C.31)
≤ Kh+(1+Kh)δ(1)(nh)

(C.54)

Insertion of eq. (C.53) and eq. (C.54) into eq. (C.52) yields∣∣∣∣∣∣∣∣∣ΨP (nh),h (m(nh))−Φh

(
m(0)(nh)

)∣∣∣∣∣∣∣∣∣
h

≤ Kh2 + δ(0)(nh) +Khδ(1)(nh), (C.55)

which—after recalling δ(0)(nh) = 0 and applying Lemma C.7.4 to δ(1)(nh)—implies
eq. (C.51).

The previous lemma now implies a suitable prerequisite for a discrete Grönwall in-
equality.

Lemma C.7.6. Under Assumptions C.1, C.2, C.3, and C.4 and for all sufficiently small
h > 0,

|||ε ((n+ 1)h)|||h ≤ Kh2 + (1 +Kh)
∥∥∥ε(0)(nh)

∥∥∥. (C.56)

Proof. We observe, by the triangle inequality for the norm |||·|||h, that

|||ε ((n+ 1)h)|||h
=
∣∣∣∣∣∣∣∣∣ΨP (nh),h(m(nh))−Φh

(
x(0)(nh)

)∣∣∣∣∣∣∣∣∣
h

≤
∣∣∣∣∣∣∣∣∣ΨP (nh),h(m(nh))−Φh

(
m(0)(nh)

)∣∣∣∣∣∣∣∣∣
h

+
∣∣∣∣∣∣∣∣∣Φh

(
m(0)(nh)

)
−Φh

(
x(0)(nh)

)∣∣∣∣∣∣∣∣∣
h
. (C.57)

The proof is concluded by applying Lemma C.7.5 to the first and Lemma C.3.3 to the
second summand of this bound (as well as recalling from eq. (C.26) that ‖ε(0)(nh)‖ =
‖m(0)(nh)− x(0)(nh)‖).

C.7.5 Global convergence rates
With the above bounds in place, we can now prove global convergence rates.
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C.7 Global analysis

Theorem C.7.7 (Global truncation error). Under Assumptions C.1, C.2, C.3, and C.4
and for all sufficiently small h > 0,

max
n∈[T/h+1]

∥∥∥ε(0)(nh)
∥∥∥ ≤ max

n∈[T/h+1]
|||ε(nh)|||h ≤ K(T )h, (C.58)

where K(T ) > 0 is a constant that depends on T , but not on h.

Remark C.7.8. Theorem C.7.7 not only implies that the truncation error ‖ε(0)(nh)‖ on
the solution of eq. (C.1) has global order h, but also (by eq. (C.19)) that the truncation
error ‖ε(1)(nh)‖ on the derivative is uniformly bounded by a constant K independent of
h. The convergence rate of this theorem is sharp in the sense that it cannot be improved
over all f satisfying Assumption C.1 since it is one order worse than the local convergence
rate implied by Theorem C.6.2.

Proof. Using
∥∥∥ε(0)(nh)

∥∥∥ ≤ |||ε(nh)|||h (due to eq. (C.19)), the bound eq. (C.56), a tele-
scoping sum, and |||ε(0)|||h ≤ Kh2 (by Assumption C.3), we obtain, for all sufficiently
small h > 0, that

|||ε((n+ 1)h)|||h − |||ε(nh)|||h
eq. (C.19)
≤ |||ε((n+ 1)h)|||h −

∥∥∥ε(0)(nh)
∥∥∥

eq. (C.56)
≤ Kh2 +Kh

∥∥∥ε(0)(nh)
∥∥∥

eq. (C.19)
≤ Kh2 +Kh|||ε(nh)|||h

(tel. sum)= Kh2 + |||ε(0)|||h

+Kh
n−1∑
l=0

(|||ε((l + 1)h)|||h − |||ε(lh)|||h)

(|||ε(0)|||h≤Kh
2)

≤ Kh2

+Kh
n−1∑
l=0

(|||ε((l + 1)h)|||h − |||ε(lh)|||h) . (C.59)

Now, by a special version of the discrete Grönwall inequality (Clark, 1987), if zn and gn
are sequences of real numbers (with gn ≥ 0), c ≥ 0 is a nonnegative constant, and if

zn ≤ c+
n−1∑
l=0

glzl, for all n ∈ N, (C.60)
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then

zn ≤ c
n−1∏
l=0

(1 + gl) ≤ c exp
(
n−1∑
l=0

gl

)
, for all n ∈ N.

Application of this inequality to eq. (C.59) with zn := |||ε((n+ 1)h)|||h − |||ε(nh)|||h,
gn := Kh, and c := Kh2 yields

|||ε((n+ 1)h)|||h − |||ε(nh)|||h ≤ K(T )h2 exp (nKh) (C.61)
n≤T/h
≤ K(T )h2. (C.62)

By another telescoping sum argument and |||ε(0)|||h ≤ Kh2, we obtain

|||ε(nh)|||h
(tel. sum)=

n−1∑
l=0

(|||ε((l + 1)h)|||h − |||ε(lh)|||h)

+ |||ε(0)|||h (C.63)
eq. (C.62)
≤ nK(T )h2 +Kh2 (C.64)

n≤T/h
≤ K(T )h+Kh2 (C.65)
≤ K(T )h+Kh2, (C.66)

for all sufficiently small h > 0. Recalling that
∥∥∥ε(0)(nh)

∥∥∥ ≤ |||ε(nh)|||h, by eq. (C.19),
concludes the proof.

C.8 Calibration of credible intervals

In PN, one way to judge calibration of a Gaussian output N (m,V ) is to check whether
the implied 0.95 credible interval [m−2

√
V ,m+2

√
V ] contracts at the same rate as the

convergence rate of the posterior mean to the true quantity of interest. For the filter,
this would mean that the rate of contraction of maxn

√
P00(nh) should contract at the

same rate as maxn∈[T/h+1] ‖ε(0)(nh)‖ (recall its rates from Theorem C.7.7). Otherwise,
for a higher or lower rate of the interval it would eventually be under- or overconfident,
as h → 0. The following proposition shows—in light of the sharp bound eq. (C.58) on
the global error—that the credible intervals are well calibrated in this sense if p ∈ [1,∞].
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Theorem C.8.1. Under Assumption C.2 and for R ≡ Khp, p ∈ [0,∞], as well as
sufficiently small h > 0,

max
n∈[T/h+1]

P−00(nh) ≤ K(T )h(p+1)∧2, and (C.67)

max
n∈[T/h+1]

P00(nh) ≤ K(T )h(p+1)∧2. (C.68)

Proof. See Appendix C.20.

C.9 Numerical experiments
In this section, we empirically assess the following hypotheses:

(i) the worst-case convergence rates from Theorem C.7.7 hold not only for q = 1 but
also for q ∈ {2, 3} (see Appendix C.9.1),

(ii) the convergence rates of the credible intervals from Theorem C.8.1 hold true (see
Appendix C.9.2), and

(iii) Assumption C.4 is necessary to get these convergence rates (see Appendix C.9.3).

The three hypotheses are all supported by the experiments. These experiments are
subsequently discussed in Appendix C.9.4. Appendix C.14 contains an additional exper-
iment illustrating the convergence rates for the state misalignment δ from Lemma C.7.4.

C.9.1 Global convergence rates for q ∈ {1, 2, 3}
We consider the following three test IVPs: Firstly, a the following linear ODE

ẋ(t) = Λx(t), ∀t ∈ [0, 10], (C.69)

with Λ =
(

0 −π
π 0

)
and x(0) = (0, 1)ᵀ ,

and has the harmonic oscillator

x(t) = etΛx(0) =
(
− sin(tπ) cos(tπ)

)ᵀ
(C.70)

as a solution. Secondly, the logistic equation

ẋ(t) = λ0x(t) (1− x(t)/λ1) , ∀t ∈ [0, 1.5], (C.71)
with (λ0,λ1) = (3, 1) and x(0) = 0.1,
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Figure C.1: True solution of the FitzHugh–Nagumo model, eq. (C.73); x1 in blue and x2
in orange.

which has the logistic curve

x(t) = λ1 exp(λ0t)x(0)
λ1 + x(0)(exp(λ0t)− 1). (C.72)

And, thirdly, the FitzHugh–Nagumo model(
x1(t)
x2(t)

)
=
(
x1(t)− x1(t)

3 − x2(t)
1
τ

(x1(t) + a− bx2(t)) ,

)
,∀t ∈ [0, 10] (C.73)

with (a, b, c) = (0.08, 0.07, 1.25) and x(0) = (1, 0) which does not have a closed-form
solution. Its solution, which we approximate by Euler’s method with a step size of
h = 10−6 for the below experiments, is depicted in Figure C.1. We numerically solve
these three IVPs with the Gaussian ODE filter for multiple step sizes h > 0 and with
a q-times IBM prior (i.e. θ = 0 in eq. (C.5)) for q ∈ {1, 2, 3} and scale σ = 20. As a
measurement model, we employ the minimal R ≡ 0 and maximal measurement variance
R ≡ KRh

q (for h ≤ 1) which are permissible under Assumption C.4 whose constant
K > 0 is denoted explicitly by KR in this section. The resulting convergence rates of
global errors ‖m(T )− x(T )‖ are depicted in a work-precision diagram in Figure C.2;
cf. Hairer et al. (1987, Chapter II.1.4) for such diagrams for Runge–Kutta methods.
Now, recall from Theorem C.7.7 that, for q = 1, the global truncation error decreases
at a rate of at least hq in the worst case. Figure C.2 shows that these convergence rates
of qth order hold true in the considered examples for values of up to q = 3 if R ≡ 0 and,
for values of up to q = 3. In the case of R ≡ 0, even (q + 1)th order convergence rates
appear to hold true for all three ODEs and q ∈ {1, 2, 3}. Note that it is more difficult to
validate these convergence rates for q = 4, for all three test problems and small h > 0,
since numerical instability can contaminate the analytical rates.
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Figure C.2: Work-precision diagrams for the Gaussian ODE filter with q-times IBM
prior, for q ∈ {1, 2, 3}, applied to the linear eq. (C.71), logistic ODE eq. (C.69) and the
FitzHugh–Nagumo model. The number of function evaluations (# Evals of f), which is
inversely proportional to the step size h, is plotted in color against the logarithmic global
error at the final time T . The (dash-)dotted gray lines visualize idealized convergence
rates of orders one to four. The left and right columns employ the minimal R ≡ 0
and maximal measurement variance R ≡ KRh

q (KR = 1) which are permissible under
Assumption C.4.
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Figure C.3: Work-precision diagrams for the Gaussian ODE filter with q-times IBM prior,
for q = 1, applied to the linear eq. (C.69) and logistic ODE eq. (C.71) in the upper and
lower row, respectively. The number of function evaluations (# Evals of f), which is
inversely proportional to the step size h, is plotted in color against the logarithmic global
error at the final time T . The (dash-)dotted gray lines visualize idealized convergence
rates of orders one and two. The dashed blue lines show the posterior standard deviations
calculated by the filter. The left and right columns, respectively, employ the minimal
R ≡ 0 and maximal measurement variance R ≡ KRh

q (KR = 5.00 × 103) which are
permissible under Assumption C.4.

C.9.2 Calibration of credible intervals
To demonstrate the convergence rates of the posterior credible intervals proved in Theo-
rem C.8.1, we now restrict our attention to the case of q = 1, that was considered therein.
As in Appendix C.9.1, we numerically solve the IVPs eqs. (C.69) and (C.71) with the
Gaussian ODE filter with a once IBM prior with fixed scale σ = 1. We again employ
the minimal R ≡ 0 and maximal measurement variance R ≡ KRh

q (for h ≤ 1) which
are permissible under Assumption C.4 as a measurement model. Figure C.3 depicts the
resulting convergence rates in work-precision diagrams. As the parallel standard devi-
ation (std. dev.) and h1 convergence curves show, the credible intervals asymptotically
contract at the rate of h1 guaranteed by Theorem C.8.1. In all four diagrams of Fig-
ure C.3, the global error shrinks at a faster rate than the width of the credible intervals.
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This is unsurprising for R ≡ 0 as we have already observed convergence rates of hq+1

in this case. While this effect is less pronounced for R ≡ KRh
q, it still results in un-

derconfidence as h→ 0. Remarkably, the shrinking of the standard deviations seems to
be ‘adaptive’ to the numerical error—by which we mean that, as long as the numerical
error hardly decreases (up to 101.75 evaluations of f), the standard deviation also stays
almost constant, before adopting its h1 convergence asymptotic (from ≈ 102.00).

C.9.3 Necessity of Assumption C.4
Having explored the asymptotic properties under Assumption C.4 in Appendices C.9.1
and C.9.2, we now turn our attention to the question of whether this assumption is
necessary to guarantee the convergence rates from Theorems C.7.7 and C.8.1. This
question is of significance, because Assumption C.4 is weaker than the R ≡ 0 assumption
of the previous theoretical results (i.e. Proposition 1 and Theorem 1 in Schober et al.
(2019)) and it is not self-evident that it cannot be further relaxed. To this end, we
numerically solve the logistic ODE eq. (C.71) with the Gaussian ODE filter with a once
IBM prior with fixed scale σ = 1 and measurement variance R ≡ KRh

1/2, which is
impermissible under Assumption C.4, for increasing choices of KR from 0.00 × 100 to
1.00× 107. In the same way as in Figure C.3, the resulting work-precision diagrams are
plotted in Figure C.4.
In contrast to the lower left diagram in Figure C.3, which presents the same experiment

for R ≡ KRh
q (the maximal measurement variance permissible under Assumption C.4),

the rate of h2, that is again observed for KR = 0 in the first diagram, is already missed
for KR = 1.00 × 100 in the second diagram. With growing constants, the convergence
rates of the actual errors as well as the expected errors (standard deviation) decrease
from diagram to diagram. In the center diagram with KR = 3.73 × 103, the rates are
already slightly worse than the h1 convergence rates guaranteed by Theorems C.7.7 and
C.8.1 under Assumption C.4, whereas, for KR = 5.00 × 103, the convergence rates in
the lower left plot of Figure C.3 were still significantly better than h1. For the greater
constants up to KR = 1.00 × 107, the rates even become significantly lower. Notably,
as in the lower right diagram of Figure C.3, the slope of the standard deviation curve
matches the slope of the global error curve, as can be seen best in the lower right
subfigure—thereby asymptotically exhibiting neither over- nor underconfidence. These
experiments suggest that the convergence rates from Theorems C.7.7 and C.8.1 do not
hold in general for R ≡ KRh

1/2. Hence, it seems likely that Assumption C.4 is indeed
necessary for our results and cannot be further relaxed without lowering the implied
worst-case convergence rates.

C.9.4 Discussion of experiments
Before proceeding to our overall conclusions, we close this section with a comprehen-
sive discussion of the above experiments. First and foremost, the experiments in Ap-
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Figure C.4: Work-precision diagrams for the Gaussian ODE filter with q-times IBM
prior, for q = 1 and R ≡ KRh

1/2, applied to the logistic ODE eq. (C.71) for increasing
values of KR. The number of function evaluations (# Evals of f), which is inversely
proportional to the step size h, is plotted in blue against the logarithmic global error
at the final time T . The (dash-)dotted gray lines visualize idealized convergence rates
of orders one and two. The dashed blue lines show the posterior standard deviations
calculated by the filter.
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pendix C.9.1 suggest that Theorem C.7.7, the main result of this paper, might be gen-
eralizable to q ∈ {2, 3} and potentially even higher q ∈ N—although unresolved issues
with numerical instability for small step sizes prevent us from confidently asserting that
these theoretical results would hold in practice for q ≥ 4. Moreover, we demonstrated
the contraction rates of the posterior credible intervals from Theorem C.8.1 and evidence
for the necessity of Assumption C.4 in Appendices C.9.2 and C.9.3. The asymptotics
revealed by these experiments can be divided by the employed measurement model into
three cases: the zero-noise case R ≡ 0, the permissible non-zero case R ≤ KRh

q (under
Assumption C.4) and the non-permissible case R � KRh

q. First, if R ≡ 0, the diagrams
in the left column of Figure C.2 reaffirm the hq+1 convergence reported for q ∈ {1, 2}
in Schober et al. (2019, Figure 4) and extend them to q = 3 (see Appendix C.10 for
a discussion on why we expect the above global convergence proofs to be extensible to
q ≥ 2)
The contraction rates of the credible intervals, for q = 1, appear to be asymptotically

underconfident in this case as they contract faster than the error. This underconfidence
is not surprising in so far as the posterior standard deviation is a worst-case bound
for systems modeled by the prior, while the convergence proofs require smoothness of
the solution of one order higher than sample paths from the prior. This is a typical
result that highlights an aspect known to, but on the margins of classic analysis: The
class of problems for which the algorithm converges is rougher than the class on which
convergence order proofs operate. How to remedy such overly-cautious UQ remains an
open research question in PN as well as classical numerical analysis.
Secondly, in the case of R > 0, as permissible under Assumption C.4, the convergence

rates are slightly reduced compared to the case R ≡ 0, exhibiting convergence between
hq and hq+1. The asymptotic underconfidence of the credible intervals, however, is either
reduced or completely removed as depicted in the right column of Figure C.3. Thirdly,
in the final case of an impermissibly large R > 0, the hq convergence speed guaranteed
by Theorem C.7.7 indeed does not necessarily hold anymore—as depicted in Figure C.4.
Note, however, that even then the convergence rate is only slightly worse than hq. The
asymptotic UQ matches the observed global error in this case, as the parallel standard
deviation and the h1 curves in all but the upper left R ≡ 0 diagram show.
Overall, the experiments suggest that, in absence of statistical noise on f , a zero-

variance measurement model yields the best convergence rates of the posterior mean.
Maybe this was expected as, in this case, R only models the inaccuracy from the trunca-
tion error, that ideally should be treated adaptively (Kersting and Hennig, 2016, Section
2.2). The convergence rates of adaptive noise models should be assessed in future work.
As the observed convergence rates in practice sometimes outperform the proved worst-
case convergence rates, we believe that an average-case analysis of the filter in the spirit
of Ritter (2000) may shed more light upon the expected practical performance. Fur-
thermore, it appears that the UQ becomes asymptotically accurate as well as adaptive
to the true numerical error as soon as the R > 0 is large enough. This reinforces our
hope that these algorithms will prove useful for IVPs when f is estimated itself (Hennig
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et al., 2015, Section 3(d)), thereby introducing a R > 0.

C.10 Conclusions
We presented a worst-case convergence rate analysis of the Gaussian ODE filter, com-
prising both local and global convergence rates. While local convergence rates of hq+1

were shown to hold for all q ∈ N, IBM and IOUP prior as well as any noise model R ≥ 0,
our global convergence results is restricted to the case of q = 1, IBM prior and fixed
noise model R ≡ Khp with p ∈ [1,∞]. While a restriction of the noise model seems
inevitable, we believe that the other two restrictions can be lifted: In light of Theorem
C.6.2, global convergence rates for the IOUP prior might only require an additional
assumption that ensures that all possible data sequences {y(nh);n = 1, . . . ,T/h} (and
thereby all possible qth-state sequences {m(q)(nh);n = 0, . . . ,T/h}) remain uniformly
bounded (see discussion in Remark C.6.3). For the case of q ≥ 2, it seems plausible that
a proof analogous to the presented one would already yield global convergence rates of
order hq,3 as suggested for q ∈ {2, 3} by the experiments in Appendix C.9.1.
The orders of the predictive credible intervals can also help to intuitively explain the

threshold of p = 1 (or maybe more generally: p = q; see Figure C.2) below which
the performance of the filter is not as good, due to eqs. (C.45) to (C.49): According
to Kersting and Hennig (2016, Equation (20)), the ‘true’ (push-forward) variance on
y(t) given the predictive distribution N (m−(t),P−(t)) is equal to the integral of ffᵀ

with respect to N (m−(t),P−(t)), whose maximum over all time steps, by eq. (C.67),
has order O(h

p+1
2 ∧1) if ffᵀ is globally Lipschitz—since P−(t) enters the argument of

the integrand ffᵀ, after a change of variable, only under a square root. Hence, the
added ‘statistical’ noise R on the evaluation of f is of lower order than the accumulated
‘numerical’ variance P−(t) (thereby preventing numerical convergence) if and only if
p < 1. Maybe this, in the spirit of Hennig et al. (2015, Subsection 3(d)), can serve as a
criterion for vector fields f that are too roughly approximated for a numerical solver to
output a trustworthy result, even as h→ 0.
Furthermore, the competitive practical performance of the filter, as numerically demon-

strated in Schober et al. (2019, Section 5), might only be completely captured by an
average-case analysis in the sense of Ritter (2000), where the average error is computed
with respect to some distribution p(f), i.e. over a distribution of ODEs. To comprehend
this idea, recall that the posterior filtering mean is the Bayes estimator with minimum
mean squared error in linear dynamical systems with Gauss–Markov prior (as defined
by the SDE eq. (C.2)), i.e. when the data is not evaluations of f but real i.i.d. mea-
surements, as well as in the special case of ẋ(t) = f(t), when the IVP simplifies to a

3According to Loscalzo and Talbot (1967), the filter might, however, suffer from numerical instability
for high choices of q. (See Schober et al. (2019, Section 3.1) for an explanation of how such results
on spline-based methods concern the ODE filter.)
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quadrature problem—see Solak et al. (2003) and O’Hagan (1991, Section 2.2) respec-
tively. In fact, the entire purpose of the update step is to correct the prediction in the
(on average) correct direction, while a worst-case analysis must assume that it corrects
in the worst possible direction in every step—which we execute by the application of the
triangle inequality in eq. (C.28) resulting in a worst-case upper bound that is the sum
of the worst-case errors from prediction and update step. An analysis of the probabil-
ities of ‘good’ vs. ‘bad’ updates might therefore pave the way for such an average-case
analysis in the setting of this paper. Since, in practice, truncation errors of ODE solvers
tend to be significantly smaller than the worst case—as mirrored by the experiments in
Appendix C.9—such an analysis might be useful for applications.
Lastly, we hope that the presented convergence analysis can lay the foundations for

similar results for the novel ODE filters (extended KF, unscented KF, particle filter)
introduced in Tronarp et al. (2019a), and can advance the research on uncertainty-
aware likelihoods for inverse problems by ODE filtering (Kersting et al., 2020b, Section
3).
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Supplementary Material for
Kersting et al. (2020a)

C.11 Supplement I: Derivation of A and Q

As derived in Särkkä (2006, Section 2.2.6) the solution of the SDE eq. (C.2), i.e.

dX(t) =


dX(0)(t)

...
dX(q−1)(t)
dX(q)(t)

 (C.74)

=


0 1 0 . . . 0
... . . . . . . 0
... . . . 1
c0 . . . . . . cq


︸ ︷︷ ︸

=:F


X(0)(t)

...
X(q−1)(t)
X(q)(t)


︸ ︷︷ ︸

=X(t)

dt+


0
...
0
σ


︸ ︷︷ ︸

=:L

dB(t),

where we omitted the index j for simplicity, is a Gauss–Markov process with mean m(t)
and covariance matrix P (t) given by

m(t) = A(t)m(0), P (t) = A(t)P (0)A(t)ᵀ +Q(t), (C.75)

where the matrices A, Q ∈ R(q+1)×(q+1) are explicitly defined by

A(t) = exp(tF ), (C.76)

Q(t) :=
∫ t

0
exp(F (t− τ))LLᵀ exp(F (t− τ))ᵀ dτ . (C.77)

Parts of the following calculation can be found in Magnani et al. (2017). If we choose
c0, . . . , cq−1 = 0 and cq = −θ (for θ ≥ 0) in eq. (C.74) the unique strong solution of the
SDE is a q-times IOUP, if θ > 0, and a q-times IBM, if θ = 0; see e.g. Karatzas and
Shreve (1991, Chapter 5: Example 6.8). By eq. (C.77) and(

(tF )k
)
i,j

= tk
[
Ij−i=k + (−θ)k+i−qI{j=q, i+k≥q}

]
, (C.78)
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C.11 Supplement I: Derivation of A and Q

it follows that

A(t)ij =
(∑∞

k=0
(tF )k

k!

)
i,j

(C.79)

=


Ii≤j t

j−i

(j−i)! , if j 6= q,
1

(−θ)q−i

∑∞
k=q−i

(−θt)k

k! , if j = q,

=
Ii≤j

t
j−i

(j−i)! , if j 6= q,
t
q−i

(q−i)! − θ
∑∞
k=q+1−i

(−θ)k+i−q−1
t
k

k! , if j = q.

Analogously, it follows that

exp(F (t− τ)) (C.80)

=

Ii≤j
(t−τ)j−i

(j−i)! , if j 6= q,
(t−τ)q−i

(q−i)! − θ
∑∞
k=q+1−i

(−θ)k+i−q−1(t−τ)k

k! , if j = q,
.

If we insert eq. (C.80) into eq. (C.77), then we obtain, by the sparsity of L, that

Q(t)ij (C.81)

= σ2

(−θ)2q−i−j

∫ t

0

 ∞∑
k=q−i

(−θτ)k

k!

 ∞∑
l=q−j

(−θτ)l

l!

 dτ ,

and the dominated convergence theorem (with dominating function τ 7→ e2θτ ) yields

Q(t)ij = σ2

(−θ)2q−i−j

∞∑
k=q−i

∞∑
l=q−j

∫ t

0

(−θτ)k+l

k!l! dτ

= σ2

(−θ)2q−i−j

∞∑
k=q−i

∞∑
l=q−j

(−θ)k+l tk+l+1

(k + 1 + l)k!l! . (C.82)

Now, by extracting the first term and noticing that the rest of the series is in Θ(t2q+2−i−j),
it follows that

Q(t)ij = σ2 t2q+1−i−j

(2q + 1− i− j)(q − i)!(q − j)!
+ Θ

(
t2q+2−i−j) . (C.83)
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C.12 Supplement II: Extension to x with dependent
dimensions

The algorithm in Appendix C.2.2 employs a priorX with independent dimensionsXj =(
X

(0)
j , . . . ,X(q)

j

)ᵀ
, j ∈ [d], by eq. (C.2). While this constitutes a loss of generality for

our new theoretical results, which do not immediately carry over to the case of x with
dependent dimensions, it is not a restriction to the class of models the algorithm can
employ. To construct such a priorX, we first stack its dimensions into the random vector
X = (Xᵀ

0, . . . ,Xᵀ
d−1)ᵀ, choose symmetric positive semi-definite matrices Kx,Kε ∈ Rd×d,

and define, using the Kronecker product ⊗, its law according to the SDE

dX(t) = [Kx ⊗ F ]X(t) dt+ [Kε ⊗ L] dB(t), (C.84)

with initial condition X(0) ∼ N (m(0),P (0)), mean m(0) ∈ Rd(q+1) and covariance
matrix P (0) ∈ Rd(q+1)×d(q+1), as well as an underlying d-dimensional Brownian motion
B (independent ofX(0)). Now, insertion ofKx⊗F andKε⊗L for F and L into eq. (C.77)
yields new predictive matrices Ã and Q̃. If we now choose Kx = Id and Kε = Id,
substitute Ã and Q̃ for A and Q in eqs. (C.9) and (C.10), and use the d(q+1)-dimensional
GPX from eq. (C.84) with m(0) ∈ Rd(q+1) and P (0) ∈ Rd(q+1)×d(q+1) as a prior, we have
equivalently defined the version of Gaussian ODE filtering with independent dimensions
from Appendix C.2.2. If we, however, choose different symmetric positive semi-definite
matrices for Kx and Kε, we introduce, via Ã and Q̃, a correlation in the development
of the solution dimensions (x0, . . . ,xd−1)ᵀ as well as the error dimensions (ε0, . . . , εd)ᵀ
respectively. Note that, while Kε plays a similar role as Ch in Conrad et al. (2017,
Assumption 1) in correlating the numerical errors, the matrixKx additionally introduces
a correlation of the numerical estimates, that is m, along the time axis. Even more
flexible correlation models (over all modeled derivatives) can be employed by inserting
arbitrary matrices (of the same dimensionality) for Kx ⊗ F and Kε ⊗ L in eq. (C.84),
but such models seem hard to interpret. For future research, it would be interesting
to examine whether such GP models with dependent dimensions are useful in practice.
There are first publications (Xiaoyue et al., 2018; Gessner et al., 2019) on this topic for
integrals, but not yet for ODEs.
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C.13 Supplement III: Illustrative example

C.13 Supplement III: Illustrative example

To illustrate the algorithm defined in Appendix C.2.2, we apply it to a special case of
the Riccati equation (Davis, 1962, p. 73)

dx

dt
(t) = f(x(t)) = −(x(t))3

2 , x(0) = 1, (C.85)(
solution: x(t) = (t+ 1)−1/2

)
, (C.86)

with step size h = 0.1, measurement noise R = 0.0 (for simplicity) as well as prior
hyperparameters q = 1, σ2 = 10.0 and ci = 0 for all i ∈ [q+1] (recall eq. (C.2)), i.e. with
a 1-times integrated Brownian motion prior whose drift and diffusion matrices are, by
eq. (C.8), given by

A(h) =
(

1 h
0 1

)
, Q(h) =

(
1/300 1/20
1/20 1

)
. (C.87)

As the ODE eq. (C.85) is one-dimensional (i.e. d = 1), the dimension index j ∈ [d]
is omitted in this section. Since the initial value and derivative are certain at x(0) =
1 and ẋ(0) = f(x0) = −1/2, our prior GP is initialized with a Dirac distribution
(i.e. X(0) = (X(0)(0),X(1)(0))ᵀ ∼ δ(x0,f(x0)) = δ(1,−1/2)). Therefore, m(0) = (1,−1/2)ᵀ

and P (0) = 0 ∈ R2×2 for the initial filtering mean and covariance matrix. Now, the
Gaussian ODE Filter computes the first integration step by executing the prediction
step eqs. (C.9) and (C.10)

m−(h) = A(h)m−(0)
=
(
m(0)(0) + hm(1)(0),m(1)(0)

)ᵀ
= (19/20,−1/2)ᵀ , and (C.88)

P−(h) = 0 +Q(h) =
(

1/300 1/20
1/20 1

)
. (C.89)

Note that, for all i ∈ [q + 1], m−,(i)(h) is obtained by a (q − i)th-order Taylor expansion
of the state m(0) = (x0, f(x0))ᵀ ∈ Rq+1. Based on this prediction, the data is then
generated by

y(h) = f
(
m−,(0)(h)

) eq. (C.88)= f(19/20)
eq. (C.85)= −6859/16000 (C.90)

with variance R = 0.0. In the subsequent update step eqs. (C.9) and (C.11) to (C.13), a
Bayesian conditioning of the predictive distribution eqs. (C.88) and (C.89) on this data
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is executed:

β(h) =
(
β(0)(h), β(1)(h)

)ᵀ
=
(

P−(h)01

(P−(h))11 +R
, P−(h)11

(P−(h))11 +R

)ᵀ

eq. (C.89)=
( 1

20, 1
)ᵀ

, (C.91)

r(h) = y(h)−m−,(1)(h)
eqs. (C.88),(C.90)= −6859/16000 + 1/2
= 1141/16000, (C.92)

m(h) eq. (C.9)=
(
m−,(0)(h) + β(0)(h)r(h)
m−,(1)(h) + β(1)(h)r(h)

)
eqs. (C.88),(C.91),(C.92)=

(
305141/320000
−6859/16000

)
, (C.93)

which concludes the step from 0 to h. The next step h → 2h starts with computing
m−,(i)(2h) by a (q− i)th-order Taylor expansion of the ith state m(i)(h), for all i ∈ [q+1].
Note that, now, there is a non-zero state misalignment (recall eq. (C.25)):

δ(1)(h) eq. (C.25)=
∣∣∣m(1)(h)− f

(
m(0)(h)

)∣∣∣ (C.94)

=
∣∣∣∣∣− 6859

16000 −
1
2

(305141
320000

)3∣∣∣∣∣ (C.95)

≈ 0.00485 > 0 (C.96)

which confirms the exposition on the possibility of δ(i) > 0 from Appendix C.4. Note that
δ tends to increase with R; e.g., if R = 1.0 in the above example, then δ(1)(h) ≈ 0.03324.

C.14 Supplement IV: Experiment for global
convergence of state misalignments δ

Figure C.5 depicts the global convergence of the state misalignment δ(1)(T ) in the above
example eq. (C.85), as detailed in Appendix C.13, for q ∈ {1, 2, 3}. The plotting is
analogous to Figure C.2. The resulting convergence rates of hq+1 confirm Lemma C.7.4
and suggest that it may also be generalizable to q ∈ {2, 3, . . . }.
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C.15 Supplement V: Proof of eq. (C.23)

10−3.0 10−6.0 10−9.0 10−12.0 10−15.0

101.50

102.00

102.50

103.00

state misalignment δ(1)(T )

q=1
q=2
q=3
h1 conv.
h2 conv.
h3 conv.
h4 conv.

Figure C.5: Work-precision diagram plotting the number of function evaluations (# Evals
of f) against the final state misalignment δ(1)(T ) on the Riccati equation eq. (C.85);
cf. Figure C.2.

C.15 Supplement V: Proof of eq. (C.23)
We prove the stronger statement

Φ(i+1)
t (a) = f (i)

(
Φ(0)
t (a)

)
, (C.97)

from which eq. (C.23) follows by inserting t = 0 and Φ(0)
0 (a) = a. Hence, it remains to

show eq. (C.97).

of eq. (C.97). By induction over i ∈ {0, . . . , q}. The base case (i = 0) is obtained
using the fundamental theorem of calculus and f (1) = f : Φ(1)

t (a) = f
(
Φ(0)
t (a)

)
=

f (1)
(
Φ(0)
t (a)

)
. For the inductive step (i − 1) → i, we conclude (using the inductive

hypothesis (IH), the chain rule (CR), the base case (BC) and f (i) = ∇xf
(i−1) · f) that

Φ(i+1)
t (a) = d

dt
Φ(i)
t (a)

(IH)= d

dt
f (i−1)

(
Φ(0)
t (a)

)
(CR)= ∇xf

(i−1)
(
Φ(0)
t (a)

) d

dt
Φ(0)
t (a)

= ∇xf
(i−1)

(
Φ(0)
t (a)

)
· f
(
Φ(0)
t (a)

)
=
[
∇xf

(i−1) · f
] (

Φ(0)
t (a)

)
(BC)= f (i)

(
Φ(0)
t (a)

)
. (C.98)
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C.16 Supplement VI: Proof of Lemma C.5.2

Proof. Again, w.l.o.g. d = 1. Recall that, by eq. (C.13), r is implied by the values of
m−,(0) and m−,(1). By insertion of

m−,(i)((n+ 1)h)

=
q∑
k=i

hk−i

(k − i)!m
(k)(nh) +Kθ

∣∣∣m(q)(nh)
∣∣∣hq+1−i (C.99)

(due to eqs. (C.8) and (C.14)) into the definition eq. (C.13) of r((n + 1)h), we obtain
the following equality which we then bound by repeated application of the triangle
inequality:

|r((n+ 1)h)| =
∣∣∣∣∣∣f
( q∑
k=0

hk

k!m
(k)(nh) +Kθ

∣∣∣m(q)(nh)
∣∣∣hq+1

)

−
( q∑
k=1

hk−1

(k − 1)!m
(k)(nh) +Kθ

∣∣∣m(q)(nh)
∣∣∣hq)

∣∣∣∣∣∣
≤
∣∣∣∣∣∣f
( q∑
k=0

hk

k!m
(k)(nh) +Kθ

∣∣∣m(q)(nh)
∣∣∣hq+1

)

−
( q∑
k=1

hk−1

(k − 1)!m
(k)(nh)

) ∣∣∣∣∣∣ + Kθ
∣∣∣m(q)(nh)

∣∣∣hq
eq. (C.25)
≤ I1(h) + I2(h) + I3(h)

+
q∑

k=1

hk−1

(k − 1)!δ
(k)(nh) +Kθ

∣∣∣m(q)(nh)
∣∣∣hq, (C.100)

where I1, I2, and I3 are defined and bounded as follows, using Assumption C.1 and
Lemma C.3.1:

I1(h) :=
∣∣∣∣∣∣f
( q∑
k=0

hk

k!m
(k)(nh) +Kθ

∣∣∣m(q)(nh)
∣∣∣hq+1

)

− f
( q∑
k=0

hk

k! Φ(k)
0

(
m(0)(nh)

)) ∣∣∣∣∣∣
≤ L

q∑
k=0

hk

k! δ
(k)(nh) + LKθ

∣∣∣m(q)(nh)
∣∣∣hq+1, (C.101)
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I2(h) :=
∣∣∣∣f
( q∑
k=0

hk

k! Φ(k)
0

(
m(0)(nh)

))
− f

(
Φ(0)
h

(
m(0)(nh)

)) ∣∣∣∣
≤ L

∣∣∣∣∣
q∑

k=0

hk

k! Φ(k)
0

(
m(0)(nh)

)
− Φ(0)

h

(
m(0)(nh)

)∣∣∣∣∣
eq. (C.16)
≤ Khq+1, (C.102)

and

I3(h) :=
∣∣∣∣∣Φ(1)

h

(
m(0)(nh)

)
−

q∑
k=1

hk−1

(k − 1)!Φ
(k)
0

(
m(0)(nh)

)∣∣∣∣∣
eq. (C.16)
≤ Khq. (C.103)

Inserting eq. (C.101), eq. (C.102), and (C.103) into eq. (C.100) (and recalling δ(0) = 0)
yields eq. (C.31).

C.17 Supplement VII: Proof of Lemma C.7.1

Proof. Let ũ0 = u∗ and ũn = Tn(ũn−1), for n ∈ N. Then,

d(u∗,xn) ≤ d(u∗,un)︸ ︷︷ ︸
→0

+ d(un, ũn)︸ ︷︷ ︸
=:an

+ d(ũn,xn)︸ ︷︷ ︸
→0

, (C.104)

where the last summand goes to zero by

d(ũn,xn) = d ((Tn ◦ · · · ◦ T1)(u∗), (Tn ◦ · · · ◦ T1)(x0))
≤ L̄nd(u∗,x0) → 0, as n→∞.

Hence, it remains to show that limn→∞ an = 0. The L̄-Lipschitz continuity of Tn and
the triangle inequality yield that

an = d(Tn(un),Tn(ũn−1))
≤ L̄ [d(un,un−1) + d(un−1, ũn−1)]
= L̄an−1 + bn−1, (C.105)

where bn := L̄d(un+1,un)→ 0. Now, for allm ∈ N, let a(m)
0 := a0 and a(m)

n := L̄a
(m)
n−1+bm.

By BFT, limn→∞ a
(m)
n = bm/(1− L̄). Since, for all m ∈ N, an ≤ a(m)

n for sufficiently large
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n, it follows that

0 ≤ lim sup
n→∞

an ≤ lim
n→∞ a

(m)
n = bm

1− L̄ , ∀m ∈ N. (C.106)

Since the convergent sequence un is in particular a Cauchy sequence, limm→∞ bm = 0
and, hence, 0 ≤ limn→∞ an = lim supn→∞ an ≤ 0. Hence, limn→∞ an = 0.

C.18 Supplement VIII: Proof of Proposition C.7.2

Proof. Again, w.l.o.g. d = 1. We prove the claims in the following order: eq. (C.39),
eq. (C.45), eq. (C.40), eq. (C.46), eq. (C.41), eq. (C.43), eq. (C.44), eq. (C.42), eq. (C.49),
eq. (C.48), eq. (C.47). The sharpness of these bounds is shown, directly after they are
proved. As a start, for eq. (C.39), we show that P−,∞

11 is indeed the unique fixed point of
the recursion for {P−11(nh)}n by checking that, if P−11(nh) = 1

2

(
σ2h+

√
4σ2Rh+ σ4h2

)
,

then also P−11((n+ 1)h) = 1
2

(
σ2h+

√
4σ2Rh+ σ4h2

)
:

P11((nh)) eq. (C.15)= P−11(nh)
(

1− P−11(nh)
P−11(nh) +R

)
= P−11(nh)

(
R

P−11(nh) +R

)
(C.107)

=
σ2h+

√
4σ2Rh+ σ4h2

2

 ·
 R

σ
2
h+
√

4σ2
Rh+σ4

h
2

2 +R



=

(
σ2h+

√
4σ2Rh+ σ4h2

)
R

σ2h+
√

4σ2Rh+ σ4h2 + 2R
.

P11((nh)) eq. (C.15)= P−11(nh)
(

1− P−11(nh)
P−11(nh) +R

)

=

(
σ2h+

√
4σ2Rh+ σ4h2

)
R

σ2h+
√

4σ2Rh+ σ4h2 + 2R
, and (C.108)

P−11((n+ 1)h) = P11(nh) + σ2h

eq. (C.108)= 1
2

(
σ2h+

√
4σ2Rh+ σ4h2

)
= P−11(nh). (C.109)
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After combining eq. (C.108) and eq. (C.109), the recursion for P−11 is given by

P−11((n+ 1)h) =
(

R

P−11(nh) +R

)
︸ ︷︷ ︸

=:α(nh)

P−11(nh) + σ2h (C.110)

=: T̃
(
P−11(nh)

)
. (C.111)

Since R and P−11(nh) are positive variances, we know that infn∈[T/h+1] P
−
11(nh) ≥ σ2h,

and hence maxn∈[T/h+1] α(nh) ≤ R/(σ2h+R) < 1. Hence, T̃ is a contraction. By BFT,
P−,∞

11 is the unique (attractive) fixed point of T̃ , and the sequence {|P−11(nh)− P−,∞
11 |}n

is strictly decreasing. Since, by eq. (C.15), eq. (C.6) with θ = 0 and Assumption C.2,

P−11(h) = P11(0) + σ2h ≤ Kh, (C.112)

we can, using the reverse triangle inequality and the (by BFT) strictly decreasing se-
quence {|P−11(nh)− P−,∞

11 |}n, derive eq. (C.45):∣∣∣P−11(nh)
∣∣∣ ≤ ∣∣∣P−11(nh)− P−,∞

11

∣∣∣︸ ︷︷ ︸
≤|P−11(h)−P−,∞

11 |

+
∣∣∣P−,∞

11

∣∣∣ (C.113)

≤ P−11(h)︸ ︷︷ ︸
≤Kh

+ 2P−,∞
11︸ ︷︷ ︸

≤Kh1∧ p+1
2 , by eq. (C.39)

(C.114)

≤ Kh1∧ p+1
2 , (C.115)

which is sharp because it is estimated against the maximum of the initial P−11 and
the steady state that can both be attained. Recall that, by eq. (C.108), P11(nh) de-
pends continuously on P−11(nh), and, hence, inserting eq. (C.39) into eq. (C.108) yields
eq. (C.40)—the necessary computation was already performed in eq. (C.108). Since
P11(nh) monotonically increases in P−11(nh) (because the derivative of P11(nh) with re-
spect to P−11(nh) is non-negative for all P−11(nh) due to R ≥ 0; see eq. (C.108)), we obtain
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eq. (C.46):

P11(nh)
eq. (C.108)
≤

(
maxn P−11(nh)

)
R

maxn P−11(nh) +R
(C.116)

R∼hp

≤ Kh1∧ p+1
2 Khp

Kh1∧ p+1
2 +Khp

(C.117)

≤ Kh(p+1)∧ 3p+1
2

Kh1∧p (C.118)

≤
Kh

p+1
2 , if p ≤ 1,

Khp, if p ≥ 1,
(C.119)

≤ Khp∨
p+1

2 , (C.120)

which is sharp because the steady state eq. (C.45) has these rates. For eq. (C.41), we
again first construct the following recursion (from eq. (C.10), eq. (C.15) and eq. (C.6)
with θ = 0)

P−01((n+ 1)h) = R

P−11(nh) +R︸ ︷︷ ︸
=α(nh)

P−01 (nh)

+
(
P11(nh) + σ2h

2

)
h︸ ︷︷ ︸

=:g(nh)

(C.121)

= Tn
(
P−01(nh)

)
, (C.122)

where the α(nh)-Lipschitz continuous contractions Tn satisfy the prerequisites of Lemma
C.7.1, since supn α(nh) ≤ R/(σ2h+R) < 1 (due to infn P−11(nh) ≥ σ2h) and the sequence
of fixed points (1 − α(nh))−1g(nh) of Tn (defined by BFT) converges. Both α(nh)
and g(nh) depend continuously on P−11(nh). Hence, insertion of the limits eqs. (C.39)
and (C.40) yield

lim
n→∞ (1− α(nh))−1 = σ2h+

√
4σ2Rh+ σ4h2 + 2R

σ2h+
√

4σ2Rh+ σ4h2
, (C.123)
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and

lim
n→∞g(nh) (C.124)

= (σ4h2 + (2R + σ2h)
√

4σ2Rh+ σ4h2 + 4Rσ2h)

2(σ2h+
√

4σ2Rh+ σ4h2 + 2R)
h.

Now, application of Lemma C.7.1 implies convergence of the recursion eq. (C.122) to
the product of these two limits eqs. (C.123) and (C.124), i.e. eq. (C.41):

lim
n→∞P

−
01(nh) = lim

n→∞ (1− α(nh))−1 × lim
n→∞ g(nh)

= σ4h2 + (2R + σ2h)
√

4σ2Rh+ σ4h2 + 4Rσ2h

2(σ2h+
√

4σ2Rh+ σ4h2)
h.

For eqs. (C.43) and (C.44), we can simply insert eqs. (C.39) and (C.41) for P−01(nh) and
P−11(nh) respectively into their definition eq. (C.11):

β∞,(0) eq. (C.11)= P−,∞
01

P−,∞
11 +R

(C.125)

eqs. (C.39) and (C.41)=

√
4Rσ2h+ σ4h2

σ2h+
√

4Rσ2h+ σ4h2
h, (C.126)

and

β∞,(1) eqs. (C.11) and (C.39)= σ2h+
√

4σ2Rh+ σ4h2

σ2h+
√

4σ2Rh+ σ4h2 + 2R
. (C.127)

These steady states eqs. (C.43) and (C.44) are again unique and attractive because
β(0)(nh) and β(1)(nh) depend continuously on P−11(nh) and P−01(nh). Next, recall that

P01(nh) eq. (C.15)=
(

1− P−11(nh)
P−11(nh) +R

)
P−01(nh) (C.128)

= R
P−01(nh)

P−11(nh) +R

eq. (C.11)= Rβ(0)(nh), (C.129)

which, since P01(nh) depends continuously on β(0)(nh), implies the unique (attractive)
fixed point P∞01 (nh) = Rβ∞,(0), which yields eq. (C.42). Now, exploiting eq. (C.11) and
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infn P−11(nh) ≥ σ2h yields eq. (C.49):
∣∣∣1− β(1)(nh)

∣∣∣ = R

P−11(nh) +R
(C.130)

≤ R

σ2h+R
(C.131)

R∼hp

= Khp

Kh+Khp
(C.132)

≤ Kh(p−1)∨0, (C.133)

which is sharp because infn P−11(nh) ≥ Kh is sharp (due to eqs. (C.6) and (C.10)). And
since, for β(0), maximizing over both P−01(nh) and P−11(nh) at the same time does not
yield a sharp bound (while above in eqs. (C.120) and (C.130) the maximization over just
one quantity does), we prove eq. (C.48) by inductively showing that∣∣∣β(0)(nh)

∣∣∣ ≤ β̂h, ∀n ∈ N, (C.134)

with β̂ :=
(2K0

σ2 + 1
2

)
∨ 1 > 0, (C.135)

where K0 > 0 is the constant from Assumption C.2. The constant β̂ is independent of
n and a possible choice for K in eq. (C.48). The base case (n = 1) follows from

∣∣∣β(0)(h)
∣∣∣ =

∣∣∣P−01(h)
∣∣∣

P−11(h) +R
(C.136)

eq. (C.10)
≤ |P01(0)|+ hP11(0) + σ

2

2 h
2

σ2h
(C.137)

Ass. C.2
≤

(2K0

σ2 + 1
2

)
h (C.138)

≤ β̂h. (C.139)

In the following inductive step (n−1→ n) we, to avoid notational clutter, simply denote
P−((n− 1)h)ij by P−ij which leaves us—by eq. (C.11), eq. (C.10) and eq. (C.15)—with
the following term to bound:

∣∣∣β(0)(nh)
∣∣∣ =

∣∣∣P−01(nh)
∣∣∣

P−11(nh) +R
(C.140)

≤
∣∣∣P−01

∣∣∣α(nh) + hP−11α(nh) + σ
2

2 h
2

P−11α(nh) + σ2h+R
, (C.141)
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with α(nh) =
(

1− P
−
11

P
−
11+R

)
= R

P
−
11+R

. Application of the inductive hypothesis (i.e. P−01 ≤
β̂(P−11 +R)) yields, after some rearrangements, that

∣∣∣β(0)(nh)
∣∣∣ ≤ β̂

(
P−11 +R

)
hα(nh) + hP−11α(nh) + σ

2

2 h
2

P−11α(nh) + σ2h+R

=
2β̂P−11R + σ2h

(
P−11 +R

)
+ 2P−11R + 2β̂R2

2
(
P−11R + σ2h

(
P−11 +R

)
+ P−11R +R2

) h

= 2(β̂ + 1)Λ1 + Λ2 + 2β̂Λ3
4Λ1 + 2Λ2 + 2Λ3

h, (C.142)

with Λ1 := 2P−11R, Λ2 := σ2h
(
P−11 +R

)
, and Λ3 := R2. Now, application of β̂ ≥ 1

yields |β(0)(nh)| ≤ β̂h, which completes the inductive proof of eq. (C.134). This implies
eq. (C.48), which is sharp because it is the order of β(0) in the steady state eq. (C.43),
for all p ∈ [0,∞]. Now, insertion of eq. (C.48) into eq. (C.128) immediately yields
eq. (C.47), which—by eq. (C.128)—inherits the sharpness of eq. (C.48).

C.19 Supplement IX: Proof of Lemma C.7.4

Proof. For all n ∈ [T/h+ 1], we can estimate

δ(1)(nh) =
∥∥∥m(1) (nh)− f

(
m(0) (nh)

)∥∥∥ (C.143)

=
∥∥∥Ψh

(1)(m((n− 1)h)− f
(
m(0) (nh)

)∥∥∥ (C.144)

≤
∥∥∥Ψh

(1)(m((n− 1)h)− f
(
m−,(0) (nh)

)∥∥∥︸ ︷︷ ︸
=:J1(h)

+
∥∥∥f (m−,(0) (nh)

)
− f

(
m(0) (nh)

)∥∥∥︸ ︷︷ ︸
:=J2(h)

, (C.145)
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bound J1, using the definition eq. (C.14) of Ψ(1)
h (m((n − 1)h) as well as the definition

eq. (C.13) of r(nh), by

J1(h) =
∥∥∥∥∥∥m−,(1)(nh)− f

(
m−,(0)(nh)

)
(C.146)

+ β(1)(nh)
[
f
(
m−,(0)(nh)

)
−m−,(1)(nh)

] ∥∥∥∥∥∥
≤
∥∥∥1− β(1)(nh)

∥∥∥ ‖r(nh)‖ (C.147)
eq. (C.49)
≤ Kh(p−1)∨0‖r(nh)‖ (C.148)

and bound J2, by exploiting L-Lipschitz continuity of f , inserting the definition eq. (C.14)
of Ψ(0)

h (m((n− 1)h) and applying eq. (C.48) to
∥∥∥β(0)(nh)

∥∥∥,
J2(h) ≤ L

∥∥∥m(0)(nh)−m−,(0)(nh)
∥∥∥ (C.149)

≤ L
∥∥∥β(0)(nh)

∥∥∥ ‖r(nh)‖ (C.150)
eq. (C.48)
≤ Kh‖r(nh)‖. (C.151)

Altogether, after inserting these bounds into eq. (C.145),

δ(1)(nh) ≤
(
Kh(p−1)∨0 +Kh

)
‖r(nh)‖ (C.152)

≤ Kh((p−1)∨0)∧1‖r(nh)‖ (C.153)
eq. (C.31)
≤ Kh(p∨1)∧2 (C.154)

+
(
Kh((p−1)∨0)∧1 +Kh(p∨1)∧2

)
δ(1)((n− 1)h)

=: T̄
(
δ(1)((n− 1)h)

)
. (C.155)

As p ≥ 1 (by Assumption C.4), BFT is applicable for all sufficiently small h > 0 such
that Kh((p−1)∨0)∧1 + Kh(p∨1)∧2 < 1 and so T̄ is a contraction with a unique fixed point
δ∞ of order

δ∞ ≤ Kh(p∨1)∧2

1−
(
Kh((p−1)∨0)∧1 +Kh(p∨1)∧2

) (C.156)

≤ Kh(p∨1)∧2. (C.157)
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We proceed with showing by induction that, for all n ∈ [T/h],

δ(1)(nh) ≤ δ(1)(0) ∨ 2δ∞. (C.158)

The base case n = 0 is trivial. For the inductive step, we distinguish two cases. If
δ(1)((n− 1)h) ≤ δ∞, then T̄ (δ(1)((n− 1)h)) < 2δ∞, since

T̄ (δ(1)((n− 1)h))− δ∞ ≤
∣∣∣δ∞ − T̄ (δ(1)((n− 1)h))

∣∣∣ (C.159)

< δ∞ − δ(1)((n− 1)h)︸ ︷︷ ︸
≥0

(C.160)

≤ δ∞. (C.161)

In this case,

δ(1)(nh)
eq. (C.155)
≤ T̄

(
δ(1)((n− 1)h)

)
(C.162)

< 2δ∞ (C.163)
≤ δ(1)(0) ∨ 2δ∞, (C.164)

where the last inequality follows from the inductive hypothesis. In the other case, namely
δ(1)((n− 1)h) > δ∞, it follows that

δ(1)(nh)− δ∞
eq. (C.155)
≤ T̄ (δ(1)((n− 1)h))− δ∞ (C.165)

≤
∣∣∣T̄ (δ(1)((n− 1)h))− δ∞

∣∣∣ (C.166)

≤
∣∣∣δ(1)((n− 1)h)− δ∞

∣∣∣ (C.167)

= δ(1)((n− 1)h)− δ∞, (C.168)

which, after adding δ∞ and applying the inductive hypothesis, completes the inductive
step. Hence, eq. (C.158) holds. Since this bound is uniform in n, inserting the orders of
δ(1)(0) from Lemma C.6.1 and of δ∞ from eq. (C.156) yields eq. (C.50).
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C.20 Supplement X: Proof of Theorem C.8.1

Proof. Again, w.l.o.g. d = 1. We first show that the bounds eqs. (C.67) and (C.68) hold
and then argue that they are sharp. The recursion for P−00(nh) is given by

P−00((n+ 1)h) eqs. (C.10),(C.6)= P00(nh) + 2hP01(nh)

+ h2P11(nh) + σ2

3 h
3 (C.169)

= P−00(nh)− β(0)(nh)P−01(nh) + σ2

3 h
3,

+ 2hRβ(0)(nh) + h2Rβ(1)(nh) (C.170)

where we used P00(nh) = P−00(nh) − β(0)P−01(nh) and P11(nh) = Rβ(1)(nh) (both due
to eq. (C.15) and eq. (C.11)), as well as P01(nh) = Rβ(0)(nh) (see eq. (C.128)), for the
last equality in eq. (C.170). By P−01(nh) ≤ P01(nh) and |β(1)| ≤ 1 (due to eq. (C.11)),
application of the triangle inequality to eq. (C.170) yields

P−00 ((n+ 1)h) ≤ P−00(nh) +
∣∣∣β(0)(nh)

∣∣∣ |P01(nh)|

+ 2hR
∣∣∣β(0)(nh)

∣∣∣+ h2R + σ2

3 h
3, (C.171)

which, by eqs. (C.47) and (C.48), implies

P−00((n+ 1)h) ≤ P−00(nh) +Kh(p+2)∧3. (C.172)

This, by N = T/h, implies eq. (C.67). Since P00(nh) ≤ P−00(nh), this bound is also
valid for P00, i.e. eq. (C.68) holds. The bound eq. (C.67) is sharp, since, e.g. when the
covariance matrices are in the steady state, the covariance matrix keeps growing by a
rate of Kh(p+2)∧3 for all sufficiently small h > 0, since the only negative summand in
eq. (C.170) is given by

β∞,(0)P∞01 = S1(h)× S2(h)× S3(h) ∈ Θ(h5∧ 3p+7
2 ), (C.173)

where the factors have, due to R ≡ Khp, the following orders:

S1(h) = 1
2h

2 ∈ Θ(h2), (C.174)

S2(h) =
√

(σ2h)2 + 4(σ2h)R, ∈ Θ(h1∧ p+1
2 ), (C.175)

S3(h) = ((σ2h) + 2R)
√

(σ2h)2 + 4(σ2h)R
+ (σ2h)2 + 4(σ2h)R ∈ Θ(h2∧(p+1)). (C.176)
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The orders in eqs. (C.174) to (C.176) imply the order in eq. (C.173). Hence, the sole
negative summand −β∞,(0)P∞01 of eq. (C.170) is in Θ(h5∧ 3p+7

2 ) and thereby of higher order
than the remaining positive summands of eq. (C.170):

2hR︸ ︷︷ ︸
∈Θ(hp+1)

β∞,(0)(nh)︸ ︷︷ ︸
∈Θ(h)

∈ Θ(hp+2), (C.177)

h2R︸︷︷︸
∈Θ(hp+2)

β∞,(1)(nh)︸ ︷︷ ︸
∈Θ(1), by eq. (C.44)

∈ Θ(hp+2), (C.178)

σ2

3 h
3 ∈ Θ

(
h3
)

. (C.179)

Hence, for all sufficiently small h > 0, it still holds in the steady state that P−00((n+1)h)−
P−00(nh) ≥ Kh(p+2)∧3, and therefore eq. (C.67) is sharp. The sharpness of eq. (C.67) is
inherited by eq. (C.68) since, in the steady state, by eqs. (C.11) and (C.15), P00(nh) =
P−00(nh)−β(0),∞P−,∞

01 and the subtracted quantity β(0),∞P−,∞
01 is—as shown above—only

of order Θ(h5∧ 3p+7
2 ).
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D Differentiable Likelihoods for
Fast Inversion of
‘Likelihood-Free’ Dynamical
Systems (Kersting et al., 2020b)

Abstract: Likelihood-free (a.k.a. simulation-based) inference problems are inverse prob-
lems with expensive, or intractable, forward models. ODE inverse problems are com-
monly treated as likelihood-free, as their forward map has to be numerically approxi-
mated by an ODE solver. This, however, is not a fundamental constraint but just a
lack of functionality in classic ODE solvers, which do not return a likelihood but a point
estimate. To address this shortcoming, we employ Gaussian ODE filtering (a proba-
bilistic numerical method for ODEs) to construct a local Gaussian approximation to
the likelihood. This approximation yields tractable estimators for the gradient and Hes-
sian of the (log-) likelihood. Insertion of these estimators into existing gradient-based
optimization and sampling methods engenders new solvers for ODE inverse problems.
We demonstrate that these methods outperform standard likelihood-free approaches on
three benchmark-systems.

D.1 Introduction
Inferring the parameters of dynamical systems that are defined by ordinary differen-
tial equations (ODEs) is of importance in almost all areas of science and engineering.
Despite the wide range of available ODE inverse problem solvers, simple random-walk
Metropolis methods remain the go-to solution; see e.g. Tarantola (2005, Section 2.4).
That is to say that ODE inverse problems are routinely treated as if their forward prob-
lems were black boxes. The reason usually cited for this generic approach is that ODE
forward solutions are highly non-linear and numerically intractable for all but the most
trivial cases. Therefore, it is common to consider ODE inverse problems as ‘likelihood-
free’ inference (read: intractable likelihood)—a.k.a. simulation-based inference or, in the
Bayesian case, Approximate Bayesian Computation (ABC); see Cranmer et al. (2020)
for an up-to-date examination of these closely-related areas.
We here argue that, at least for ODEs, this approach is mistaken. If a dynamical
system is accurately described by an ODE, its explicit mathematical definition should
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Figure D.1: Inference on the logistic ODE. First twelve sampled parameters of likelihood-
free inference and our proposed method. Details in text.

be exploited to design efficient algorithms—not ignored and treated as a black-box,
likelihood-free inference problem.
To this end, we construct a local Gaussian approximation of the likelihood by Gaussian
ODE Filtering, a probabilistic numerical method (PNM) for ODE forward problems.
(Supplement D.10 provides a concise introduction to Gaussian ODE filtering; Tronarp
et al. (2019a) offer a more detailed presentation. See Hennig et al. (2015) or Oates and
Sullivan (2019) for a broad introduction to PNMs.) The key insight of our work is that
there is a likelihood in simulations of ODEs, and in fact it can be approximated cheaply,
and analytically: The mean estimatemθ of the forward solution computed by Gaussian
ODE filters can be linearized in the parameter θ, so that gradient, Hessian, etc. of the
approximated log-likelihood can—via a cheap estimator J of the Jacobian of the map
θ 7→mθ—be computed in closed form (Appendix D.5). In this way, the probabilistic in-
formation from Gaussian ODE filtering yields a tractable, twice-differentiable likelihood
for ‘likelihood-free’ ODE inverse problems. This enables the use of first and second-order
optimization or sampling methods (see Figure D.1).
Much thought has been devoted to improving the slow run-times of ODE inverse inference—
which is due to the laborious explicit numerical integration per parameter. In machine
learning, e.g., authors have proposed to reduce the amount of necessary parameters by
active learning with Gaussian process (GP) surrogate likelihoods (Meeds and Welling,
2014), or even to avoid numerical integration altogether by gradient matching (Calder-
head et al., 2008). This paper adds a new way to reduce the amount of parameters by
employing gradient (and Hessian) estimates of the log-likelihood.
Contributions The main contributions are twofold: Firstly, we introduce tractable

estimators for the gradients and Hessian matrices of the log-likelihood of ODE inverse
problems by Gaussian ODE filtering. To derive these estimators, we construct a new
estimator J for the Jacobian of the forward map. We theoretically support the use of J by
a decomposition of the true Jacobian into J and a sensitivity term S (see Theorem D.3.1),
as well as an upper bound on its approximation error (see Theorem D.4.1). Secondly,
we propose a range of new solvers which require gradients and/or Hessians, by inserting
these estimators into first and second-order optimization and sampling methods. The
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utility of these algorithms is demonstrated by experiments on three benchmark ODEs
where they outperform their gradient-free counterparts.

D.2 Problem setting
We consider a dynamical system defined by the ODE

ẋ(t) = f (x(t), θ) , x(0) = x0 ∈ Rd, (D.1)

on the finite time domain t ∈ [0,T ] for some T > 0, with parametrized vector field
f : Rd × Rn → Rd. We restrict our attention to choices of f satisfying the following

Assumption D.1. f(x, θ) = ∑n
i=1 θifi(x), for some continuously differentiable fi :

Rd → Rd, for all i = 1, . . . ,n.

The necessity for this assumption will become evident in Appendix D.3.1. It is not
very restrictive: e.g. the corresponding assumption in Gorbach et al. (2017, eq. (10))
is stronger. In fact, most standard ODEs collected in Hull et al. (1972, Appendix I),
a standard set of ODE benchmarking problems, satisfy Assumption D.1 either imme-
diately or after reparametrization. Otherwise, we can still transform a non-conforming
ODE into a system that obeys Assumption D.1, as exemplified for the protein signalling
transduction pathway in Appendix D.7.2. While this adds an additional layer of impre-
cision, the experiments appear to be equally good—which suggests a wider applicability
of our methods than Assumption D.1.
If the initial value x0 is unknown too (as is often the case in practice), it can be treated

as a parameter by defining a new parameter vector
(
xᵀ0, θᵀ

)ᵀ ∈ Rd+n; see eq. (D.10).
Solving eq. (D.1), for a given θ, with a numerical method is known as the forward
problem.
For the inverse problem, we assume the dynamical system described by eq. (D.1) with
unknown true parameter θ∗. The true trajectory x = xθ∗ is observed under additive,
zero-mean Gaussian noise at M discrete times 0 ≤ t1 < · · · < tM ≤ T :

z(ti) := x(ti) + εi ∈ Rd, εi ∼ N (0, Σi), (D.2)

for all i ∈ {1, . . . ,M}. Below we assume, w.l.o.g., that Σi = Σ, for all i ∈ {1, . . . ,M}.
We define the stacked data across M time points and d dimensions as

z :=
[
z1(t1), . . . , z1(tM), . . . , zd(t1), . . . , zd(tM)

]ᵀ
,

and analogously, for all θ ∈ Θ, the true solution at these points as xθ. The inverse
problem consists of inferring the parameter θ∗ that generated the data through eq. (D.2).
For the sake of readability, we will assume w.l.o.g. that d = 1; this restriction is purely
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notational as can be seen from the multi-dimensional experiments below. Under these
conventions, eq. (D.2) is equivalent to

p(z | x) = N
(
z;x,σ2IM

)
(D.3)

for some σ2 > 0, where IM is the M ×M identity matrix. Heteroscedastic noise can be
modelled by replacing σ2IM with a diagonal matrix with varying diagonal entries.

D.3 Likelihoods by Gaussian ODE filtering
The prevailing view on the uncertainty in inverse problems only considers the aleatoric
uncertainty Σi from eq. (D.2) and ignores the epistemic uncertainty over the quality of
the employed numerical approximation x̂θ of xθ. In other words, the likelihood of the
forward problem, p(xθ |θ), is commonly treated as a Dirac distribution δ(xθ− x̂θ) which
yields the uncertainty-unaware likelihood

p(z | θ) =
∫
p(z | xθ)p(xθ | θ) dxθ (D.4)

=
∫
p(z | xθ)δ(xθ − x̂θ) dxθ (D.5)

eq. (D.3)= N
(
z; x̂θ,σ2IM

)
. (D.6)

as the ‘true’ intractable likelihood. This, however, ignores the epistemic uncertainty
over the accuracy x̂θ which leads to overconfidence. This uncertainty is due to the dis-
cretization error of the numerical solver used to compute x̂θ, and can only be avoided
for the most trivial ODEs. This problem has previously been recognized in, e.g., Conrad
et al. (2017, Section 3.2) and Abdulle and Garegnani (2020, Section 8) who, as a remedy,
construct a ‘cloud’ of possible solutions by running a classical solver multiple times with
a prespecified accuracy. This, unfortunately, requires the computational invest of several
forward solves for the same θ, which could instead be used for additional θ, or higher
accuracy.
To obtain such uncertainty quantification more cheaply, we employ Gaussian ODE filter-
ing with a once-integrated Brownian motion (IBM) prior on x; see Supplement D.10.2 for
a short introduction. This amounts—e.g. in the notation of Tronarp et al. (2019a)—to
setting q = 1. Gaussian ODE filtering has the advantage over other numerical solvers,
probabilistic or classical, that we can compute gradients of the likelihood, as demon-
strated below. For a given θ, the Gaussian ODE filter computes a multivariate normal
distribution over xθ at a set of N = T/h, for notational simplicity, equidistant time
points {0,h, . . . ,Nh} with step size h > 0. This set is, w.l.o.g., assumed to contain
the data time points {t1, . . . , tM} from eq. (D.2), i.e. we assume the existence of a set
of integers {l1, . . . , lM} such that ti = lih. (The w.l.o.g. assumption can otherwise be
satisfied by interpolating along the dynamic model; see eq. (D.36) in Supplement D.10.)
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D.3.1 The filtering distribution
The Gaussian ODE filter returns the so-called (posterior) filtering distribution over the
ODE solution xθ, given by

p(xθ | θ) = N (xθ;mθ,P ), (D.7)

with mθ ∈ RM and P ∈ RM×M given below by eq. (D.10) and eq. (D.18), respectively.
This probabilistic likelihood yields the new uncertainty-aware likelihood

p(z | θ) =
∫
p(z | xθ)N (xθ;mθ,P ) dxθ (D.8)

eq. (D.3)= N (z;mθ,P + σ2IM) (D.9)

which has two advantages over the uncertainty-unaware likelihood from eq. (D.6):

1. The filtering meanmθ can be linearized in θ, as specified below in eq. (D.10). This
yields an estimate J of the Jacobian matrix of θ 7→ mθ which implies estimators
of gradients and Hessian matrices of the likelihood; see eqs. (D.26) and (D.27).
These estimators are useful to guide samples of θ into regions of high likelihood
by the gradient-based sampling and methods defined in Appendix D.6 below.

2. The variance P captures the average-case squared (epistemic) error ‖mθ − xθ‖2,
and can be added to the (aleatoric) variance Σi; see eq. (D.9). Unless P � σ2IM ,
this prevents over-confidence, as visualized in Figure D.2.

In the following two subsections, we provide explicit formulas formθ and P . A detailed
derivation of these formulas is given in Supplement D.11.

The filtering mean

Under Assumption D.1, the filtering mean mθ = [mθ(t1), . . . ,mθ(tM)]ᵀ is given by

mθ =
[
1M J

] [x0
θ

]
= x0 · 1M + Jθ ∈ RM , (D.10)

where 1M = [1, . . . , 1]ᵀ denotes a vector of M ones. Hence, mθ is linear in θ as well as
in the extended parameter vector [x0, θᵀ]ᵀ. (A more detailed derivation of eq. (D.10) is
provided in Supplement D.11.3.) Here,

J := KY ∈ RM×n (D.11)

is an estimator of the Jacobian matrix of the map θ 7→mθ, as we show in Theorem D.3.1
below. This estimator is equal to the product of the kernel prefactor K and the evalu-
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Figure D.2: Uncertainty-(un)aware likelihoods, eqs. (D.6) and (D.9) w.r.t. (θ1, θ2) of
Lotka-Volterra ODE, eq. (D.30), with fixed (θ3, θ4) = (0.05, 0.5). θ1 on x and θ2 on
y-axis. Black cross is true parameter. The unaware likelihood is overconfident for the
large step size (h = 0.2), i.e. for large P , while the aware likelihood has calibrated
uncertainty. For the small step size (h = 0.025) this effect is less pronounced as P is
small.

ation factor Y . The kernel prefactor K is given by

K :=
[
κ1, . . . ,κM

]ᵀ ∈ RM×N , (D.12)

whose i-th row is

κi :=
[
κ̃ᵀi , 0, . . . , 0

]ᵀ ∈ RN , (D.13)

which is defined by

κ̃i :=
[
K∂ ∂(h : ti) +R · Ili

]−1
k∂(h : ti, ti) ∈ Rli , (D.14)

for some measurement variance R ≥ 0. Here, k∂ = ∂k(t, t′)/∂t′ and k∂ ∂ = ∂2k(t, t′)/∂t∂t′
are derivatives of the IBM kernel k, and, analogously, the cross-covariance w.r.t. the
kernel k∂ and the kernel Gram matrix w.r.t. the kernel k∂ ∂ up to time ti are denoted by

k∂(h : ti, ti) :=
[
k∂(ti,h), . . . , k∂(ti, ti)

]ᵀ
, and (D.15)

K∂ ∂(h : ti) :=
 k

∂ ∂(h, h) · · · k
∂ ∂(lih, lih)

...
. . .

...
k
∂ ∂(lih, h) · · · k

∂ ∂(lih, lih)

. (D.16)

Now, recall Assumption D.1. For a given θ, the entries of the evaluation factor Y ∈
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RN×n are

yij := fj(m−θ (ih))− fj(x0), (D.17)

for all i = 1, . . . ,N and j = 1, . . . ,n, where m−θ (ih) is the predictive mean of the ODE
Filter at t = ih. Note that the Gaussian ODE Filter computes the fj(m−θ (ih)) and
fj(x0) for every forward solve as intermediate quantities, to evaluate the right-hand side
of eq. (D.1). Hence, Y is freely accessible with every filtering distribution, eq. (D.7).
However, as an estimate of xθ(ih), m−θ (ih) depends on θ in a nonlinear and potentially
sensitive way. By ignoring this dependence in the above notation, we, strictly speaking,
also omit the dependence of Y and, thereby, J on θ (more in Supplement D.11.3).
For this reason, J is not the true Jacobian of θ 7→ mθ but only an estimator (see
Appendix D.3.2).

The filtering covariance

The entries of the covariance matrix P := diag(P (t1), . . . ,P (tM)) ∈ RM×M of the filter-
ing distribution from eq. (D.7) coincide with the GP-posterior variances, i.e.

P (ti) =
[

k(h, h) · · · k(lih, lih)
...

. . .
...

k(lih, h) · · · k(lih, lih)

]
− k∂(h : ti, ti)ᵀ

×
[
K∂ ∂(h : ti) +R · Il

]−1
k∂(h : ti, ti), (D.18)

and are hence independent of θ. (See Supplement D.11.2 for a detailed derivation of
eq. (D.18).)

D.3.2 Decomposition of the true Jacobian

Next, we give an explicit decomposition of the true Jacobian into the estimator J , the
kernel prefactor K and a sensitivity term S.

Theorem D.3.1. Under Assumption D.1, the true Jacobian Dmθ ∈ RM×n of θ 7→mθ

has the analytic form

Dmθ := [∇θm(t1), . . . ,∇θm(tM)]ᵀ = J +KS, (D.19)

where the sensitivity term S is defined by

S :=
[
Λᵀ

1θ, . . . , Λᵀ
Nθ
]ᵀ ∈ RN×n. (D.20)
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Here, Λj =
[
λkl(jh)

]
kl
is the n× n matrix with entries

λkl(jh) := d

dx
fl(m−θ (jh)) · ∂

∂θk
m−θ (jh). (D.21)

Proof. See Supplement D.12.

Thus, KS is the exact approximation error of J .

D.4 Bound on approximation error of J
In this section, we provide a bound on the approximation error of J under the following
assumptions.

Assumption D.2. The first-order partial derivatives of fi, 1 ≤ i ≤ N , are bounded and
globally L-Lipschitz, for L > 0.

Assumption D.2 is required to bound the global error of the ODE forward solution by
Kersting et al. (2020a, Thm. 6.7).

Assumption D.3. For the computation of J we only use a maximum of N̄ ≤ N time
points, for some finite N̄ ∈ N.

Assumption D.3 precludes the condition number of theK and S from growing arbitrar-
ily large, thereby preventing numerical instability. While this restriction is necessary for
Theorem D.4.1, it is not relevant in practice because we are computing with a non-zero
step size h > 0 anyway so that many different parameters θ can be simulated.

Theorem D.4.1. If Θ ⊂ Rn is compact and R > 0, then it holds true, under Assump-
tions D.1 to D.3, that

‖J −Dmθ‖ ≤ C(T ) (‖∇θxθ‖+ h) (D.22)

for sufficiently small h > 0, where C(T ) > 0 is a constant that depends on T .

Proof. See Supplement D.13.

Intuitively, this upper bound can be thought of as a decomposition of the approxima-
tion error of the ‘sensitivity-unaware’ estimator J into a summand proportional to the
ignored sensitivity ‖∇θxθ‖ and the global integration error of the ODE filter, which is
bounded by C(T )h (Kersting et al., 2020a, Thm. 6.7).
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D.5 Gradient and Hessian estimators

We observe that the uncertainty-aware likelihood, eq. (D.9), can be written in the form

p(z | θ) = e−E(z)

Z
, (D.23)

with evidence Z > 0 and negative log-likelihood

E(z) := 1
2 [z −mθ]ᵀ

[
P + σ2IM

]−1
[z −mθ] (D.24)

eq. (D.10)= 1
2 [z − x0 · 1M − Jθ]ᵀ

[
P + σ2IM

]−1

× [z − x0 · 1M − Jθ] . (D.25)

For a given value of the Jacobian estimator J , the thereby-implied gradient and Hessian
estimators are, by application of the chain rule,

∇̂θE(z) := −Jᵀ
[
P + σ2IM

]−1
[z −mθ] , and (D.26)

∇̂2
θE(z) := Jᵀ

[
P + σ2IM

]−1
J . (D.27)

(See Figure D.3 for a visualization of these estimators.) Supplement D.14 provides
versions of these estimators for Bayesian inference of θ.
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Figure D.3: Directions of gradient descent (GD) and Newton using eqs. (D.26)
and (D.27); around mode (left) and globally (right) of the likelihood, based on the
logistic ODE. Globally, GD points more directly to the high-probability region. Within
this region, however, Newton is better directed to the mode.
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D.6 New gradient-based methods

D.6 New gradient-based methods
By deriving gradient and Hessian estimators of the negative log-likelihood, we have re-
moved the need for ‘likelihood-free’ inference. This enables the use of two classes of
inference methods for θ which could not otherwise be applied: gradient-based optimiza-
tion and gradient-based sampling.

D.6.1 Gradient-based optimization
In principle, all first and second-order optimization algorithms (e.g. Bottou et al. (2018)),
are now applicable by eqs. (D.26) and (D.27)—such as (stochastic) gradient descent
(GD), (stochastic) Newton (NWT), Gauss-Newton and natural Gradient descent. This
application of the estimators (D.26) and (D.27) unlocks fast computation of single pa-
rameter estimates by maximum-likelihood estimation, as we demonstrate in the experi-
ments (see Appendix D.7).

D.6.2 Gradient-based sampling
Likewise, all gradient-based MCMC schemes are now available. Classical gradient-based
samplers include Langevin Monte Carlo (LMC) (Roberts and Tweedie, 1996) and Hamil-
tonian Monte Carlo (HMC) (Betancourt, 2017). They are known to be more efficient
than gradient-free samplers in finding and covering regions of high probability (MacKay,
2003, Section 30.1). While their standard form only makes use of gradients, more so-
phisticated versions include second-order information as well: When the likelihood is
ill-conditioned (i.e. it varies much more quickly in some directions than others), it is
advantageous to precondition the proposal distribution with a suitable matrix (Girolami
and Calderhead, 2011). A popular choice for the preconditioner is the Hessian (Qi and
Minka, 2002). Hence, we can precondition LMC and HMC that use eq. (D.26) as a gra-
dient with the Hessian estimator from eq. (D.27). For LMC, this leads to the proposal
distribution

π(θi+1 | θi) = θi − ρ[∇̂2
θEθi(z))]−1∇̂θEθi(z)) + ξi, (D.28)

ξi ∼ N (0, 2ρ[∇̂2
θEθi(z))]−1), (D.29)

where ρ is the proposal width. (Analogous formulas hold for HMC.) Below, we refer
to the so-preconditioned versions of LMC and HMC as PLMC and PHMC. In Ap-
pendix D.7, we show that the gradient-based versions more aptly explore regions of high
likelihood than their gradient-free counterparts.

D.6.3 Algorithm
The generic method that we propose is outlined in Algorithm 3. It includes all above-
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Algorithm 3 Gradient-based sampling/optimization
1: Precompute K and (P + σ2IM)−1 (see eqs. (D.12), (D.6))
2: Initialize θ = θ0

3: repeat
4: Solve ODE with θ (this generates Y ; see eq. (D.17))
5: Compute J = KY (see eq. (D.11))
6: Compute [∇̂θE, ∇̂2

θE] (see eqs. (D.26), (D.27))
7: Update θ with gradient-based sampler/optimizer
8: until convergence/mixing

mentioned classical optimization and sampling methods (by a corresponding choice in
Line 7). The only difference, compared to all of these existing gradient-based methods,
are the additional Lines 5 and 6 where we compute our gradient and Hessian estimators
from eqs. (D.26) and (D.27).

D.6.4 Computational cost

The additional computational cost—on top of the employed classical optimization/sam-
pling methods—is equal to the cost of computing the inserted gradient (and Hessian)
estimators: precomputation of K (Line 1 in Algorithm 3) requires the inversion of theM
kernel Gram matrices { K∂ ∂(h : ti), i = 1, . . . ,M}, which can have a maximum dimen-
sion of (N − 1)× (N − 1). This inversion can, however, be executed in linear time since
k∂ ∂ is a Markov kernel (Hartikainen and Särkkä, 2010). Hence, K is in O(MN) and, as
M ≤ N , in O(N2). The cost of inverting the M ×M matrix [P + σ2IM ] is in O(N3),
as M ≤ N . Since K and P are independent of θ, this O(N3) cost is only required once.
The Jacobian estimator J = KY (Line 5 in Algorithm 3) is, by eq. (D.11), a matrix
product of the precomputed kernel prefactor K and the evaluation factor Y . Y is almost
free, as it is by eq. (D.17) only composed of terms that the Gaussian ODE filter computes
anyway; see eq. (D.45) in Supplement D.10.2. Given J and [P + σ2IM ]−1, computing
the gradient and Hessian estimators (Line 6 in Algorithm 3) is of the same complexity
as computing J . Thus, the additional computational cost is in O(N3) w.r.t. the num-
ber of time steps N = T/h executed once and otherwise linear (but almost negligible)
w.r.t. the number of simulated parameters θ. As a large number of θ is usually required,
the overall overhead is small.

K∂ ∂(h : T )−1 = 1
h


2 −1

−1
. . .

. . .
. . . 2 −1
−1 1


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. And then use matrix inversion lemma (Woodbury) to compute ( K∂ ∂(h : T ) + R ·
IN−1)−1.

D.6.5 Choice of hyperparameters
Recall that the parameters σ and R stem from the data and the accuracy of the ODE
model (Kersting et al., 2020a, Section 2.3), and that we only consider once-integrated
Brownian motion priors in this paper. Therefore, the only remaining hyperparameter
is the diffusion scale σdif which controls the width of the variance P ; see Supplements
D.11.1 and D.11.2. There are two ways to set it: either as a local (Schober et al., 2019,
eq. (46)) or as a global (Tronarp et al., 2019a, eq. (41)) maximum-likelihood estimate,
which can both be computed from intermediate quantities of the forward solves.

D.7 Experiments
To test the hypothesis that the gradient and Hessian estimators [∇̂θE(z), ∇̂2

θE(z)] of
the log-likelihood are useful despite their approximate nature, we compare the new
optimization and sampling methods from Appendix D.6—which use these estimators
as if exact—with the standard ‘likelihood-free’ approach, i.e. with random search (RS)
optimization and random-walk Metropolis (RWM) sampling.

D.7.1 Setup and methods
As benchmark systems, we choose the popular Lotka–Volterra (LV) predator-prey model
and the more challenging biochemical dynamics of glucose uptake in yeast (GUiY). For
more generality, we add the chemical protein signalling transduction (PST) dynamics
which violate Assumption D.1 and have to be linearized. We consider our hypothesis
validated if the new gradient-based algorithms outperform the conventional ‘likelihood-
free’ methods (RS, RWM) on these three systems. All datasets are, as in eq. (D.3),
generated by adding Gaussian noise to the solution xθ∗ for some true parameter θ∗.
Out of the new family of gradient-based optimizers and samplers introduced in Ap-
pendix D.6, we evaluate only the most basic ones: gradient descent (GD) and Newton’s
method (NWT) for optimization, as well as PLMC and PHMC for sampling. This
isolates the impact of the gradient and Hessian estimators more clearly. The required
gradient and Hessian estimators are computed as detailed above. We employ the origi-
nal fixed step-size RS by Rastrigin (1963), and the RWM version from MacKay (2003,
Chapter 29). For all optimizers, we picked the best the step size and, for all samplers,
the best proposal width within the interval [10−16, 100] which is wide enough to contain
all plausible values. To make these experiments an ablation study for the gradient and
Hessian estimators, we use Gaussian ODE filtering as a forward solver in all methods—
which is similar to classical solvers anyway (Schober et al., 2019, Section 3). Since in all
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below experiments P � σ2IM , the gradient and Hessian estimates are scale-invariant
w.r.t. hyperparameter σ2

dif, as can be seen from eqs. (D.26) and (D.27): In this regime,
P simply scales the step-size of the gradient, and P cancels out of the Hessian, mak-
ing it invariant to this scale. The same applies in the regime P � σ2IM ; adaptation
of their relative scale, by choosing σ2

dif as in Appendix D.6.5, only matters when both
error-sources are of comparable scale.

D.7.2 Results
We evaluate the performance of these methods over the first few iterations (steps),
comparing the values of the negative log-likelihood E as well as the relative error in the
parameter space, ‖θi − θ∗‖/‖θ∗‖. For optimizers, low values in both metrics indicate
success and, in fact, both are important: ODE inverse problems are inherently ill-posed
and can have parameters with high likelihood and large inference error that fit the data
as well as the true parameter. Finding these parameters would not be a failure of the
algorithms, but a success, as they are a mode of the true posterior.
Samplers, on the other hand, try to identify and explore regions of high probability (the

typical set); see e.g. Betancourt (2017, Section 2). We opt for plotting the relative error
in the parameter space additionally to the negative log-likelihood values to emphasize
that, once a sampler creates samples near the typical set, MCMCmethods keep exploring
suitable values instead of relying on a single estimate with high likelihood. Despite
maintaining a low near-constant negative log-likelihood, the error in the parameter space
of a sampler may have (some) variation.
The details and results for each benchmark systems are presented next, in ascending

order of complexity.

Lotka–Volterra

First, we study the Lotka–Volterra (LV) ODE (Lotka, 1978)

ẋ1 = θ1x1 − θ2x1x2, ẋ2 = −θ3x2 + θ4x1x2, (D.30)

the standard model for predator-prey dynamics. We used this ODE with initial value
x0 = [20, 20], time interval [0, 5] and true parameter θ∗ = [1, 0.1, 0.1, 1]. To generate data
by eq. (D.3), we added Gaussian noise with variance σ2 = 0.01 to the corresponding
solution at time points [0.5, 1, 1.5, 2, 2.5, 3., 3.5, 4., 4.5]. The optimizers and samplers
were initialized at θ0 = [0.8, 0.2, 0.05, 1.1], and the forward solutions for all likelihood
evaluations were computed with step size h = 0.05. In order to turn this θ0 into a useful
initialization for the Markov chains, we accepted the first 45 states generated by PHMC
and PLMC—the same would be counterproductive for RWM since a proposed sample
may be further away from the region of nonzero probability. The results for optimization
and sampling are depicted in Figure D.4. In the case of optimizers, NWT outperforms
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Figure D.4: Results for optimization (a, b) and sampling (c, d) on Lotka–
Volterra. Comparison of negative log-likelihood E(z) = E

θ
i(z) (a and c, resp.) and

relative error ‖θi− θ∗‖/‖θ∗‖ (b and d, resp.). 100 iterations of optimization (only every
fifth iteration has a marker) and 250 Metropolis-Hastings samples (only every other
sample has a marker).

GD which, in turn, outperforms RS. After roughly 25 samples, NWT generates iterations
with relative error of less than 10−3. While PLMC and PHMC quickly reach and explore
regions of high probability, RWM does not find likelihood values within the first 250
samples. Thus, the gradient and Hessian estimators indeed appear to work well on LV.

Protein signalling transduction

Next, we consider the protein signalling transduction (PST) pathway. It is governed by
a combination of mass-action and Michaelis–Menten kinetics:

Ṡ = −θ1 × S − θ2 × S ×R + θ3 ×RS,
˙dS = θ1 × S,

Ṙ = −θ2 × S ×R + θ3 ×RS + V × Rpp

Km +Rpp
,

ṘS = θ2 × S ×R− θ3 ×RS − θ4 ×RS,

˙Rpp = θ4 ×RS − θ5 ×
Rpp

Km +Rpp
.

For more details, see Vyshemirsky and Girolami (2008). Due to the ratio Rpp
Km+Rpp ,

Assumption D.1 is violated. As a remedy, we follow Gorbach et al. (2017) in defining
the latent variables [x1,x2,x3,x4,x5] := [S, dS,R,RS, Rpp

Km+Rpp ]. This gives rise to the

157



D Differentiable Likelihoods for ‘Likelihood-Free’ Systems (Kersting et al., 2020b)

Figure D.5: Results for optimization (a, b) and sampling (c, d) on PST. Com-
parison of negative log-likelihood E(z) = E

θ
i(z) (a and c, resp.) and relative error

‖θi − θ∗‖/‖θ∗‖ (b and d, resp.). 200 iterations of optimization (only every tenth itera-
tion has a marker) and 500 Metropolis-Hastings samples (only every fourth sample has
a marker).

new linearized ODE

ẋ1 = −θ1x1 − θ2x1x3 + θ3x4, (D.31)
ẋ2 = θ1x1, (D.32)
ẋ3 = −θ2x1x3 + θ3x4 + θ5x5, (D.33)
ẋ4 = θ2x1x3 − θ3x4 − θ4x4, (D.34)
ẋ5 = θ4x4 − θ5x5, (D.35)

which is an approximation of the original ODE, since eq. (D.35) ignores the factor (Km+
Rpp)−1. We used this ODE with initial value x0 = [1, 0, 1, 0, 0] on time interval [0, 100].
We set the true parameter to θ∗ = [0.07, 0.6, 0.05, 0.3, 0.017]. To generate the data by
eq. (D.3), we added Gaussian noise with variance σ2 = 10−8 to the corresponding solution
at time points [1., 2., 4., 5., 7., 10., 15., 20., 30., 40., 50., 60., 80., 100.]. The optimizers and
samplers were initialized at θ0 = [0.24, 1.8, 0.15, 0.9, 0.05], and the forward solutions for
all likelihood evaluations were computed with step size h = 0.05. We use the same
burn-in procedure as on the Lotka–Volterra example, accepting the first 100 samples.
The results for optimization and sampling are depicted in Figure D.5.

Again, the new methods outperform the conventional ones in both optimization and
sampling. For optimization, NWT converges particularly fast. The final estimate that is
returned by NWT is, rounded to two digits, θ200 = (0.07, 0.60, 0.05, 0.30, 0.02), and hence
recovers four out of five parameters exactly. For sampling, both gradient-based samplers
(after a fairly steep initial improvement) steadily stay in regions of high likelihood,
while RWM only increases the likelihood in a much slower pace. Hence, the gradient
and Hessian estimators are beneficial on PST as well—although we had to linearize the
ODE first.
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Figure D.6: Results for optimization (a, b) and sampling (c, d) on GUiY.
Comparison of negative log-likelihood E(z) = E

θ
i(z) (a and c, resp.) and relative error

‖θi− θ∗‖/‖θ∗‖ (b and d, resp.). 100 iterations of optimization (only every fifth iteration
has a marker) and 250 Metropolis-Hastings samples (only every other sample has a
marker).

Glucose uptake in yeast

Last, we examine the challenging biochemical dynamics of glucose uptake in yeast
(GUiY), as seen in Schillings et al. (2015). This ODE is 9-dimensional, has 10 param-
eters, and satisfies Assumption D.1; see Supplement D.15 for a complete mathematical
definition and parameter choices. The results for optimization and sampling are depicted
in Figure D.6.
GD outperforms RS, and NWT converges even much faster than GD. Remarkably,

NWT already finds parameters that are exact up to two relative digits after only five
iterations which would take RS extremely long on this 10 dimensional domain. The
gradient-based samplers (PLMC, PHMC), again, stay steadily within the region of sig-
nificant likelihood, while RWM has difficulties sampling from this high dimensional prob-
lem in an efficient manner. Thus, this benchmark system also reaffirms the utility of the
gradient and Hessian estimators.

D.7.3 Summary of experiments
On all three benchmark ODEs, the Jacobian and Hessian estimator proved useful to
speed up both sampling and optimization. In the case of optimization, the new gradient-
based methods consistently outperformed the classical random search. Notably, the
second-order optimization was always significantly more sample-efficient than plain gra-
dient descent—which indicates that not only the gradient but also the Hessian estimator
is accurate enough to be useful. In the case of sampling, the gradient-based sampling
methods, which were preconditioned by the Hessian, consistently outperformed the clas-
sical approach as well: PLMC and PHMC steadily explored regions of elevated like-
lihood, while the conventional random-walk Metropolis methods hardly ever reached
regions of nonzero probability and wasted computational budget on less likely parame-
ters. Overall, we consider these experiments first evidence for the hypothesis that the
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proposed gradient-based methods require drastically fewer samples than the standard
‘likelihood-free’ approach.

D.8 Related and future work

The following research areas are particularly closely related to this paper.
Probabilistic numerical methods (PNMs) There are two lines of work on PNMs

for ODE forward problems: sampling- and filtering-based solvers; an up-to-date com-
parative discussion of these two approaches is given in Kersting et al. (2020a, Section
1.2.). While this paper is the first to use filtering-based PNMs for inverse problems,
there are previous methods—starting with Chkrebtii et al. (2016)—that use sampling-
based solvers to integrate a non-Gaussian uncertainty-aware likelihood (cf. the Gaussian
eq. (D.9)) into a pseudo-marginal MCMC framework; see Conrad et al. (2017), Teymur
et al. (2018), Lie et al. (2019), and Abdulle and Garegnani (2020). Notably, Matsuda
and Miyatake (2019) recently proposed to model the numerical errors as random vari-
ables without explicitly employing PNMs. On a related note, there are also first PNMs
for PDE inverse problems; see Cockayne et al. (2017) and Oates et al. (2019).
GP-surrogate methods Modelling expensive likelihoods by GP regression is a

common approach in statistics; see e.g. Sacks et al. (1989) and O’Hagan (2006). Notably,
Meeds and Welling (2014) incorporated this approach into an ABC framework, and
Perdikaris and Karniadakis (2016), on the other hand, into a non-Bayesian setting by
efficient global optimization. While these methods also compute a GP approximation
to the likelihood, they are fundamentally different as they globally model the likelihood
with a GP (instead of constructing a local Gaussian approximation (see eq. (D.9)), and
do not exploit the shape of the ODE at all.
Gradient Matching This approach fits a joint GP model of the solution and its

derivatives by conditioning on the ODE. Since introduced by Calderhead et al. (2008), it
has received much attention in machine learning; see Macdonald and Husmeier (2015) for
a detailed review, Wenk et al. (2019, Section 1) for an up-to-date overview, and Gorbach
et al. (2017) for a paper that uses a slightly stronger version of our Assumption D.1. As
it avoids explicit numerical integration altogether, gradient matching is fundamentally
different from our method (and PNMs in general).
Sensitivity analysis This field studies the derivatives of ODE solutions with respect

to parameters; see, e.g., Rackauckas et al. (2018) for an overview spanning continuous
(adjoint) sensitivity analysis and automatic differentiation. Therefore, the Jacobian
estimator J of the map θ 7→ mθ ≈ xθ from eq. (D.11) can be interpreted as fast,
approximate sensitivity analysis. This link is particularly interesting for modern machine
learning, as sensitivity analysis is the mathematical corner stone of the recent advances
by, e.g., Chen et al. (2018) in training neural networks as ODEs. It should be possible
to use J for neural ODEs—as well as for all other applications of sensitivity analysis.
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D.9 Concluding remarks

Future work
We hope that this is the beginning of a new line of work on ODE inverse problems by
ODE filtering. Here, we only used Gaussian ODE filtering with once-integrated Brown-
ian motion prior. Future work could not only examine different priors (Kersting et al.,
2020a, Section 2.1), but also draw from the wide range of additional ODE filters (EKF,
UKF, particle filter, etc.) that were unlocked by Tronarp et al. (2019a). Notably, particle
ODE filtering represents the belief over the ODE solution by a set of samples (parti-
cles), and could, therefore, be integrated in the above-mentioned existing framework for
sampling-based PNMs.
The utility of the Jacobian estimator J is, however, not limited to inverse problems.
As it constitutes fast, approximate sensitivity analysis, it should be compared with es-
tablished methods, such as automatic differentiation and continuous sensitivity analysis
(Rackauckas et al., 2018). If S (eq. (D.20)) could also be estimated with low overhead,
it is in light of eq. (D.19) conceivable that the approximation error of J could be further
reduced.
Either way, future work should examine which optimization and sampling methods are
optimal—given that they received the (approximate) gradient and Hessian estimators
[∇̂θE(z), ∇̂2

θE(z)]. For instance, the approximation error on these estimators might—
according to Bottou et al. (2018, Section 3.3)—warrant optimization by stochastic meth-
ods such as SGD. On a related note, it should be examined whether classical theorems
on limit behavior of the employed optimization and MCMC methods remain true when
using these estimators, and whether our approach is indeed applicable to ODEs that
violate Assumption D.1—as the results from Appendix D.7.2 suggest. Finally, this work
should be, by the methods of lines (Schiesser and Griffiths, 2009), extendable to PDEs
and, by John et al. (2019), to boundary value problems.

D.9 Concluding remarks
We introduced a novel Jacobian estimator for ODE solutions w.r.t. their parameters
which implies approximate estimators of the gradient and Hessian of the log-likelihood.
Using these estimators, we proposed new first and second-order optimization and sam-
pling methods for ODE inverse problems which outperformed standard ‘likelihood-free’
approaches—namely random search optimization and random-walk Metropolis MCMC—
in all conducted experiments. Moreover, the employed Jacobian estimator constitutes a
new method for fast, approximate sensitivity analysis.
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D.10 Supplement I: Short introduction to Gaussian
ODE filtering

D.10.1 Gaussian filtering for generic time series

In signal processing, a Bayesian Filter (Särkkä, 2013, Chapter 4) does Bayesian inference
of the discrete state {xi; i = 1, . . . ,N} ⊂ Rn from measurements {yi; i = 1, . . . ,N} ⊂
Rn in a probabilistic state space model consisting of

a dynamic model xi ∼ p(xi | xi−1), and (D.36)
a measurement model yi ∼ p(yi | xi). (D.37)

Usually, the state xi is assumed to be the discretization of a continuous signal x : [0,T ]→
Rn which is a priori modeled by a stochastic process. Absent very specific expert
knowledge, this prior is usually chosen to be a linear time-invariant (LTI) stochastic
differential equation (SDE):

p(x) ∼ X(t) = FX(t) dt+ L dB(t), (D.38)

where F and L are the drift and diffusion matrix, respectively. The corresponding
dynamic model (eq. (D.36)) can be easily constructed by discretization of the LTI SDE
(eq. (D.38)), as described in Särkkä and Solin (2019, Chapter 6.2). If an LTI SDE prior
with Gaussian initial condition is used, p(x) is a GP which implies a Gaussian dynamic
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model

p(xi | xi−1) = N (Axi−1,Q) (D.39)

for matrices A,Q that are implied by F ,L from eq. (D.38). If additionally the measure-
ment model (eq. (D.37)) is Gaussian, i.e.

p(yi | xi) = N (Hxi,R) (D.40)

for matrices H,R, the filtering distributions p(xi | y1:i), i = 1, . . . ,N , can be computed
by Gaussian filtering in linear time. Note that the filtering distribution p(xi | y1:i) is not
the full posterior distribution p(xi | y1:N) which can, however, also be computed in linear
time by running a smoother after the filter. See e.g. Särkkä (2013) for more information.

D.10.2 Gaussian ODE filtering

A Gaussian ODE filter is simply a Gaussian filter, as defined in Appendix D.10.1, with
a specific kind of probabilistic state space model eqs. (D.36) and (D.37), to infer the
solution x : [0,T ]→ Rd of the ODE eq. (D.1), at the discrete time grid {0 ·h, . . . ,N ·h}
with step size h > 0. The dynamic model is—as usual, recall eqs. (D.38) and (D.39)—
constructed from a GP defined by a LTI SDE that incorporates the available prior
information on x. The measurement model, however, is specific to ODEs as we will
see next: Recall that, after i− 1 steps, the Gaussian filter has computed the (i− 1)-th
filtering distribution

p(xi−1 | y1:i−1) = N (mi−1,Pi−1), (D.41)

which is Gaussian with mean mi−1 and covariance matrix Pi−1, and computes the pre-
dictive distribution

p(xi | y1:i−1) = N (m−i ,P−i ) (D.42)

by inserting eq. (D.39) into eq. (D.41). Analogous to the logic

f(x̂(t)) ≈ f(x(t)) = ẋ(t) (D.43)

of classical solvers, the Gaussian ODE Filter treats evaluations at the predictive mean
m−i —which is a numerical approximation like x̂—as data on ẋ(ih). This yields the
measurement model

p(yi | xi) = N (Hxi,R), (D.44)
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with data

yi := f(m−i ) ≈ ẋ(ih). (D.45)

The probabilistic state space model is thereby completely defined. Gaussian ODE fil-
tering is equivalent to running a Gaussian filter on this probabilistic state space model.
For more details on Gaussian ODE filters, see Kersting et al. (2020a) or Schober et al.
(2019). An extension to more Bayesian filters—such as particle filters—is provided by
Tronarp et al. (2019a).

D.11 Supplement II: Equivalent form of filtering
distribution by GP regression

Recall from Appendix D.10 that any Gaussian filter computes a sequence of filtering
distributions

p(xi | y1:i) = N (mi,Pi) (D.46)

from a GP prior on x eq. (D.38) and a linear Gaussian measurement model (eq. (D.40))
with derivative data (eq. (D.45)). Hence, the classical framework for GP regression with
derivative observations, as introduced in Solak et al. (2003), is applicable. It a priori
models the state x and its derivative ẋ as a multi-task GP:

p

([
x
ẋ

])
= GP

([
x
ẋ

]
;
[
µ
µ̇

]
,
[
k k∂

k∂ k∂ ∂

])
, (D.47)

with

k∂ = ∂k(t, t′)
∂t

, k∂ = ∂k(t, t′)
∂t′

, k∂ ∂ = ∂2k(t, t′)
∂t∂t′

. (D.48)

D.11.1 Kernels for derivative observations

In this paper, we model the solution x with a integrated Brownian motion kernel k or,
in other words, we model ẋ by the Brownian Motion (a.k.a. Wiener process) kernel, i.e.

k∂ ∂(t, t′) = σ2
dif min(t, t′), ∀t, t′ ∈ [0,T ]. (D.49)

Here, σdif > 0 denotes the output variance which scales the diffusion matrix L in the
equivalent SDE (eq. (D.38)). Integration with respect to both arguments yields the
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integrated Brownian motion (IBM) kernel

k(t, t′) = σ2
dif

(
min3(t, t′)

3 +
∣∣∣t− t′∣∣∣min2(t, t′)

2

)
(D.50)

to model x. The once-differentiated kernels in eq. (D.47) are given by

k∂(t, t′) = k∂ (t′, t) = σ2
dif

t ≤ t′ : t
2

2 ,
t > t′ : tt′ − t

′2

2

. (D.51)

A detailed derivation of eqs. (D.49) to (D.51) can be found in Schober et al. (2014,
Supplement B).

D.11.2 GP form of filtering distribution

Now, GP regression with prior (eq. (D.47)), likelihood (eq. (D.46)) and data y1:i yields
an equivalent form of the filtering distribution eq. (D.46):

mi =µ+ k∂(h : ih, ih)ᵀ
[
K∂ ∂(h : ih) +R · Ii

]−1

× [y1 − µ̇(h), . . . , yi − µ̇(ih)]ᵀ , (D.52)

Pi =
[

k(h, h) . . . k(ih, ih)
...

. . .
...

k(ih, h) . . . k(ih, ih)

]
− k∂(h : ih, ih)ᵀ

×
[
K∂ ∂(h : ih) +R · Il

]−1
k∂(h : ih, ih), (D.53)

with y1:i = [y1, . . . , yi]ᵀ, where we used the notations from eqs. (D.15) and (D.16). The
derivation of eq. (D.18) is hence concluded by eq. (D.53).

D.11.3 Derivation of eq. (D.10)

In this subsection, we will use the ODE-specific notation from above instead of the
generic filtering notation—e.g. mθ(ih) instead of mi, f(m−(ih)) instead of yi etc. To
derive the missing eq. (D.10), we first observe that, by eq. (D.52), m(ih) is linear in the
data residuals:

mθ(ih) = µ+ βih
[
f(m−(h))− µ̇(h), . . . , f(m−(ih))− µ̇(ih)

]ᵀ
(D.54)

βih := k∂(h : ih, ih)ᵀ
[
K∂ ∂(h : ih) +R · Ii

]−1
.

Now recall that, in ODE filtering, the prior mean in eq. (D.47) is set to be [µ, µ̇] ≡
[x0; f(x0)] (or [µ, µ̇] ≡ [m0; f(m0)] for some estimate m0 of x0, in the case of unknown
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x0). Consequently, application of Assumption D.1 to eq. (D.54) yields

mθ(ih) = x0 + Jihθ, with (D.55)

Jih := βih

 f1(m
−
θ (h))− f1(x0) . . . fn(m

−
θ (h))− fn(x0)

...
. . .

...
f1(m

−
θ (ih))− f1(x0) . . . fn(m

−
θ (ih))− fn(x0)


= βihY1:i , (D.56)

where Y1:i denotes the first i rows of Y ; see eq. (D.17). We omit the dependence of Jih
on θ to obtain a linear form. Recall from Appendix D.3 that we may w.l.o.g. assume
that the time points {t1, . . . , tM} lie on the filter time grid, i.e. ti = lih from some li ∈ N.
Therefore, eq. (D.55) implies

mθ(ti)
eq. (D.14)= x0 + κ̃iY1:i

eq. (D.13)= x0 + κiY (D.57)

for all data time points ti, i = 1, . . . ,M . Here, we used that κ̃i is equal to βlih by
eq. (D.14). We conclude the derivation of eq. (D.10) by observing that the i-th entry of
eq. (D.10) reads eq. (D.57) for all i = 1, . . . ,M .

D.12 Supplement III: Proof of Theorem D.3.1

Proof. We start by computing the rows of

Dmθ = [∇θm(t1), . . . ,∇θm(tM)]ᵀ. (D.58)

By eqs. (D.10) and (D.11) and the fact that the kernel prefactor K does not depend on
θ, we obtain, for all i = 1, . . . ,M , that

∇θm(ti) = ∇(κ̃(i)ᵀv(θ))
= [Dv(θ)]ᵀ κ̃(i) + [Dκ̃(i)]ᵀ︸ ︷︷ ︸

=0

v(θ) (D.59)

= [Dv(θ)]ᵀ κ̃(i), (D.60)

with v(θ) = Ỹ θ. Here,

Ỹ = Y [1 : li, :] = [Y1(θ), . . . ,Yli(θ)]
ᵀ (D.61)

is defined by

Yj(θ) = [yj1, . . . , yjn]ᵀ ∈ Rn, (D.62)
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the j-th row of Y = Y (θ) (recall eq. (D.17)), for j = 1, . . . , li. Next, we again compute
the rows of the missing Jacobian of eq. (D.60)

Dv(θ) = [∇θ[v(θ)]1, . . . ,∇θ[v(θ)]li ]
ᵀ (D.63)

by the chain rule, for all j ∈ {1, . . . , li}:

∇θ[v(θ)]j = ∇θ[Yj(θ)ᵀθ] =
[
DYj(θ)

]ᵀ
θ + Yj(θ). (D.64)

Again, we compute the rows of the final missing Jacobian

DYj(θ) = [∇θyj1(θ), . . . ,∇yjn(θ)]ᵀ. (D.65)

The definition of yij from eq. (D.17) implies, in the notation of eq. (D.21), that[
∇θyjk(θ)

]
l
= λlk(jh), (D.66)

for all l = 1, . . . ,n. Now, we can insert backwards. First, we insert eq. (D.66) into
eq. (D.65) which yields

DYj(θ) = Λj, (D.67)

where Λj =
[
λkl(jh)

]
k,l=1,...,n

. Second, insertion of eq. (D.67) into eq. (D.64) provides
that

∇θ[v(θ)]j = Λᵀ
jθ + Yj(θ). (D.68)

Third, insertion of eq. (D.68) into eq. (D.63) implies that

Dv(θ) =
[
Λᵀ

1θ, . . . , Λᵀ
li
θ
]ᵀ

+ Y [: li, :], (D.69)

where

Y [: li, :] eq. (D.68)= [Y1(θ), . . . ,Yli(θ)]
ᵀ eq. (D.62)=

[
y11 . . . y1n

...
. . .

...
yli1 . . . ylin

]
.

Fourth, we insert eq. (D.69) into eq. (D.60) and obtain

∇θm(ti) =
(
[Y [: li, :]]ᵀ +

[
Λᵀ

1θ, . . . , Λᵀ
li
θ
])
κ̃i

= [Y [: li, :]]ᵀ κ̃i +
[
Λᵀ

1θ, . . . , Λᵀ
li
θ
]
κ̃i. (D.70)
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By eq. (D.13), it follows that

[Y [: li, :]]ᵀ κ̃i
eq. (D.17)= Y ᵀκi, and (D.71)[

Λᵀ
1θ, . . . , Λᵀ

li
θ
]
κ̃i

eq. (D.20)= Sᵀκi. (D.72)

This implies via eq. (D.70) that

∇θm(ti) = (Y ᵀ + Sᵀ)κi, (D.73)

Fifth and finally, we, by insertion of eq. (D.73) into eq. (D.58) and application of
eq. (D.12), obtain

Dmθ = K(Y + S) eq. (D.11)= J +KS. (D.74)

D.13 Supplement IV: Proof of Theorem D.4.1
We first show some preliminary technical lemmas in Appendix D.13.1 which are needed
to prove bounds on ‖K‖ and ‖S‖ in Appendix D.13.2 and Appendix D.13.3, respec-
tively. Having proved these bounds, the core proof of Theorem D.4.1 simply consists of
combining them by Theorem D.3.1, as executed in Appendix D.13.4.

D.13.1 Preliminary lemmas

The following lemma will be needed in Appendix D.13.2 to bound ‖K‖.

Lemma D.13.1. Let Q > 0 be a symmetric positive definite and Q′ ≥ 0 a symmetric
positive semi-definite matrix in Rm×n. Then, it holds true that

‖
[
Q+Q′

]−1‖∗ ≤ ‖Q−1‖∗, (D.75)

for the nuclear norm

‖A‖∗ = trace
√
A∗A =

m∧n∑
i=1

σi(A), (D.76)

where σi(A), i ∈ {1, . . . ,m ∧ n}, are the singular values of A.

Proof. Recall that, for all symmetric positive semi-definite matrices, the singular values
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are the eigenvalues. Therefore

‖
[
Q+Q′

]−1‖∗ =
m∧n∑
i=1

1
λi(Q+Q′)

≤
m∧n∑
i=1

1
λi(Q) = ‖Q−1‖∗. (D.77)

In eq. (D.77), we exploited the fact that Q ≤ Q + Q′ (i.e. that (Q + Q′) − Q = Q′ is
positive semi-definite) and therefore λi(Q) ≤ λi(Q+Q′) for ordered eigenvalues λ1(Q) ≤
· · · ≤ λm∧n(Q) counted by algebraic multiplicity. This fact is an immediate consequence
of Theorem 8.1.5. in Golub and Van Loan (1996).

The next lemma will be necessary to prove a bound on ‖S‖ in Appendix D.13.3.

Lemma D.13.2. Let g(x,λ) ∈ C ([0,T ]× Λ;R) on non-empty compact Λ ⊂ Rn with
continuous first-oder partial derivatives w.r.t. the components of λ. If

sup
λ∈Λ

g(x,λ) ∈ O(h(x)) (D.78)

for some constant C > 0 and some strictly positive h : [0,T ]→ R, then also

sup
λ∈Λo

∣∣∣∣∣ ∂∂λk g(x,λ)
∣∣∣∣∣ ∈ O(h(x)), (D.79)

where Λo denotes the interior of Λ.

Proof. Assume not. Then, there is a k ∈ {1, . . . ,n} and a λ̃ ∈ Λo such that∣∣∣∣∣ ∂∂λk g(x, λ̃)
∣∣∣∣∣ /∈ O(h(x)). (D.80)

Since, for all x ∈ [0,T ], ∂
∂λk

(x, ·) is uniformly continuous over the bounded domain Λo,
there is a δ > 0 such that∣∣∣∣∣ ∂∂λk g(x, λ̃)

∣∣∣∣∣ /∈ O(h(x)), for all λ ∈ B2δ(λ̃). (D.81)

Let us w.l.o.g. (otherwise consider −g) assume that

∂

∂λk
g(x, λ̃) ≥ 0, for all λ ∈ B2δ(λ̃). (D.82)
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Now, on the one hand, we know by the fundamental theorem of calculus that∫ 0

−δ

∂

∂λk
g(xn, λ̃+ δ̃ek) dδ̃

= g(x, λ̃)︸ ︷︷ ︸
∈O(h(x))

− g(x, λ̃− δek)︸ ︷︷ ︸
∈O(h(x))

∈ O(h(x)). (D.83)

However, on the other hand, we know from our assumption that

0
eq. (D.82)
≤

∫ 0

−δ

∂

∂λk
g(xn, λ̃+ δ̃ek) dδ̃ (D.84)

≤
∫ 0

−δ

∣∣∣∣∣ ∂∂λk g(xn, λ̃+ δ̃ek)
∣∣∣∣∣︸ ︷︷ ︸

/∈O(h(x)), by eq. (D.81)

dδ̃ /∈ O(h(x)), (D.85)

which implies ∫ 0

−δ

∂

∂λk
g(xn, λ̃+ δ̃ek) dδ̃ /∈ O(h(x)). (D.86)

The desired contradiction is now found between eqs. (D.83) and (D.86).

D.13.2 Bound on ‖K‖

Lemma D.13.3. Under Assumption D.3 and for all R > 0, it holds true that

‖K‖ ≤ C(T ), (D.87)

where C(T ) > 0 is a constant that depends on T .

Proof. First, recall eqs. (D.12) to (D.16) and observe that

‖k∂(h : ti, ti)‖ ≤ C
σ2

2 ‖
[
h2, . . . ,T 2

]
‖∞ = C

(
2−

1
2σT

)2
,

for all i = 1, . . . ,M . Second, Lemma D.13.1 implies that

‖
[
K∂ ∂(h : ti) +R · Ili

]−1‖
eq. (D.75)
≤ C‖R−1 · Ili−1‖∗

≤ C‖R−1 · IN̄−1‖∗ ≤ CRN̄ .
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Now, by eq. (D.13), we observe

‖κi‖1 = ‖κ̃i‖1

≤ ‖
[
K∂ ∂(h : ti) +R · Ili

]−1‖ · ‖k∂(h : ti, ti)‖
≤ C(T ), (D.88)

where we inserted the above inequalities in the last step. Finally, we obtain eq. (D.87)
by plugging eq. (D.88) into

‖K‖ ≤ C‖K‖∞
eq. (D.12)= max

1≤i≤M
‖κi‖1. (D.89)

D.13.3 Bound on ‖S‖
Before estimating ‖S‖, we need to bound how far the entries of S (recall eq. (D.20))
deviate from the true sensitivities ∂

∂θk
xθ(T ).

Lemma D.13.4. If Θ ⊂ Rn is compact, then it holds true, under Assumptions D.1 and
D.2, that

sup
θ∈Θo
‖ ∂
∂θk

m−θ (T )− ∂

∂θk
xθ(T )‖ ∈ O(h). (D.90)

Proof. First, recall that the convergence rates of O(h) provided by Theorem 6.7 in
Kersting et al. (2020a) only depend on f through the dependence of the constantK(T ) >
0 on the Lipschitz constant L of f . But this L is independent of θ by Assumption D.1.
Hence, Theorem 6.7 from Kersting et al. (2020a) yields under Assumption D.2 that

sup
θ∈Θo

m−θ (T )− xθ(T ) ∈ O(h). (D.91)

Moreover, Theorem 8.49 in Kelley and Peterson (2010) is applicable under Assumption
D.1 and implies that xθ(t) is continuous and has continuous first-order partial derivatives
with respect to of θk. By construction—recall eq. (D.10)—the filtering mean mθ(t) has
the same regularity too. Hence, application of Lemma D.13.2 with x = h, Λ = Θ, λ = θ,
g(x,λ) = m−θ (T )− xθ(T ) is possible, which yields eq. (D.90) from eq. (D.91).
Lemma D.13.5. If Θ ⊂ Rn is compact, then it holds true, under Assumptions D.1 to
D.3, that

‖S‖ ≤ C (‖∇θxθ‖+ h) , (D.92)

for sufficiently small h > 0.
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Proof. By Assumption D.3 and the equivalence of all matrix norms, we observe

‖S‖ ≤ C‖S‖2 = C‖Sᵀ‖2 ≤ C‖Sᵀ‖2,1 (D.93)

eq. (D.20)= C
N̄∑
j=1
‖Λᵀ

jθ‖2 (D.94)

≤ C
N̄∑
j=1
‖Λᵀ

j‖2 ‖θ‖2︸ ︷︷ ︸
≤C, since Θ bounded

, (D.95)

where ‖·‖2,1 denotes the L2,1 norm. We conclude, using Assumption D.2 and Lemma D.13.4,
that

‖Λᵀ
j‖2

eq. (D.21)
≤ Lmax

jk

[
∂

∂θk
m−θ (jh)

]
(D.96)

eq. (D.90)
≤ C (‖∇θxθ‖+ h) . (D.97)

D.13.4 Proof of Theorem D.4.1

Proof. By Theorem D.3.1 and the sub-multiplicativity of the induced p-norm ‖·‖p, we
observe that

‖J −Dmθ‖ = ‖KS‖ ≤ C‖KS‖p ≤ ‖K‖p‖S‖q
≤ C‖K‖‖S‖, (D.98)

for some p, q ≥ 1. Application of Lemmas D.13.3 and D.13.5 concludes the proof.

D.14 Supplement V: Gradient and Hessian
estimators for the Bayesian case

In the main paper, we only consider the maximum likelihood objective; see eq. (D.23).
Nonetheless, the extension to the Bayesian objective, with a prior π(θ), is straightfor-
ward:

− log (p(z | θ)π(θ)) = − log (p(z | θ))− log (π(θ))
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Accordingly, the gradients and Hessian of this objective are

∇θ [− log (p(z | θ)π(θ))] eq. (D.26)= ∇̂θE(z)−∇θ log (π(θ)) ,

∇2
θ [− log (p(z | θ)π(θ))] eq. (D.27)= ∇̂2

θE(z)−∇2
θ log (π(θ)) .

Hence, for a Gaussian prior π(θ) = N (θ;µθ,Vθ), the Bayesian version of the gradients
and Hessian estimators in eqs. (D.26) and (D.27) are hence given by

∇̂θE(z)Bayes := −Jᵀ
[
P + σ2IM

]−1
[z −mθ]

− V −1
θ [θ − µθ] , and (D.99)

∇̂2
θE(z)Bayes := Jᵀ

[
P + σ2IM

]−1
J + V −1

θ . (D.100)

D.15 Supplement VI: Glucose uptake in yeast
The Glucose uptake in yeast (GUiY) is described by mass-action kinetics. In the notation
of Schillings et al. (2015), the underlying ODE is given by:

ẋeGlc = −k1x
e
Ex

e
Glc + k−1x

e
E–Glc

ẋiGlc = −k2x
i
Ex

i
Glc + k−2x

i
E–Glc

ẋiE–G6P = k4x
i
Ex

i
G6P + k−4x

i
E–G6P

ẋiE–Glc–G6P = k3x
i
E–Glcx

i
G6P − k−3x

i
E–Glc–G6P

ẋiG6P = −k3x
i
E–Glcx

i
G6P + k−3x

i
E–Glc–G6P

− k4x
i
Ex

i
G6P + k−4x

i
E–Glc

ẋeE–Glc = α
(
xiE–Glc − ẋeE–Glc

)
+ k1x

e
Ex

e
Glc

− k−1x
e
E–Glc

ẋiE–Glc = α
(
xeE–Glc − ẋiE–Glc

)
− k3x

i
E–Glcx

i
G6P

+ k−3x
i
E–Glc–G6P + k2x

i
Ex

i
Glc − k−2x

i
E–Glc

ẋeE = β
(
xiE − xeE

)
− k1x

e
Ex

e
Glc + k−1x

e
E–Glc

ẋiE = β
(
xeE − xiE

)
− k4x

i
Ex

i
G6P + k−4x

i
E–G6P

− k2x
i
Ex

i
Glc + k−2x

i
E–Glc,

where k1, k−1, k2, k−2, k3, k−3, k4, k−4, α, and β are the 10 parameters. Note that
this system satisfies Assumption D.1. Following Schillings et al. (2015) and Gorbach
et al. (2017), we used this ODE with initial value x0 = 1M , time interval [0., 100.]
and true parameter θ∗ = [0.1, 0.0, 0.4, 0.0, 0.3, 0.0, 0.7, 0.0, 0.1, 0.2]. To generate data by
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eq. (D.3), we added Gaussian noise with variance σ2 = 10−5 to the corresponding solution
at time points [1., 2., 4., 5., 7., 10., 15., 20., 30., 40., 50., 60., 80., 100.]. The optimizers and
samplers were initialized at θ0 = 1.2 · θ∗ = [0.12, 0, 0.48, 0, 0.36, 0, 0.84, 0, 0.12, 0.24],
and the forward solutions for all likelihood evaluations were computed with step size
h = 0.05. To create a good initialization, we accepted the first 30 proposals for PHMC
and PLMC.
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E A Fourier State Space Model for
Bayesian ODE Filters (Kersting
and Mahsereci, 2020)

Abstact: Gaussian ODE filtering is a probabilistic numerical method to solve ordinary
differential equations (ODEs). It computes a Bayesian posterior over the solution from
evaluations of the vector field defining the ODE. Its most popular version, which employs
an integrated Brownian motion prior, uses Taylor expansions of the mean to extrapo-
late forward and has the same convergence rates as classical numerical methods. As
the solution of many important ODEs are periodic functions (oscillators), we raise the
question whether Fourier expansions can also be brought to bear within the framework
of Gaussian ODE filtering. To this end, we construct a Fourier state space model for
ODEs and a ‘hybrid’ model that combines a Taylor (Brownian motion) and Fourier state
space model. We show by experiments how the hybrid model might become useful in
cheaply predicting until the end of the time domain.

E.1 Introduction
Ordinary differential equations (ODEs) appear in many machine learning algorithms.
In recent years, there has been a particular surge of interest in ODEs for normalizing
flows (Rezende and Mohamed, 2015). This development is driven by neural ODEs (Chen
et al., 2018), which allow for maximum-likelihood estimation and variational inference.
Neural ODEs replace learning by gradient descent with learning by ODE sensitivity
analysis (Rackauckas et al., 2018).
A recent recast of ODEs as a stochastic filtering problems has made it possible to solve
initial value problems (IVPs) by all available Bayesian filtering methods (Tronarp et al.,
2019a, 2020). The resulting class of methods, called ODE filters, has not only fulfilled
the goal of probabilistic numerics (PN) (Hennig et al., 2015; Oates and Sullivan, 2019)
to quantify numerical uncertainty in a Bayesian way, but has also identified the dynamic
model as the fundamental internal modeling assumption of ODE solvers. This dynamic
model determines how the solver extrapolates forward in time and is equivalent to a
prior over the ODE solution (Kersting et al., 2020b, Appendix A).
Early PN research has, to show that its new methods are indeed practical, focused
mostly on creating probabilistic analogues of classical methods. This line of inquiry has
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discovered that the integrated Brownian Motion (IBM) prior gives rise to ODE filters
whose mean coincides with standard classical methods; see Schober et al. (2019). This is
due to the fact that—like e.g. Runge–Kutta method—ODE filters with the IBM prior use
Taylor expansions to locally predict forward; see Equation (6) in Kersting et al. (2020a).
In the meantime, other local expansions based on the Matérn covariance function have
been studied; see Tronarp et al. (2020). Fourier expansions, however, have not been
investigated in the context of ODE filters although it is known how to incorporate them
in a dynamic model; see (Solin and Särkkä, 2014). With this paper, we aim to begin
filling in this gap. Since so many important ODEs are oscillators with periodic solutions,
we consider Fourier expansions a promising research direction in the context of ODE
filtering.

E.2 ODE Filtering for initial value problems
We consider the following IVP

ẋ(t) = f (x(t)) , ∀t ∈ [0,T ], x(0) = x0 ∈ Rd, (E.1)

with vector field f : Rd → Rd. For notational convenience, we restrict w.l.o.g. the below
presentation to d = 1. As the solution x : [0,T ]→ Rd in general lies in an infinite dimen-
sional function space such as C2([0,T ];Rd), a finite dimensional representation is needed
to extrapolate from x(t) to x(t + h). Runge–Kutta methods, for example, use Taylor
expansions (i.e. projections to polynomial spaces) as finite dimensional approximations
of x. While classical methods only do so implicitly, Gaussian ODE filtering represents
x(t) explicitly in a D-dimensional state vector, i.e. in a stochastic process X(t) from
which a model of x(t) can be linearly extracted:

x(t) ∼ H0X(t), for some H0 ∈ Rd×D. (E.2)

Moreover, for ODEs, the derivative has also to be linearly extractable

ẋ(t) ∼ HX(T ) for some H ∈ Rd×D. (E.3)

As ODE filtering is a Bayesian method, the stateX(t) is modeled by a stochastic process,
which is usually represented by a linear time-invariant stochastic differential equation
(SDE)

dX(t) = FX(t) dt+ L dB(t) (E.4)

with Gaussian initial condition on X(0), where the drift and diffusion matrices F ,L ∈
RD×D detail the deterministic and stochastic part of the dynamics respectively. This
SDE prior can be thought of as a localized definition of a Gauss–Markov process. In its
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Algorithm 4 Gaussian ODE Filtering
Input: IVP(xi,m,T ), step size h > 0
Initialize, t = 0, H0X(0) = x0 and HX(0) = f(x0)
repeat
predict state X, t→ t+ h, along Equation (E.5)
t = t+ h
update X(t) by Equations (E.8) and (E.9)

until t+ h > T

discretized form, it defines a dynamic model

p (X(t+ h) |X(t)) = N (A(h)X(t),Q(h)), (E.5)

with matrices A(h),Q(h) ∈ RD×D which are implied in closed form by F and L. To
update this model, a measurement model is added

p(Z(t) |X(t)) = N (f(H0X(t))−HX(t),R) , (E.6)

R ≥ 0, which is conditioned on the data

Z(t) := 0. (E.7)

As f is non-linear, the above measurement model is intractable (Tronarp et al., 2019a,
Section 2). By substituting f(H0E[X(t)]) for f(H0X(t)), we obtain the following tractable
measurement model

p(Z(t) |X(t)) = N (HX(t),R) (E.8)
Z(t) := f(H0E[X(t)]). (E.9)

We will employ this measurement model in this paper. The dynamic and measurement
model together are called a probabilistic state space model (SSM), which Gaussian ODE
filtering uses to infer x as detailed in Algorithm 4.
The classical Taylor SSM
In previous research, the most commonly recommended model uses an integrated

Brownian motion as a dynamic model (prior). It is defined by inserting the following
matrices into Equation (E.5):

A(h)ij = Ii≤j
hj−i

(j − i)! , (E.10)

Q(h)ij = σ2 h2q+1−i−j

(2q + 1− i− j)(q − i)!(q − j)! , (E.11)
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where σ2 is the variance scale of the underlying Brownian motion; see Kersting et al.
(2020a, Appendix A). Here, the state vector[

x(0)(t), . . . ,x(q)(t)
]
∼ X(t) (E.12)

models the first q ∈ N derivatives of x(t). Therefore, the mean prediction X(t + h) =
A(h)X(t) is a Taylor expansion of the numerical estimates of these derivatives. Con-
sequently, since Runge–Kutta methods also use Taylor approximations of x(t) (Hairer
et al., 1987, Section II.2), the posterior mean is similar to Runge–Kutta methods with
local convergence rates of q+1 and global convergence rates of q. It is hence a very good
method to solve generic ODEs; see Schober et al. (2019) and Kersting et al. (2020a).

E.3 Fourier models for ODEs

In this paper, we are concerned with oscillating ODEs. Hence, let the ODE be such that
its solution x(t) is a periodic function. Let us denote the period of x by p > 0, and its
angular velocity by w0 = 2π/p. For such periodic functions, a J-th order Fourier series,
J ∈ N, of x is the standard approximation:

xJ(t) = x0 +
J∑
j=1

xj(t)
J→∞→ x(t), (E.13)

almost everywhere, where x0 = a0/2 and

xj(t) = aj cos(w0jt) + bj sin(w0jt). (E.14)

The derivative of Equation (E.13) is

ẋJ(t) = y0 +
J∑
j=1
−w0jyj(t)

J→∞→ x(t), (E.15)

almost everywhere, where y0 = 0 and

yj(t) = aj sin(w0jt)− bj cos(w0jt). (E.16)

The exact Fourier coefficients are given by the integrals

aj = 2
p

∫ p

0
x(t) cos(jw0t) dt, (E.17)

bj = 2
p

∫ p

0
x(t) sin(jx0t) dt, (E.18)
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which are, in general, intractable. Thus, learning a periodic approximation of x amounts
to inferring the coefficients (aj, bj). To reproduce the model from Solin and Särkkä (2014,
Section 3.2), we will however run inference on the corresponding harmonic oscillators
(xj(t), yj(t)) instead. To this end, we first observe that, for each j = 0, . . . , J , [xj(t), yj(t)]
satisfies the following differential equations

d

dt

[
xj(t)
yj(t)

]
=
[

0 −jw0
jw0 0

] [
xj(t)
yj(t)

]
. (E.19)

Note that, if we set [x0(0), y0(0)] = [a0/2, 0] and [xj(0), yj(0)] = [aj,−bj], then the
only solution of Equation (E.19) is indeed [xj(t), yj(t)] as defined in Equations (E.14)
and (E.16). Since we (in general) do not know the Fourier coefficients (aj, bj), we model
the initial values with a Gaussian probability distribution: [xj(0), yj(0)] ∼ N (0, q2

jI),
for some q2

j > 0. We then model these oscillators by a stochastic process X(t), i.e.

[x0(t), y0(t),x1(t), y1(t), . . . ,xJ(t), yJ(t)] ∼ X(t) (E.20)

which (according to Equation (E.19)) follows the SDE, Equation (E.4), if and only if

F = diag(F1, . . . ,FJ), with blocks (E.21)

Fj =
[

0 −jw0
jw0 0

]
, and (E.22)

L = 0 ∈ R2(J+1)×2(J+1), (E.23)

and if the initial condition is [X(0)2j,X(0)2j+1] ∼ N (0, q2
jI). It is natural that there is

no diffusion (L = 0), as the Fourier coefficients (unlike Taylor coefficients) of a periodic
signal x(t) do not change in t. Since we want the prior defined by this SDE to be a
zero-mean Gaussian Process with the canonical periodic covariance function

kp(t, t′) = σ2 exp
−2 sin2

(
w0

t−t′
2

)
l2

 , (E.24)

we have to set

q2
j = 2Ij(l−2)

exp(l−2)
, for j = 1, . . . , J , (E.25)

where Ij(z) is the modified Bessel function of the first kind of order j; see Solin and
Särkkä (2014, Eq. 27).
Dynamic model The implied matrices for the dynamic model, Equation (E.5), are
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now given by

A = diag(A0, . . . ,AJ), with blocks (E.26)

Aj =
[
cos(w0jt) − sin(w0jt)
sin(w0jt) cos(w0jt)

]
, and (E.27)

Q = 0 ∈ R2(J+1)×2(J+1). (E.28)

Measurement Model This dynamic model is, like all dynamic models, combinable
with all measurement models. For ODEs, we need, by Equation (E.8), a model H0
that extracts x(t) and a model H that extracts the derivative from the state X(t) of
Equation (E.20). By Equations (E.13) and (E.15), this is satisfied by

H0 = [1, 0, 1, 0, . . . , 1, 0] ∈ R1×2(J+1), and (E.29)
H =

[
0, 0, 0,−1w0, 0,−2w0, . . . , 0,−Jw0

]
∈ R1×2(J+1).

E.3.1 Discussion of the Fourier model
As their coefficients do not depend on a support point, Fourier models are (unlike Taylor
models) global expansions. Hence, they are best at extrapolating globally, while Taylor
methods excel at extrapolating locally. As ODE methods are usually designed for a
small step size h > 0, the Taylor approximation is the standard approximation in ODE
solvers, such as Runge–Kutta methods. Hence, we expect the Fourier SSM to be more
useful for global extrapolation with larger step sizes. Accordingly, we suggest a hybrid
ODE solver which combines the Taylor and the Fourier state space model in the next
section. This model could be used to extrapolate from a certain time, after learning the
Fourier coefficients with data from the Taylor model.

E.4 The hybrid Taylor-Fourier model
As Taylor approximations excel at local approximations and Fourier approximations
at global approximations of periodic signals, we combine both to the hybrid Taylor-
Fourier model. The idea is that one can learn the Fourier coefficients (aj, bj) from
Equations (E.17) and (E.18) with data from the Taylor SSM and then extrapolate
with the Fourier SSM using the learned coefficients. Let us denote the Taylor SSM by
(ATay,QTay,HTay) and the Fourier SSM (AFour,QFour,HFour). The hybrid Filter works
now as follows: It splits the time domain [0,T ] of the ODE into two parts [0,Tp] and
[Tp,T ] for some prediction time point Tp ∈ (0,T ). On the first interval [0,Tp], we
solve the ODE with the classical Gaussian ODE filter with the Taylor SSM, and we,
simultaneously, train the Fourier SSM with the data from the Taylor model. On the
second interval [Tp,T ], we just predict along the Fourier dynamical model defined by
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(AFour,QFour).
As the computation on the time interval [Tp,T ] does not require additional evaluations
of f and is therefore almost free, we hope that that this model turns out useful to reduce
the computational time of solving periodic ODEs. In the next section we present some
experiments which, while not practical yet, highlight that this hybrid model in principle
works.

E.5 Experiments
We try a Gaussian ODE filter with hybrid Taylor-Fourier SSM on two standard oscil-
lating ODEs: the Van der Pol oscillatorẋ1(t) = µ(x1(t)− 1

3x1(t)3 − x2(t)),
ẋ2(t) = 1

µ
x1(t),

(E.30)

with µ = 5, x(0) = [1,−1], T = 50, and the FitzHugh–Nagumo modelẋ1(t) = x1(t)− x1(t)3

3 − x2(t) + I,
ẋ2(t) = 1

τ
(x1(t) + a− x2(t)) ,

(E.31)

with parameters (I, a, b, τ) = (0.5, 0.7, 0.8, 10.0), x(0) = [1., 0.1] and T = 50.

E.5.1 Experimental set-up
We set the parameters of the Taylor model as follows: q = 1 and σ2 = 1. Moreover, we
choose the following parameters of the Fourier model: l = 3, w0 = 1, σ2 = 1, J = 3
p = 2π and R = 0. Note that these parameters are not fine-tuned. We define the
prediction time Tp for both ODEs to be Tp = 3

4T = 37.5.

E.5.2 Results
The plots in Figures E.1 and E.2 show that the hybrid ODE filter works in principle.
It picks up some structure from the trajectories on [0,Tp] and can extrapolate forward
by a sum of harmonic oscillators. The quality of the extrapolation is, however, not
good enough yet. We suspect that this is due to our ad-hoc choice of parameters.
Since our state space model is by Solin and Särkkä (2014) an approximation of GP
regression with periodic kernel and derivative observations, it should be possible to
make the extrapolation as accurate as periodic GP regression (at least for J →∞).
In particular, it should be possible to choose the angular velocity w0 in a more principled
way and thereby match the period of the oscillator more precisely. Our choice of w0 = 1
is particularly off in Figure E.2. We also believe that a more accurate extrapolation
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Figure E.1: Hybrid Filter on Van der Pol ODE, Equation (E.30). Blue and yellow line
are true curves x1 and x2. Red and green line are hybrid filter mean with prediction
from Tp = 37.5.

could be achieved if a larger J is chosen. This will probably only work well once we have
found a suitable way to choose w0. Moreover, future research should examine which
J + 1 data points from the Taylor model should be used for the Fourier model—which
is an active learning task with Gaussian processes (Seo et al., 2000).

E.6 Conclusion
We examined how Fourier state space models can be employed in Gaussian ODE filtering,
to solve oscillating ODEs. To this end, we developed a novel Fourier sate space model
that is applicable to ODEs. We reasoned that it might outperform Taylor methods on
global extrapolation tasks. Since Fourier expansions are not locally accurate enough to
serve as a practical ODE solver on its own, we have developed the hybrid ODE Solver
which combines Taylor and Fourier expansions. It first uses a Taylor SSM to compute
up to a certain time Tp while training a Fourier SSM ‘on the fly’, and then uses the
so-trained Fourier SSM to predict forward. We demonstrated that, in principle, this can
work—even if we are not yet satisfied with the quality of the Fourier prediction.
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Figure E.2: Hybrid Filter on FitzHugh–Nagumo ODE, Equation (E.31). Blue and yellow
line are true curves x1 and x2. Red and green line are hybrid filter mean with prediction
from Tp = 37.5.

Future research should examine how the Fourier coefficients can be learned better—
e.g. by finding ways to choose the Fourier parameters (w0, J) better or to employ smart
active learning (Seo et al., 2000) for the Fourier coefficients (aj, bj). Since the desired
Fourier coefficients are integrals, maybe ideas from Bayesian quadrature (Briol et al.,
2019) can be borrowed for this purpose; see Equations (E.17) and (E.18). We hope
that this might pave the way to almost cost-free predictions of oscillating systems which
could come in useful in settings where ODEs have to be solved over a long time horizon
with very limited budget or where a (reinforcement learning) system has to make sudden
decisions in the context of ODE dynamics (Deisenroth and Rasmussen, 2011).
If so, then exciting new ideas unknown to classical numerical analysis—such as quasi-
periodic extrapolations (Solin and Särkkä, 2014, Section 3.5)—could be introduced to
ODE solvers. Such a development would also benefit probabilistic numerical methods
for boundary value problems (John et al., 2019), PDEs (Oates et al., 2019), and ODE
inverse problems (Kersting et al., 2020b).
In machine learning, such advances could provide better uncertainty quantification (of
the numerical error) for continuous normalizing flows with ODEs, see (Chen et al., 2018,
Section 4)—where a free-form ODE, potentially an oscillator (Grathwohl et al., 2019),
has to be numerically solved to approximate the transformed state and the numerical
error is, to date, not accounted for.
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