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Abstract

The numerical solution of differential equations underpins a large share of simulation
methods that are used in the natural sciences and engineering, both in research and
in industrial applications. The usability of a differential equation model depends,
often crucially, on the choice of the simulation algorithm. Probabilistic numerical
algorithms promise to combine efficient simulations with well-calibrated uncertainty
quantification. Being able to handle various sources of uncertainty without a severely
increased computational burden simplifies the combination of differential equation
models with, for example, observational data and thereby improves the fusion of
mechanistic and statistical information.

However, until now, the general usability of probabilistic numerical solvers had
not reached a level comparable to non-probabilistic approaches. A lack of numerical
stability and scalability, combined with a strong focus on ordinary differential equations
and initial value problems, put probabilistic numerical algorithms out of the scope
of an implementation in the physical and the life sciences, which would require the
efficient simulation of dynamics that may exhibit spatiotemporal patterns or could be
constrained by boundary information.

This thesis explains a series of contributions to the solution of this problem by
discussing the implementation of a class of probabilistic numerical differential equation
solvers that shares many features with collocation methods and with Gaussian filtering
and smoothing:

1. A set of instructions for the numerically stable implementation of probabilistic
numerical differential equation solvers that scales to high-dimensional problems.

2. The generalisation of solvers for ordinary-differential-equation-based initial
value problems to boundary value problems and partial differential equations.

Many of the techniques have already been implemented successfully in various
software libraries for probabilistic numerical differential equation solvers.

Altogether, the contributions improve the usability of existing and future probabilistic
numerical algorithms. The simulation of challenging differential equation models and
an application of the probabilistic numerical paradigm to real-world problems is no
longer out of reach.
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Zusammenfassung (auf Deutsch)

Die numerische Losung von Differenzialgleichungen ist eine wichtige Grundlage
fiir viele Simulationsmethoden, welche in den Natur- und Ingenieurwissenschaften
eingesetzt werden, sowohl in der Forschung als auch in der Industrie. Die Brauch-
barkeit eines Differenzialgleichungsmodells hingt entscheidend von der Wahl des
Simulationsalgorithmus ab und probabilistisch-numerische Algorithmen versprechen,
effiziente Simulationen mit wohlkalibrierten Unsicherheitsschitzern zu kombinieren.

Die allgemeine Anwendbarkeit probabilistisch-numerischer Loser hat jedoch noch
nicht das Niveau von nicht-probabilistischen Ansétzen erreicht. Ein Mangel an nu-
merischer Stabilitdt und Skalierbarkeit, kombiniert mit einer starken Konzentration
auf gewohnliche Differenzialgleichungen und Anfangswertprobleme, macht proba-
bilistische numerische Algorithmen fiir viele Probleme unbrauchbar; vor allem solche,
die auf partiellen Differenzialgleichungen oder Randwertproblemen basieren.

Diese Arbeit erldutert eine Reihe von Beitrigen zur Losung dieses Problems,
speziell, zur Implementierung derjenigen Klasse von probabilistisch-numerischen Dif-
ferenzialgleichungslosern, welche viele Gemeinsamkeiten mit Kollokationsmethoden
und mit Gauf3schen Filtern hat:

1. Eine Reihe an Strategien fiir die numerisch stabile und skalierbare Software-
Implementierung von probabilistisch-numerischen Differenzialgleichungslosern.

2. Die Verallgemeinerung von probabilistisch-numerischen Methoden fiir auf
gewohnlichen Differenzialgleichungen basierende Anfangswertprobleme auf
Randwertprobleme und partielle Differenzialgleichungen.

Viele der Techniken sind bereits erfolgreich in verschiedenen Softwarebibliotheken
fiir probabilistische numerische Differenzialgleichungsloser implementiert worden.
Insgesamt verbessern die in dieser Arbeit vorgestellten Methoden die Nutzbarkeit
existierender und zukiinftiger probabilistischer numerischer Algorithmen. Die Simu-
lation von anspruchsvollen Differenzialgleichungsmodellen und eine Anwendung des
probabilistisch-numerischen Paradigmas auf reale Probleme wird damit ermoglicht.
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Originality

The writing of this thesis is my original work. The content of each chapter is either
my original work — or rather, a joint effort with coauthors as summarised below — or a
reference to existing work, in which case it is cited as such.

Publications

The content of this dissertation relates to the following papers.

Paper 1. Nicholas Krimer and Philipp Hennig. Stable implementation of proba-
bilistic ODE solvers. 2020. Accepted with minor revisions to JMLR. The revised
version is currently under review. A preprint is available on arXiv:2012.10106.
This is reference [100].

Each coauthor contributed as follows:

Ideas Analysis Experiments Writing
Nicholas Krdmer 90 % 90 % 95 % 85 %
Philipp Hennig 10% 10 % 5 % 15 %

Paper 2. Nicholas Kriamer and Philipp Hennig. Linear-time probabilistic solution
of boundary value problems. Advances in Neural Information Processing Systems
34 (2021). This is reference [101].

Each coauthor contributed as follows:

Ideas Analysis Experiments Writing
Nicholas Krdmer 90 % 90 % 95 % 85 %
Philipp Hennig 10% 10 % 5 % 15 %

Paper 3. Nicholas Krimer*, Nathanael Bosch*, Jonathan Schmidt*, and Philipp
Hennig. Probabilistic ODE solutions in millions of dimensions. International
Conference on Machine Learning 2022. This is reference [102].
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The superscript ‘*’ indicates equal contribution. Each coauthor contributed as
follows:

Ideas Analysis Experiments Writing

Nicholas Kramer 30% 30 % 30 % 30 %
Nathanael Bosch 30 % 30 % 30 % 30 %
Jonathan Schmidt 30% 30 % 30 % 30 %
Philipp Hennig 10% 10 % 10 % 10 %

Paper 4. Nicholas Kridmer, Jonathan Schmidt and Philipp Hennig. Probabilistic
numerical method of lines for time-dependent partial differential equations.
International Conference on Artificial Intelligence and Statistics 2022. This is
reference [103].

Each coauthor contributed as follows:

Ideas Analysis Experiments Writing

Nicholas Kramer 80 % 70 % 50 % 70 Y%
Jonathan Schmidt 10% 20 % 40 % 20 %
Philipp Hennig 10% 10 % 10 % 10 %

Detailed connections

Large parts of this dissertation are an extended summary of these articles; however,
some statements are new. The precise relationship between the four papers and this
thesis is as follows:

The content in to [3]is known, but with a new presentation, and has
been included as background information for the rest of this manuscript. The figure in
is from All other figures are new.

Chapters 4]to[7|are a more comprehensive version of and break down as
follows.

extends to include numerically stable whitening and computing
log-probabilities, and distinguishes Bayesian updates with noisy and deterministic
transformations; all of these are minimal extensions.

is mostly known, but the interpretation of the work by Kersting and
Hennig [91] as zeroth-order statistical linear regression is new (Tronarp et al. [163]]
present a slightly different version of this finding), and so is the interpretation of the
work by Arvanitidis et al. [10] as iterated zeroth-order linearisation. To the best of my
knowledge, the downdate-free Cholesky implementation of statistical linear regression
is novel. These findings are contextualised in[Chapter 5]
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Chapter 6|is based on[Paper 1]|but discusses automatic differentiation more thor-
oughly; for example, [Chapter 6|suggests an implementation of Taylor-mode differenti-

ation via coefficient doubling, which is not contained in[Paper 1| The regression-based
initialisation in[Chapter 6]is from Paper 3|

[Chapter 7|is based on[Paper 1]as well, except for the results on calibration, both
time-varying and time-constant, which are discussed by Bosch et al. [25], Schober
et al. [152], Tronarp et al. [163]. The chapter cites these works where relevant. Via

Chapter 5| the statistical-linear-regression-based algorithms extend the work in
All tables and figures in[Chapter 7| are taken from
Chapter 8]is based on[Paper 3| except for what will be referred to as “dense models”,

which are known and cited as such. The chapter presents the content (slightly)
differently than the paper; for example, the matrix-normal perspective on Kronecker
models is new. The vector-valued maximum-likelihood calibration of the output scale
in Kronecker models is also new and generalises the result in[Paper 3| All figures in
this chapter are from [Paper 3|

The benchmarks in are new and have been created solely for this thesis.

and[11]relate to The presentation in both chapters refines that
in but the results are the same. All figures in those chapters are from

corresponds to The chapter explains the bridge process and

the initialisation more thoroughly than the paper but refers to previous chapters for
background. The figure that shows samples from the bridged Wiener velocity process

is new. All others are taken from

Miscellaneous

Besides working on the projects above, I have contributed to other articles during my

PhD, namely, [92,/114}125/150,/178]. But these are not included in this dissertation.
I have also created and contributed to various open-source software projects related

to differential equations and probabilistic numerical algorithms, most prominently:

1. ProbDiffEq: I am the creator of ProbDiffEq, a JAX implementation of
probabilistic numerical IVP solvers, which provides all methods presented in

Chapters 4Jto[8]and has been used for the benchmarks in[Chapter 9| ProbDiffEq’s
online documentation can be found under

https://pnkraemer.github.io/probdiffeq/.

2. ProbFinDiff: I am the creator of ProbFinDiff, a JAX implementation of
probabilistic numerical finite differences. ProbFinDiff’s online documentation
can be found under

https://probfindiff.readthedocs.io/.



3. ProbNum: I have been one the main contributors to ProbNum, a Python
implementation of various probabilistic numerical algorithms. ProbNum’s
online documentation can be found under

https://probnum.org/

and the corresponding paper [178] describes the library in more detail.

Other software outputs include creating a library that collects exemplary initial value
problems in NumPy and JAX[T|co-creating a previous iteration of a JAX implemen-
tation of probabilistic numerical solvers, [?] which has been used for[Paper 3| and a
library that simplifies the creation of Matplotlib-figures for scientific publications[?|

Except for (perhaps) ProbDiffEq and ProbFindiff, none of these are directly
connected to this thesis.

While the writing of this thesis is my original work, some parts of this manuscript
have been proofread by Jonathan Schmidt, Nathanael Bosch, and Elizabeth Baker.
The correct typography has been verified by an automatic spell-checker/*|

lhttps://diffeqzoo.readthedocs.io/
2https://github.com/pnkraemer/tornadox/
3https://tueplots.readthedocs.io/
4https://grammarly.com/
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Chapter 1

Introduction

Contents

1.1 Motivation. . . . . . . . ... ...
1.2 Prerequisites . . . . . . ... .. ... ... ...
1.3 Simulating differential equations . . . . . . ... ...
1.4 Probabilistic numerical methods . . . ... ... ...
1.5 Overview of this manuscript . . . ... ... .....
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1.1 Motivation

This document aims to explain a series of contributions to the field of probabilistic
numerical methods, thereby fulfilling one of the formal requirements of obtaining a
doctoral degree.

As a side product, this thesis surveys some recent developments in the field of
(state-space-model-based) probabilistic numerical differential equation solvers. It is
the first text that comprehensively explains how to implement a probabilistic numerical
solver for initial value problems.

1.2 Prerequisites

This manuscript assumes rough familiarity with Gaussian processes, stochastic
differential equations, and Bayesian inference equivalent to what is covered by the
first part of the book by Hennig et al. [79], or Chapters 2, 3, 10, and 12 in the book by
Sirkki and Solin [144]. [Chapter 10]expects basic knowledge of finite differences.
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Figure 1.1: Probabilistic numerical solution of the Lotka—Volterra / predator-prey
dynamics (left, a) and the susceptible-infected-removed model (right, b). Displayed
are the posterior mean and confidence intervals of a probabilistic numerical solver
and samples from the probabilistic numerical solution.

1.3 Simulating differential equations

Mechanistic models based on differential equations are a popular way of describing
phenomena occurring in the natural sciences and engineering. For example, the
outbreak of a disease approximately follows a susceptible-infected-removed model,
certain instances of the Navier—Stokes equations describe the airflow around a wing,
and the Hodgkin-Huxley equations emulate the spiking-behaviour of neurons.

Assume that a function f : R — R? and vector yo € R¢ are given. Consider an
ordinary differential equation,

Sy =Fow), el (11)

and an initial condition y(0) = y. For example, imagine the predator-prey dynamics
or a susceptible-infected-removed model (Figure 1.1). Assume that the vector field f is
locally Lipschitz-continuous on some open set V that contains yo. Then,
has a unique solution y : [0, 1] — R¢ [e.g.,79, Theorem 36.4]. If f is nonlinear, y
does not arise in closed form (except in special cases) but requires the approximation
with a numerical algorithm. This raises two questions:

First, how much approximation error does the algorithm produce? While approxi-
mation errors are unavoidable, we need to know whether the errors are satisfactorily
low and, if not, how to refine the approximation. Second, how well does the numerical
algorithm interact with models built “around” the differential equation? If subsequent
computations rely on the solution of the differential equation, the numerical solver
must be compatible with those algorithms. This is a common requirement when doing,
for instance, parameter estimation with differential equation models. Phrasing the
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numerical simulation as inference in a probabilistic model, a perspective taken by
probabilistic numerical methods, provides a single tool to answer both questions.

1.4 Probabilistic numerical methods

Probabilistic numerical methods — like those that solve differential equations — view
numerical algorithms from the perspective of probabilistic inference. Usually, this
involves computing a posterior distribution over the solution of the numerical problem
(the differential equation) with Bayes’ theorem,

posterior o likelihood X prior. (1.2)

The information required but also returned by Bayes’ theorem is richer than with
many numerical algorithms: an appropriate prior distribution may improve the
performance of the numerical algorithms, the likelihood gathers “information” (in a
technical sense; we discuss this in about the problem to be solved, and the
posterior distribution quantifies the uncertainty over the numerical approximation error.
Furthermore, a probabilistic numerical method expresses an approximate solution
as a probability distribution, which can be related to other quantities of interest by
manipulating probability densities.

1.5 Overview of this manuscript

to[3|discuss the background required for understanding the contributions
of this manuscript: the connection between conditional distributions and collocation
methods, as well as the sequential estimation of conditional distributions when
Markovian prior distributions are used.

to [9] provide the core of this manuscript: detailed instructions for
implementing probabilistic numerical solvers for differential equations. This includes
manipulating Gaussian probability distributions using only (generalised) Cholesky
factors instead of covariance matrices (Chapter 4), linearising nonlinear constraints
(Chapter 5), estimating Taylor-series (Chapter 6), and best practices for scalar- and
vector-valued problems (Chapter 7| [Chapter 8).|[Chapter 9| contains benchmarks of
the probabilistic numerical solver against popular implementations of initial value
problem solvers.

[Chapters 10Jto[12]treat selected topics related to the content of this thesis:[Chapters 10|
and|[I T|construct a probabilistic numerical solver for time-dependent partial differential
equations; explains how to implement a probabilistic numerical solver for
boundary value problems. Both topics loosely depend on and can be read
independently. summarises the dependencies between the chapters and
suggests in which order to read the chapters of this manuscript.
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Chapter 2

Collocation methods

Contents
2.1 Introduction . . ... ... ................
2.2 Probabilistic numerical solvers for initial value problems
2.3 Example: boundary value problems . . .. ... ...
2.4 Example: partial differential equations . . . . . . . ..
2.5 Discussion andoutlook . . . .. ... ... ...

2.1 Introduction

This thesis discusses the class of probabilistic numerical solvers that implements
(a probabilistic formulation of) collocation methods via estimation in state-space
models. The present chapter motivates this framework, defines the terms “probabilistic
numerical solution” and “probabilistic numerical solver”’, and puts them into the
context of contemporary definitions of Bayesian probabilistic numerical methods and
collocation methods.

Let p(¢) be an appropriate probability distribution over the set of functions
{¢ : [0,1] = R?}. For example, p(¢) could be the law of a Gaussian process.
Let f, ..., 7y be known points in [0, 1]. Like in we assume a function
f :R? — R4 and vector yo € R to be given.

2.2 Probabilistic numerical solvers for initial value problems

The construction of probabilistic numerical solvers builds on the following idea: For a
sufficiently well-posed problem and a sufficiently large number of grid points, any
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Figure 2.1: The samples from the prior, ¢ ~ p(¢) (left column) have a residual
%(p(t) — f(g(t)) with large magnitude (bottom left), even after incorporating the
initial condition (middle column). By conditioning the prior on attaining a zero-
residual (bottom right), an approximate solution of the logistic differential equation
%y(t) = 10y(t)(1 = y(2)), y(to) = 0.1, emerges (right column). Every plot shows
five samples; p(y) is a twice-integrated Wiener process. The solver uses adaptive
steps (with relative tolerance set to 10~! and first-order Taylor linearisation.

sample from the conditional distribution

approximately solves the ordinary differential equation

N

» ¢(0) = yo) ; 2.0

{ et =7 (ot

n=0

Sy =70m), reo1) @2)

and satisfies the initial condition y(0) = yg. In other words, a sample from the
conditional distribution approximately solves the initial value problem (Figure 2.1).
Therefore, we refer to the distribution in as the probabilistic numerical
solution of the problem in[Equation (2.2)| Any algorithm that computes or approximates
the probabilistic numerical solution is a probabilistic numerical solver for the initial
value problem. Constraining a hypothesis space of functions to satisfy a differential
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equation (and additional constraints) at a pre-specific point set is generally referred
to as a collocation method (refer to, for example, Definition 7.6 in the book by
Hairer et al. [76] or Section 10.3 in the book by Driscoll and Braun [47]). Therefore,
we say that probabilistic numerical algorithms in the above definition implement
probabilistic numerical variants of collocation methods (the “probabilistic” enters
through formulating collocation in terms of prior and conditional distributions).

The above concept of a probabilistic numerical solution is a special case of what
Cockayne et al. [37, Def. 2.5] define to be a Bayesian probabilistic numerical method.
The specialisation lies in the fact that probabilistic numerical solutions in the above
definition always assume a constraint of the form

(L) = 0}
~ { Cle(0), p(1)) =0 2.3)
with, for example,
d
L) = L= fle), Cle(0),¢(1) = ¢(0) - o 2.4)

whereas a “Bayesian probabilistic numerical method” is more general.

However, the definition in[Equations (2.3)|and|[(2.4)|itself is fairly general already: If,
instead of initial value problems based on ordinary differential equations, the goal is to
solve boundary value problems or partial differential equations, £ and C differ from
but the general structure remains. Through such a variation of £ and
Cin the above definition of a probabilistic numerical solution includes
a wide range of previously published algorithms: For example, all algorithms studied
in the remainder of this manuscript fit this definition, and so do the partial differential
equation solvers by Cockayne et al. [36], Owhadi [128,129]], Raissi et al. [137], and
Raissi et al. [138], as well as the boundary value problem solvers by Arvanitidis et al.
[10], Hennig and Hauberg [78], and John et al. [85]. Most of these algorithms are
equivalent to known, non-probabilistic algorithms; concrete connections are explained
in the respective chapters.

There exist other, non-collocation-based algorithms in the literature on probabilistic
numerical methods for differential equations, for example, perturbation-based versions
of non-probabilistic numerical integrators [e.g. 1,2, 38]]. But in the remainder of this
manuscript, “probabilistic numerical solver/solution” will always refer to the above
definition of a probabilistic numerical solution/solver, as it is the only class of methods
to be discussed in this thesis.
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2.3 Example: boundary value problems

One advantage of collocation methods over alternative algorithms is the simplicity of
generalising an existing method to a new problem class. Probabilistic numerical solvers
inherit this feature: For example, if boundary conditions replace the initial-value
constraint, that is, if the goal is to solve the boundary value problem

¢ ¥(0) = yo

—y(1) = 1)), ’ 2.5

320 =1 6() {y(1)=ymax, 2.5)
instead of the initial value problem in [Equation (2.2)| the probabilistic numerical
solution is a minor modification of|[Equation (2.1)|

2 N _
p(¢ {(?7<P(tn)=f(<ﬁ(tn)); ,{“’(0)‘” ) 2.6)
n=0

(1) = Ymax
The only difference between[Equations (2.1)|and[(2.6)|is that[Equation (2.6)|conditions
on boundary information instead of initial-value information. As such, we define
Equation (2.6)|as the probabilistic numerical solution of the boundary value problem,

and any algorithm that approximates [Equation (2.6)|is a probabilistic numerical solver
for boundary value problems. Boundary value problems are the content of |[Chapter 12

2.4 Example: partial differential equations

Similarly, probabilistic numerical solvers/solutions for partial differential equations
emerge by modifying the constraints in

Let Q € R" be a sufficiently well-behaved domain with a sufficiently regular
boundary 0Q (for example, open, bounded, Lipschitz-boundary). Let {xg, ..., xx } € Q
be a spatial grid in Q. Assume that functions ug : @ — R? and ug : [0, 1] x Q — R?
are known. Let p({) be a probability distribution over the space of spatiotemporal
functions {£ : [0, 1] x Q — R4}, for example, the law of a Gaussian process.

Let the task be to solve an initial value problem based on a partial differential
equation, say, a combination of the semilinear differential equation

2
ﬁu(r,x) = 6—u(t,x) + f(u(t,x)), (t,x) €[0,1] xQ, 2.7
ot Ox?
with two constraints: the temporal initial condition u(0,x) = ug(x), x € Q, and the
spatial boundary condition u(z,x) = ug(t,x), (¢t,x) € [0, 1] X IQ. Assume that the
problem is sufficiently well-behaved that the partial differential equation admits a
unique solution.
Let {xr }5:0 be the points in {xo, ..., Xk } that are on the boundary 9Q of Q. The
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strategy for deriving the probabilistic numerical solution of the partial differential
equation mirrors the previous approaches; we define it as the conditional distribution

p(¢ | Appg. Ao, As), (2.82)

52 52 KN
Appg = {@f(fn,xk) = @f(fn,xk) + f(g(tn’Xk))}k,n—o (2.8b)
Ao = {£(0,x%) = uo(xk) Hep (2.8¢)
Ay = {L(tnh, X1) = ua(tn,)_fk’)}f/;’/IZO' (2.8d)

Any algorithm that approximates the probabilistic numerical partial differential

equation solution in [Equation (2.8)|is a probabilistic numerical solver for partial
differential equations. Partial differential equations are treated by [Chapters 10|and[I1]

2.5 Discussion and outlook

Given a prior distribution and a differential-equation-based problem, it is relatively
straightforward to derive a probabilistic numerical solution: introduce a discretisation,
and condition the prior distribution on a set of collocation conditions; that is, on
the event that samples from the distribution satisfy the differential equation and
the constraints on the grid. Initial and boundary value problems based on ordinary
differential equations and spatiotemporal partial differential equations were used as
examples above; other types of differential equation problems (e.g. stationary partial
differential equations) can be derived similarly but are out of the scope of this text.

While conceptualising a probabilistic numerical solution may be straightforward,
constructing efficient solvers is more difficult. Some of the reasons are nonlinearities,
boundary conditions, or spatial differential operators but the algorithms must also
be able to compute the solution to low tolerances and be robust against anisotropic
behaviour and numerical round-off errors. In other words, one needs to be meticulous
with the selection and the implementation of approximation methods that target
posterior distributions such as those in[Equations (2.1)|[(2.6)|and [(2.8)]

Most of this manuscript discusses the efficient and stable approximation of the
posterior probability distributions that make up probabilistic numerical solutions of
differential equations. As a foundation for these discussions, describes the
conceptualisation of probabilistic numerical solvers for ordinary-differential-equation-
based initial value problems via sequential estimation in state-space models.
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Chapter 3

Sequential estimation

Contents
3.1 Problemstatement . . .. ...............
3.2 Integrated Wiener processes . . . . . . . . ... ...
3.3 Time discretisation . . . . ... .. ... ... ....
34 Constraints . . . . . . . ...
3.5 Sequential estimation . . . . .. ... ... .. ....
3.6 Calibration . . . ... ... . ...
37 Conclusion . .. ... ... ... ...

3.1 Problem statement

defined probabilistic numerical solvers/solutions and explained the connec-
tion to collocation methods. The upcoming chapter lays the foundation for discussing
the efficient and stable implementation of probabilistic numerical solvers. More specif-
ically, the following few sections explain how, if the prior distribution is Markovian,
the posterior distribution can be computed with a constant number of floating-point
operations per grid point.

The remainder of this chapter restricts itself to solving initial value problems (IVPs)
based on affine, scalar ordinary differential equations. This class of [VPs combines an
affine, scalar differential equation

d

d—f —ay(t)+b, te[0,1], G.1)
with the constraint y(0) = yo € R on the initial state. The coeflicients a, b € R and the
initial condition y are given and shall be sufficiently well-behaved so that a unique
IVP solution y : [0, 1] — R exists.

Equation (3.1)assumes that the differential equation is affine because the proba-
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bilistic numerical solution of an affine problem with a Gaussian prior is Gaussian.
Probabilistic numerical solutions of nonlinear problems demand approximation, algo-
rithms for which build on the algorithms for affine problems. Therefore, approximate
estimation and nonlinear problems will not be discussed before
tion (3.1)|further assumes that the differential equation is one-dimensional because
the efficient solution of vector-valued problems builds on algorithms
for scalar problems (explained in this chapter and[Chapter 7). [Equation (3.1)|makes
several notational simplifications:

o The coeflicients a and b are constant instead of time-dependent.

d’y (1)
drz

dy(t)

¢ The differential equation describes =

instead of, for example,

¢ The time-domain is ¢ € [0, 1] instead of, for instance, ¢ € [tq, fmax].

All three assumptions do not imply a loss of generality; they exclusively serve the
purpose of reducing the number of symbols in the upcoming mathematical expressions.
Modifications for the general cases will be discussed where relevant.

Let {tg,....tn} € [0, 1] be a set of N + 1 grid-points. Assume that the outermost
grid points coincide with the boundary of the integration domain, 79 = 0, 5 = 1. (For
general time intervals, place the grid accordingly.) Let p(¢) be a (prior) probability
distribution on the set of functions {¢ : [0, 1] — R}. Like in define the
probabilistic numerical IVP solution as the conditional distribution

i

The difference between the distribution in [Equation (3.2)| and the probabilistic
numerical solution in [Chapter 2|is that [Equation (3.2)|relates to the affine IVP in

Equation (3.1)|instead of a nonlinear IVP.

The remainder of this chapter explains how to estimate and calibrate the conditional
distribution in[Equation (3.2)|sequentially if the prior distribution is a Gaussian process
and comes with the Markov property. To this end, [Section 3.2]introduces a formulation
of integrated Wiener processes as solutions of stochastic differential equations,
discusses temporal discretisation, and treats the ordinary
differential equation constraints. This will complete the probabilistic model behind
the sequential version of probabilistic numerical solvers. summarises
implementing the sequential decomposition of the probabilistic numerical solution,
and describes the calibration of estimators in this context.

N

{d(Pd(ttn) _ aSD(tn) +b} , 90(0) = yO) . 3.2)

n=0
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3.2 Integrated Wiener processes

The prior distribution p(¢) encodes a priori information about the IVP solution; for
example, how many times the solution is differentiable or if the process decays to
zero in the long term. However, strict efficiency requirements constrain the class of
reasonable priors for probabilistic numerical solvers. The computational complexity
of solving a one-dimensional IVP on N grid points should scale as O(N) because
that is how expensive most non-probabilistic numerical solvers are. The stochastic
differential equation perspective taken in this work implies this linear-time complexity.
One could also explore alternative concepts, for instance, via Gaussian processes
based on (approximately) structured matrices [e.g.,[134], but the stochastic differential
equation is natural for problems with temporal structure, such as solving IVPs.

The (at the time of writing) most common prior distribution for probabilistic
numerical IVP solvers is a class of multiply-integrated Wiener processes defined as
follows (e.g., used by Bosch et al. [25], Kersting et al. [93], Schober et al. [151], Tronarp
et al. [163] and the projects discussed in this manuscript). Let v € N be an integer.
Let w : R — R be a Wiener process with a constant output scale y > 0 [e.g.,
144| Definition 4.1]. Let mo € R”*! be a vector and let Cy(y) € RO+FD*X0+D) pe
symmetric, positive semidefinite matrix. Define a stack of stochastic processes

Y1) = (Y<°> 1), Y (z)) ‘R — R, (3.3)

with Y@ (1) € R, ¢ = 0, ..., v, as the solution of a system of stochastic differential
equations (in the It6 sense [127]),

YD)y =y (yde, ¢=0,..,v-1, (3.4a)
dy™) (1) = dw(r), (3.4b)

subject to the Gaussian initial condition

p(Y(0) | ) = N(mo, Co(y))- (3.5

This construction of Y () as the output of a linear stochastic differential equation
with a Gaussian initial condition makes it a Gauss—Markov process [127]. The zeroth
component YO (r) of Y (¢) is a v-times integrated Wiener process. The gth component
Y (@ (1) of Y (1) is the derivative of the (¢ —1)th component Y9~ (¢) (Equation (3.4a)).
The vth derivative Y ) of Y9 is a Wiener process (Equation (3.4b)).

In the remainder of this chapter, we assume that mg, Co(y), v, and t, ..., Iy are
fixed and known, and that y is fixed and unknown. [Section 3.6|discusses the estimation
of the parameter y.
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3.3 Time discretisation

We must discretise the prior distribution on {#, ..., f; } to compute a probabilistic
numerical IVP solution. Let ¢ € [0, o0) and assume a time increment At > 0. Define
the indicator function 1;<; (i, ) as equalling 1 if i < j holds and 0 otherwise.

Solutions of linear, time-invariant, stochastic differential equations subject to
Gaussian initial conditions satisfy the transition rule [15]

p(Y (1 + A1) | Y(1),y) = N(®y(AN)Y (1), Z, (A, ), (3.6)

for a transition matrix ®,,(Ar) € R+DX0*+1) and a process noise covariance matrix
2, (At,y) € R("“)X(V”).is the equivalent discretisation of Y (t) [e.g.
144] p. 79]. It implies that the joint distribution of Y (¢), ..., Y (5 ) factorises into
a sequence of conditional distributions. For v-times integrated Wiener processes,
@, (At) and X, (At, y) are available in closed form,

J-i
@,(1) = [0 (O g 6ij(7) = 1z ,(m‘)h (3.7a)

2v+l-i-j
v+l1-i-Hy=-DI(v-))

2, (1,7) =V oy (D)) g 0ij(7) = (3.7b)
The closed-form availability of the transition matrices simplifies (and accelerates)
implementations of probabilistic numerical IVP solvers.

Remark 3.1 (General Gauss—Markov priors). Instead of v-times integrated
Wiener processes, alternatives could be considered. Let Fy, ..., F,, € R be given.
Instead of the system of linear, time-invariant, stochastic differential equations in

Equation (3.4), one could model

YD)y =yeD(yde, ¢=0,..,v-1, (3.8a)
dr™ (1) = Z F,YD (1) dr + dw(r) (3.8b)
q=0

subject to the same Gaussian initial condition as in[Equation (3.5)| This formula-
tion includes v-times integrated Ornstein-Uhlenbeck processes and half-integer
Matern processes as well as the v-times integrated Wiener process from above

[164]. The parameters @, (Ar) and X, (At, y) of the transition in|Equation (3.6)

are still available in closed form. However, their computation requires evaluating

matrix exponentials [144], which costs more than evaluating [Equation (3.7)

Refer to Bosch et al. [27] for more information.

By choosing a stochastic differential equation formulation of the integrated Wiener
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process prior, we do not estimate [Equation (3.2)|but

N
2 Y O@),....YY @)
n=l

{W”am=awmom+b}0,Y@uw=yo. 3.9)

Loosely speaking, the posterior distribution in|Equation (3.9)|is “richer” than the one
in [Equation (3.2)|because [Equation (3.9)|additionally includes derivative estimates. It
is often easier to implement|Equation (3.9)|in software than|Equation (3.2)|because the

differential operator ¢ — c%ga(o) QEquation (3.2)b is replaced by a selection operator
¢ — ¢ (Equation (3.9)). In the present setting, both operators are equivalent since
for any ¢ € {0, ..., v}, Y9 (¢) is the gth derivative of ¥ (9 (7). Since the differential
equation is affine, both conditional distributions are Gaussian and [Equation (3.9)|and
translate into one another.

Solutions of linear, time-invariant, stochastic differential equations driven by a
Wiener process have the Markov property. That means that for #p < #; < ... < tn, and
Y () as in future values of the process are conditionally independent of
past values given present values. More formally, for ¢, € {fg, ...,tn} and s > 1,

p(Y(s) | Y(10), ... Y (1n)) = p(Y(5) | Y (tn)) (3.10)

holds. Similarly, past values are conditionally independent of future realisations given
present values: for z,, € {tg,...,ty} and s < t,,, we have

p(Y(s) | Y(tn),.... Y (tn)) = p(Y (5) | Y (12)). (3.11)

The Markov property is essential for the sequential estimation of IVP solutions.
We call processes with the Markov property ‘“Markovian” and use the identities in

[Equations (3.10)|and [(3.11)|later (in[Section 3.5).

3.4 Constraints
Introduce a variable R, and a set of variables {R,, b,n}nN: 0 as
Ry =YV (10) =y0, Rapn =Y V(1) —a¥O(1,) =b, n=0,..,N. (3.12)

By definition, Ry, and R, 5 , depend on the differential equation. If the differential
equation changes, R, and R, » change; for example, if a and b depend on time,
Ra,b.n becomes

Ravn =YD (t,) —a(t)Y O (t,) - b(ty). (3.13)

But in the remainder of this chapter, a and b shall be constant.
Loosely speaking, the magnitudes of R, and each R 5, , indicate “how well” a
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sample from Y (¢,,) solves the problem: the smaller each variable in magnitude, the
“closer” Y (¢,) is to a solution of the IVP at ¢,,. By construction, because each R,
and {Ra,b,n}r]:lzo are deterministic transformations of the state variable Y (¢), they are
conditionally independent given Y (¢),

PRapn | Y ()Y {Rap i}z, Ryo) = PRapon | Y (t0)). (3.14)

This conditional independence will be important in

3.5 Sequential estimation

Probabilistically solving the IVP becomes the problem of estimating {Y(tn)}i:’: o from
the constraints {Ry, = 0} and {Ru p.n = 0}2’20. We will sometimes omit the “= 0”
in the explanations below to simplify the exposition. In the following derivations,
abbreviate Y (10.n) == {Y (%) };_y and Ra,p.0:n = {Ra.b.k }ioy-

Since the prior distribution has the Markov property and since the constraints are
conditionally independent, the probabilistic numerical solution inherits Markovianity

from the prior distribution; it factorises as

p(Y(to:n) | Rap,0:ns Ryg>y)

N-1
(3.15)
=pY(tn) | Rapons Rypsy) H Y (t2) | Y (tn1)s Ra,b,0:n0 Rygs¥)-
n=0

As announced above, the “= 0” has been omitted in the conditionals. Together, the
backward-transition densities

{P(Y (ta) | Y (tns1)s Reab,0ms Rygs VIIA! (3.16)

and the terminal distribution

pY(tn) | Rap,o:Ns Ryps¥) (3.17)

represent the probabilistic numerical IVP solution. Computing these transitions and
the terminal distribution yields the probabilistic numerical solution. The marginal
likelihood of the constraints, which assesses the correctness of the probabilistic model
(the larger, the better), factorises similarly,

p(Ra,h,O:Na Ryo | ')’)

N
(3.18)
= p(Ra,b,Ov Ryo | 7) np(Ra,b,n | Ra,b,O:n—la Ryo, ')’)~

n=1
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The elements in[Equations (3.16)|to[(3.18)|can be computed in a single sweep:

Algorithm 3.2 (Sequential IVP solver). Compute the probabilistic numerical
IVP solution and the marginal likelihood (Equations (3.16)|to[(3.18)) as follows.

1. Initialise the algorithm with the initial distribution p (Y (#y) | v) from the
stochastic differential equation (Equation (3.5)). Construct the joint distribu-

tion of the initialisation and the constraints at tg, p(Y (¢0), Ra.5,0, Ry, | ¥)-
Extract the conditional p(Y(¢0) | Ra.5,0,Ry,,¥) and, optionally, the
marginal likelihood

p(Ra,b,O’ ﬂyo | ,)/) = /p(Ra,b,OaRyo,Y(IO) | 7) dY(IO) (319)

Store both.

2. Forn =0,...,N — 1, assume the availability of p(Y(¢,) | Ra,5,0:n, Ryp, V)
from previous computations and compute the next set of terms as follows:

(a) Construct the joint distribution p (Y (¢,),Y (t241) | Ra,p,0:n: Ryes¥)-
Extrapolate

p(Y(th) | Ra,b,O:na Ryoa ')’)

(3.20)
= / p(Y(th),Y(tn) | Ra,b,O:nv Ryo» '}’) dY(tn)
and derive the backward transition
p(Y (tn) | Y (tp41), Ra,b,O:ns Ryo, Y). (3.21)

Use the extrapolation in the step below. Store the backward transition.

(b) Use the extrapolation p (Y (#441) | Ra,p,0:n, Ryy»¥) to construct the
joint distribution p(Ra,p,ns1s Y (t1) | Rap.uns Rygsv). Use the
joint distribution to estimate p(Y (tp+1) | Ra,b,0:n+1, Ry, ). Store
the conditional. Optionally, extract the likelihood increment

p(Ra,b,nH | 7Qa,b,O:n, Ry()a ')’)

(3.22)
= / p(Ra,b,nH’Y(th) |Ra,b,0:n» Ryo, 7) dY(tn+1)-

Return the backward transitions, conditional distributions, and the optional
marginal likelihood terms.
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Since the initial value problem is affine, all distributions in |[Algorithm 3.2| are
Gaussian, in which case marginals and conditionals can be computed exactly. In

fact, almost every step in |Algorithm 3.2| involves manipulating such a Gaussian
probability distribution; therefore, the efficiency of this operation is crucial for

the computational feasibility of the probabilistic numerical simulation. Concrete

implementations of each operation in|Algorithm 3.2|depend on the parametrisation of
Gaussian distributions. Recommendations for parametrising Gaussian distributions

in the context of probabilistic numerical solvers are contributions of this thesis and

postponed to|Chapter 4
Algorithm 3.2|produces a collection of transition rules

{p(Y(tn) | Y(tn+1), Ra,b,O:n» Ryos 7)}2203 (323)

a set of conditional distributions

{p(Y(tn) | Ra,b,O:n’ Ry(), 7)}2]:0’ (324)

and, optionally, marginal likelihood terms

{p(Ru,b,n | Ra,b,():n—l’ Ryo, 7)},,1\/:1 U {p(Ra,b,O’ Ryo | 7)} (325)

In the literature on filtering and Rauch—Tung—Striebel smoothing, the conditional

distributions in|Equation (3.24)|are known as the filtering distributions, and the process
of computing them is called filtering [e.g., 143].

Equation (3.24)|includes the terminal distribution p(Y (tn5) | Ra,p,0.8>Ryys¥)s

which describes the probabilistic numerical IVP solution at the terminal grid point

tn. The backward transitions in|Equation (3.23)|are those from [Equation (3.15)} The

combination of a terminal distribution with backward transitions enables the extraction
of information from the IVP solution, for example, via marginalisation and sampling:

o Sampling: To sample a realisation of the probabilistic numerical IVP solution,
draw a terminal realisation {x ~ p(Y(¢tn) | Ra.p,0:n, Ry, v) and sequentially
draw realisations

Ln ~ p(Y(t0) | Y (the1) = Lnats Ra,b,O:N’ Ryos Y) (3.26)
forn=N-1,...,0.

¢ Marginalisation: The terminal distribution is p(Y(tn) | Rap,0:n,Rygs ¥)-
Compute the remaining marginals sequentially using the backward transition

rules produced by|Algorithm 3.2| In the filtering and smoothing literature, this
backward marginalisation produces the smoothing distributions [e.g.,[143].

The factorised representation of the probabilistic numerical solution produced by
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Forward computation (filtering)

Y

R)’O

Backward marginalisation (smoothing)

A

A

Backward sampling

Subsequent state & parameter estimation

Figure 3.1: A forward pass (from Y (o) to Y(tn)) via Ry, = 0, Rapo = O, ...,
Ra,p.v = 0) computes the filtering distributions, the backward transition densities,
and, optionally, the marginal likelihood terms according to[Algorithm 3.2] A backward
pass (from Y () to Y (#o)) turns the filtering distributions into the marginal posterior
distributions, computes samples, or allows using the probabilistic numerical IVP
solution for subsequent state and parameter estimation.

Algorithm 3.2|can also serve as a prior for subsequent state/parameter estimation;
refer to Tronarp et al. [165] for an example. [Figure 3.1|visualises the scheme.

3.6 Calibration

So far, we assumed the following degrees of freedom as provided: the IVP (including
the parameters of @ and b and an initial condition yg); the number v € N of derivatives
in the prior process, the output scale y of the underlying Wiener process, the initial
mean mq and covariance matrix Co(7y) of the v-times integrated Wiener process; and
the time-grid {¢, ..., x5 }. In this section, we discuss the calibration of each of these
parameters — or rather, explain why the selection of these parameters is unimportant
at this point of the exposition and where to find such information instead.

We continue assuming that the IVP itself is known - this thesis focuses on state
estimation; for parameter estimation with probabilistic numerical solvers, we refer to
Kersting et al. [92], Schmidt et al. [150], Tronarp et al. [165].

The number of derivatives v shall also be known. The choice of v affects the
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convergence speed of the probabilistic numerical solver, but increasing v increases
the computational complexity. The trade-off between convergence speed and compu-
tational complexity is shown in[Chapter 9}

Similarly, the more time points {fy, ..., fy } we employ (with appropriate spacing),
the better the approximation quality. However, the goal is not to compute a maximally
accurate solution but rather to compute a sufficiently accurate solution on as few
points as possible. Therefore, grid points for IVP solvers are chosen adaptively and
during the forward computation (see [25,152]). Grid selection for boundary value
problem solvers is part of

The parameters of the initial condition of the stochastic differential equation consist
of the initial mean mg and the initial covariance Cy(y). In the absence of concrete
knowledge of these parameters, one may use diffuse initialisation [39], that is, choose

mo=0, Co(y) =KV I(va1)x(v+1) (3.27)

with a large k > 0 (for instance x = 10%). If suitable initial conditions of the stochastic
differential equation emerge otherwise (for example, by corresponding to a stochastic
differential equation description of a Gaussian process [e.g.[159]), use those instead
of Equation (3.27)

But for initial value problems, the initial condition of the stochastic differential
equation is not very important: By construction, the state ¥ (1) = (Y©) (¢), ..., Y ") (1))
estimates the unnormalised Taylor coefficients of the IVP solution y,

d d
Wszﬂm,WWMzaﬂm,m,ﬂszEme (3.28)

for n = 0, ..., N. The initial constraints {R, 0 = 0, Ry, = 0} initialise the zeroth
and the first unnormalised Taylor coefficients correctly (see[Chapter 7). In practice,
probabilistic numerical IVP solvers use yo and the differential equation to replace Ry,
with constraints that initialise a/l Taylor coefficients (more or less) exactly and usually
with a procedure that does not depend on mg and Cy(y) (Chapter 7).

The output scale y of the underlying Wiener process is the only parameter whose
selection is discussed in this section (even though concrete formulas are postponed for
v, too). The parameter y governs the output scale of the process and must be calibrated
against the IVP solution. For example, (quasi-)maximum-likelihood estimation is
possible in closed-form and as a part of The precise formula depends
on the factorisation and parametrisation of the Gaussian probability distributions.
Therefore, we must postpone further instructions about calibrating the constant output
scale y to and

But a single y is sometimes too restrictive: differential equations with strongly
varying solutions require a time-varying output scale y : R — R. For example, the

linear equation dflgt) =2y(t), y(0) = 1, has the solution y(¢) = exp(2¢), and no single
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Figure 3.2: The probabilistic numerical solution of the linear differential equation
d{iy) =2y(1), y(0) = 1, requires a time-varying output scale to adapt to the exponential
growth of the solution y = exp(2f) (left column). With a constant output scale, the
posterior mean does not follow the exponential growth of the solution (right column).
(The prior has v = 1 derivatives. The solution is estimated on a fixed grid with

N = 200 equispaced points.)

y describes the scale of y accurately for all 7 € [0, 1] (Figure 3.2). While general,
time-varying output scales as functions from R to R have not been explored in the
literature, piecewise-constant output scales frequently appear [e.g.25,100} 102} [152].
The central assumption behind a piecewise-constant, time-varying output scale is to
assume a sequence {yn}ivzo CRandtodefiney : R — Ras

Yo ift € (—Oo,to],
Y1) =4 yu  if1 € (tastpar], n=0,.., N =1, (3.29)
YN ift € ([N,OO].

This output scale allows variation over time. Nevertheless, it implies a constant output
scale per IVP solver step, in which case closed-form (quasi-)maximum-likelihood
estimation remains available (under mild assumptions; details are in[Chapters 7|and|8).



Chapter 3. Sequential estimation 24

3.7 Conclusion

In summary, Markovian prior distributions imply the sequential estimation of proba-
bilistic numerical IVP solutions. While multiply-integrated Wiener processes are the
standard choice in the contemporary literature on probabilistic numerical methods,
alternative prior distributions are possible. Prior distributions with the Markov prop-
erty imply posterior distributions with the Markov property, and marginalisation and
sampling can be computed in a constant number of operations per grid point.

One gap in the presentation is the implementation of the joint, marginal, and
conditional distributions. Concrete algorithms are the content of Before
that, we must discuss the Cholesky parametrisation of Gaussian variables in[Chapter 4}

and linearisation in|Chapter 5
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4.1 Introduction

Manipulating Gaussian random variables is essential to implementing probabilistic
numerical initial-value-problem solvers. There are many ways to parametrise Gaus-
sian distributions, for example, using covariance matrices, precision matrices, or
(generalised) Cholesky factors. In the present chapter, we explain the manipulation
of Gaussian variables in Cholesky arithmetic, which means that we never assemble
full covariance matrices — all operations involve only (generalised) Cholesky factors.
Using only the (generalised) Cholesky factors preserves the symmetry and positive
semidefiniteness of covariance matrices.

In other words, this chapter explains the numerical linear algebra necessary for
implementing probabilistic numerical initial-value-problem solvers. es-
tablishes the problem statement in the conventional parametrisation of Gaussian
distributions (which uses mean vectors and covariance matrices): marginalising, condi-
tioning, and evaluating the log-density functions of linearly related Gaussian variables.

to [4.6] discuss implementing all those operations using (generalised)

Cholesky factors of covariance matrices. At this point, the techniques will be loosely
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connected to probabilistic numerical solvers, but the content of this chapter does not
depend on the previous chapters and can be read independently of the rest of this

thesis. |[Section 4.7|discusses related literature, and [Section 4.8|connects the results to

those in previous and upcoming chapters.

4.2 Manipulation of Gaussian variables

Let din, dowe € N. Let mj, € R%n, Cj, € RInxdin A 4 € RowXdn p 0+ e Rebout,

and Ceopg € RéouXdow he some vectors and matrices. Assume that Cin and Cgopq are

symmetric and positive semidefinite and that AcondCinAcond ' + Ceond 1S invertible.
Define correlated random variables X and Y,

P(X) = N(min, Cin)’ p(Y | X) = N(AcondX + beonds Ccond)- 4.1)

All of the following statements about marginals and conditionals are well-known [e.g.
140, Appendix A.2]. The joint distribution of X and Y is Gaussian,

p(Xa Y) = N(mjoint, Cjoint), (42)
with mean and covariance
o Min
Mjoint -= (Acondmin + bcond) ’ (433)
Cin CinAcondT
Cioint = . 4.3b
joint (Acondcin AcondCinAcondT + Ccond ( )
The marginal distribution of Y is
p(Y) = [ p(YV.X)4X = N, Co) (44)
with parameters
Moyt = AcondMin + Deonds (4.5a)
Cout = AcondcinAcondT + Ceond- (45b)

The conditional distribution is

p(X 1Y) =N(AY + brey, Crey) (4.6)
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with system matrices

Arev = CinAcona" (Cou) ™", (4.7a)
brey = Min — Arey (Acondmin + beond), (4.7b)
Crev = Cin — ArevcoutArevT- (470)

The covariance matrix Cyey of the conditional distribution is the Schur complement [67,
p- 103] of Coy in the covariance matrix Cjoine of the joint distribution. The conditional
distribution p(Y | X) implies a parametrisation of the posterior distribution

p(X | Y= y) = N(Arevy + brey, Crev) (4.3)

for a given realisation y € R%u,
Finite-precision arithmetic sometimes causes issues when implementing
tions (4.4)|to[(4.7)]as given:

o While Cj, and Ceong are symmetric and positive semidefinite, Coye and Ciey are
sometimes not, due to round-off errors. Such a lack of symmetry or positive
definiteness is problematic; e.g., when attempting a Cholesky decomposition of
Cley, Which fails when Ci., has a negative eigenvalue or lacks symmetry.

o Roughly speaking, the elements in a covariance matrix of a Gaussian random
variable grow as fast as the square of the realisations of the variable. To sample
such a r