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Abstract

The numerical solution of differential equations underpins a large share of simulation
methods that are used in the natural sciences and engineering, both in research and
in industrial applications. The usability of a differential equation model depends,
often crucially, on the choice of the simulation algorithm. Probabilistic numerical
algorithms promise to combine efficient simulations with well-calibrated uncertainty
quantification. Being able to handle various sources of uncertainty without a severely
increased computational burden simplifies the combination of differential equation
models with, for example, observational data and thereby improves the fusion of
mechanistic and statistical information.

However, until now, the general usability of probabilistic numerical solvers had
not reached a level comparable to non-probabilistic approaches. A lack of numerical
stability and scalability, combined with a strong focus on ordinary differential equations
and initial value problems, put probabilistic numerical algorithms out of the scope
of an implementation in the physical and the life sciences, which would require the
efficient simulation of dynamics that may exhibit spatiotemporal patterns or could be
constrained by boundary information.

This thesis explains a series of contributions to the solution of this problem by
discussing the implementation of a class of probabilistic numerical differential equation
solvers that shares many features with collocation methods and with Gaussian filtering
and smoothing:

1. A set of instructions for the numerically stable implementation of probabilistic
numerical differential equation solvers that scales to high-dimensional problems.

2. The generalisation of solvers for ordinary-differential-equation-based initial
value problems to boundary value problems and partial differential equations.

Many of the techniques have already been implemented successfully in various
software libraries for probabilistic numerical differential equation solvers.

Altogether, the contributions improve the usability of existing and future probabilistic
numerical algorithms. The simulation of challenging differential equation models and
an application of the probabilistic numerical paradigm to real-world problems is no
longer out of reach.
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Zusammenfassung (auf Deutsch)

Die numerische Lösung von Differenzialgleichungen ist eine wichtige Grundlage
für viele Simulationsmethoden, welche in den Natur- und Ingenieurwissenschaften
eingesetzt werden, sowohl in der Forschung als auch in der Industrie. Die Brauch-
barkeit eines Differenzialgleichungsmodells hängt entscheidend von der Wahl des
Simulationsalgorithmus ab und probabilistisch-numerische Algorithmen versprechen,
effiziente Simulationen mit wohlkalibrierten Unsicherheitsschätzern zu kombinieren.

Die allgemeine Anwendbarkeit probabilistisch-numerischer Löser hat jedoch noch
nicht das Niveau von nicht-probabilistischen Ansätzen erreicht. Ein Mangel an nu-
merischer Stabilität und Skalierbarkeit, kombiniert mit einer starken Konzentration
auf gewöhnliche Differenzialgleichungen und Anfangswertprobleme, macht proba-
bilistische numerische Algorithmen für viele Probleme unbrauchbar; vor allem solche,
die auf partiellen Differenzialgleichungen oder Randwertproblemen basieren.

Diese Arbeit erläutert eine Reihe von Beiträgen zur Lösung dieses Problems,
speziell, zur Implementierung derjenigen Klasse von probabilistisch-numerischen Dif-
ferenzialgleichungslösern, welche viele Gemeinsamkeiten mit Kollokationsmethoden
und mit Gaußschen Filtern hat:

1. Eine Reihe an Strategien für die numerisch stabile und skalierbare Software-
Implementierung von probabilistisch-numerischen Differenzialgleichungslösern.

2. Die Verallgemeinerung von probabilistisch-numerischen Methoden für auf
gewöhnlichen Differenzialgleichungen basierende Anfangswertprobleme auf
Randwertprobleme und partielle Differenzialgleichungen.

Viele der Techniken sind bereits erfolgreich in verschiedenen Softwarebibliotheken
für probabilistische numerische Differenzialgleichungslöser implementiert worden.

Insgesamt verbessern die in dieser Arbeit vorgestellten Methoden die Nutzbarkeit
existierender und zukünftiger probabilistischer numerischer Algorithmen. Die Simu-
lation von anspruchsvollen Differenzialgleichungsmodellen und eine Anwendung des
probabilistisch-numerischen Paradigmas auf reale Probleme wird damit ermöglicht.
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Originality

The writing of this thesis is my original work. The content of each chapter is either
my original work – or rather, a joint effort with coauthors as summarised below – or a
reference to existing work, in which case it is cited as such.

Publications

The content of this dissertation relates to the following papers.

Paper 1. Nicholas Krämer and Philipp Hennig. Stable implementation of proba-
bilistic ODE solvers. 2020. Accepted with minor revisions to JMLR. The revised
version is currently under review. A preprint is available on arXiv:2012.10106.
This is reference [100].

Each coauthor contributed as follows:

Ideas Analysis Experiments Writing
Nicholas Krämer 90 % 90 % 95 % 85 %
Philipp Hennig 10 % 10 % 5 % 15 %

Paper 2. Nicholas Krämer and Philipp Hennig. Linear-time probabilistic solution
of boundary value problems. Advances in Neural Information Processing Systems
34 (2021). This is reference [101].

Each coauthor contributed as follows:

Ideas Analysis Experiments Writing
Nicholas Krämer 90 % 90 % 95 % 85 %
Philipp Hennig 10 % 10 % 5 % 15 %

Paper 3. Nicholas Krämer∗, Nathanael Bosch∗, Jonathan Schmidt∗, and Philipp
Hennig. Probabilistic ODE solutions in millions of dimensions. International
Conference on Machine Learning 2022. This is reference [102].
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The superscript ‘∗’ indicates equal contribution. Each coauthor contributed as
follows:

Ideas Analysis Experiments Writing
Nicholas Krämer 30 % 30 % 30 % 30 %
Nathanael Bosch 30 % 30 % 30 % 30 %
Jonathan Schmidt 30 % 30 % 30 % 30 %
Philipp Hennig 10 % 10 % 10 % 10 %

Paper 4. Nicholas Krämer, Jonathan Schmidt and Philipp Hennig. Probabilistic
numerical method of lines for time-dependent partial differential equations.
International Conference on Artificial Intelligence and Statistics 2022. This is
reference [103].

Each coauthor contributed as follows:

Ideas Analysis Experiments Writing
Nicholas Krämer 80 % 70 % 50 % 70 %
Jonathan Schmidt 10 % 20 % 40 % 20 %
Philipp Hennig 10 % 10 % 10 % 10 %

Detailed connections

Large parts of this dissertation are an extended summary of these articles; however,
some statements are new. The precise relationship between the four papers and this
thesis is as follows:

The content in Chapters 1 to 3 is known, but with a new presentation, and has
been included as background information for the rest of this manuscript. The figure in
Chapter 1 is from Paper 1. All other figures are new.

Chapters 4 to 7 are a more comprehensive version of Paper 1 and break down as
follows.

Chapter 4 extends Paper 1 to include numerically stable whitening and computing
log-probabilities, and distinguishes Bayesian updates with noisy and deterministic
transformations; all of these are minimal extensions.

Chapter 5 is mostly known, but the interpretation of the work by Kersting and
Hennig [91] as zeroth-order statistical linear regression is new (Tronarp et al. [163]
present a slightly different version of this finding), and so is the interpretation of the
work by Arvanitidis et al. [10] as iterated zeroth-order linearisation. To the best of my
knowledge, the downdate-free Cholesky implementation of statistical linear regression
is novel. These findings are contextualised in Chapter 5.
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Chapter 6 is based on Paper 1 but discusses automatic differentiation more thor-
oughly; for example, Chapter 6 suggests an implementation of Taylor-mode differenti-
ation via coefficient doubling, which is not contained in Paper 1. The regression-based
initialisation in Chapter 6 is from Paper 3.

Chapter 7 is based on Paper 1 as well, except for the results on calibration, both
time-varying and time-constant, which are discussed by Bosch et al. [25], Schober
et al. [152], Tronarp et al. [163]. The chapter cites these works where relevant. Via
Chapter 5, the statistical-linear-regression-based algorithms extend the work in Paper 1.
All tables and figures in Chapter 7 are taken from Paper 1.

Chapter 8 is based on Paper 3, except for what will be referred to as “dense models”,
which are known and cited as such. The chapter presents the content (slightly)
differently than the paper; for example, the matrix-normal perspective on Kronecker
models is new. The vector-valued maximum-likelihood calibration of the output scale
in Kronecker models is also new and generalises the result in Paper 3. All figures in
this chapter are from Paper 3.

The benchmarks in Chapter 9 are new and have been created solely for this thesis.
Chapters 10 and 11 relate to Paper 4. The presentation in both chapters refines that

in Paper 4, but the results are the same. All figures in those chapters are from Paper 4.
Chapter 12 corresponds to Paper 2. The chapter explains the bridge process and

the initialisation more thoroughly than the paper but refers to previous chapters for
background. The figure that shows samples from the bridged Wiener velocity process
is new. All others are taken from Paper 2.

Miscellaneous

Besides working on the projects above, I have contributed to other articles during my
PhD, namely, [92, 114, 125, 150, 178]. But these are not included in this dissertation.

I have also created and contributed to various open-source software projects related
to differential equations and probabilistic numerical algorithms, most prominently:

1. ProbDiffEq: I am the creator of ProbDiffEq, a JAX implementation of
probabilistic numerical IVP solvers, which provides all methods presented in
Chapters 4 to 8 and has been used for the benchmarks in Chapter 9. ProbDiffEq’s
online documentation can be found under

https://pnkraemer.github.io/probdiffeq/.

2. ProbFinDiff: I am the creator of ProbFinDiff, a JAX implementation of
probabilistic numerical finite differences. ProbFinDiff’s online documentation
can be found under

https://probfindiff.readthedocs.io/.
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3. ProbNum: I have been one the main contributors to ProbNum, a Python
implementation of various probabilistic numerical algorithms. ProbNum’s
online documentation can be found under

https://probnum.org/

and the corresponding paper [178] describes the library in more detail.

Other software outputs include creating a library that collects exemplary initial value
problems in NumPy and JAX,1 co-creating a previous iteration of a JAX implemen-
tation of probabilistic numerical solvers, 2 which has been used for Paper 3, and a
library that simplifies the creation of Matplotlib-figures for scientific publications.3

Except for (perhaps) ProbDiffEq and ProbFindiff, none of these are directly
connected to this thesis.

While the writing of this thesis is my original work, some parts of this manuscript
have been proofread by Jonathan Schmidt, Nathanael Bosch, and Elizabeth Baker.
The correct typography has been verified by an automatic spell-checker.4

1https://diffeqzoo.readthedocs.io/
2https://github.com/pnkraemer/tornadox/
3https://tueplots.readthedocs.io/
4https://grammarly.com/
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Simulating differential equations . . . . . . . . . . . . 4
1.4 Probabilistic numerical methods . . . . . . . . . . . . 5
1.5 Overview of this manuscript . . . . . . . . . . . . . . 5

1.1 Motivation

This document aims to explain a series of contributions to the field of probabilistic
numerical methods, thereby fulfilling one of the formal requirements of obtaining a
doctoral degree.

As a side product, this thesis surveys some recent developments in the field of
(state-space-model-based) probabilistic numerical differential equation solvers. It is
the first text that comprehensively explains how to implement a probabilistic numerical
solver for initial value problems.

1.2 Prerequisites

This manuscript assumes rough familiarity with Gaussian processes, stochastic
differential equations, and Bayesian inference equivalent to what is covered by the
first part of the book by Hennig et al. [79], or Chapters 2, 3, 10, and 12 in the book by
Särkkä and Solin [144]. Chapter 10 expects basic knowledge of finite differences.
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Figure 1.1: Probabilistic numerical solution of the Lotka–Volterra / predator-prey
dynamics (left, a) and the susceptible-infected-removed model (right, b). Displayed
are the posterior mean and confidence intervals of a probabilistic numerical solver
and samples from the probabilistic numerical solution.

1.3 Simulating differential equations

Mechanistic models based on differential equations are a popular way of describing
phenomena occurring in the natural sciences and engineering. For example, the
outbreak of a disease approximately follows a susceptible-infected-removed model,
certain instances of the Navier–Stokes equations describe the airflow around a wing,
and the Hodgkin-Huxley equations emulate the spiking-behaviour of neurons.

Assume that a function 𝑓 : R𝑑 → R𝑑 and vector 𝑦0 ∈ R𝑑 are given. Consider an
ordinary differential equation,

d
d𝑡
𝑦(𝑡) = 𝑓 (𝑦(𝑡)), 𝑡 ∈ [0, 1], (1.1)

and an initial condition 𝑦(0) = 𝑦0. For example, imagine the predator-prey dynamics
or a susceptible-infected-removed model (Figure 1.1). Assume that the vector field 𝑓 is
locally Lipschitz-continuous on some open set𝑉 that contains 𝑦0. Then, Equation (1.1)
has a unique solution 𝑦 : [0, 1] → R𝑑 [e.g., 79, Theorem 36.4]. If 𝑓 is nonlinear, 𝑦
does not arise in closed form (except in special cases) but requires the approximation
with a numerical algorithm. This raises two questions:

First, how much approximation error does the algorithm produce? While approxi-
mation errors are unavoidable, we need to know whether the errors are satisfactorily
low and, if not, how to refine the approximation. Second, how well does the numerical
algorithm interact with models built “around” the differential equation? If subsequent
computations rely on the solution of the differential equation, the numerical solver
must be compatible with those algorithms. This is a common requirement when doing,
for instance, parameter estimation with differential equation models. Phrasing the
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numerical simulation as inference in a probabilistic model, a perspective taken by
probabilistic numerical methods, provides a single tool to answer both questions.

1.4 Probabilistic numerical methods

Probabilistic numerical methods – like those that solve differential equations – view
numerical algorithms from the perspective of probabilistic inference. Usually, this
involves computing a posterior distribution over the solution of the numerical problem
(the differential equation) with Bayes’ theorem,

posterior ∝ likelihood × prior. (1.2)

The information required but also returned by Bayes’ theorem is richer than with
many numerical algorithms: an appropriate prior distribution may improve the
performance of the numerical algorithms, the likelihood gathers “information” (in a
technical sense; we discuss this in Chapter 2) about the problem to be solved, and the
posterior distribution quantifies the uncertainty over the numerical approximation error.
Furthermore, a probabilistic numerical method expresses an approximate solution
as a probability distribution, which can be related to other quantities of interest by
manipulating probability densities.

1.5 Overview of this manuscript

Chapters 1 to 3 discuss the background required for understanding the contributions
of this manuscript: the connection between conditional distributions and collocation
methods, as well as the sequential estimation of conditional distributions when
Markovian prior distributions are used.

Chapters 4 to 9 provide the core of this manuscript: detailed instructions for
implementing probabilistic numerical solvers for differential equations. This includes
manipulating Gaussian probability distributions using only (generalised) Cholesky
factors instead of covariance matrices (Chapter 4), linearising nonlinear constraints
(Chapter 5), estimating Taylor-series (Chapter 6), and best practices for scalar- and
vector-valued problems (Chapter 7, Chapter 8). Chapter 9 contains benchmarks of
the probabilistic numerical solver against popular implementations of initial value
problem solvers.

Chapters 10 to 12 treat selected topics related to the content of this thesis: Chapters 10
and 11 construct a probabilistic numerical solver for time-dependent partial differential
equations; Chapter 12 explains how to implement a probabilistic numerical solver for
boundary value problems. Both topics loosely depend on Chapter 7 and can be read
independently. Figure 1.2 summarises the dependencies between the chapters and
suggests in which order to read the chapters of this manuscript.
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Chapter 2

Collocation methods

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Probabilistic numerical solvers for initial value problems 7
2.3 Example: boundary value problems . . . . . . . . . . 10
2.4 Example: partial differential equations . . . . . . . . . 10
2.5 Discussion and outlook . . . . . . . . . . . . . . . . . . 11

2.1 Introduction

This thesis discusses the class of probabilistic numerical solvers that implements
(a probabilistic formulation of) collocation methods via estimation in state-space
models. The present chapter motivates this framework, defines the terms “probabilistic
numerical solution” and “probabilistic numerical solver”, and puts them into the
context of contemporary definitions of Bayesian probabilistic numerical methods and
collocation methods.

Let 𝑝(𝜑) be an appropriate probability distribution over the set of functions
{𝜑 : [0, 1] → R𝑑}. For example, 𝑝(𝜑) could be the law of a Gaussian process.
Let 𝑡0, ..., 𝑡𝑁 be known points in [0, 1]. Like in Chapter 1, we assume a function
𝑓 : R𝑑 → R𝑑 and vector 𝑦0 ∈ R𝑑 to be given.

2.2 Probabilistic numerical solvers for initial value problems

The construction of probabilistic numerical solvers builds on the following idea: For a
sufficiently well-posed problem and a sufficiently large number of grid points, any
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Figure 2.1: The samples from the prior, 𝜑 ∼ 𝑝(𝜑) (left column) have a residual
d
d𝑡 𝜑(𝑡) − 𝑓 (𝜑(𝑡)) with large magnitude (bottom left), even after incorporating the
initial condition (middle column). By conditioning the prior on attaining a zero-
residual (bottom right), an approximate solution of the logistic differential equation
d
d𝑡 𝑦(𝑡) = 10𝑦(𝑡) (1 − 𝑦(𝑡)), 𝑦(𝑡0) = 0.1, emerges (right column). Every plot shows
five samples; 𝑝(𝜑) is a twice-integrated Wiener process. The solver uses adaptive
steps (with relative tolerance set to 10−1 and first-order Taylor linearisation.

sample from the conditional distribution

𝑝

(
𝜑

����� {
d
d𝑡
𝜑(𝑡𝑛) = 𝑓 (𝜑(𝑡𝑛))

}𝑁
𝑛=0

, 𝜑(0) = 𝑦0

)
, (2.1)

approximately solves the ordinary differential equation

d
d𝑡
𝑦(𝑡) = 𝑓 (𝑦(𝑡)), 𝑡 ∈ [0, 1], (2.2)

and satisfies the initial condition 𝑦(0) = 𝑦0. In other words, a sample from the
conditional distribution approximately solves the initial value problem (Figure 2.1).
Therefore, we refer to the distribution in Equation (2.1) as the probabilistic numerical
solution of the problem in Equation (2.2). Any algorithm that computes or approximates
the probabilistic numerical solution is a probabilistic numerical solver for the initial
value problem. Constraining a hypothesis space of functions to satisfy a differential
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equation (and additional constraints) at a pre-specific point set is generally referred
to as a collocation method (refer to, for example, Definition 7.6 in the book by
Hairer et al. [76] or Section 10.3 in the book by Driscoll and Braun [47]). Therefore,
we say that probabilistic numerical algorithms in the above definition implement
probabilistic numerical variants of collocation methods (the “probabilistic” enters
through formulating collocation in terms of prior and conditional distributions).

The above concept of a probabilistic numerical solution is a special case of what
Cockayne et al. [37, Def. 2.5] define to be a Bayesian probabilistic numerical method.
The specialisation lies in the fact that probabilistic numerical solutions in the above
definition always assume a constraint of the form

𝜑 ↦→
{
{L(𝜑(𝑡𝑛)) = 0}𝑁

𝑛=0
C(𝜑(0), 𝜑(1)) = 0 , (2.3)

with, for example,

L(𝜑) B d𝜑
d𝑡

− 𝑓 (𝜑), C(𝜑(0), 𝜑(1)) B 𝜑(0) − 𝑦0, (2.4)

whereas a “Bayesian probabilistic numerical method” is more general.
However, the definition in Equations (2.3) and (2.4) itself is fairly general already: If,

instead of initial value problems based on ordinary differential equations, the goal is to
solve boundary value problems or partial differential equations, L and C differ from
Equation (2.4), but the general structure remains. Through such a variation of L and
C in Equation (2.3), the above definition of a probabilistic numerical solution includes
a wide range of previously published algorithms: For example, all algorithms studied
in the remainder of this manuscript fit this definition, and so do the partial differential
equation solvers by Cockayne et al. [36], Owhadi [128, 129], Raissi et al. [137], and
Raissi et al. [138], as well as the boundary value problem solvers by Arvanitidis et al.
[10], Hennig and Hauberg [78], and John et al. [85]. Most of these algorithms are
equivalent to known, non-probabilistic algorithms; concrete connections are explained
in the respective chapters.

There exist other, non-collocation-based algorithms in the literature on probabilistic
numerical methods for differential equations, for example, perturbation-based versions
of non-probabilistic numerical integrators [e.g. 1, 2, 38]. But in the remainder of this
manuscript, “probabilistic numerical solver/solution” will always refer to the above
definition of a probabilistic numerical solution/solver, as it is the only class of methods
to be discussed in this thesis.
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2.3 Example: boundary value problems

One advantage of collocation methods over alternative algorithms is the simplicity of
generalising an existing method to a new problem class. Probabilistic numerical solvers
inherit this feature: For example, if boundary conditions replace the initial-value
constraint, that is, if the goal is to solve the boundary value problem

d2

d𝑡2
𝑦(𝑡) = 𝑓 (𝑦(𝑡)) ,

{
𝑦(0) = 𝑦0,
𝑦(1) = 𝑦max,

(2.5)

instead of the initial value problem in Equation (2.2), the probabilistic numerical
solution is a minor modification of Equation (2.1),

𝑝

(
𝜑

����� {
d2

d𝑡2
𝜑(𝑡𝑛) = 𝑓 (𝜑(𝑡𝑛))

}𝑁
𝑛=0

,

{
𝜑(0) = 𝑦0
𝜑(1) = 𝑦max

)
. (2.6)

The only difference between Equations (2.1) and (2.6) is that Equation (2.6) conditions
on boundary information instead of initial-value information. As such, we define
Equation (2.6) as the probabilistic numerical solution of the boundary value problem,
and any algorithm that approximates Equation (2.6) is a probabilistic numerical solver
for boundary value problems. Boundary value problems are the content of Chapter 12.

2.4 Example: partial differential equations

Similarly, probabilistic numerical solvers/solutions for partial differential equations
emerge by modifying the constraints in Equation (2.1):

Let Ω ∈ R𝑟 be a sufficiently well-behaved domain with a sufficiently regular
boundary 𝜕Ω (for example, open, bounded, Lipschitz-boundary). Let {𝑥0, ..., 𝑥𝐾 } ⊆ Ω

be a spatial grid in Ω. Assume that functions 𝑢0 : Ω → R𝑑 and 𝑢𝜕 : [0, 1] ×Ω → R𝑑
are known. Let 𝑝(𝜁) be a probability distribution over the space of spatiotemporal
functions {𝜁 : [0, 1] ×Ω → R𝑑}, for example, the law of a Gaussian process.

Let the task be to solve an initial value problem based on a partial differential
equation, say, a combination of the semilinear differential equation

𝜕

𝜕𝑡
𝑢(𝑡, 𝑥) = 𝜕2

𝜕𝑥2 𝑢(𝑡, 𝑥) + 𝑓 (𝑢(𝑡, 𝑥)), (𝑡, 𝑥) ∈ [0, 1] ×Ω, (2.7)

with two constraints: the temporal initial condition 𝑢(0, 𝑥) = 𝑢0 (𝑥), 𝑥 ∈ Ω, and the
spatial boundary condition 𝑢(𝑡, 𝑥) = 𝑢𝜕 (𝑡, 𝑥), (𝑡, 𝑥) ∈ [0, 1] × 𝜕Ω. Assume that the
problem is sufficiently well-behaved that the partial differential equation admits a
unique solution.

Let {𝑥𝑘′ }𝐾
′

𝑘′=0 be the points in {𝑥0, ..., 𝑥𝐾 } that are on the boundary 𝜕Ω of Ω. The
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strategy for deriving the probabilistic numerical solution of the partial differential
equation mirrors the previous approaches; we define it as the conditional distribution

𝑝(𝜁 | 𝐴PDE, 𝐴0, 𝐴𝜕), (2.8a)

𝐴PDE B

{
𝜕2

𝜕𝑡2
𝜁 (𝑡𝑛, 𝑥𝑘) =

𝜕2

𝜕𝑥2 𝜁 (𝑡𝑛, 𝑥𝑘) + 𝑓 (𝜁 (𝑡𝑛, 𝑥𝑘))
}𝐾,𝑁
𝑘,𝑛=0

(2.8b)

𝐴0 B {𝜁 (0, 𝑥𝑘) = 𝑢0 (𝑥𝑘)}𝐾𝑘=0 (2.8c)

𝐴𝜕 B {𝜁 (𝑡𝑛, 𝑥𝑘′ ) = 𝑢𝜕 (𝑡𝑛, 𝑥𝑘′ )}𝐾
′ ,𝑁

𝑡,𝑘′=0 . (2.8d)

Any algorithm that approximates the probabilistic numerical partial differential
equation solution in Equation (2.8) is a probabilistic numerical solver for partial
differential equations. Partial differential equations are treated by Chapters 10 and 11.

2.5 Discussion and outlook

Given a prior distribution and a differential-equation-based problem, it is relatively
straightforward to derive a probabilistic numerical solution: introduce a discretisation,
and condition the prior distribution on a set of collocation conditions; that is, on
the event that samples from the distribution satisfy the differential equation and
the constraints on the grid. Initial and boundary value problems based on ordinary
differential equations and spatiotemporal partial differential equations were used as
examples above; other types of differential equation problems (e.g. stationary partial
differential equations) can be derived similarly but are out of the scope of this text.

While conceptualising a probabilistic numerical solution may be straightforward,
constructing efficient solvers is more difficult. Some of the reasons are nonlinearities,
boundary conditions, or spatial differential operators but the algorithms must also
be able to compute the solution to low tolerances and be robust against anisotropic
behaviour and numerical round-off errors. In other words, one needs to be meticulous
with the selection and the implementation of approximation methods that target
posterior distributions such as those in Equations (2.1), (2.6) and (2.8).

Most of this manuscript discusses the efficient and stable approximation of the
posterior probability distributions that make up probabilistic numerical solutions of
differential equations. As a foundation for these discussions, Chapter 3 describes the
conceptualisation of probabilistic numerical solvers for ordinary-differential-equation-
based initial value problems via sequential estimation in state-space models.
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3.1 Problem statement

Chapter 2 defined probabilistic numerical solvers/solutions and explained the connec-
tion to collocation methods. The upcoming chapter lays the foundation for discussing
the efficient and stable implementation of probabilistic numerical solvers. More specif-
ically, the following few sections explain how, if the prior distribution is Markovian,
the posterior distribution can be computed with a constant number of floating-point
operations per grid point.

The remainder of this chapter restricts itself to solving initial value problems (IVPs)
based on affine, scalar ordinary differential equations. This class of IVPs combines an
affine, scalar differential equation

d𝑦
d𝑡

= 𝑎𝑦(𝑡) + 𝑏, 𝑡 ∈ [0, 1], (3.1)

with the constraint 𝑦(0) = 𝑦0 ∈ R on the initial state. The coefficients 𝑎, 𝑏 ∈ R and the
initial condition 𝑦0 are given and shall be sufficiently well-behaved so that a unique
IVP solution 𝑦 : [0, 1] → R exists.

Equation (3.1) assumes that the differential equation is affine because the proba-
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bilistic numerical solution of an affine problem with a Gaussian prior is Gaussian.
Probabilistic numerical solutions of nonlinear problems demand approximation, algo-
rithms for which build on the algorithms for affine problems. Therefore, approximate
estimation and nonlinear problems will not be discussed before Chapter 5. Equa-
tion (3.1) further assumes that the differential equation is one-dimensional because
the efficient solution of vector-valued problems (Chapter 8) builds on algorithms
for scalar problems (explained in this chapter and Chapter 7). Equation (3.1) makes
several notational simplifications:

⋄ The coefficients 𝑎 and 𝑏 are constant instead of time-dependent.

⋄ The differential equation describes d𝑦 (𝑡 )
d𝑡 instead of, for example, d2𝑦 (𝑡 )

d𝑡2 .

⋄ The time-domain is 𝑡 ∈ [0, 1] instead of, for instance, 𝑡 ∈ [𝑡0, 𝑡max].

All three assumptions do not imply a loss of generality; they exclusively serve the
purpose of reducing the number of symbols in the upcoming mathematical expressions.
Modifications for the general cases will be discussed where relevant.

Let {𝑡0, ..., 𝑡𝑁 } ⊆ [0, 1] be a set of 𝑁 + 1 grid-points. Assume that the outermost
grid points coincide with the boundary of the integration domain, 𝑡0 = 0, 𝑡𝑁 = 1. (For
general time intervals, place the grid accordingly.) Let 𝑝(𝜑) be a (prior) probability
distribution on the set of functions {𝜑 : [0, 1] → R}. Like in Chapter 2, define the
probabilistic numerical IVP solution as the conditional distribution

𝑝

(
𝜑

����� {
d𝜑(𝑡𝑛)

d𝑡
= 𝑎𝜑(𝑡𝑛) + 𝑏

}𝑁
𝑛=0

, 𝜑(0) = 𝑦0

)
. (3.2)

The difference between the distribution in Equation (3.2) and the probabilistic
numerical solution in Chapter 2 is that Equation (3.2) relates to the affine IVP in
Equation (3.1) instead of a nonlinear IVP.

The remainder of this chapter explains how to estimate and calibrate the conditional
distribution in Equation (3.2) sequentially if the prior distribution is a Gaussian process
and comes with the Markov property. To this end, Section 3.2 introduces a formulation
of integrated Wiener processes as solutions of stochastic differential equations,
Section 3.3 discusses temporal discretisation, and Section 3.4 treats the ordinary
differential equation constraints. This will complete the probabilistic model behind
the sequential version of probabilistic numerical solvers. Section 3.5 summarises
implementing the sequential decomposition of the probabilistic numerical solution,
and Section 3.6 describes the calibration of estimators in this context.
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3.2 Integrated Wiener processes

The prior distribution 𝑝(𝜑) encodes a priori information about the IVP solution; for
example, how many times the solution is differentiable or if the process decays to
zero in the long term. However, strict efficiency requirements constrain the class of
reasonable priors for probabilistic numerical solvers. The computational complexity
of solving a one-dimensional IVP on 𝑁 grid points should scale as 𝑂 (𝑁) because
that is how expensive most non-probabilistic numerical solvers are. The stochastic
differential equation perspective taken in this work implies this linear-time complexity.
One could also explore alternative concepts, for instance, via Gaussian processes
based on (approximately) structured matrices [e.g., 134], but the stochastic differential
equation is natural for problems with temporal structure, such as solving IVPs.

The (at the time of writing) most common prior distribution for probabilistic
numerical IVP solvers is a class of multiply-integrated Wiener processes defined as
follows (e.g., used by Bosch et al. [25], Kersting et al. [93], Schober et al. [151], Tronarp
et al. [163] and the projects discussed in this manuscript). Let 𝜈 ∈ N be an integer.
Let 𝑤 : R → R be a Wiener process with a constant output scale 𝛾 > 0 [e.g.,
144, Definition 4.1]. Let 𝑚0 ∈ R𝜈+1 be a vector and let 𝐶0 (𝛾) ∈ R(𝜈+1)×(𝜈+1) be a
symmetric, positive semidefinite matrix. Define a stack of stochastic processes

𝑌 (𝑡) B
(
𝑌 (0) (𝑡), ..., 𝑌 (𝜈) (𝑡)

)
: R→ R𝜈+1, (3.3)

with 𝑌 (𝑞) (𝑡) ∈ R, 𝑞 = 0, ..., 𝜈, as the solution of a system of stochastic differential
equations (in the Itô sense [127]),

d𝑌 (𝑞) (𝑡) = 𝑌 (𝑞+1) (𝑡) d𝑡, 𝑞 = 0, ..., 𝜈 − 1, (3.4a)

d𝑌 (𝜈) (𝑡) = d𝑤(𝑡), (3.4b)

subject to the Gaussian initial condition

𝑝(𝑌 (0) | 𝛾) = N(𝑚0, 𝐶0 (𝛾)). (3.5)

This construction of 𝑌 (𝑡) as the output of a linear stochastic differential equation
with a Gaussian initial condition makes it a Gauss–Markov process [127]. The zeroth
component𝑌 (0) (𝑡) of𝑌 (𝑡) is a 𝜈-times integrated Wiener process. The 𝑞th component
𝑌 (𝑞) (𝑡) of𝑌 (𝑡) is the derivative of the (𝑞−1)th component𝑌 (𝑞−1) (𝑡) (Equation (3.4a)).
The 𝜈th derivative 𝑌 (𝜈) of 𝑌 (0) is a Wiener process (Equation (3.4b)).

In the remainder of this chapter, we assume that 𝑚0, 𝐶0 (𝛾), 𝜈, and 𝑡0, ..., 𝑡𝑁 are
fixed and known, and that 𝛾 is fixed and unknown. Section 3.6 discusses the estimation
of the parameter 𝛾.



Chapter 3. Sequential estimation 16

3.3 Time discretisation

We must discretise the prior distribution on {𝑡0, ..., 𝑡𝑁 } to compute a probabilistic
numerical IVP solution. Let 𝑡 ∈ [0,∞) and assume a time increment Δ𝑡 > 0. Define
the indicator function 1𝑖≤ 𝑗 (𝑖, 𝑗) as equalling 1 if 𝑖 ≤ 𝑗 holds and 0 otherwise.

Solutions of linear, time-invariant, stochastic differential equations subject to
Gaussian initial conditions satisfy the transition rule [15]

𝑝(𝑌 (𝑡 + Δ𝑡) | 𝑌 (𝑡), 𝛾) = N(Φ𝜈 (Δ𝑡)𝑌 (𝑡), Σ𝜈 (Δ𝑡 , 𝛾)), (3.6)

for a transition matrix Φ𝜈 (Δ𝑡) ∈ R(𝜈+1)×(𝜈+1) and a process noise covariance matrix
Σ𝜈 (Δ𝑡 , 𝛾) ∈ R(𝜈+1)×(𝜈+1) . Equation (3.6) is the equivalent discretisation of 𝑌 (𝑡) [e.g.
144, p. 79]. It implies that the joint distribution of 𝑌 (𝑡0), ..., 𝑌 (𝑡𝑁 ) factorises into
a sequence of conditional distributions. For 𝜈-times integrated Wiener processes,
Φ𝜈 (Δ𝑡) and Σ𝜈 (Δ𝑡 , 𝛾) are available in closed form,

Φ𝜈 (𝜏) B [𝜙𝑖 𝑗 (𝜏)]𝜈𝑖, 𝑗=0, 𝜙𝑖 𝑗 (𝜏) B 1𝑖≤ 𝑗 (𝑖, 𝑗)
𝜏 𝑗−𝑖

( 𝑗 − 𝑖)! (3.7a)

Σ𝜈 (𝜏, 𝛾) B 𝛾2 [𝜎𝑖 𝑗 (𝜏)]𝜈𝑖, 𝑗=0, 𝜎𝑖 𝑗 (𝜏) B
𝜏2𝜈+1−𝑖− 𝑗

(2𝜈 + 1 − 𝑖 − 𝑗) (𝜈 − 𝑖)!(𝜈 − 𝑗)! . (3.7b)

The closed-form availability of the transition matrices simplifies (and accelerates)
implementations of probabilistic numerical IVP solvers.

Remark 3.1 (General Gauss–Markov priors). Instead of 𝜈-times integrated
Wiener processes, alternatives could be considered. Let 𝐹0, ..., 𝐹𝜈 ∈ R be given.
Instead of the system of linear, time-invariant, stochastic differential equations in
Equation (3.4), one could model

d𝑌 (𝑞) (𝑡) = 𝑌 (𝑞+1) (𝑡) d𝑡, 𝑞 = 0, ..., 𝜈 − 1, (3.8a)

d𝑌 (𝜈) (𝑡) =
𝜈∑︁
𝑞=0

𝐹𝑞𝑌
(𝑞) (𝑡) d𝑡 + d𝑤(𝑡) (3.8b)

subject to the same Gaussian initial condition as in Equation (3.5). This formula-
tion includes 𝜈-times integrated Ornstein-Uhlenbeck processes and half-integer
Matèrn processes as well as the 𝜈-times integrated Wiener process from above
[164]. The parameters Φ𝜈 (Δ𝑡) and Σ𝜈 (Δ𝑡 , 𝛾) of the transition in Equation (3.6)
are still available in closed form. However, their computation requires evaluating
matrix exponentials [144], which costs more than evaluating Equation (3.7).
Refer to Bosch et al. [27] for more information.

By choosing a stochastic differential equation formulation of the integrated Wiener
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process prior, we do not estimate Equation (3.2) but

𝑝

(
𝑌 (0) (𝑡), ..., 𝑌 (𝜈) (𝑡)

���� {
𝑌 (1) (𝑡𝑛) = 𝑎𝑌 (0) (𝑡𝑛) + 𝑏

}𝑁
𝑛=0

, 𝑌 (0) (𝑡0) = 𝑦0

)
. (3.9)

Loosely speaking, the posterior distribution in Equation (3.9) is “richer” than the one
in Equation (3.2) because Equation (3.9) additionally includes derivative estimates. It
is often easier to implement Equation (3.9) in software than Equation (3.2) because the
differential operator 𝜑 → d

d𝑡 𝜑
(0) (Equation (3.2)) is replaced by a selection operator

𝜑 → 𝜑 (1) (Equation (3.9)). In the present setting, both operators are equivalent since
for any 𝑞 ∈ {0, ..., 𝜈}, 𝑌 (𝑞) (𝑡) is the 𝑞th derivative of 𝑌 (0) (𝑡). Since the differential
equation is affine, both conditional distributions are Gaussian and Equation (3.9) and
Equation (3.2) translate into one another.

Solutions of linear, time-invariant, stochastic differential equations driven by a
Wiener process have the Markov property. That means that for 𝑡0 < 𝑡1 < ... < 𝑡𝑁 , and
𝑌 (𝑡) as in Section 3.2, future values of the process are conditionally independent of
past values given present values. More formally, for 𝑡𝑛 ∈ {𝑡0, ..., 𝑡𝑁 } and 𝑠 > 𝑡𝑛,

𝑝(𝑌 (𝑠) | 𝑌 (𝑡0), ..., 𝑌 (𝑡𝑛)) = 𝑝(𝑌 (𝑠) | 𝑌 (𝑡𝑛)) (3.10)

holds. Similarly, past values are conditionally independent of future realisations given
present values: for 𝑡𝑛 ∈ {𝑡0, ..., 𝑡𝑁 } and 𝑠 < 𝑡𝑛, we have

𝑝(𝑌 (𝑠) | 𝑌 (𝑡𝑛), ..., 𝑌 (𝑡𝑁 )) = 𝑝(𝑌 (𝑠) | 𝑌 (𝑡𝑛)). (3.11)

The Markov property is essential for the sequential estimation of IVP solutions.
We call processes with the Markov property “Markovian” and use the identities in
Equations (3.10) and (3.11) later (in Section 3.5).

3.4 Constraints

Introduce a variable R𝑦0 and a set of variables {R𝑎,𝑏,𝑛}𝑁𝑛=0 as

R𝑦0 B 𝑌 (0) (𝑡0) − 𝑦0, R𝑎,𝑏,𝑛 B 𝑌 (1) (𝑡𝑛) − 𝑎𝑌 (0) (𝑡𝑛) − 𝑏, 𝑛 = 0, ..., 𝑁. (3.12)

By definition, R𝑦0 and R𝑎,𝑏,𝑛 depend on the differential equation. If the differential
equation changes, R𝑦0 and R𝑎,𝑏,𝑛 change; for example, if 𝑎 and 𝑏 depend on time,
R𝑎,𝑏,𝑛 becomes

R𝑎,𝑏,𝑛 B 𝑌 (1) (𝑡𝑛) − 𝑎(𝑡𝑛)𝑌 (0) (𝑡𝑛) − 𝑏(𝑡𝑛). (3.13)

But in the remainder of this chapter, 𝑎 and 𝑏 shall be constant.
Loosely speaking, the magnitudes of R𝑦0 and each R𝑎,𝑏,𝑛 indicate “how well” a
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sample from 𝑌 (𝑡𝑛) solves the problem: the smaller each variable in magnitude, the
“closer” 𝑌 (𝑡𝑛) is to a solution of the IVP at 𝑡𝑛. By construction, because each R𝑦0

and {R𝑎,𝑏,𝑛}𝑁𝑛=0 are deterministic transformations of the state variable 𝑌 (𝑡), they are
conditionally independent given 𝑌 (𝑡),

𝑝(R𝑎,𝑏,𝑛 | {𝑌 (𝑡𝑘)}𝑛𝑘=0, {R𝑎,𝑏,𝑘}
𝑛−1
𝑘=0 , R𝑦0 ) = 𝑝(R𝑎,𝑏,𝑛 | 𝑌 (𝑡𝑛)). (3.14)

This conditional independence will be important in Section 3.5.

3.5 Sequential estimation

Probabilistically solving the IVP becomes the problem of estimating {𝑌 (𝑡𝑛)}𝑁𝑛=0 from
the constraints {R𝑦0 = 0} and {R𝑎,𝑏,𝑛 = 0}𝑁

𝑛=0. We will sometimes omit the “= 0”
in the explanations below to simplify the exposition. In the following derivations,
abbreviate 𝑌 (𝑡0:𝑛) B {𝑌 (𝑡𝑘)}𝑛𝑘=0 and R𝑎,𝑏,0:𝑛 B {R𝑎,𝑏,𝑘}𝑛𝑘=0.

Since the prior distribution has the Markov property and since the constraints are
conditionally independent, the probabilistic numerical solution inherits Markovianity
from the prior distribution; it factorises as

𝑝(𝑌 (𝑡0:𝑁 ) | R𝑎,𝑏,0:𝑁 , R𝑦0 , 𝛾)

= 𝑝(𝑌 (𝑡𝑁 ) | R𝑎,𝑏,0:𝑁 , R𝑦0 , 𝛾)
𝑁−1∏
𝑛=0

𝑝(𝑌 (𝑡𝑛) | 𝑌 (𝑡𝑛+1), R𝑎,𝑏,0:𝑛, R𝑦0 , 𝛾).
(3.15)

As announced above, the “= 0” has been omitted in the conditionals. Together, the
backward-transition densities

{𝑝(𝑌 (𝑡𝑛) | 𝑌 (𝑡𝑛+1), R𝑎,𝑏,0:𝑛, R𝑦0 , 𝛾)}𝑁−1
𝑛=0 (3.16)

and the terminal distribution

𝑝(𝑌 (𝑡𝑁 ) | R𝑎,𝑏,0:𝑁 , R𝑦0 , 𝛾) (3.17)

represent the probabilistic numerical IVP solution. Computing these transitions and
the terminal distribution yields the probabilistic numerical solution. The marginal
likelihood of the constraints, which assesses the correctness of the probabilistic model
(the larger, the better), factorises similarly,

𝑝(R𝑎,𝑏,0:𝑁 , R𝑦0 | 𝛾)

= 𝑝(R𝑎,𝑏,0, R𝑦0 | 𝛾)
𝑁∏
𝑛=1

𝑝(R𝑎,𝑏,𝑛 | R𝑎,𝑏,0:𝑛−1, R𝑦0 , 𝛾).
(3.18)
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The elements in Equations (3.16) to (3.18) can be computed in a single sweep:

Algorithm 3.2 (Sequential IVP solver). Compute the probabilistic numerical
IVP solution and the marginal likelihood (Equations (3.16) to (3.18)) as follows.

1. Initialise the algorithm with the initial distribution 𝑝(𝑌 (𝑡0) | 𝛾) from the
stochastic differential equation (Equation (3.5)). Construct the joint distribu-
tion of the initialisation and the constraints at 𝑡0, 𝑝(𝑌 (𝑡0),R𝑎,𝑏,0,R𝑦0 | 𝛾).
Extract the conditional 𝑝(𝑌 (𝑡0) | R𝑎,𝑏,0,R𝑦0 , 𝛾) and, optionally, the
marginal likelihood

𝑝(R𝑎,𝑏,0,R𝑦0 | 𝛾) =
∫

𝑝(R𝑎,𝑏,0,R𝑦0 , 𝑌 (𝑡0) | 𝛾) d𝑌 (𝑡0). (3.19)

Store both.

2. For 𝑛 = 0, ..., 𝑁 − 1, assume the availability of 𝑝(𝑌 (𝑡𝑛) | R𝑎,𝑏,0:𝑛,R𝑦0 , 𝛾)
from previous computations and compute the next set of terms as follows:

(a) Construct the joint distribution 𝑝(𝑌 (𝑡𝑛), 𝑌 (𝑡𝑛+1) | R𝑎,𝑏,0:𝑛,R𝑦0 , 𝛾).
Extrapolate

𝑝(𝑌 (𝑡𝑛+1) | R𝑎,𝑏,0:𝑛,R𝑦0 , 𝛾)

=

∫
𝑝(𝑌 (𝑡𝑛+1), 𝑌 (𝑡𝑛) | R𝑎,𝑏,0:𝑛,R𝑦0 , 𝛾) d𝑌 (𝑡𝑛)

(3.20)

and derive the backward transition

𝑝(𝑌 (𝑡𝑛) | 𝑌 (𝑡𝑛+1),R𝑎,𝑏,0:𝑛,R𝑦0 , 𝛾). (3.21)

Use the extrapolation in the step below. Store the backward transition.
(b) Use the extrapolation 𝑝(𝑌 (𝑡𝑛+1) | R𝑎,𝑏,0:𝑛,R𝑦0 , 𝛾) to construct the

joint distribution 𝑝(R𝑎,𝑏,𝑛+1, 𝑌 (𝑡𝑛+1) | R𝑎,𝑏,0:𝑛,R𝑦0 , 𝛾). Use the
joint distribution to estimate 𝑝(𝑌 (𝑡𝑛+1) | R𝑎,𝑏,0:𝑛+1,R𝑦0 , 𝛾). Store
the conditional. Optionally, extract the likelihood increment

𝑝(R𝑎,𝑏,𝑛+1 | R𝑎,𝑏,0:𝑛,R𝑦0 , 𝛾)

=

∫
𝑝(R𝑎,𝑏,𝑛+1, 𝑌 (𝑡𝑛+1) | R𝑎,𝑏,0:𝑛,R𝑦0 , 𝛾) d𝑌 (𝑡𝑛+1).

(3.22)

Return the backward transitions, conditional distributions, and the optional
marginal likelihood terms.
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Since the initial value problem is affine, all distributions in Algorithm 3.2 are
Gaussian, in which case marginals and conditionals can be computed exactly. In
fact, almost every step in Algorithm 3.2 involves manipulating such a Gaussian
probability distribution; therefore, the efficiency of this operation is crucial for
the computational feasibility of the probabilistic numerical simulation. Concrete
implementations of each operation in Algorithm 3.2 depend on the parametrisation of
Gaussian distributions. Recommendations for parametrising Gaussian distributions
in the context of probabilistic numerical solvers are contributions of this thesis and
postponed to Chapter 4.

Algorithm 3.2 produces a collection of transition rules

{𝑝(𝑌 (𝑡𝑛) | 𝑌 (𝑡𝑛+1),R𝑎,𝑏,0:𝑛,R𝑦0 , 𝛾)}𝑁𝑛=0, (3.23)

a set of conditional distributions

{𝑝(𝑌 (𝑡𝑛) | R𝑎,𝑏,0:𝑛,R𝑦0 , 𝛾)}𝑁𝑛=0, (3.24)

and, optionally, marginal likelihood terms

{𝑝(R𝑎,𝑏,𝑛 | R𝑎,𝑏,0:𝑛−1,R𝑦0 , 𝛾)}𝑁𝑛=1 ∪ {𝑝(R𝑎,𝑏,0,R𝑦0 | 𝛾)}. (3.25)

In the literature on filtering and Rauch–Tung–Striebel smoothing, the conditional
distributions in Equation (3.24) are known as the filtering distributions, and the process
of computing them is called filtering [e.g., 143].

Equation (3.24) includes the terminal distribution 𝑝(𝑌 (𝑡𝑁 ) | R𝑎,𝑏,0:𝑁 ,R𝑦0 , 𝛾),
which describes the probabilistic numerical IVP solution at the terminal grid point
𝑡𝑁 . The backward transitions in Equation (3.23) are those from Equation (3.15). The
combination of a terminal distribution with backward transitions enables the extraction
of information from the IVP solution, for example, via marginalisation and sampling:

⋄ Sampling: To sample a realisation of the probabilistic numerical IVP solution,
draw a terminal realisation 𝜁𝑁 ∼ 𝑝(𝑌 (𝑡𝑁 ) | R𝑎,𝑏,0:𝑁 ,R𝑦0 , 𝛾) and sequentially
draw realisations

𝜁𝑛 ∼ 𝑝(𝑌 (𝑡𝑛) | 𝑌 (𝑡𝑛+1) = 𝜁𝑛+1, R𝑎,𝑏,0:𝑁 , R𝑦0 , 𝛾) (3.26)

for 𝑛 = 𝑁 − 1, ..., 0.

⋄ Marginalisation: The terminal distribution is 𝑝(𝑌 (𝑡𝑁 ) | R𝑎,𝑏,0:𝑁 ,R𝑦0 , 𝛾).
Compute the remaining marginals sequentially using the backward transition
rules produced by Algorithm 3.2. In the filtering and smoothing literature, this
backward marginalisation produces the smoothing distributions [e.g., 143].

The factorised representation of the probabilistic numerical solution produced by
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𝑌 (𝑡0) 𝑌 (𝑡1) ... 𝑌 (𝑡𝑁 )

R𝑎,𝑏,0

R𝑦0

R𝑎,𝑏,1 R𝑎,𝑏,𝑁

Forward computation (filtering)

Backward marginalisation (smoothing)

Backward sampling

Subsequent state & parameter estimation

Figure 3.1: A forward pass (from 𝑌 (𝑡0) to 𝑌 (𝑡𝑁 )) via R𝑦0 = 0, R𝑎,𝑏,0 = 0, ...,
R𝑎,𝑏,𝑁 = 0) computes the filtering distributions, the backward transition densities,
and, optionally, the marginal likelihood terms according to Algorithm 3.2. A backward
pass (from 𝑌 (𝑡𝑁 ) to 𝑌 (𝑡0)) turns the filtering distributions into the marginal posterior
distributions, computes samples, or allows using the probabilistic numerical IVP
solution for subsequent state and parameter estimation.

Algorithm 3.2 can also serve as a prior for subsequent state/parameter estimation;
refer to Tronarp et al. [165] for an example. Figure 3.1 visualises the scheme.

3.6 Calibration

So far, we assumed the following degrees of freedom as provided: the IVP (including
the parameters of 𝑎 and 𝑏 and an initial condition 𝑦0); the number 𝜈 ∈ N of derivatives
in the prior process, the output scale 𝛾 of the underlying Wiener process, the initial
mean 𝑚0 and covariance matrix 𝐶0 (𝛾) of the 𝜈-times integrated Wiener process; and
the time-grid {𝑡0, ..., 𝑡𝑁 }. In this section, we discuss the calibration of each of these
parameters – or rather, explain why the selection of these parameters is unimportant
at this point of the exposition and where to find such information instead.

We continue assuming that the IVP itself is known - this thesis focuses on state
estimation; for parameter estimation with probabilistic numerical solvers, we refer to
Kersting et al. [92], Schmidt et al. [150], Tronarp et al. [165].

The number of derivatives 𝜈 shall also be known. The choice of 𝜈 affects the



Chapter 3. Sequential estimation 22

convergence speed of the probabilistic numerical solver, but increasing 𝜈 increases
the computational complexity. The trade-off between convergence speed and compu-
tational complexity is shown in Chapter 9.

Similarly, the more time points {𝑡0, ..., 𝑡𝑁 } we employ (with appropriate spacing),
the better the approximation quality. However, the goal is not to compute a maximally
accurate solution but rather to compute a sufficiently accurate solution on as few
points as possible. Therefore, grid points for IVP solvers are chosen adaptively and
during the forward computation (see [25, 152]). Grid selection for boundary value
problem solvers is part of Chapter 12.

The parameters of the initial condition of the stochastic differential equation consist
of the initial mean 𝑚0 and the initial covariance 𝐶0 (𝛾). In the absence of concrete
knowledge of these parameters, one may use diffuse initialisation [39], that is, choose

𝑚0 = 0, 𝐶0 (𝛾) = 𝜅2𝛾2𝐼 (𝜈+1)×(𝜈+1) (3.27)

with a large 𝜅 > 0 (for instance 𝜅 = 103). If suitable initial conditions of the stochastic
differential equation emerge otherwise (for example, by corresponding to a stochastic
differential equation description of a Gaussian process [e.g. 159]), use those instead
of Equation (3.27).

But for initial value problems, the initial condition of the stochastic differential
equation is not very important: By construction, the state 𝑌 (𝑡) = (𝑌 (0) (𝑡), ..., 𝑌 (𝜈) (𝑡))
estimates the unnormalised Taylor coefficients of the IVP solution 𝑦,

𝑌 (0) (𝑡𝑛) ≈ 𝑦(𝑡𝑛), 𝑌 (1) (𝑡𝑛) ≈
d
d𝑡
𝑦(𝑡𝑛), ..., 𝑌 (𝜈) (𝑡𝑛) ≈

d𝜈

d𝑡𝜈
𝑦(𝑡𝑛), (3.28)

for 𝑛 = 0, ..., 𝑁 . The initial constraints {R𝑎,𝑏,0 = 0,R𝑦0 = 0} initialise the zeroth
and the first unnormalised Taylor coefficients correctly (see Chapter 7). In practice,
probabilistic numerical IVP solvers use 𝑦0 and the differential equation to replace R𝑦0

with constraints that initialise all Taylor coefficients (more or less) exactly and usually
with a procedure that does not depend on 𝑚0 and 𝐶0 (𝛾) (Chapter 7).

The output scale 𝛾 of the underlying Wiener process is the only parameter whose
selection is discussed in this section (even though concrete formulas are postponed for
𝛾, too). The parameter 𝛾 governs the output scale of the process and must be calibrated
against the IVP solution. For example, (quasi-)maximum-likelihood estimation is
possible in closed-form and as a part of Algorithm 3.2. The precise formula depends
on the factorisation and parametrisation of the Gaussian probability distributions.
Therefore, we must postpone further instructions about calibrating the constant output
scale 𝛾 to Chapters 7 and 8.

But a single 𝛾 is sometimes too restrictive: differential equations with strongly
varying solutions require a time-varying output scale 𝛾 : R→ R. For example, the
linear equation d𝑦 (𝑡 )

d𝑡 = 2𝑦(𝑡), 𝑦(0) = 1, has the solution 𝑦(𝑡) = exp(2𝑡), and no single
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Figure 3.2: The probabilistic numerical solution of the linear differential equation
d𝑦 (𝑡 )

d𝑡 = 2𝑦(𝑡), 𝑦(0) = 1, requires a time-varying output scale to adapt to the exponential
growth of the solution 𝑦 = exp(2𝑡) (left column). With a constant output scale, the
posterior mean does not follow the exponential growth of the solution (right column).
(The prior has 𝜈 = 1 derivatives. The solution is estimated on a fixed grid with
𝑁 = 200 equispaced points.)

𝛾 describes the scale of 𝑦 accurately for all 𝑡 ∈ [0, 1] (Figure 3.2). While general,
time-varying output scales as functions from R to R have not been explored in the
literature, piecewise-constant output scales frequently appear [e.g. 25, 100, 102, 152].
The central assumption behind a piecewise-constant, time-varying output scale is to
assume a sequence {𝛾𝑛}𝑁𝑛=0 ⊆ R and to define 𝛾 : R→ R as

𝛾 (𝑡) B

𝛾0 if 𝑡 ∈ (−∞, 𝑡0],
𝛾𝑛 if 𝑡 ∈ (𝑡𝑛, 𝑡𝑛+1], 𝑛 = 0, ..., 𝑁 − 1,
𝛾𝑁 if 𝑡 ∈ (𝑡𝑁 ,∞] .

(3.29)

This output scale allows variation over time. Nevertheless, it implies a constant output
scale per IVP solver step, in which case closed-form (quasi-)maximum-likelihood
estimation remains available (under mild assumptions; details are in Chapters 7 and 8).
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3.7 Conclusion

In summary, Markovian prior distributions imply the sequential estimation of proba-
bilistic numerical IVP solutions. While multiply-integrated Wiener processes are the
standard choice in the contemporary literature on probabilistic numerical methods,
alternative prior distributions are possible. Prior distributions with the Markov prop-
erty imply posterior distributions with the Markov property, and marginalisation and
sampling can be computed in a constant number of operations per grid point.

One gap in the presentation is the implementation of the joint, marginal, and
conditional distributions. Concrete algorithms are the content of Chapter 7. Before
that, we must discuss the Cholesky parametrisation of Gaussian variables in Chapter 4,
and linearisation in Chapter 5.
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4.1 Introduction

Manipulating Gaussian random variables is essential to implementing probabilistic
numerical initial-value-problem solvers. There are many ways to parametrise Gaus-
sian distributions, for example, using covariance matrices, precision matrices, or
(generalised) Cholesky factors. In the present chapter, we explain the manipulation
of Gaussian variables in Cholesky arithmetic, which means that we never assemble
full covariance matrices – all operations involve only (generalised) Cholesky factors.
Using only the (generalised) Cholesky factors preserves the symmetry and positive
semidefiniteness of covariance matrices.

In other words, this chapter explains the numerical linear algebra necessary for
implementing probabilistic numerical initial-value-problem solvers. Section 4.2 es-
tablishes the problem statement in the conventional parametrisation of Gaussian
distributions (which uses mean vectors and covariance matrices): marginalising, condi-
tioning, and evaluating the log-density functions of linearly related Gaussian variables.
Sections 4.3 to 4.6 discuss implementing all those operations using (generalised)
Cholesky factors of covariance matrices. At this point, the techniques will be loosely
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connected to probabilistic numerical solvers, but the content of this chapter does not
depend on the previous chapters and can be read independently of the rest of this
thesis. Section 4.7 discusses related literature, and Section 4.8 connects the results to
those in previous and upcoming chapters.

4.2 Manipulation of Gaussian variables

Let 𝑑in, 𝑑out ∈ N. Let 𝑚in ∈ R𝑑in , 𝐶in ∈ R𝑑in×𝑑in , 𝐴cond ∈ R𝑑out×𝑑in , 𝑏cond ∈ R𝑑out ,
and 𝐶cond ∈ R𝑑out×𝑑out be some vectors and matrices. Assume that 𝐶in and 𝐶cond are
symmetric and positive semidefinite and that 𝐴cond𝐶in𝐴cond

⊤ + 𝐶cond is invertible.
Define correlated random variables 𝑋 and 𝑌 ,

𝑝(𝑋) B N(𝑚in, 𝐶in), 𝑝(𝑌 | 𝑋) B N(𝐴cond𝑋 + 𝑏cond, 𝐶cond). (4.1)

All of the following statements about marginals and conditionals are well-known [e.g.
140, Appendix A.2]. The joint distribution of 𝑋 and 𝑌 is Gaussian,

𝑝(𝑋,𝑌 ) = N(𝑚joint, 𝐶joint), (4.2)

with mean and covariance

𝑚joint B

(
𝑚in

𝐴cond𝑚in + 𝑏cond

)
, (4.3a)

𝐶joint B

(
𝐶in 𝐶in𝐴cond

⊤

𝐴cond𝐶in 𝐴cond𝐶in𝐴cond
⊤ + 𝐶cond

)
. (4.3b)

The marginal distribution of 𝑌 is

𝑝(𝑌 ) =
∫

𝑝(𝑌, 𝑋) d𝑋 = N(𝑚out, 𝐶out), (4.4)

with parameters

𝑚out B 𝐴cond𝑚in + 𝑏cond, (4.5a)
𝐶out B 𝐴cond𝐶in𝐴cond

⊤ + 𝐶cond. (4.5b)

The conditional distribution is

𝑝(𝑋 | 𝑌 ) = N(𝐴rev𝑌 + 𝑏rev, 𝐶rev) (4.6)
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with system matrices

𝐴rev B 𝐶in𝐴cond
⊤ (𝐶out)−1, (4.7a)

𝑏rev B 𝑚in − 𝐴rev (𝐴cond𝑚in + 𝑏cond), (4.7b)
𝐶rev B 𝐶in − 𝐴rev𝐶out𝐴rev

⊤. (4.7c)

The covariance matrix𝐶rev of the conditional distribution is the Schur complement [67,
p. 103] of 𝐶out in the covariance matrix 𝐶joint of the joint distribution. The conditional
distribution 𝑝(𝑌 | 𝑋) implies a parametrisation of the posterior distribution

𝑝(𝑋 | 𝑌 = 𝑦) = N(𝐴rev𝑦 + 𝑏rev, 𝐶rev) (4.8)

for a given realisation 𝑦 ∈ R𝑑out .
Finite-precision arithmetic sometimes causes issues when implementing Equa-

tions (4.4) to (4.7) as given:

⋄ While 𝐶in and 𝐶cond are symmetric and positive semidefinite, 𝐶out and 𝐶rev are
sometimes not, due to round-off errors. Such a lack of symmetry or positive
definiteness is problematic; e.g., when attempting a Cholesky decomposition of
𝐶rev, which fails when 𝐶rev has a negative eigenvalue or lacks symmetry.

⋄ Roughly speaking, the elements in a covariance matrix of a Gaussian random
variable grow as fast as the square of the realisations of the variable. To sample
such a realisation with finite precision 𝜖 , a covariance matrix with entries that
grow as 𝜖2 needs to be stored. The quadratic precision requirement complicates
the manipulation of Gaussian distributions in low-precision arithmetic.

Both issues sometimes lead to catastrophic results when implementing probabilistic
numerical initial value problem solvers because small integration steps and ill-
conditioned covariance matrices frequently occur (more on this in Chapter 7). As a
solution, we implement Equations (4.4) to (4.7) using only (generalised) Cholesky
factors of the covariance matrices, which are defined as follows.

4.3 Cholesky parametrisation

This thesis avoids the ambiguous notion of a “square root” of a matrix, which
sometimes means 𝑃 = 𝐿𝐿 [e.g. 67], and sometimes 𝑃 = 𝐿𝐿⊤ [e.g. 143]. Instead, we
use the terminology of a “generalised Cholesky factor” by Grewal and Andrews [68].

Definition 4.1 ([68]). Let 𝑃 be a symmetric, positive semidefinite matrix. We
call every (not necessarily square) matrix 𝐿 that satisfies 𝑃 = 𝐿𝐿⊤ a generalised
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Cholesky factor of 𝑃 and write (𝑃)1/2 B 𝐿.

Every symmetric, positive semidefinite matrix admits a generalised Cholesky factor;
for example, we can always eigendecompose 𝑃 = 𝑈𝐷𝑈⊤ and choose (𝑃)1/2 B 𝑈

√
𝐷.

Here, 𝐷 and
√
𝐷 are diagonal, and the latter contains the square roots of the elements

of the former. However, a generalised Cholesky factor as defined in Definition 4.1 is
not unique [e.g., 68, Eqs. 1.16f.]. If 𝑃 were strictly positive definite and if we required
that 𝐿 were square and had a positive diagonal, 𝐿 were the Cholesky factor of 𝑃,
which is unique. However, we do not restrict ourselves to positive definite matrices.
In fact, we benefit from a lack of uniqueness in Definition 4.1 because we actively
transform different generalised Cholesky factors into one another to achieve optimal
efficiency while remaining robust against round-off errors.

We call any parametrisation of a Gaussian distribution that stores a generalised
Cholesky factor instead of a full covariance matrix a Cholesky parametrisation.
Mean vectors are stored as usual. We write Cholesky arithmetic when we manipulate
probability distributions in Cholesky parametrisation without ever forming full
covariance matrices.

The QR-decomposition [e.g. 67, Chapter 5.2] factorises any matrix 𝐴 into the
product of an orthogonal matrix 𝑄 and an upper-triangular matrix 𝑅, 𝐴 = 𝑄𝑅. As
part of the algorithm, either 𝑄 or 𝑅 is forced to be square; we always choose 𝑅
(which Golub and Van Loan [67] refer to as the thin QR factorisation). Such a “thin”
QR decomposition of a full-column-rank matrix is unique if we require that 𝑅 has
a positive diagonal. In this case, 𝑅 becomes the Cholesky factor of 𝐴⊤𝐴 (which is
useful for the arguments below) [67, Theorem 5.2.2]. The factorisation of a 𝑘 × 𝑙
matrix costs 𝑂 (𝑘𝑙2) floating-point operations for 𝑘 ≥ 𝑙 and 𝑂 (𝑘2𝑙) operations for
𝑘 ≤ 𝑙. Precise complexities depend on whether the underlying orthogonalisation relies
on Householder transformations, Givens rotations, or something else. Details are in
the book by Golub and Van Loan [67, Chapter 5.2].

Let (𝐶in)1/2 and (𝐶cond)1/2 be generalised Cholesky factors of 𝐶in and 𝐶cond
respectively. Generalised Cholesky factors (𝐶cond)1/2 and (𝐶rev)1/2 of the covariance
matrices of the conditional distribution 𝑝(𝑋 | 𝑌 ) and of the marginal distribution
𝑝(𝑌 ) can be computed in Cholesky arithmetic:

Algorithm 4.2. Given 𝑝(𝑋) and 𝑝(𝑌 | 𝑋) as above and in Cholesky parametri-
sation, the Cholesky parametrisation of 𝑝(𝑌 ) = N(𝑚out, 𝐶out) as well as
𝑝(𝑋 | 𝑌 ) = N(𝐴rev𝑌 + 𝑏rev, 𝐶rev) (Equations (4.4) to (4.7)) arise as follows:
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1. QR-decompose the (𝑑out + 𝑑in) × (𝑑out + 𝑑in) matrix( [
(𝐶cond)1/2]⊤ 0[

(𝐶in)1/2]⊤ (𝐴cond)⊤
[
(𝐶in)1/2]⊤)

= 𝑄

(
𝑅1 𝑅2
0 𝑅3

)
, (4.9)

and discard 𝑄.

2. Extract

(𝐶rev)1/2 B 𝑅⊤
3 ∈ R𝑑in×𝑑in , (4.10a)

(𝐶out)1/2 B 𝑅⊤
1 ∈ R𝑑out×𝑑out , (4.10b)

𝐴rev B (𝑅−1
1 𝑅2)⊤ ∈ R𝑑in×𝑑out . (4.10c)

3. Compute 𝑏rev and 𝑚out as in Equations (4.5) and (4.7).

Return 𝐴rev, 𝑏rev, (𝐶rev)1/2, 𝑚out, and (𝐶out)1/2.

Chapter 7 applies Algorithm 4.2 to the extrapolation steps in probabilistic numerical
initial value problem solvers. The output of Algorithm 4.2 is a Cholesky parametrisation
of the conditionals:

Proposition 4.3. Under the above assumptions on 𝑝(𝑋) and 𝑝(𝑌 | 𝑋), Algo-
rithm 4.2 computes the Cholesky parametrisation of 𝑝(𝑌 ) and 𝑝(𝑋 | 𝑌 ) correctly,
in Cholesky arithmetic, and in complexity 𝑂 (𝑑in

3 + 4𝑑in𝑑out
2 + 3𝑑in

2𝑑out + 𝑑out
3).

Proof. Multiply both sides of Equation (4.9) with their transposes from the left,(
𝐶out 𝐴cond𝐶in

𝐶in𝐴cond
⊤ 𝐶in

)
=

(
𝑅⊤

1 𝑅1 𝑅⊤
1 𝑅2

𝑅⊤
2 𝑅1 𝑅⊤

2 𝑅2 + 𝑅⊤
3 𝑅3

)
. (4.11)

Match the blocks of the matrices and deduce (𝐶out)1/2 = 𝑅⊤
1 ∈ R𝑑out×𝑑out , as well as

𝑅⊤
3 𝑅3 = 𝐶in − 𝑅⊤

2 𝑅2 (4.12a)

= 𝐶in − (𝑅⊤
2 𝑅

−⊤
1 ) (𝑅⊤

1 𝑅1) (𝑅−1
1 𝑅2) (4.12b)

= 𝐶in − 𝐴rev𝐶out𝐴rev
⊤, (4.12c)

which yields (𝐶rev)1/2 = 𝑅⊤
3 ∈ R𝑑in×𝑑in and 𝐴rev = 𝑅⊤

2 𝑅
−⊤
1 ∈ R𝑑in×𝑑out .

The complexity of Algorithm 4.2 depends on two parts: (i) the complexity of a QR
decomposition of a (𝑑in + 𝑑out) × (𝑑in + 𝑑out) matrix, which is

𝑂 ((𝑑in + 𝑑out)3) = 𝑂 (𝑑in
3 + 3𝑑in𝑑out

2 + 3𝑑in
2𝑑out + 𝑑out

3); (4.13)
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and (ii) the complexity of computing 𝑅−1
1 𝑅2, which involves 𝑑in backwards substi-

tutions using a 𝑑out-dimensional, upper-triangular matrix, resulting in 𝑂 (𝑑in𝑑out
2).

Adding both complexities yields the claimed computational cost. □

The precise complexity of Algorithm 4.2 is inherited from that of the QR decomposition,
which depends on whether the decomposition uses Householder transformations or
Given rotations, for example.

Both Algorithm 4.2 and an implementation via Equations (4.4) to (4.7) have total
complexity 𝑂 (𝑑in

3 + 𝑑out
3). However, QR decompositions are more expensive than

matrix multiplications, which makes Algorithm 4.2 (and its descendants presented
next) more expensive than manipulating the conventional parametrisation. Still, the
gain in numerical stability (more than) compensates for this in settings where numerical
stability is crucial, as will be demonstrated in the upcoming chapters.

Remark 4.4. Algorithm 4.2 and Proposition 4.3 remain valid when we replace
𝐴cond (𝐶in)1/2 with any generalised Cholesky factor of 𝐴cond𝐶in𝐴cond

⊤, as long
as the cross-covariance identity

(𝐴cond𝐶in𝐴cond
⊤)1/2

[
(𝐶in)1/2

]⊤
= 𝐸 [(𝑌 − 𝐸 [𝑌 ]) (𝑋 − 𝐸 [𝑋])] (4.14)

is preserved (𝐸 is the expected value). 𝐴cond (𝐶in)1/2 and (𝐶in)1/2 may be the
most obvious choice. However, others are possible, too, and sometimes even
required (Chapter 5).

This remark also applies to Algorithm 4.5 and Algorithm 4.7 below.

4.4 Deterministic transformations

For deterministic transformations (𝐶cond = 0), the arguments from the previous section
apply with𝐶cond = 0. Nevertheless, this setting allows a more efficient implementation:

Assume 𝑑in ≥ 𝑑out and suppose that 𝐴cond𝐶in𝐴cond
⊤ is invertible because, without

those two assumptions, the transition matrix 𝐴rev is not well-defined.

Algorithm 4.5. For 𝑝(𝑋) = 𝑁 (𝑚in, 𝐶in) as above and in Cholesky parametrisa-
tion, and for 𝑌 B 𝐴cond𝑋 + 𝑏cond, compute the Cholesky parametrisation of the
marginal 𝑝(𝑌 ) and the conditional 𝑝(𝑋 | 𝑌 ) as follows:

1. Decompose (𝐴cond (𝐶in)1/2)⊤ = 𝑄𝑅, set (𝐶out)1/2 B 𝑅⊤, and discard 𝑄.

2. Compute 𝐴rev B 𝐶in𝐴cond
⊤𝑅−1𝑅−⊤.

3. Compute (𝐶rev)1/2 B (𝐶in)1/2 − 𝐴rev𝐴cond (𝐶in)1/2
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4. Compute 𝑏rev and 𝑚out as in Equations (4.5) and (4.7)

Return 𝐴rev, 𝑏rev, (𝐶rev)1/2, 𝑚out, and (𝐶out)1/2.

Chapter 7 shows how Algorithm 4.5 applies to the correction steps in probabilistic
numerical initial value problem solvers.

Proposition 4.6. Under the above assumptions on 𝑝(𝑋) and 𝑝(𝑌 | 𝑋), Algo-
rithm 4.5 computes the Cholesky parametrisation of 𝑝(𝑌 ) and 𝑝(𝑋 | 𝑌 ) correctly,
in Cholesky arithmetic, and in complexity 𝑂 (4𝑑in𝑑out

2 + 𝑑out𝑑in
2).

Proof. 𝑅 is a triangular, generalised Cholesky factor of the product 𝐴cond𝐶in𝐴cond
⊤,

and its QR decomposition is available in 𝑂 (𝑑in𝑑out
2) (recall 𝑑in ≥ 𝑑out).

The matrix 𝐴rev is the same as in Equation (4.7) and requires 𝑑in forward and
𝑑in backward substitutions with the triangular, 𝑑out-dimensional 𝑅 (respectively its
transpose) at the total cost of 𝑂 (2𝑑in𝑑out

2).
The covariance matrix of the conditional follows from

𝐶rev = 𝐶in − 𝐴rev𝐶out𝐴rev
⊤ (4.15a)

= (𝐼 − 𝐴rev𝐴cond)𝐶in (𝐼 − 𝐴rev𝐴cond)⊤, (4.15b)

known as the Joseph update [15], and requires two matrix multiplications: (𝐶in)1/2 ↦→
𝐴cond (𝐶in)1/2 and 𝐴cond (𝐶in)1/2 ↦→ 𝐴rev𝐴cond (𝐶in)1/2. The total cost of those two
multiplications is 𝑂 (𝑑in𝑑out

2 + 𝑑out𝑑in
2). □

For deterministic transformations, Algorithm 4.5 is more efficient than Algorithm 4.2
by (loosely speaking) a factor 𝑂 (𝑑in

3 + 𝑑out
3). However, it has the potential downside

that it yields a non-triangular generalised Cholesky factor (𝐶rev)1/2. If required,
(𝐶rev)1/2 can be triangularised with another QR decomposition in complexity𝑂 (𝑑in

3).
For probabilistic numerical initial value problem solvers, non-triangular generalised
Cholesky factors are acceptable.

4.5 Marginalisation

Compute the marginal 𝑝(𝑌 ) without the conditional distribution using Algorithm 4.7.

Algorithm 4.7. For 𝑝(𝑋) = N(𝑚in, 𝐶in), the marginal 𝑝(𝑌 ) = N(𝑚out, 𝐶out)
arises from one of the following two procedures:

If the transformation is Gaussian (Algorithm 4.2), that is,

𝑝(𝑌 | 𝑋) = 𝑁 (𝐴cond𝑋 + 𝑏cond, 𝐶cond), (4.16)
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QR-decompose (
𝐴cond (𝐶in)1/2 (𝐶cond)1/2)⊤ = 𝑄𝑅, (4.17)

discard 𝑄, and set (𝐶out)1/2 B 𝑅⊤.
If the transformation is deterministic (Algorithm 4.5), that is,

𝑌 B 𝐴cond𝑋 + 𝑏cond, (4.18)

QR-decompose

(𝐴cond (𝐶in)1/2)⊤ = 𝑄𝑅, (4.19)

discard 𝑄, and set (𝐶out)1/2 B 𝑅⊤.

The correctness of Algorithm 4.7 stems from

𝐶out =
(
𝐴cond (𝐶in)1/2 (𝐶cond)1/2) ( [

(𝐶in)1/2]⊤ 𝐴cond
⊤[

(𝐶cond)1/2]⊤ )
(4.20a)

= 𝑅⊤𝑄⊤𝑄𝑅 (4.20b)
= 𝑅⊤𝑅 (4.20c)

with the natural modifications for𝐶cond = 0. The QR decomposition costs𝑂 (2𝑑in𝑑out
2)

for Gaussian transformations and𝑂 (𝑑in𝑑out
2) for deterministic transformations. Chap-

ter 7 applies Algorithm 4.7 to the computation of marginals of the posterior distribution.

4.6 Whitening and log-probabilitities

The availability of (triangular) generalised Cholesky factors of matrices improves
the numerical stability of whitening and the evaluation of log-probability-density
functions. In the remainder of this section, assume that all generalised Cholesky factors
are triangular. If not, QR-decompose (𝐶)1/2 = 𝑄𝑅 and replace the non-triangular
factor with a triangular factor (𝐶)1/2 = 𝑅⊤. Assume that (𝐶)1/2 or 𝑅, respectively,
has a positive diagonal (which is no loss of generality; recall the properties of QR
decompositions from Section 4.3).

Define the Euclidean norm of a vector as ∥𝑥∥ = 𝑥⊤𝑥. Let ∥𝑥∥𝐴 = ∥((𝐴)1/2)⊤𝑥∥ be
the Mahalanobis norm of 𝑥 induced by a symmetric, positive semidefinite matrix [40].

For a random variable 𝑋 ∼ 𝑝(𝑋) = 𝑁 (𝑚in, 𝐶in), the log-probability of 𝑋 = 𝑥 is

−2 log 𝑝(𝑋 = 𝑥) = ∥𝑚in − 𝑥∥2
(𝐶in )−1 + log det(𝐶in) + log 2𝜋. (4.21)

Evaluating this expression involves whitening the residual (𝑚in − 𝑥), which is defined
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as computing [e.g., 94] ( [
(𝐶in)1/2

]⊤)−1
(𝑚in − 𝑥). (4.22)

Implementing the Mahalanobis norm ∥𝑚in − 𝑥∥ (𝐶in )−1 as the Euclidean norm of the
whitened residual (Equation (4.22)) ensures that the Mahalanobis norm is always
nonnegative even in low-precision arithmetic. If (𝐶in)1/2 is triangular, computing the
norm of the residual in Equation (4.22) is more efficient and more robust against
round-off errors than evaluating (𝑚in−𝑥)⊤𝐶in

−1 (𝑚in−𝑥). The reason is that whitening
reduces to a single backward substitution with the triangular

[
(𝐶in)1/2]⊤ and that the

Euclidean norm of any vector is straightforward to compute.
Computing the determinant of 𝐶in conventionally (for example, via an LU decom-

position [67, Theorem 3.2.1]) sometimes leads to a negative determinant if the true
determinant is almost zero and if the implementation suffers from round-off errors.
Negative determinants do not admit a logarithm, in which case the computation would
fail unexpectedly. Square-root arithmetic avoids this problem:

The determinant of 𝐶in is the square of the determinant of its generalised Cholesky
factor (𝐶in)1/2, provided the factor is a square matrix [67, Section 2.1.6]. If (𝐶in)1/2 is
triangular, its determinant is the product of its diagonal elements [67, Theorem 3.2.1].
As a result, the logarithm of the determinant of 𝐶in is always well-defined: if (𝐶in)1/2

is triangular with a positive diagonal,

log det𝐶in = 2 log det
[
(𝐶in)1/2

]
(4.23)

holds. Since the generalised Cholesky factor is triangular with a positive diagonal, the
quantity log det[(𝐶in)1/2] equals the sum of the logarithm of the diagonal elements of
(𝐶in)1/2. Therefore, the log-determinant of a covariance matrix is always well-defined
(even in finite-precision arithmetic and for determinants close to zero).

The same arguments apply to the log probabilities of 𝑌 , 𝑌 | 𝑋 , and every other
Gaussian random variable in Cholesky parametrisation.

4.7 Related literature

The content of this chapter is mostly known – its application to probabilistic numerical
initial value problem solvers (for example in Chapter 7) is a contribution of this thesis.
The formulas for the marginal and conditional distributions of Gaussian variables
in conventional implementation (Section 4.2) are widespread knowledge [e.g., 143,
Sections A.1f]. The Cholesky implementation of marginalisation and conditioning
via a single QR decomposition as in Section 4.3 has been described by Gibson and
Ninness [65, Eq. 48]. To the best of the author’s knowledge, the simplifications for



Chapter 4. Cholesky parametrisation 36

deterministic transformations in Section 4.4 as well as the content of Remark 4.4
are not available in previous work (except for the papers described in this thesis).
Remark 4.4 leads to a novel implementation of statistical linear regression in Cholesky
arithmetic, as will be shown in Chapter 5.

The marginalisation via a single QR decomposition in Section 4.5 is well-
documented in the literature on square-root filtering [e.g. 68, Section 7.4.7.2]. It
employs the same technique as low-rank updates and low-rank downdates of matrices
[e.g., 153]. Conditioning a Gaussian variable allows implementation with low-rank
downdates (for example, like in the literature on square-root sigma-point filters [e.g.
168, 185]). However, while low-rank updates are numerically stable, low-rank down-
dates can sometimes be numerically unstable [153]. The algorithms in this section
condition Gaussian variables without downdates, thus bypassing such instability
concerns.

4.8 Conclusion

In summary, while manipulating Gaussian random variables is sometimes sensitive to
round-off errors, it gains numerical stability from using Cholesky arithmetic. Precise
algorithms for the Cholesky implementation of marginalisation and conditioning
have been provided under the assumption of a linear transformation of a Gaussian
random variable. Chapter 5 describes the manipulation of nonlinearly related variables.
Chapter 7 (and beyond) apply Cholesky arithmetic to the probabilistic numerical
solution of differential equations.
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5.1 Introduction

Following Chapter 4’s discussion of Cholesky parametrisation of Gaussian distri-
butions, this chapter continues providing technical background information. More
specifically, Chapter 4 assumed an affine relation between Gaussian variables, which
is not always the case – and if two (or more) Gaussian variables are nonlinearly related
(like in most initial-value-problem-solver contexts), marginalisation and conditioning
are no longer possible in closed form.

The present chapter discusses linearisation. Linearisation enables the approximate
manipulation of nonlinearly related Gaussian variables. The essential idea behind
such an approximate manipulation is to linearise all nonlinearities, for instance,
with a first-order Taylor approximation, and to apply the techniques from Chapter 4
afterwards. The present chapter discusses details by featuring the most common
modes of linearisation and explaining how to combine them with Cholesky arithmetic.
Most, but not all of the statements below are known. Among other things, this chapter
introduces a new perspective on existing probabilistic numerical initial and boundary
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value problem solvers through the lens of (iterated) zeroth-order statistical linearisation
and describes a novel Cholesky implementation of statistical linear regression.

The remainder of this chapter evolves as follows. Section 5.2 formally defines
the problem setting of manipulating nonlinearly related Gaussian variables. Sec-
tions 5.3 and 5.4 describe the two main approaches: Taylor and statistical linearisation,
respectively. The implementation of the latter, commonly referred to as statistical
linear regression (Section 5.6), requires a prior discussion of cubature (Section 5.5).
Section 5.7 explains iteration and Section 5.8 discusses how to apply linearisation
techniques to time-series problems: both use-cases include probabilistic numerical
solvers for initial and boundary value problems.

Most of the present chapter does not assume knowledge of any of the prior chapters
and could be read independently from the rest of this thesis. However, Sections 5.5
and 5.6 will be easier to understand in the context of Chapter 4.

5.2 Problem setting

Let 𝑚in ∈ R𝑑in be a given vector and 𝐶in ∈ R𝑑in×𝑑in be a given, square, symmetric,
positive semidefinite matrix (like in Chapter 4). Let

ℎ : R𝑑in → R𝑑out (5.1)

be a known, differentiable function with Jacobian 𝐷ℎ. Assume an input distribution
𝑝(𝑋) = N(𝑚in, 𝐶in) and a conditional distribution 𝑝(𝑌 | 𝑋) = 𝛿(ℎ(𝑋)), where 𝛿 is
the Dirac delta. If ℎ were affine, 𝑝(𝑌 ) and 𝑝(𝑋,𝑌 ) were Gaussian, and we could apply
the algorithms from Chapter 4. In the present chapter, ℎ is an arbitrary function, and
the methods from Chapter 4 are not available immediately.

While 𝑝(𝑌 ) and 𝑝(𝑋,𝑌 ) are not guaranteed to be Gaussian, estimation algorithms
simplify if we approximate them as Gaussian. For instance, a Gaussian approximation
of 𝑝(𝑌, 𝑋) could result from assuming an affine transformation

𝑝(𝑌 | 𝑋) ≈ N (𝐴cond𝑋 + 𝑏cond, 𝐶cond) (5.2)

for some 𝐴cond, 𝑏cond, 𝐶cond. The remainder of the chapter takes this approach.
The following exposition only considers deterministic, fully nonlinear transfor-

mations, that is, 𝑌 = ℎ(𝑋). But of course, the same techniques may be applied to
semilinear transformations 𝑝(𝑌 | 𝑋) = 𝛿[𝑀𝑋 + ℎ(𝑋)] or stochastic conditionals
𝑝(𝑌 | 𝑋) = N(ℎ(𝑋), 𝑀), where 𝑀 is some matrix. To transfer the techniques, one
would consider the transformations as the composition of a deterministic, nonlinear
conditional and an affine/stochastic one and linearise only the nonlinearity.

The affine transformation implies that we can manipulate the distributions of 𝑋
and 𝑌 with the algorithms from Chapter 4. There are two options for choosing the
affine transformation: Taylor linearisation and statistical linear regression (respectively
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statistical linearisation). Both are discussed in this chapter.

5.3 Taylor linearisation

Let 𝑧 be a random variable with distribution 𝑝(𝑧) = N(𝜉,Ξ) that depends on known
parameters. For now, only 𝜉 matters, but we need the full distribution 𝑝(𝑧) later.

The first-order Taylor approximation of ℎ around 𝜉 is

ℎ(𝑥) ≈ ℎ(𝜉) + 𝐷ℎ(𝜉) (𝑥 − 𝜉). (5.3)

Such a first-order Taylor approximation implies the random-variable transformation

𝑝(𝑌 | 𝑋) = 𝛿[ℎ(𝑋)] ≈ 𝛿[ℎ(𝜉) + 𝐷ℎ(𝜉) (𝑋 − 𝜉)] (5.4)

which is affine in 𝑋 . More specifically, a first-order Taylor approximation induces a
parametrisation of Equation (5.2) as

𝐴cond = 𝐷ℎ(𝜉), 𝑏cond = ℎ(𝜉) − 𝐴cond𝜉, 𝐶cond = 0. (5.5)

We summarise first-order Taylor linearisation in the following algorithm.

Algorithm 5.1 (Taylor linearisation, first-order). Assume that a 𝜉 ∈ R𝑑in and
a nonlinear, differentiable function ℎ : R𝑑in → R𝑑out are given. Approximate
𝑝(𝑌 | 𝑋) as follows:

1. Evaluate ℎ(𝜉) and 𝐷ℎ(𝜉).

2. Assemble 𝐴cond and 𝑏cond according to Equation (5.5) (𝐶cond is zero)

Return 𝐴cond and 𝑏cond.

To evaluate the function ℎ and its Jacobian, we usually rely on automatic differentiation
[69] or a suitable finite difference formula [161]. A common choice of a linearisation
point is the mean of the input variable 𝜉 = 𝑚in. Section 5.7 extends the discussion of
linearisation points.

Instead of a first-order Taylor approximation, zeroth-order approximations are
possible, too. Consider the zeroth-order approximation of ℎ around 𝜉,

ℎ(𝑥) ≈ ℎ(𝜉). (5.6)

The approximating function is constant (𝜉 is fixed and known). It implements
Equation (5.2) with parameters

𝐴cond = 0, 𝑏cond = ℎ(𝜉), 𝐶cond = 0. (5.7)
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Algorithm 5.2 emerges:

Algorithm 5.2 (Taylor linearisation, zeroth-order). Assume that 𝜉 and a nonlinear
function ℎ are known. Approximate 𝑝(𝑌 | 𝑋) as follows:

1. Evaluate ℎ(𝜉)

2. Assemble 𝐴cond and 𝑏cond according to Equation (5.7) (𝐶cond is zero).

Return 𝐴cond and 𝑏cond.

Again, a common choice of a linearisation point is 𝜉 = 𝑚in. Zeroth-order linearisation
is helpful for semilinear problems (which include simulating differential equations).

5.4 Statistical linearisation

Let 𝐸𝑋 [𝑋] be the expected value of random variable 𝑋 under the law of 𝑋 . Define the
covariance 𝐶𝑋 [𝑋, 𝑋] B 𝐸𝑋 [(𝑋 − 𝐸𝑋 [𝑋]) (𝑋 − 𝐸𝑋 [𝑋])⊤]. Recall the linearisation
point 𝑝(𝑧) = N(𝜉,Ξ).

Statistical linearisation derives 𝐴cond, 𝑏cond, and 𝐶cond using the full distribution
over the linearisation-point 𝑝(𝑧) = N(𝜉,Ξ) instead of linearising around a single
vector. One advantage of this approach is that the spread of the distribution over 𝑧 is
taken into account: the linearisation adapts to “uncertainty” over 𝑧.

Statistical linearisation goes as follows: Choose 𝐴cond and 𝑏cond with the lowest
mean-square error and 𝐶cond as the reconstruction error covariance

(𝐴cond, 𝑏cond) = arg min
𝐴,𝑏

𝐸𝑧 [(𝐴𝑧 + 𝑏 − ℎ(𝑧))⊤ (𝐴𝑋 + 𝑏 − ℎ(𝑋))], (5.8a)

𝐶cond = 𝐸𝑧 [(𝐴𝑧 + 𝑏 − ℎ(𝑧)) (𝐴𝑋 + 𝑏 − ℎ(𝑧))⊤] . (5.8b)

All expected values are with respect to the law of 𝑧. This objective function implies
that the affine approximation of the nonlinear transformation ℎ is the best possible
affine reconstruction under the given assumptions on 𝑧.

The solution to the minimisation problem in Equation (5.8) can be computed in
closed form: First-order optimality conditions imply [e.g., 8]

𝐴cond = 𝐶𝑧 [ℎ(𝑧), 𝑧]𝐶 [𝑧, 𝑧]−1, (5.9a)
𝑏, = 𝐸𝑧 [ℎ(𝑧)] − 𝐴cond𝐸𝑧 [𝑧], (5.9b)

𝐶cond = 𝐶𝑧 [ℎ(𝑧), ℎ(𝑧)] − 𝐴cond𝐶𝑧 [𝑧, 𝑧]𝐴cond
⊤. (5.9c)

Again, all expected values and covariance operators are with respect to the law of
𝑧. In some sense, this linearisation can be regarded as a generalisation of Taylor
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linearisation: The identity [e.g. 143, p. 77]

𝐶𝑧 [ℎ(𝑧), 𝑧] = 𝐸𝑧 [𝐷ℎ(𝑧)]𝐶𝑧 [𝑧, 𝑧] (5.10)

implies that the formula in Equation (5.9) equals

𝐴cond = 𝐸𝑧 [𝐷ℎ(𝑧)], (5.11a)
𝑏 = 𝐸𝑧 [ℎ(𝑧)] − 𝐴cond𝐸𝑧 [𝑧] (5.11b)

𝐶cond = 𝐶𝑧 [ℎ(𝑧), ℎ(𝑧)] − 𝐴cond𝐶𝑧 [𝑧, 𝑧]𝐴cond
⊤. (5.11c)

The expected values of ℎ and 𝐷ℎ under 𝑝(𝑧) (Equation (5.11)) replace their point-
evaluations at 𝜉 (Equation (5.5)). Equation (5.11) also shows how the larger the
covariance of 𝑧 is, the more statistical differs from Taylor linearisation. In the limit of
∥Ξ∥ → 0, statistical and Taylor linearisation yield the same linearisation matrices.
The choice between implementing Equation (5.9) or Equation (5.11) depends on the
complexity of evaluating the Jacobian. More on this below.

The expressions above describe first-order statistical linearisation. Section 5.3
distinguished between zeroth-order and first-order Taylor approximations. We can
also derive zeroth-order statistical linearisation in the same fashion as the first-order
version: Instead of an affine approximation of 𝑝(𝑌 | 𝑋), assume a density

𝑝(𝑌 | 𝑋) = 𝛿[ℎ(𝑋)] ≈ N (𝑏cond, 𝐶cond). (5.12)

While first-order statistical linearisation was an affine, stochastic transformation of the
input variable, zeroth-order statistical linearisation (Equation (5.12)) is constant; that
is, it does not depend on 𝑋 .

The minimum mean-square error

𝑏cond = arg min
𝑏

𝐸𝑧 [(𝑏 − ℎ(𝑧))⊤ (𝑏 − ℎ(𝑧))] (5.13)

is attained when choosing

𝑏cond = 𝐸𝑧 [ℎ(𝑧)] . (5.14)

The error covariance induced by the selection in Equation (5.14) is

𝐶cond = 𝐸𝑧 [(𝑏cond − ℎ(𝑧)) (𝑏cond − ℎ(𝑧))⊤] = 𝐶𝑧 [ℎ(𝑧), ℎ(𝑧)] . (5.15)

Roughly speaking, the more ℎ varies or, the larger the covariance Ξ of the linearisation
point is, the bigger 𝐶cond in Equation (5.15) becomes. As for the first-order version,
zeroth-order statistical linearisation mirrors zeroth-order Taylor linearisation: The
expected values replace the point evaluations of ℎ, and the error covariance is strictly
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positive instead of constantly zero.
While (to the best of the author’s knowledge), the present text is the first to formally

discuss zeroth-order statistical linearisation, a special case of the expressions in
Equations (5.14) and (5.15) has previously appeared (under a different name):

Remark 5.3. Kersting and Hennig [91] implement zeroth-order statistical lineari-
sation by computing the integrals in Equations (5.14) and (5.15) with Bayesian
cubature. To see this, compare Equations (29) and (30) in the paper by Kersting
and Hennig [91] to Equations (5.14) and (5.15). See also Proposition 3 in the
work by Tronarp et al. [163].

Zeroth-order approximations are less accurate than first-order approximations,
since they are a form of first-order approximations; the optimality of the first-
order approximation dictates that it must be at least as accurate as the zeroth-order
model. Perhaps unsurprisingly, the respective error covariance matrices express this
relationship: The error covariance of the zeroth-order linearisation dominates that of
the first-order approximation.

If ℎ is affine, the first-order linearisations yield the correct parameters because
expected values can be solved in closed form, and the necessary terms cancel out. The
zeroth-order linearisations do not; they compute the correct parameters only if ℎ is
constant (that is, affine with a zero Jacobian).

The integrals in Equations (5.8) to (5.11), Equation (5.14), and Equation (5.15)
depend on the distribution of the linearisation point 𝑧 and can usually not be evaluated
in closed form.

5.5 Cubature

Recall 𝑝(𝑧) = N(𝜉,Ξ). Since closed-form expressions rarely exist (unless ℎ is affine),
we approximate the integrals occurring in statistical linearisation with cubature.

Let {𝑥𝑘 , 𝑤𝑘}𝐾𝑘=0 be the nodes and weights of a cubature rule.

Assumption 5.4. We assume all weights are nonnegative, 𝑤𝑘 ≥ 0, 𝑘 = 0, ..., 𝐾 .
We also assume that the cubature nodes centre around zero,

∑𝐾
𝑘=0 𝑤𝑘𝑥𝑘 = 0, and

that the weights sum to 1,
∑𝐾
𝑘=0 𝑤𝑘 = 1.

Nonnegative cubature weights are a common requirement for numerically stable
cubature rules [89]. We require nonnegative weights because we compute the square
root of each weight below. Many, but not all, cubature rules satisfy Assumption 5.4.
Admissible examples include Gauss–Hermite cubature [e.g. 143, Section 6.3], the
third-order spherical cubature rule [7], or the unscented transform [87]. Bayesian
cubature weights sometimes satisfy Assumption 5.4 [details are in 89].
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Approximate the integrals in Equations (5.9) to (5.15) numerically as follows.
Abbreviate

ℎ𝑘 B ℎ((Ξ)1/2𝑥𝑘 + 𝜉) (5.16)

and define the stacks X ∈ R𝑑in×(𝐾+1) , w ∈ R𝐾+1, and H ∈ R𝑑out×(𝐾+1) via

X B
(√
𝑤0 ((Ξ)1/2𝑥0 + 𝜉) · · · √

𝑤𝐾 ((Ξ)1/2𝑥𝐾 + 𝜉)
)
, (5.17a)

w B
(√
𝑤0 · · · √

𝑤𝐾
)
, (5.17b)

H B
(√
𝑤0ℎ0 · · · √

𝑤𝐾 ℎ𝐾
)
. (5.17c)

Equation (5.17) is only well-defined because we assumed that the cubature weights
are positive (Assumption 5.4). In violation of Assumption 5.4, approximate statis-
tical linearisation (via cubature) still works [e.g. 143, Chapter 6], but a Cholesky
implementation is more complicated (Remark 5.9).

With Equation (5.17), cubature reduces to matrix-vector and matrix-matrix arith-
metic with X, w, and H,

𝐸𝑧 [𝑧] = wX⊤ (= 𝜉) , (5.18a)

𝐸𝑧 [ℎ(𝑧)] ≈ wH⊤ =

𝐾∑︁
𝑘=0

𝑤𝑘ℎ𝑘 . (5.18b)

The identity wX⊤ = 𝜉 holds because the cubature nodes centre around zero and because
the cubature weights sum to 1 (Assumption 5.4). The approximation error in the other
term depends on the cubature rule and ℎ. For example, 𝑝th order Gauss–Hermite rules
are exact for polynomials up to order 2𝑝 − 1 [e.g. 143, Section 6.3].

Subtracting the expected values of 𝑧 and ℎ(𝑧) removes the bias from X and H,

Xcentre B (Ξ)1/2 (√
𝑤0𝑥0 · · · √

𝑤𝐾𝑥𝐾
)
∈ R𝑑in×(𝐾+1) , (5.19a)

Hcentre B
(
(√𝑤0ℎ0 − wH⊤) · · · (√𝑤𝐾 ℎ𝐾 − wH⊤)

)
∈ R𝑑out×(𝐾+1) . (5.19b)

As a consequence, the (cross-)covariance terms emerge approximately as

𝐶𝑧 [𝑧, 𝑧] = XcentreX⊤
centre (= Ξ) , (5.20a)

𝐶𝑧 [ℎ(𝑧), ℎ(𝑧)] ≈ HcentreH⊤
centre, (5.20b)

𝐶𝑧 [ℎ(𝑧), 𝑧] ≈ HcentreX⊤
centre. (5.20c)

Again, the approximation error depends on the cubature rule. The correspondence
between Xcentre and Ξ, that is, XcentreX⊤

centre = Ξ, holds because the cubature rule
nodes centre around zero (Assumption 5.4). Equation (5.20) shows how Hcentre is a
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generalised Cholesky factor of 𝐶𝑧 [ℎ(𝑧), ℎ(𝑧)] by construction.
The formulas above enable approximating statistical linearisation in conventional

parametrisation, that is, without relying exclusively on Cholesky factors: plug Equa-
tions (5.18) and (5.20) into Equation (5.9), Equation (5.11), or Equations (5.14)
to (5.15). This technique of computing the linearisation parameters with cubature
is called statistical linear regression. But conventional parametrisation of Gaussian
variables is not enough: Section 5.6 describes a cubature-based implementation of
statistical linearisation in Cholesky arithmetic.

Remark 5.5. We could have derived statistical linear regression differently: Let
∥𝑥∥2 B 𝑥⊤𝑥 be the Euclidean norm of some 𝑥. The parameters 𝐴cond and 𝑏cond
that minimise the error of reconstructing the function evaluations ℎ𝑘 ,

𝐴cond, 𝑏cond = arg min
𝐴,𝑏

𝐾∑︁
𝑘=0

𝑤𝑘




ℎ𝑘 − 𝐴 [
(Ξ)1/2𝑥𝑘 + 𝜉

]
− 𝑏




2

2
(5.21)

are attained by the cubature approximations of Equation (5.9) [167]. The same is
true for zeroth-order approximations.

Technically, statistical linear regression is an alternative to statistical linearisation or
Taylor linearisation. Practically, however, we may think of statistical linear regression
as a discrete (that is, cubature-based) approximation of statistical linearisation.

5.6 Statistical linear regression

The following two algorithms describe the Cholesky implementation of first-order and
zeroth-order statistical linear regression. (Their correctness is proven afterwards.)

Algorithm 5.6 (First-order statistical linear regression). Assume that 𝑝(𝑧) =
N(𝜉,Ξ) and ℎ are given as above. Let 𝑝(𝑧) be in Cholesky parametrisation.
Assume a cubature rule satisfying Assumption 5.4. Linearise ℎ around 𝑝(𝑧) as
follows:

1. Evaluate {ℎ𝑘}𝐾𝑘=0 according to Equation (5.16).

2. Assemble w, X, and H according to Equation (5.17).

3. Approximate 𝐸𝑧 [ℎ(𝑧)] ≈ wH⊤ according to Equation (5.18).

4. Assemble Xcentre and Hcentre according to Equation (5.19).
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5. QR-decompose the (𝐾 + 1) × (𝑑out + 𝑑in)-matrix(
X⊤

centre H⊤
centre

)
= 𝑄

(
𝑅1 𝑅2
0 𝑅3

)
, (5.22)

and discard 𝑄.

6. Assign

(𝐶cond)1/2 B 𝑅⊤
3 ∈ R𝑑in×𝑑in , (5.23a)

𝐴cond B (𝑅−1
1 𝑅2)⊤ ∈ R𝑑in×𝑑out . (5.23b)

7. Evaluate 𝑏cond B wH⊤ − 𝐴cond𝜉.

Return (𝐴cond, 𝑏cond, (𝐶cond)1/2).

A common choice of a linearisation point is the input variable 𝑝(𝑧) = 𝑝(𝑋). Recall from
Chapter 4 that the choice between a square 𝑄 and a square 𝑅 in a QR decomposition
is up to the user. We always choose a square 𝑅 (which Golub and Van Loan [67] call
“thin QR-factorisation”).

To see that Algorithm 5.6 returns the Cholesky parametrisation of Equation (5.9),
multiply both sides of Equation (5.22) with their transposes to obtain(

XcentreX⊤
centre XcentreH⊤

centre
HcentreX⊤

centre HcentreH⊤
centre

)
=

(
𝑅⊤

1 𝑅1 𝑅2𝑅
⊤
1

𝑅⊤
2 𝑅1 𝑅⊤

2 𝑅2 + 𝑅⊤
3 𝑅3

)
. (5.24)

Comparing Equation (5.24) to Equation (5.20), conclude 𝑅⊤
1 = (Ξ)1/2. Rearranging

𝑅⊤
3 𝑅3 = HcentreH⊤

centre − 𝑅⊤
2 𝑅2 (5.25a)

= HcentreH⊤
centre − 𝑅⊤

2 𝑅
−⊤
1 (𝑅⊤

1 𝑅1)𝑅−1
1 𝑅2 (5.25b)

= HcentreH⊤
centre − 𝐴condΞ𝐴cond

⊤, (5.25c)

shows (𝐶cond)1/2 = 𝑅⊤
3 and 𝐴cond = 𝑅⊤

2 𝑅
−⊤
1 according to Equations (5.9) and (5.20).

This derivation mirrors the proofs in Section 4.3, with the difference being that the
stacks of cubature-node-evaluations (e.g. Hcentre, which is a generalised Cholesky
factor but not a Cholesky factor because it is neither square nor triangular) replace the
Cholesky factors of the covariance matrices.

If the Jacobian of ℎ is available, Algorithm 5.7 below becomes an option. However,
while we always know 𝐶𝑧 [ℎ(𝑧), 𝑧] = 𝐸𝑧 [𝐷ℎ(𝑧)]𝐶𝑧 [𝑧, 𝑧], the same identity is unclear
for their respective quadrature approximations. Thus, consider Algorithm 5.7 as an
approximation of statistical linear regression based on Equation (5.11).
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Algorithm 5.7 (Approximate first-order statistical linear regression with a
Jacobian). Call Algorithm 5.6 but replace Equation (5.23b) with

𝐴cond B wJ⊤, (5.26a)
J B

(√
𝑤0𝐷ℎ[(Ξ)1/2𝑥0 + 𝜉] · · · √

𝑤𝐾𝐷ℎ[(Ξ)1/2𝑥𝐾 + 𝜉]
)
. (5.26b)

The advantage of Algorithm 5.7 over Algorithm 5.6 is that it requires one fewer solution
of a linear system because 𝐴cond directly results from a cubature-approximation of the
Jacobian. However, it comes at the price of evaluating the Jacobian at 𝐾 + 1 points.

Again, a common choice of a linearisation point is 𝑝(𝑧) = 𝑝(𝑋).
To compute zeroth-order statistical linear regression, QR-decompositions are

sometimes unnecessary:

Algorithm 5.8 (Zeroth-order statistical linear regression). Assume that the
linearisation point 𝑝(𝑧) = N(𝜉,Ξ) and the function ℎ are given. Suppose that
𝑝(𝑧) is in Cholesky parametrisation, and assume a cubature rule satisfying
Assumption 5.4. Linearise ℎ around 𝑝(𝑧) as follows:

1. Evaluate {ℎ𝑘}𝐾𝑘=0 according to Equation (5.16).

2. Assemble w, and H according to Equation (5.17).

3. Compute 𝑏cond = wH⊤ according to Equation (5.18).

4. Assemble (𝐶cond)1/2 = Hcentre according to Equation (5.19).

Return the approximations 𝑏cond and (𝐶cond)1/2. Hcentre is a generalised Cholesky
factor of𝐶out, but not triangular. If subsequent computations demand triangularity,
QR-decompose Hcentre = 𝑄𝑅, discard 𝑄 and return (𝐶cond)1/2 = 𝑅⊤.

As always, a common choice of a linearisation point is 𝑝(𝑧) = 𝑝(𝑋).
To the best of the author’s knowledge, Algorithm 5.6 and its relatives (Algorithm 5.7

and Algorithm 5.8) are not described in existing literature. However, alternative
Cholesky implementations of statistical linear regression (or the related sigma-point
filters, respectively) have been proposed:

Remark 5.9. Yaghoobi et al. [185] and Van Der Merwe and Wan [168] discuss
a Cholesky implementation of statistical linear regression (in the context of
sigma-point and unscented Kalman filtering) using what is known as a “low-rank
downdate” or “Cholesky downdate”. The algorithms above avoid such downdates,
which can be numerically unstable [153], at the price of Assumption 5.4.
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5.7 Posterior linearisation

The accuracy of the linearisation of a nonlinear transformation depends on the lineari-
sation point. Previous sections recommended linearisation at the prior distribution,
𝑝(𝑧) = 𝑝(𝑋) = N(𝑚in, 𝐶in), which is the natural choice for a linearisation point in the
absence of better knowledge. The following strategies describe iterated re-linearisation
and apply to all aforementioned techniques equally.

Let 𝑦 ∈ R𝑑out . When the linearisation 𝑝(𝑌 | 𝑋) ≈ N (𝐴cond𝑋 + 𝑏cond, 𝐶cond) aims at
computing the posterior distribution 𝑝(𝑋 | 𝑌 = 𝑦) with, for example, Algorithm 4.2,
we may iterate in the hope of improving the approximation:

Algorithm 5.10 (Iterated linearisation). Follow the steps:

1. Initialise 𝑝(𝑧0), for example, as 𝑝(𝑧0) = 𝑝(𝑋) = N(𝑚in, 𝐶in).

2. Iterate until convergence (𝑖 = 0, 1, 2, ...):

(a) Linearise ℎ at 𝑝(𝑧𝑖) with either one of Algorithms 5.1 to 5.8, de-
pending on preferences for Taylor linearisation or statistical linear
regression, zeroth-/first-order methods, and the availability of Jaco-
bians. All of these algorithms yield an approximation of the form

𝑝(𝑌 | 𝑋) ≈ N ( 𝐴̃(𝑖)
cond𝑋 + 𝑏̃ (𝑖)cond, 𝐶̃

(𝑖)
cond), (5.27)

and are thus compatible with the steps below.

(b) Compute 𝑝(𝑋 | 𝑌 ) ≈ N ( 𝐴̃(𝑖)
rev𝑌+𝑏̃ (𝑖)rev , 𝐶̃

(𝑖)
rev ) with either Algorithm 4.2

or Algorithm 4.5, depending on whether 𝐶̃ (𝑖)
cond is zero or not.

(c) Evaluate 𝑝(𝑋 | 𝑌 = 𝑦) ≈ N ( 𝐴̃(𝑖)
rev𝑦 + 𝑏̃ (𝑖)rev , 𝐶̃

(𝑖)
rev ) and choose it as the

new linearisation point,

𝑝(𝑧𝑖+1) B 𝑝(𝑋 | 𝑌 = 𝑦) ≈ N ( 𝐴̃(𝑖)
rev𝑦 + 𝑏̃ (𝑖)rev , 𝐶̃

(𝑖)
rev ). (5.28)

Repeat from Item 2a.

Return the most recent linearisation and posterior distribution, that is, the most
recent outputs from Items 2a and 2c.

The goal of Algorithm 5.10 usually is to determine a linearisation at the posterior
distribution instead of the prior distribution (e.g. [60, 61]). Taylor linearisation and
statistical linear regression imply different interpretations of posterior linearisation.

Iterated first-order Taylor linearisation (combining Algorithms 5.1 and 5.10) applied
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to the transformation

𝑝(𝑌 | 𝑋) = N(ℎ(𝑋), 𝑅) (5.29)

implements a Gauss–Newton scheme for the maximum-a-posteriori estimate [17, 18],

arg max
𝑥∈R𝑑in

𝑝(𝑋 = 𝑥 | 𝑌 = 𝑦) = arg min
𝑥∈R𝑑in

{
∥𝑥 − 𝑚in∥2

𝐶in
−1 + ∥𝑦 − ℎ(𝑥)∥2

𝑅−1

}
(5.30)

where “∝” represents proportionality. Algorithm 5.10 together with Algorithm 5.1
initially linearises ℎ at 𝑚in, solves the optimisation problem, and re-linearises at the
solution before solving the problem again. Repeating these two steps until convergence
is the Gauss–Newton algorithm [17, 122]. Many related optimisation algorithms also
allow an implementation via iterated first-order Taylor linearisation [e.g., 58, 59, 145].

Iterated zeroth-order Taylor linearisation implements a fixed-point scheme for the
posterior mean

𝑚in → 𝑏cond (= 𝑏rev) = ℎ(𝑚in) → ℎ(𝑏cond) → ... . (5.31)

and connects to a previously published probabilistic numerical solver:

Remark 5.11. Applied to the differential equation collocation problem,

ℎ(𝑦) B d𝑦
d𝑡

− 𝑓 (𝑦(𝑡)) (5.32)

iterated zeroth-order Taylor linearisation of 𝑓 implements

𝑚in → 𝑏cond B 𝑓 (𝑚in) (5.33a)
→ 𝑚in

new (Cond. 𝑋 on d𝑋
d𝑡 = 𝑏cond; 5.33b)

→ 𝑏cond
new B 𝑓 (𝑚in

new) (5.33c)
→ ... (5.33d)

which is the algorithm that Arvanitidis et al. [10] employ to solve boundary
value problems probabilistically. Hennig and Hauberg [78] employ a similar
linearisation scheme. For a certain line search, this procedure relates to a Mann
iteration [10, 116].

The interpretation of the method by Arvanitidis et al. [10] as iterated zeroth-order
linearisation not only implies a (novel) implementation of the boundary value problem
solver in linear- instead of cubic-time complexity but also opens up variations that use
iterated zeroth-order statistical linear regression, for example.

While iterated Taylor linearisation implements Gauss–Newton-/fixedpoint-style
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schemes, iterated first-order statistical linear regression approximately minimises a
Kullback-Leibler divergence [60]. More specifically, the divergence between the joint
distribution over 𝑋 | 𝑌 = 𝑦 and a modification of 𝑌 with respect to the Gaussian
approximation [60, 61]. For ∥𝐶in∥ → 0, statistical linearisation recovers Taylor
linearisation and Gauss–Newton emerges. Iterated zeroth-order statistical linearisation
has not been discussed in previous literature.

5.8 Sequential problems

The application of linearisation to sequential problems, such as those in the context
of probabilistic differential equation solvers, is not the main goal of this chapter.
Nevertheless, while details are postponed to Chapter 7, some related literature about
applying linearisation to sequential problems needs to be discussed because many of
the linearisation algorithms originated in the literature on filtering and smoothing.

If the prior distribution factorises into a sequence of conditional distributions, and if
the measurements are conditionally independent, we call the model “sequential”. For
example, Chapter 3 describes the sequential nature of probabilistic numerical solvers
for initial value problems. Both sequential estimation and linearisation are central
to the literature on filtering and smoothing. Generally, there are two approaches to
linearising a nonlinear sequential estimation problem.

First, we can linearise all nonlinearities at, for example, the prior distribution before
processing the measurements (sequentially). This creates an affine estimation problem
– which admits a closed-form Gaussian solution via Kalman filtering and Rauch-
Tung-Striebel smoothing [e.g. 68, 143] – and usually allows iterative re-linearisation
(that is, Algorithm 5.10). Examples of this procedure include algorithms like the
iterated extended Rauch–Tung–Striebel smoother [17] or the posterior linearisation
smoother [60, 61]. Posterior linearisation smoothers combine Algorithm 5.10 with
sequential Gaussian estimation. The iterated extended Rauch–Tung–Striebel smoother
uses Algorithm 5.10 with a Taylor approximation (Algorithm 5.1 or Algorithm 5.2).
Statistical linear regression in place of Taylor approximation would be an iterated
sigma-point Rauch–Tung–Striebel smoother [60] (Algorithm 5.6, Algorithm 5.7, or
Algorithm 5.8). Probabilistic numerical solvers use iterated linearisation in sequential
problems to solve boundary value problems (Chapter 12).

Second, we may linearise each observation model sequentially during the forward
pass of, for example, a filtering algorithm. In contrast to the methods explained
in the previous paragraph, linearisation occurs while processing the observations,
not before. At each step of the forward pass, the linearisation point depends on all
previous observations, which is why we only use it to solve initial value problems
(Chapter 7). Linearisation assuming a Gaussian conditional distribution and subsequent
sequential Gaussian estimation is assumed density filtering [84, 183]. Examples of
these algorithms include:
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⋄ The extended Kalman filter (Algorithm 5.1 or Algorithm 5.2) [e.g., 68, 143],
which uses the exact Jacobian of the nonlinearity. Replacing the Jacobian
with a finite-difference approximation yields the central difference Kalman
filter [84, 124], which implicitly performs statistical linear regression [167].
Assuming or enforcing a diagonal Jacobian is the node-decoupled Kalman filter
[119], which will appear in an upcoming chapter.

⋄ Another family of assumed density filters uses statistical linearisation or
statistical linear regression (Algorithm 5.6, Algorithm 5.7, or Algorithm 5.8).
For example, this includes the statistical linearisation filters, or quasilinear filters
[63, 160]. Statistical linear regression, statistical linearisation with cubature,
yields sigma-point Kalman filters [167]. Different cubature rules imply different
algorithms: The unscented transform implies the unscented Kalman filter
[87, 173, 174]. Third-order spherical cubature rules imply the cubature Kalman
filter [7, 183]. Gauss–Hermite cubature implies the Gauss–Hermite Kalman filter
[84], also known as a quadrature Kalman filter [8]. Prüher and Šimandl [132]
compute first-order statistical linear regression with Bayesian cubature. Kersting
and Hennig [91] do the same for zeroth-order approximations (Algorithm 5.8),
but without using this terminology.

All Kalman filter variations transform into Rauch-Tung-Striebel smoother variations
via backward marginalisation. Using Cholesky parametrisations of Gaussian vari-
ables turns the above filters/smoothers into square-root filters/smoothers. Posterior
linearisation during the forward pass yields posterior linearisation filters [61], iterated
extended Kalman filters [18] or iterated sigma-point filters [157, 186]. The above list
is not exhaustive but shall express the generality of the linearisation methods and their
application to estimation problems. For probabilistic numerical solvers, as discussed
in the remainder of this manuscript, it suffices to remember Algorithms 5.1 to 5.10.

5.9 Conclusion

This chapter studied linearisation. The motivation has been that a nonlinear transfor-
mation forbids using Gaussian state estimation. Assuming an affine transformation and
finding suitable parameters of the affine model resolves the issue via approximation. To
this end, either Taylor or statistical linearisation techniques can be employed. Statistical
linearisation differs from Taylor linearisation in that it replaces function evaluations
with cubature. Both linearisation styles admit a zeroth-order and a first-order version,
can be combined with iterative re-linearisation, and are compatible with the Cholesky
parametrisation of Gaussian variables. The next chapters explain how linearisation
schemes are one part of the implementation of probabilistic numerical solvers.
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6.1 Problem statement

The previous two chapters discussed Cholesky arithmetic (Chapter 4) and linearisation
(Chapter 5). The present chapter introduces the final component of the foundations for
implementing probabilistic numerical solvers: estimating Taylor series of solutions
of initial value problems (IVPs) that are based on ordinary differential equations.
In general, estimating a Taylor-series of an IVP solution is not only important for
probabilistic numerical solvers but for many other subjects as well (for instance, refer
to Griewank and Walther [69], Kelly et al. [90] for examples). However, the present
chapter only demonstrates a single motivation: how Taylor-series estimation plays a
special role in the initialisation of probabilistic numerical solvers.

Consider a scalar, nonlinear, autonomous differential equation

d𝑦
d𝑡

= 𝑓 (𝑦(𝑡)), 𝑡 ∈ [0, 1], (6.1)

and an initial condition 𝑦(0) = 𝑦0. Like in the previous chapters, we consider a
scalar equation first because techniques for vector-valued models commonly build
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on those for scalar models. An autonomous vector field shall be no loss of generality
(modifications for other differential equations are mentioned where relevant, as usual).

From Chapter 3, recall the 𝜈-times integrated Wiener process prior

𝑌 (𝑡) B (𝑌 (0) (𝑡), ..., 𝑌 (𝜈) (𝑡)), (6.2)

where 𝑌 (𝑞) (𝑡) is the 𝑞th time-derivative of 𝑌 (0) (𝑡), which models 𝑦. This 𝜈-times
integrated Wiener process connects to 𝜈th order Taylor series as follows: the stack
of states 𝑌 (𝑡) contains the first 𝜈 time-derivatives of 𝑌 (0) (𝑡), which are also the first
𝜈 unnormalised Taylor coefficients of 𝑌 (0) (𝑡). At each grid-point, the probabilistic
numerical solver estimates the first 𝜈 Taylor coefficients of the IVP solution.

To compute this estimate, the state needs to be initialised at the initial point 𝑡0 = 0,

𝑝(𝑌 (𝑡0) | 𝛾) = N(𝑚0, 𝐶0 (𝛾)). (6.3)

Chapter 3 assumed that this initialisation is given by assuming that a user has provided
𝑚0 and 𝐶0 (𝛾). In practice, these parameters are generally unknown – and while one
could choose 𝑚0 and 𝐶0 (𝛾) to resemble a diffuse initial condition (Chapter 3) in
the hope that not much information is lost in the process, we can do much better by
estimating an efficient replacement of 𝑝(𝑌 (𝑡0) | 𝑦0, 𝛾).

The present chapter discusses such estimators in the following order. Section 6.2
outlines the template for estimating 𝜈th order Taylor approximations based on affine
differential equations and Section 6.3 continues these ideas for nonlinear problems.
Section 6.3 also points out how some of these approaches may be insufficient if 𝜈
increases. Consequently, Section 6.4 presents an alternative – a mode of automatic
differentiation that is tailored to computing high-order derivatives – and Section 6.5
applies this algorithm to IVPs. Section 6.7 discusses approximations that can be used
in the absence of automatic differentiation.

Most of the content presented here is known. Only Section 6.7 is a (small)
contribution by this thesis – however, the greater novelty lies in applying these
techniques to probabilistic numerical solvers (Chapter 7). Like the previous two
chapters, this chapter can be read independently of the rest of this thesis. Readers
familiar with Taylor-mode automatic differentiation and its application to ordinary
differential equations may skip directly to Section 6.7 or even to the next chapter.

6.2 Affine equations

For now, consider an affine differential equation

d𝑦(𝑡)
d𝑡

= 𝑎𝑦(𝑡) + 𝑏. (6.4)
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It suffices to consider constant Jacobian 𝑎 and bias 𝑏 because we only care about a
single time-point 𝑡 = 0. The initial condition is 𝑦(0) = 𝑦0, and we aim to compute the
first 𝜈 time-derivatives of the initial condition.

Since 𝑦 follows the differential equation, the derivative of the initial condition is

d𝑦(0)
d𝑡

= 𝑎𝑦(0) + 𝑏 = 𝑎𝑦0 + 𝑏. (6.5)

Via repeating this argument multiple times, the chain rule dictates

d𝑞𝑦(0)
d𝑡𝑞

= 𝑎
d𝑞−1𝑦(0)

d𝑡𝑞−1 , 𝑞 ≥ 1 (6.6)

which shows how the first 𝑞 derivatives of 𝑦(0) can be evaluated recursively:

Algorithm 6.1 (Affine recursion). Assume that 𝑎, 𝑏, and 𝑦0 are given. Compute
the first 𝜈 derivatives of the initial value by evaluating the recursion

𝔉0 = 𝑦0, 𝔉1 = 𝑎𝔉0 + 𝑏, 𝔉𝑞 = 𝑎𝔉𝑞−1, 𝑞 ≥ 2 (6.7)

and by returning (𝔉0, ...,𝔉𝜈).

The complexity of Algorithm 6.1 is negligibly small compared to any other computation
involved in the probabilistic numerical solution of the IVP. If the IVP is vector-valued,
the iteration remains the same, but the complexity now depends on the complexity of
evaluating the matrix-vector product with 𝑎.

For nonlinear differential equations, we could combine Algorithm 6.1 with any
of the linearisation techniques in Chapter 5. But instead, we can also generalise the
recursion in Equation (6.6) to nonlinear problems:

6.3 Automatic differentiation of IVPs

For the rest of this chapter, call the 𝑞th Taylor coefficient 𝔉𝑞 . If the differential equation
is nonlinear,

d𝑦(𝑡)
d𝑡

= 𝑓 (𝑦(𝑡)), (6.8)

we may mirror the technique from Section 6.2 Via the differential equation, the
derivative of the initial condition is

d𝑦(0)
d𝑡

= 𝑓 (𝑦0). (6.9)
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By the chain rule, all coefficients follow the recursion

d𝑞+1𝑦

d𝑡𝑞+1 = 𝔉𝑞+1 (𝑦) B 𝐷𝔉𝑞 (𝑦) 𝑓 (𝑦), 𝑞 ≥ 1 (6.10)

initialised with 𝔉1 = 𝑓 and evaluated at 𝑦 = 𝑦0. The following algorithm emerges.

Algorithm 6.2 (Automatic differentiation of IVPs). Assume that 𝑓 and 𝑦0 are
given. Compute the first 𝜈 derivatives of the initial value by evaluating the
recursion in Equation (6.10) (setting 𝔉0 = 𝑦0) and returning (𝔉0, ...,𝔉𝜈).

If the equation is affine, Algorithm 6.2 reduces to Algorithm 6.1. If the differential
equation is not of first-order or not autonomous, Algorithm 6.2 is modified slightly:

Remark 6.3. If the differential equation differs from d𝑦
d𝑡 = 𝑓 (𝑦(𝑡)), similar

recursions apply. For instance, if the vector field also depends on the first
derivative of 𝑦 and time,

d2𝑦

d𝑡2
= 𝑓

(
𝑦,

d𝑦
d𝑡
, 𝑡

)
, (6.11)

with initial conditions for 𝑦 and d𝑦
d𝑡 given, Equation (6.10) reads

d𝑞𝑦
d𝑡𝑞
B𝔉𝑞

(
𝑦,

d𝑦
d𝑡
, 𝑡

)
, 𝑞 ≥ 2, (6.12)

with the recursion

𝔉𝑞+1

(
𝑦,

d𝑦
d𝑡
, 𝑡

)
B 𝐷1𝔉𝑞

(
𝑦,

d𝑦
d𝑡
, 𝑡

)
d𝑦
d𝑡

+ 𝐷2𝔉𝑞

(
𝑦,

d𝑦
d𝑡
, 𝑡

)
𝑓

(
𝑦,

d𝑦
d𝑡
, 𝑡

)
+ 𝐷3𝔉𝑞

(
𝑦,

d𝑦
d𝑡
, 𝑡

)
𝑡

(6.13)

initialised as 𝔉2

(
𝑦,

d𝑦
d𝑡 , 𝑡

)
= 𝑓

(
𝑦,

d𝑦
d𝑡 , 𝑡

)
. The operators 𝐷1, 𝐷2 and 𝐷3 are the

Jacobians of 𝑓 with respect to the first (“𝑦”), second (“ d𝑦
d𝑡 ”), and third (“𝑡”)

argument, respectively. All high-order differential equations follow this pattern.

In principle, this algorithm could be implemented in any automatic differentiation
framework. However, due to the nested differentiation involved in this recursion,
the computational complexity grows rapidly with increasing 𝜈. Therefore, practical
implementations of probabilistic numerical solvers tend to avoid this algorithm for
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𝜈 > 5 and use a specialised mode of algorithmic differentiation that efficiently
computes certain high-order derivatives:

6.4 Taylor-mode automatic differentiation

Let 𝑥 ∈ R. Let 𝑣, 𝑣1, 𝑣2, ... be known vectors and ℎ1, ℎ2, ..., be given functions. In
the rest of this section, we need to be meticulous with the notation for derivatives:
The Jacobian of a function ℎ : R𝑑in → R𝑑out maps an input to a linear operator,
𝐷ℎ : R𝑑in → 𝐿 (R𝑑in ,R𝑑out ), where 𝐿 (R𝑑in ,R𝑑out ) is the space of linear operators.
Denote this linear operator by 𝐷ℎ(𝑥) [·]. The Hessian of ℎ maps an input to a bilinear
operator 𝐷2ℎ(𝑥) [·, ·]. The 𝑞th derivative maps to a 𝑞-linear operator 𝐷𝑞ℎ(𝑥) [·, ..., ·],
𝑞 ∈ N. From Chapter 7 onwards, this notational requirement will be relaxed again.

Let us begin with a brief review of the concept of (conventional) automatic
differentiation. Jacobian-vector products (evaluations of the linear operator 𝐷ℎ[·] at
vector 𝑣) follow the chain rule,

(𝑧0, 𝑧1) B (ℎ1 (𝑥), 𝐷ℎ1 (𝑥) [𝑣]) ↦→ (ℎ2 (𝑧0), 𝐷ℎ2 (𝑧0) [𝑧1]). (6.14)

Evaluation of the propagation in Equation (6.14) requires access to ℎ2 and 𝐷ℎ2.
For elementary operations (for example, addition, subtraction, polynomials, or expo-
nentials), ℎ2 and 𝐷ℎ2 are known in closed form. By phrasing computer programs
as compositions of these functions, repeated application of Equation (6.14) yields
directional derivatives of computer programs. Algorithmic evaluation of derivatives
without numerical differences or symbolic differentiation is automatic differentiation
[e.g. 69, 71], and sometimes called algorithmic differentiation [e.g. 172]. Computing
Jacobian-vector products by repeated application of Equation (6.14) is forward-mode
automatic differentiation [69, Section 3.1].

Higher-order differentiation allows the same strategy. Instead of Jacobian-vector
products, higher-order differentiation propagates evaluations of the 𝑞-linear operators
associated with 𝑞th derivatives. For example, second-order differentiation uses

(𝑧0, 𝑧1, 𝑧2, 𝑧3)
B (ℎ1 (𝑥), 𝐷ℎ1 (𝑥) [𝑣1], 𝐷ℎ1 (𝑥) [𝑣2], 𝐷2ℎ1 (𝑥) [𝑣1, 𝑣2])
↦→ (ℎ2 (𝑧0), 𝐷ℎ2 (𝑧0) [𝑧1], 𝐷ℎ2 (𝑧0) [𝑧2], 𝐷2ℎ2 (𝑧0) [𝑧1, 𝑧2] + 𝐷ℎ2 (𝑧0) [𝑧3]).

(6.15)

It requires access to ℎ2, 𝐷ℎ2, and 𝐷2ℎ2, which are usually known for a wide range
of elementary operations. As in the context of Equation (6.14), repeated application
of Equation (6.15) yields directional derivatives of computer programs. However,
formulas like Equation (6.15) become costly for high-order derivatives:

The highest derivative 𝐷2ℎ2 (𝑧0) [𝑧1, 𝑧2] in Equation (6.15) is the sum of two terms,
𝐷2ℎ2 (𝑧0) [𝑧1, 𝑧2] and 𝐷ℎ2 (𝑧0) [𝑧3]. Third-order differentiation would involve the sum
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of five terms, fourth-order differentiation would require summing 15 terms, and for
any 𝑞 ∈ N, 𝑞th order differentiation requires as many terms as the set {1, ..., 𝑞} admits
set partitions [86]. The number of partitions of a set is the Bell number [141], which
grows at least as fast as 𝑂 (2𝑞) [45, 141]. Exponential complexity forbids algorithmic
evaluation of directional derivatives for large 𝑞. For instance, 𝑞 = 11 involves the sum
of 678570 terms (because 678570 is the 12th Bell number [158, Entry “A000110”]).

However, many of the𝑂 (2𝑞) terms are redundant in our application: The difference
between evaluating a 𝑞th order Taylor series and evaluating any 𝑞th order derivatives is
that for the Taylor series, all derivatives point in the same direction, 𝑣1 = 𝑣2 = ... = 𝑣.
(For intuition, read this as 𝑣 B 𝑥 − 𝑥0.) Acknowledging such a redundancy reduces
the number of terms in the 𝑞th-order derivative from the number of set partitions
of {1, ..., 𝑞} to the number of integer partitions of 𝑞; in other words, from 𝑂 (2𝑞) to
𝑂 (exp√𝑞) [6]. For example, third-order differentiation simplifies to

©­­­«
𝑧0
𝑧1
𝑧2
𝑧3

ª®®®¬ B
©­­­«

ℎ1 (𝑥)
𝐷ℎ1 (𝑥) [𝑣]

𝐷2ℎ1 (𝑥) [𝑣, 𝑣]
𝐷3ℎ1 (𝑥) [𝑣, 𝑣, 𝑣])

ª®®®¬
↦→

©­­­«
ℎ2 (𝑧0)

𝐷ℎ2 (𝑧0) [𝑧1]
𝐷2ℎ2 (𝑧0) [𝑧1, 𝑧1] + 𝐷ℎ2 (𝑧0) [𝑧2]

𝐷3ℎ2 (𝑧0) [𝑧1, 𝑧1, 𝑧1] + 3𝐷2ℎ2 (𝑧0) [𝑧1, 𝑧2] + 𝐷ℎ2 (𝑧0) [𝑧3]

ª®®®¬ .
(6.16)

The highest-order derivative in Equation (6.16) involves three instead of five terms. The
reduction is only possible because all derivatives use the same direction; thus, it only
applies to computing Taylor series. Like Bettencourt et al. [23], we call algorithmic
evaluation of high-order directional derivatives Taylor-mode automatic differentiation
if all directions coincide, as it is the case for Taylor series.

Usually, the complexity reduces further than 𝑂 (exp√𝑞): Most functions have
comparably simple high-order derivatives and thus can be Taylor-mode differentiated
in 𝑂 (𝑞2) or even 𝑂 (𝑞). For example, if ℎ is linear, 𝐷𝑞ℎ is zero for all 𝑞 ≥ 2. (Linear
functions frequently occur in array-based computing; for example, reshaping an array
or accessing one of its elements is a linear operation.) If we know that ℎ2 is linear,
third-order Taylor-mode differentiation (Equation (6.16)) reduces to

(𝑧0, 𝑧1, 𝑧2, 𝑧3) ↦→ (ℎ2 (𝑧0), 𝐷ℎ(𝑧0) [𝑧1], 𝐷ℎ2 (𝑧0) [𝑧2], 𝐷ℎ2 (𝑧0) [𝑧3]), (6.17)

because 𝐷2ℎ2 and 𝐷3ℎ2 are always zero. Equation (6.17) is cheap to evaluate because
it reduces to evaluating the Jacobian of ℎ2 in three directions, and instead of evaluating
3 + 2 + 1 = 6 terms like in Equation (6.16), Equation (6.17) requires only 1 + 1 + 1 = 3
terms. In this vein, 𝑞th order Taylor-mode differentiation of a linear function costs
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𝑂 (𝑞).
Other classes of functions also imply a low-cost evaluation of high-order derivatives.

For instance, if ℎ2 is an exponential function, high-order derivatives are simple to
evaluate because exponentials solve the differential equation 𝐷ℎ(𝑥) = ℎ(𝑥). Due
to this differential equation perspective on exponentials, 𝑞th order Taylor-mode
differentiation of exponential functions costs only 𝑂 (𝑞2) instead of 𝑂 (exp√𝑞) [69,
Proposition 13.1]. The same holds for all functions that solve a certain differential
equation, for example, trigonometric functions like “sin” and “cos” [69]. As a result,
Taylor-mode differentiation can usually be implemented in 𝑂 (𝑞2) complexity, making
it significantly more efficient than recursive forward-mode differentiation for large 𝑞
(which costs 𝑂 (2𝑞)).

Let Ψ be a routine that implements Taylor-mode automatic differentiation, as
discussed in the previous chapter. This means that Ψ maps a function 𝑔 as well as a
truncated Taylor series (𝑧0, ..., 𝑧𝜈) to the truncated Taylor series of 𝑔(𝑧0),

(𝑔0, ..., 𝑔𝜈) = Ψ(ℎ, (𝑧0, ..., 𝑧𝜈)). (6.18)

Each 𝑔𝑞 is the 𝑞th Taylor-coefficient of 𝑔(𝑧0); for example Equation (6.16) maps the
third-order approximation of ℎ1 (𝑥) to the third-order approximation of ℎ2 (ℎ1 (𝑥)).

The operator Ψ is implemented in different software packages; for example, it
is available in JAX [28] or TaylorSeries.jl [19]. In JAX, Ψ is called “jet”. Jets are
generalisations of tangent vectors [e.g., 99], and the composition of jets reduces to
the propagation fo truncated Taylor series (which matches Taylor-mode automatic
differentiation). We refer to Kolár et al. [99] for background on the geometry of jets,
and Betancourt [22] for a jet-centric perspective on higher-order differentiation; see
also the work by Pusch [133].

6.5 High-order Taylor series of IVPs

We return to the IVP setting. Recall the vector field 𝑓 and the initial value 𝑦0.
Suppose we have access to an implementation of Ψ and that evaluating Ψ at a 𝜈th

order series costs 𝑂 (𝜈2). We can compute the first 𝜈 Taylor coefficients of the IVP
solution at time 𝑡 = 𝑡0 with Taylor-mode differentiation:

Algorithm 6.4 (Taylor-mode differentiation of IVPs). Assume that Ψ, 𝑓 , 𝑦0, and
𝜈 are known. First, initialise the zeroth-order Taylor approximation of the IVP
solution with

𝑦Taylor,0 B 𝑦0. (6.19)

Then, repeat the following steps for 𝑞 = 0, ..., 𝜈 − 1:
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1. Evaluate ( 𝑓0, ..., 𝑓𝑞) = Ψ( 𝑓 , 𝑦Taylor,𝑞).

2. Set 𝑦Taylor,𝑞+1 = (𝑦0, 𝑓0, ..., 𝑓𝑞).

Finally, return 𝑦Taylor,𝜈 .

To see how Algorithm 6.4 computes the correct Taylor coefficients of the IVP solution,
consider the following: The essential step in Algorithm 6.4 is to map the first 𝑞
Taylor coefficients of 𝑦(𝑡) to the first 𝑞 Taylor coefficients of 𝑓 (𝑦(𝑡)) via Ψ (all Taylor
coefficients shall be unnormalised). Due to the differential equation, the first 𝑞 Taylor
coefficients of 𝑓 (𝑦(𝑡)) are the first 𝑞 Taylor coefficients of d𝑦 (𝑡 )

d𝑡 . But by definition of
Taylor coefficients, the first 𝑞 Taylor coefficients of d𝑦

d𝑡 are the second-to-(𝑞 + 1)th
Taylor coefficients of 𝑦, which is how we gain one coefficient through Ψ. Hairer et al.
[76, Section I.8] call Algorithm 6.4 Newton’s method for solving differential equations.

Analogues of Algorithm 6.4 for higher-order or non-autonomous differential
equations are relatively straightforward to derive; for example, by rewriting a second-
order differential equation as a system of first-order equations or by reformulating a
non-autonomous equation as an autonomous equation over the extended state (𝑦, 𝑡).
We leave details to the reader.

In summary, Algorithm 6.4 recursively assembles the 𝜈th order Taylor series of
the initial value. Since we call Ψ exactly 𝜈-times, and each evaluation costs 𝑂 (𝜈2),
Algorithm 6.4 costs 𝑂 (𝜈3). However, perhaps surprisingly, fewer evaluations of Ψ
suffice to evaluate high-order derivatives of IVP solutions:

Remark 6.5 (Coefficient doubling). The recursion in Algorithm 6.4 computes the
𝜈th order Taylor series of an IVP solution via 𝜈 calls to Ψ. It can be shown [69,
Corollary 13.2] that only 𝑂 (log(𝜈)) calls are needed. The reasons are twofold.

First, lower-order coefficients of the output do not depend on higher-order
coefficients of the input, so we may pad 𝑦Taylor,𝑞 with zeros to an arbitrary
length without altering the result. (On a side note, this fact can be helpful to
implement Algorithm 6.4 in a framework that requires static bounds on memory
requirements, such as JAX.)

Second, for any 𝑘
2 < 𝑗 ≤ 𝑘 + 1, the (𝑘 + 1)th unnormalised Taylor coefficient

of 𝑦 depends linearly on some coefficients,

d(𝑘+1) 𝑦(𝑡0)
d𝑡 (𝑘+1) = Ψ( 𝑓 , (𝑦Taylor, 𝑗−1, 0𝑘− 𝑗 )) +

𝑘∑︁
𝑖= 𝑗

𝐴𝑖
d𝑖𝑦(𝑡0)

d𝑡𝑖
. (6.20)

Here, 0𝑛 = (0, ..., 0) ∈ R𝑛 is a vector of zeros and {𝐴𝑖} are certain matrices
that depend on the Jacobian of Ψ [69]. Equation (6.20) shows that with a single
evaluation of Ψ and its Jacobian, the number of Taylor coefficients can be doubled,
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Figure 6.1: Taylor-series estimation on the FitzHugh-Nagumo problem.

which is why Griewank and Walther [69, Table 13.7] call it coefficient doubling.

The benchmarks in Section 6.6 will demonstrate how Taylor-mode-based algorithms
eventually outperform forward-mode differentiation approaches if 𝜈 gets large.

6.6 Benchmarks

All examples are implemented in Python with probdiffeq1, which builds on JAX [28].
Versions of these benchmarks are available in probdiffeq’s online documentation.

Fitzhugh-Nagumo

The first benchmark involves the FitzHugh-Nagumo problem [54, 120], which is a first-
order, autonomous, two-dimensional differential equation. The precise parametrisation
of the problem is irrelevant for this benchmark because all algorithms compute the
same values; only the computational complexities matter.

Figure 6.1 compares the evaluation- and compilation-times of Taylor-mode differen-
tiation (Algorithm 6.4), forward-mode differentiation (Algorithm 6.2), and coefficient
doubling (Remark 6.5) as the number of derivatives 𝜈 increases. We measure the
evaluation time as well as the compilation time because the exponential increase in the
complexity of recursive Jacobian-vector products is almost invisible for a reasonably
low number of derivatives when only considering the evaluation time. However, the
compilation time unveils how JAX’s just-in-time-compilation processes exponentially
many terms for forward-mode-based Taylor series estimation, which is not the case for
Taylor-mode-based algorithms. That said, until the exponential increase in compilation
time makes forward-mode prohibitively costly around 𝜈 ≈ 11, it seems to be the fastest
algorithm by a minimal margin.

The precise change-point of 𝜈 ≈ 11 depends on using JAX as an underlying
framework and may be lower if implementing both algorithms in a different framework.

1See https://github.com/pnkraemer/probdiffeq/ or install via pip install probdiffeq.
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Figure 6.2: Taylor-series estimation on the Pleiades problem.

Pleiades

Next, we repeat the same benchmark on the Pleiades problem [76, p. 245]. The
Pleiades problem is a second-order, autonomous, 14-dimensional equation.

Figure 6.2 again compares the evaluation- and compilation-time of forward-mode
and Taylor-mode algorithms. (Coefficient doubling has not been implemented for
second-order problems at the time of writing this.) The results are similar to the results
of the FitzHugh-Nagumo benchmark. Both algorithms have a comparable evaluation
time, and the algorithm’s complexities are more aptly demonstrated by the compilation
times. The compilation times express how Taylor-mode costs sub-exponentially and
forward-mode costs exponentially, yet forward-mode is sufficiently well-optimised
to be faster overall for 𝜈 < 8. For 𝜈 > 8, Taylor-mode seems to be more efficient
and the curves in Figure 6.2 suggest that around 𝜈 ≈ 10, the compilation time of
forward-mode time would become impractical.

Neural ordinary differential equation

At last, we repeat the simulations on a (medium-)high-dimensional problem, a 100-
dimensional neural differential equation [e.g., 33], which is a differential equation
with vector field

𝑓 (𝑦) = tanh(𝑊1 · tanh(𝑊2 · 𝑦 + 𝑏2) + 𝑏1), (6.21)

parametrised by𝑊1,𝑊2 ∈ R100×100, and 𝑏1, 𝑏2 ∈ R100, and with 𝑦 ∈ R100. All of these
matrices are populated with independent samples from a standard normal distribution.
However, the values of these parameters are unimportant for this study – only the
computational complexity matters.

The results of a similar benchmark to the previous ones are in Figure 6.3 and
mirror the learnings from earlier: Taylor-mode differentiation is consistently efficient,
forward-mode differentiation is slightly faster than Taylor-mode until it becomes
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Figure 6.3: Taylor-series estimation on a 100-dimensional neural differential equation.

infeasible (around 𝜈 ≈ 10), and coefficient doubling is the most viable option for
𝜈 ≫ 10. The only difference between Figure 6.3 and the previous figures is that in
Figure 6.3, the performance difference between coefficient doubling and competing
methods is smaller for 𝜈 < 10 than in the previous experiments.

In total, all three experiments consistently show how for lower 𝜈, forward-mode
is the fastest method, whereas, for larger 𝜈, it may evolve from the fastest to an
infeasible algorithm due to the exponential increase in compilation time. Taylor-mode
differentiation is the more reliable option throughout, especially for larger 𝜈. For
extremely large 𝜈, say, 𝜈 ≫ 10, coefficient doubling is the only viable option. That
said, probabilistic numerical solvers rarely exceed 𝜈 = 12.

6.7 Regression-based approaches

The remainder of the chapter explains how to estimate a Taylor series in the absence of
(Taylor-mode) automatic differentiation. In this case, we can estimate Taylor coefficients
via regression instead of implementing recursions with automatic differentiation.

Recall the 𝜈-times integrated Wiener process𝑌 (𝑡) with output scale 𝛾. Let 𝜏0, ..., 𝜏𝜈
be grid points. Assume that we have an accurate approximation 𝑦̂ of the IVP solution
𝑦 at {𝜏0, ..., 𝜏𝜈}, for example, computed by a high-precision Runge–Kutta solver.

The conditional distribution

𝑝

(
𝑌 (𝑡0)

��� 𝑌 (0) (𝜏0) = 𝑦̂(𝜏0), ..., 𝑌 (0) (𝜏𝜈) = 𝑦̂(𝜏0), 𝛾
)

(6.22)

estimates the 𝜈 time-derivatives of the IVP solution at time 𝑡 = 𝑡0. It is similar to how
Schober et al. [152] initialise probabilistic numerical IVP solvers, which itself relates
to the Runge–Kutta starter by Gear [62]. Even though the approximation 𝑦̂ may be
computed with any IVP solver, we follow the terminology introduced by Gear [62] and
call the algorithm that estimates the Taylor series by implementing Equation (6.22) a
Runge–Kutta starter.
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Since 𝑌 (𝑡) is a Gaussian process, the conditional distribution in Equation (6.22) is
Gaussian. Due to all observations being conditionally independent, and since 𝑌 (𝑡)
is Markovian, Equation (6.22) allows a sequential implementation. This sequential
implementation is not important for the acceleration of the algorithm (𝜈 is usually
bounded by 10), but rather because by using a sequential implementation, all stability
and efficiency considerations for sequentially estimating IVP solutions discussed in
this thesis apply (for example, Cholesky arithmetic from Chapter 4 as well as the
preconditioners that will be part of Chapter 7).

As an initial distribution for the integrated Wiener process, we usually choose
a diffuse initialisation for simplicity (Chapter 3) and because we found the precise
parametrisation of the initial distribution to be unimportant for this regression task.

The advantages of Runge–Kutta starters over, say, Taylor-mode automatic differen-
tiation are threefold:

1. Runge–Kutta starters do not require access to automatic differentiation but only
to a (non-probabilistic) IVP solver. Even if such a solver is not available, a fixed-
step Runge–Kutta method can usually be implemented in a few lines of code,
whereas implementing Taylor-mode automatic differentiation is significantly
more involved.

2. Runge–Kutta starters are compatible with the configurations of probabilistic
numerical solvers for vector-valued problems, whereas automatic differentiation
is limited for high-dimensional setups. This makes the Runge–Kutta starter the
default for extremely high-dimensional differential equations (Chapter 8).

3. While the strategy underlying the Runge–Kutta starter generalises to all dif-
ferential equations for which one can construct a non-probabilistic solver, the
recursion for the automatic differentiation of IVP solutions only works for
IVPs based on ordinary differential equations. For boundary value problems
or differential-algebraic equations, estimating Taylor series with automatic
differentiation an open problem.

However, if (Taylor-mode) automatic differentiation is available, it remains the method
of choice. The reasons are (again) threefold:

1. Taylor-mode differentiation is exact; Runge–Kutta starters approximate.

2. Taylor-mode differentiation does not have any parameters that need calibration;
the efficacy of Runge–Kutta starters depends on {𝜏𝑞}𝜈𝑞=0.

3. Only Taylor-mode differentiation scales to (very) large 𝜈.

Nevertheless, there are scenarios in which Runge–Kutta starters are useful, especially
as the dimension of the differential equation increases to hundreds of thousands of
dimensions. We refer to the benchmarks in Chapter 9 for examples.
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6.8 Conclusion

This chapter presented the estimation of the truncated Taylor series of IVP solutions.
In principle, all techniques except the regression-based one depend on applying the
chain rule to the differential equation. The efficiency of the resulting algorithms mostly
depends on the efficiency of computing high-order derivatives automatically, which is
possible with Taylor-mode differentiation.
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7.1 Problem setting

The present chapter is at the heart of this manuscript because it delivers precise
instructions for implementing probabilistic numerical solvers for (scalar) initial value
problems. The following sections will combine the general strategies from Chapters 1
to 3 with the algorithms in Chapters 4 to 6. For the remainder of this chapter, we
assume familiarity with the content of all previous chapters, and most upcoming
chapters will require reading the present Chapter 7.

Recall the problem setting from Chapter 3: Consider a one-dimensional initial value
problem (IVP), that is, an ordinary differential equation

d𝑦(𝑡)
d𝑡

= 𝑓 (𝑦(𝑡)), 𝑡 ∈ [0, 1], (7.1)

constrained by 𝑦(0) = 𝑦0. Assume that the vector field 𝑓 is sufficiently well-behaved
that the IVP admits a unique solution 𝑦 : [0, 1] → R. As in all previous chapters, it
is only for notational reasons that we consider autonomous problems on the interval
[0, 1], and modifications for other problem types will be explained where relevant.
Vector-valued equations are the subject of Chapter 8.
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The following concepts from Chapter 3 are important: Let 𝑌 = (𝑌 (0) , ..., 𝑌 (𝜈) ) be
the state-variable of the stochastic differential equation-representation of a 𝜈-times
integrated Wiener process with constant output-scale 𝛾 > 0. Let {𝑡0, ..., 𝑡𝑁 } be a
point set with spacing Δ𝑡𝑛 B 𝑡𝑛+1 − 𝑡𝑛. Assume 𝑡0 = 0 and 𝑡𝑁 = 1, with the obvious
modifications if an equation shall be solved on a different time-interval. Restricted to
the point set, 𝑌 (𝑡) evolves as

𝑝(𝑌 (𝑡𝑛+1) | 𝑌 (𝑡𝑛), 𝛾) = N(Φ𝜈 (Δ𝑡𝑛)𝑌 (𝑡𝑛), Σ𝜈 (Δ𝑡𝑛, 𝛾)) (7.2)

with initial distribution 𝑝(𝑌 (𝑡0) | 𝛾) = N(𝑚0, 𝐶0 (𝛾)). More detailled information
regarding the parameters Φ𝜈 (Δ𝑡𝑛), Σ𝜈 (Δ𝑡𝑛, 𝛾), 𝑚0, and 𝐶0 (𝛾) has been explained in
the context of Equation (3.6) in Chapter 3.

We consider 𝑚0, 𝐶0 (𝛾), 𝜈, 𝑡0, ..., 𝑡𝑁 , 𝑓 , and 𝑦0 to be fixed and known, and 𝛾 to
be fixed and unknown. To enable estimating 𝛾 (Sections 7.5 and 7.6), we need the
following assumption about the covariance matrix of the initial distribution.

Assumption 7.1. Assume that the covariance matrix of the initial distribution
depends on 𝛾 as 𝐶0 (𝛾) = 𝛾2𝐶0 (1).

The process noise covariance matrix Σ𝜈 (Δ𝑡𝑛, 𝛾) satisfies the same criterion by
construction, Σ𝜈 (Δ𝑡𝑛, 𝛾) = 𝛾2Σ𝜈 (Δ𝑡𝑛, 1).

Recall the random variables representing the IVP constraints from Section 3.4,

R𝑦0 B 𝑌 (0) (𝑡0) − 𝑦0 (7.3a)

R 𝑓 ,𝑛 B 𝑌 (1) (𝑡𝑛) − 𝑓 (𝑌 (0) (𝑡𝑛)), 𝑛 = 0, ..., 𝑁, (7.3b)

which measure the residual of the initial condition and the differential equation. Like
in previous chapters, we abbreviate R 𝑓 ,ℓ:𝑛 = {R 𝑓 ,𝑘}𝑛𝑘=ℓ and 𝑌 (𝑡ℓ:𝑛) B {𝑌 (𝑡𝑘)}𝑛𝑘=ℓ .
The probabilistic numerical IVP solution is

𝑝(𝑌 (𝑡0:𝑁 ) | R 𝑓 ,0:𝑁 = 0,R𝑦0 = 0, 𝛾). (7.4)

Chapter 3 showed how the probabilistic numerical IVP solution factorises into a
sequence of backward conditionals and how the likelihood of the constraints

𝑝(R𝑦0 = 0,R 𝑓 ,0:𝑁 = 0 | 𝛾) (7.5)

factorises sequentially, too. Such a sequential factorisation implies that the following
strategy estimates the IVP solution and the likelihood of the constraints in a constant
number of operations per grid-point:

1. Initialisation: Estimate the marginal and the conditional distributions from the
joint distribution 𝑝(𝑌 (𝑡0),R 𝑓 ,0,R𝑦0 | 𝛾) or an appropriate substitution thereof
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(see below). These quantities describe the state at the initial grid point 𝑡0 and
serve as the input to the following loop.

For 𝑛 = 0, ..., 𝑁 − 1, alternate extrapolation and correction:

2. Extrapolation: Estimate the marginal and conditional distributions from the
joint distribution 𝑝(𝑌 (𝑡𝑛), 𝑌 (𝑡𝑛+1) | R 𝑓 ,0:𝑛 = 0,R𝑦0 = 0, 𝛾). These quantities
predict the state at time 𝑡𝑛+1 from the information available at all previous times.

3. Correction: Estimate the marginal and conditional distributions from the joint
distribution 𝑝(𝑌 (𝑡𝑛+1),R 𝑓 ,𝑛+1 | R𝑦0 = 0,R 𝑓 ,0:𝑛 = 0, 𝛾). These quantities
describe the solution after a new data point has been incorporated, and from
here on, a new extrapolation step can be initiated.

This was Algorithm 3.2. The present chapter provides details for each of the steps.
More specifically, Section 7.2 explains how Taylor-series estimation algorithms

from Chapter 6 improve the initialisation. Section 7.3 shows how appropriate precon-
ditioning stabilises the extrapolation, Section 7.4 how to implement the correction,
and Sections 7.5 and 7.6 how to estimate the output scale 𝛾. Section 7.7 concludes by
selecting templates for probabilistic numerical solvers for one-dimensional problems.

7.2 Initialisation

We have two options to initialise the state estimate: a natural option and a better one.
Recall from Chapter 6 how at each time point, 𝑌 (𝑡) contains the first 𝜈 unnormalised
Taylor coefficients of the IVP solution. The two options are:

1. Gaussian conditioning: Estimate the marginals and conditionals from the
joint distribution 𝑝(𝑌 (𝑡0),R 𝑓 ,0,R𝑦0 | 𝛾). To this end, begin by computing the
conditional 𝑝(𝑌 (𝑡0) | R𝑦0 , 𝛾), which is Gaussian and available in closed form
by implementing any of the algorithms in Chapter 4. Optionally, track the
likelihood of the constraints 𝑝(R𝑦0 | 𝑌 (𝑡0), 𝛾). Then, proceed with a correction
step using 𝑝(𝑌 (𝑡0) | R𝑦0 , 𝛾) as the prediction; see Section 7.4.

2. Taylor-series estimation: Estimate the first 𝜈 derivatives of the IVP solution,

𝑦(𝑡0),
d𝑦(𝑡0)

d𝑡
, ...,

d𝜈𝑦(𝑡0)
d𝑡𝜈

, (7.6)

with any of the algorithms in Chapter 6, preferably, Taylor-mode automatic
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differentiation, and set

𝑝(𝑌 (𝑡0) | R 𝑓 ,0,R𝑦0 , 𝛾) ≈ 𝑝

(
𝑌 (𝑡0)

����� {
𝑌 (𝑞) (𝑡0) =

d𝑞𝑦(𝑡0)
d𝑡𝑞

}𝜈
𝑞=0

, 𝛾

)
(7.7a)

= 𝛿

[(
𝑦(𝑡0),

d𝑦(𝑡0)
d𝑡

, ...,
d𝜈𝑦(𝑡0)

d𝑡𝜈

)]
. (7.7b)

It is possible to track the likelihood of the constraints in Equation (7.7a), but
this step is usually skipped in practice.

Item 1 would be the technically correct initialisation for the probabilistic numerical
IVP solution according to Equation (7.4). Nevertheless, Item 2 is the method of choice
wherever applicable.

The advantage of the implementation in Item 1 over the alternative is generality:
the necessary modifications that turn an initialiser for an initial value problem into
one for a boundary value problem or a partial differential equation are relatively
straightforward: replace R 𝑓 ,𝑛 or R𝑦0 by its respective counterpart. Item 1 is possible
for all problems that admit a sequential implementation of a probabilistic numerical
solver. Its disadvantage is that it is inaccurate (because, while it initialises the zeroth-
derivative and first derivative exactly, it does not estimate any of the higher derivatives)
and requires selecting parameters 𝑚0 and 𝐶0 (𝛾).

In contrast, the advantage of the implementation in Item 2 over Item 1 is improved
performance: if automatic differentiation is available, all derivatives are computed
exactly and in reasonable runtime (Chapter 6). Since the full state 𝑌 (𝑡) is perfectly
reconstructed, the choices of 𝑚0 and 𝐶0 (𝛾) are irrelevant, and a user does not have
to choose these parameters. That said, Item 2 only applies to initial value problems
based on ordinary differential equations, which is why we must revisit Item 1 in the
later Chapters 11 and 12.

7.3 Extrapolation

After initialisation, the first extrapolation step occurs. The present section explains
implementing numerically stable extrapolation with high-order integrated Wiener
processes, but some of the techniques also apply to other stochastic processes like
high-order Matèrn processes. We will comment on the algorithms accordingly.

For integers 𝑎, 𝑏 ∈ N, 𝑎! is the factorial of 𝑎 and
(𝑎
𝑏

)
= 𝑎!

(𝑎−𝑏)!𝑏! is the binomial
coefficient of “𝑎 over 𝑏” or “𝑎 choose 𝑏”. Let 𝑛 ∈ {0, ..., 𝑁 − 1}. Assume that a
Cholesky parametrisation of the Gaussian distribution

𝑝(𝑌 (𝑡𝑛) | R 𝑓 ,0:𝑛 = 0,R𝑦0 = 0, 𝛾) (7.8)

is available. The first extrapolation receives this parametrisation from the initialisation
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routines discussed above; all remaining extrapolations build on the results of previous
steps. The subscript “𝑛 + 1 | 𝑛”, as in 𝑚𝑛+1 |𝑛, will encode the value of a variable at
time 𝑡𝑛+1 given all observations up to time 𝑡𝑛. For example, 𝑚𝑛+1 |𝑛 is the mean of the
Gaussian process conditioned on the initial value and R 𝑓 ,0:𝑛 = 0.

Recall from Equation (7.2) that 𝑌 (𝑡𝑛+1) is an affine transformation of 𝑌 (𝑡𝑛) with
additive Gaussian noise. In principle, we could extrapolate with Algorithm 4.2: A
single QR-decomposition of a matrix with 2(𝜈 + 1) rows and columns (and some
matrix-vector arithmetic) computes a Cholesky parametrisation of the marginal

𝑝(𝑌 (𝑡𝑛+1) | R 𝑓 ,0:𝑛 = 0,R𝑦0 = 0, 𝛾) = N(𝑚𝑛+1 |𝑛, 𝐶𝑛+1 |𝑛 (𝛾)) (7.9)

and a Cholesky parametrisation of the conditional

𝑝(𝑌 (𝑡𝑛) | 𝑌 (𝑡𝑛+1),R 𝑓 ,0:𝑛 = 0,R𝑦0 = 0, 𝛾) = N(Λ𝑛 |𝑛+1𝑌 (𝑡𝑛+1) + 𝜆𝑛 |𝑛+1,Ξ𝑛 |𝑛+1 (𝛾))
(7.10)

in one go. In other words, Algorithm 4.2 would compute𝑚𝑛+1 |𝑛, the Cholesky factor of
𝐶𝑛+1 |𝑛 (𝛾), Λ𝑛 |𝑛+1, 𝜆𝑛 |𝑛+1, and the Cholesky factor of Ξ𝑛 |𝑛+1 (𝛾) from the parameters
of the previous state and the extrapolation model. However, this approach would suffer
from numerical instability:

The computation of Λ𝑛 |𝑛+1, a part of Algorithm 4.2, requires the numerical solution
of linear systems involving the Cholesky factor of 𝐶𝑛+1 |𝑛 (𝛾). The conditioning of
this linear system, which is quantified by the magnitude of the condition number
of the matrix, is terrible – that is, the matrix has a large condition number (we will
see an example later). Condition numbers indicate how the process of solving an
equation amplifies small perturbations in the input. Roughly speaking, the condition
number states how much precision is lost when inverting a matrix and the larger the
number, the more precision is lost. Huge condition numbers render the solution of
linear systems practically infeasible.

The covariance matrix 𝐶𝑛+1 |𝑛 (𝛾) of the marginal distribution and its generalised
Cholesky factors are one example of huge condition numbers. 𝐶𝑛+1 |𝑛 (𝛾) is the sum
of a positive semidefinite matrix and the positive definite Hankel matrix Σ𝜈 (Δ𝑡𝑛, 𝛾).
Therefore, it must be invertible – in theory. In practice, it can be ill-conditioned because
the condition number of a Hankel matrix of order 𝑘 grows like 2𝑘 [e.g. 16, 166] –
and the process noise covariance matrix is not just a Hankel matrix with order 𝑘 = 𝜈,
but its condition number far exceeds 2𝜈 for small step sizes as demonstrated below.
Figure 7.1 displays the entries of Σ𝜈 (Δ𝑡 , 𝛾) for varying 𝜈 and Δ𝑡 . In general, the
numerical stability of the extrapolation step should not depend on Δ𝑡 .

Fortunately, the dependence of Σ𝜈 (Δ𝑡𝑛, 𝛾) on Δ𝑡𝑛 is unnecessary: We can change
the coordinate system to remove the dependence on the spacing Δ𝑡𝑛 from the process
noise. The computation of the backward transition Λ𝑛 |𝑛+1 becomes more stable
because the extrapolation happens in a more suitable coordinate system.
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Figure 7.1: The elements in the process noise matrix Σ𝜈 (Δ𝑡 , 𝛾) decay rapidly from the
bottom right to the top left element. The figure displays the logarithm of the entries in
Σ𝜈 (Δ𝑡 , 𝛾) for different 𝜈 and time-steps (referred to as ℎ instead of Δ𝑡 in this figure)

To this end, define the diagonal matrix

𝑇𝜈 : (0,∞) → R(𝜈+1)×(𝜈+1) , 𝜏 ↦→
√
𝜏 diag

(
𝜏𝜈

𝜈!
,
𝜏𝜈−1

(𝜈 − 1)! , ..., 𝜏, 1
)
. (7.11)

For every 𝜏 > 0, the matrix 𝑇𝜈 (𝜏) is invertible with inverse

𝑇𝜈 (𝜏)−1 B
1
√
𝜏

diag
(
𝜈!
𝜏𝜈
,
(𝜈 − 1)
𝜏𝜈−1 , ...,

1
𝜏
, 1

)
. (7.12)

For all 𝑛 ∈ {0, ..., 𝑁 − 1}, 𝑇𝜈 eliminates the Δ𝑡𝑛-dependence from Φ𝜈 (Δ𝑡𝑛) and
Σ𝜈 (Δ𝑡𝑛, 𝛾), because they decompose into

Φ𝜈 (Δ𝑡𝑛) = 𝑇𝜈 (Δ𝑡𝑛)Φ𝜈,pre𝑇𝜈 (Δ𝑡𝑛)−1, (7.13a)
Σ𝜈 (Δ𝑡𝑛, 𝛾) = 𝑇𝜈 (Δ𝑡𝑛)Σ𝜈,pre (𝛾)𝑇𝜈 (Δ𝑡𝑛)⊤, (7.13b)

with system matrices

Φ𝜈,pre B

[(
𝜈 − 𝑖
𝜈 − 𝑗

)]𝜈
𝑖, 𝑗=0

, Σ𝜈,pre (𝛾) B 𝛾2
[

1
2𝜈 + 1 − 𝑖 − 𝑗

]𝜈
𝑖, 𝑗=0

. (7.14)

Σ𝜈,pre (𝛾) is a positive definite Hilbert matrix and thus admits a closed-form Cholesky
decomposition [e.g., via 3, 41, 131].

This extraction of the Δ𝑡𝑛-dependence from the transition matrix Φ𝜈 (Δ𝑡𝑛) and
Σ𝜈 (Δ𝑡𝑛,) is crucial for stabilising the extrapolation as seen in the following examples:

Example 7.2 (Conditioning of the (preconditioned) process noise covariance
matrix). We investigate the effect of the coordinate change on the conditioning
of the process noise covariance matrix Σ𝜈 (Δ𝑡 , 𝛾).
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Table 7.1: Conditioning of the (preconditioned) process noise covariance matrix. A
lightning (E) marks NaN’s, which occur when attempting to compute the logarithm of
a negative number – numerically, the matrix is indefinite. “Prec.” means the precondi-
tioner, “Nord.” represents the alternative (which is the Nordsieck representation), and
“Noth.” is the absence of preconditioning. All values are in log10-basis.

𝜈
Condition number Ratio Smallest eigenvalue

Prec. Nord. Noth. Prec. Nord. Noth. Prec. Nord. Noth.
1 1.3 1.3 9.1 0.5 0.5 8.5 -1.2 -5.2 -13.1
3 4.2 4.3 28.9 0.8 1.3 26.4 -4.0 -9.1 E
5 7.2 7.6 43.7 1.0 2.3 45.2 -7.0 -14.1 E
7 10.2 11.0 57.3 1.2 3.4 64.6 -10.0 -19.8 E
9 13.2 14.5 68.5 1.3 4.5 84.4 -13.0 -25.9 E
11 16.2 17.4 79.9 1.4 5.6 104.6 -16.0 E E

We set 𝛾 = 1 because scalar multiplication does not affect the condition
number of a matrix. We choose Δ𝑡𝑛 = 10−4, which is a realistic scenario for an
IVP solver, and vary the number of derivatives 𝜈. We compute three quantities
and display them in Table 7.1. Values are displayed in log10 basis and rounded to
a single decimal.

The left column of Table 7.1 contains condition numbers of the process
noise covariance matrices, which should be as small as possible. The middle
column of Table 7.1 contains the ratios of the biggest and smallest entries in
Σ𝜈 (Δ𝑡 = 10−4, 𝛾 = 1),

𝜌 B max
𝑖 𝑗

{
Σ𝜈 (Δ𝑡 = 10−4, 𝛾 = 1)

}
𝑖 𝑗
/min
𝑖 𝑗

{
Σ𝜈 (Δ𝑡 = 10−4, 𝛾 = 1)

}
𝑖 𝑗
. (7.15)

All elements in Σ𝜈 (Δ𝑡 = 10−4, 𝛾 = 1) are positive, and the ratio should be as
small as possible. The right column of Table 7.1 contains the smallest eigenvalues
of Σ𝜈 (Δ𝑡 = 10−4, 𝛾 = 1), which should be as large as possible. We evaluate all
three quantities before and after the coordinate change. We also compare the
preconditioner to an alternative (the Nordsieck representation, discussed below).

The “best” values (the smallest for the condition number and the ratio, the
largest for the minimal eigenvalue) are bold-faced—they all use the proposed
coordinate change. The preconditioner improves all quantities significantly.

Example 7.3 (Conditioning of the Cholesky factors of the extrapolated covariance).
We evaluate the condition numbers of the Cholesky factors of the extrapolated
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Figure 7.2: Conditioning of the Cholesky factors of the extrapolated covariance.
Comparison of no preconditioning (red plus), Nordsieck representations (yellow cross)
and the proposed coordinate change (blue star). The discrepancy between the maximal
condition numbers is red (None vs Nordsieck) and yellow (Nordsieck vs Proposed).
The range between 0 and the maximum condition number of the proposal is blue.

covariances “as seen by the solver”. We simulate the Lotka–Volterra model
[110], a nonlinear, two-dimensional IVP, with adaptive step-size selection and
tolerance 10−4. The solver employs a time-varying output scale and uses all
recommendations made in this chapter.

At each extrapolation, we evaluate the condition number of the extrapolated
covariance matrix with and without a coordinate change. We also compare to
the same alternative preconditioner as in Example 7.2. We run the simulation
with 𝜈 ∈ {2, 6, 10} and display the results in Figure 7.2. The maximum condition
number of the extrapolation over the whole simulation decides the success or
failure of the algorithm.

Figure 7.2 shows two phenomena: First, both preconditioners improve the con-
dition number of the extrapolated covariance significantly. Second, the proposed
change consistently leads to a lower condition number than the alternative.

The coordinate change 𝑇𝜈 is a preconditioner because it improves the conditioning
of the extrapolated covariance matrix and its generalised Cholesky factors. More
specifically, Φ𝜈,pre and Σ𝜈,pre (𝛾) describe the transition of a stochastic process
𝑌pre (𝑡𝑛) B 𝑇𝜈 (Δ𝑡𝑛)𝑌 (𝑡𝑛),

𝑝(𝑌pre (𝑡𝑛+1) | 𝑌pre (𝑡𝑛), 𝛾) = N(Φ𝜈,pre𝑌pre (𝑡𝑛), Σ𝜈,pre (𝛾)). (7.16)

Equation (7.16) is Equation (3.6) without a Δ𝑡𝑛-dependence. This lack of dependence
on Δ𝑡𝑛 in the system matrices improves the conditioning of the covariance matrix
of each extrapolation. 𝑌pre (𝑡𝑛) and 𝑌 (𝑡𝑛) are deterministic, linear transformations of
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each other thus marginal distributions are accessible at each time step. For example,

𝑝(𝑌pre (𝑡𝑛) | R 𝑓 ,0:𝑛 = 0,R𝑦0 = 0, 𝛾)
= N(𝑇𝜈 (Δ𝑡𝑛)−1𝑚𝑛 |𝑛, 𝑇𝜈 (Δ𝑡𝑛)−1𝐶𝑛 |𝑛 (𝛾)𝑇𝜈 (Δ𝑡𝑛)−1)

(7.17)

holds. The “reverse” marginalisation reduces to the multiplication of mean and
covariance with 𝑇𝜈 (Δ𝑡𝑛) instead of its inverse.

If (𝐶𝑛 |𝑛 (𝛾))1/2 is a square generalised Cholesky factor of𝐶𝑛 |𝑛 (𝛾), then the product
𝑇𝜈 (Δ𝑡𝑛)−1 (𝐶𝑛 |𝑛 (𝛾))1/2 is a square generalised Cholesky factor of the covariance
matrix 𝑇𝜈 (Δ𝑡𝑛)−1𝐶𝑛 |𝑛 (𝛾)𝑇𝜈 (Δ𝑡𝑛)−1. The coordinate change also preserves upper and
lower triangularity and the sign of the diagonal elements of generalised Cholesky
factors.

Algorithm 7.4 (Preconditioned extrapolation). Compute the extrapolation with
a preconditioner as follows. Let 𝑛 ∈ {0, ..., 𝑁 − 1} and assume a Cholesky
parametrisation of 𝑝(𝑌 (𝑡𝑛) | R 𝑓 ,0:𝑛 = 0,R𝑦0 = 0, 𝛾) = N(𝑚𝑛 |𝑛, 𝐶𝑛 |𝑛 (𝛾)).

1. Assemble the coordinate change 𝑇𝜈 (Δ𝑡𝑛) and its inverse according to
Equation (7.11) and Equation (7.12), respectively.

2. Compute the marginal distribution

𝑝(𝑌pre (𝑡𝑛) | R 𝑓 ,0:𝑛 = 0,R𝑦0 = 0, 𝛾) = N(𝑚𝑛 |𝑛, pre, 𝐶𝑛 |𝑛, pre (𝛾)) (7.18)

according to Equation (7.17).

3. Call Algorithm 4.2 with inputs

𝑚in = 𝑚𝑛 |𝑛, pre (7.19a)

(𝐶in)1/2 = (𝐶𝑛 |𝑛, pre (𝛾))1/2 (7.19b)
𝐴cond = Φ𝜈,pre (7.19c)
𝑏cond = 0 (7.19d)

(𝐶cond)1/2 = (Σ𝜈,pre (𝛾))1/2 (7.19e)

Algorithm 4.2 returns (𝑚out, (𝐶out)1/2, 𝐴rev, 𝑏rev, (𝐶rev)1/2). Assign the
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parameters

𝑚𝑛+1 |𝑛, pre = 𝑚out (7.20a)

(𝐶𝑛+1 |𝑛, pre (𝛾))1/2 = (𝐶out)1/2 (7.20b)
Λ𝑛 |𝑛+1,pre = 𝐴rev (7.20c)
𝜆𝑛 |𝑛+1,pre = 𝑏rev (7.20d)

(Ξ𝑛 |𝑛+1,pre (𝛾))1/2 = (𝐶rev)1/2 (7.20e)

to obtain a Cholesky parametrisation of the marginal distribution

𝑝(𝑌pre (𝑡𝑛+1) | R 𝑓 ,0:𝑛 = 0,R𝑦0 = 0, 𝛾)
= N(𝑚𝑛+1 |𝑛, pre, 𝐶𝑛+1 |𝑛, pre (𝛾))

(7.21)

and a Cholesky parametrisation of the conditional distribution

𝑝(𝑌pre (𝑡𝑛) | 𝑌pre (𝑡𝑛+1),R 𝑓 ,0:𝑛 = 0,R𝑦0 = 0, 𝛾)
= N(Λ𝑛 |𝑛+1,pre𝑌pre (𝑡𝑛+1) + 𝜆𝑛 |𝑛+1,pre,Ξ𝑛 |𝑛+1,pre (𝛾)).

(7.22)

4. Reverse the coordinate change by marginalising

𝑝(𝑌 (𝑡𝑛+1) | R 𝑓 ,0:𝑛 = 0,R𝑦0 = 0, 𝛾)
= N(𝑇𝜈 (Δ𝑡𝑛)𝑚𝑛+1 |𝑛+1, 𝑇𝜈 (Δ𝑡𝑛)𝐶𝑛+1 |𝑛+1 (𝛾)𝑇𝜈 (Δ𝑡𝑛)⊤)

(7.23)

where the marginal generalised Cholesky factor inherits triangularity as
before. Implement

Λ𝑛 |𝑛+1 = 𝑇𝜈 (Δ𝑡𝑛)Λ𝑛 |𝑛+1,pre𝑇𝜈 (Δ𝑡𝑛)−1 (7.24a)
𝜆𝑛 |𝑛+1 = 𝑇𝜈 (Δ𝑡𝑛)𝜆𝑛 |𝑛+1,pre (7.24b)

Ξ𝑛 |𝑛+1 (𝛾) = 𝑇𝜈 (Δ𝑡𝑛)Ξ𝑛 |𝑛+1,pre (𝛾)𝑇𝜈 (Δ𝑡𝑛)⊤ (7.24c)

to obtain the backward transition

𝑝(𝑌 (𝑡𝑛) | 𝑌 (𝑡𝑛+1),R 𝑓 ,0:𝑛 = 0,R𝑦0 = 0, 𝛾)
= N(Λ𝑛 |𝑛+1𝑌 (𝑡𝑛+1) + 𝜆𝑛 |𝑛+1,Ξ𝑛 |𝑛+1 (𝛾)).

(7.25)

Optionally, store the preconditioned backward transitions instead of re-
versing the coordinate change, and (re)apply the preconditioner during the
backward pass.

Return the extrapolation and the backward transition (Equations (7.23) and (7.25)).
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Assumption 7.1 implies that 𝐶𝑛 |𝑛 (𝛾) is of the form

𝐶𝑛 |𝑛 (𝛾) = 𝛾2𝐶𝑛 |𝑛 (1). (7.26)

(The Taylor series estimation initialises this matrix to be zero, and Gaussian condi-
tioning inherits this form due to the same argument that Section 7.4 applies below.)
Due to the form of Algorithm 4.2, the same factorisation is inherited by

𝐶𝑛+1 |𝑛+1 (𝛾) = 𝛾2𝐶𝑛 |𝑛 (1), Ξ𝑛 |𝑛+1 (𝛾) = 𝛾2Ξ𝑛 |𝑛+1 (1) (7.27)

and Λ𝑛 |𝑛+1,pre and 𝜆𝑛 |𝑛+1,pre are independent of 𝛾 (which is straightforward to verify
by considering the corresponding expressions in conventional parametrisation).

The coordinate change allows an interpretation in terms of Taylor series, similar to
what has been discussed by Chapter 6. More concretely, the state

𝑌pre (𝑡𝑛) =
1

√
Δ𝑡

𝜈!
(Δ𝑡)𝜈

(
𝑌 (0) (𝑡𝑛), 𝑌 (1) (𝑡𝑛)Δ𝑡 , ..., 𝑌 (𝜈) (𝑡𝑛)

Δ𝑡𝜈

𝜈!

)
(7.28)

is proportional to the normalised Taylor coefficients of 𝑌 (0) (𝑡𝑛) while the original
state 𝑌 (𝑡𝑛) contains the unnormalised Taylor coefficients of 𝑌 (0) (𝑡𝑛). Normalising
(and scaling) Taylor coefficients thus improves the numerical stability of probabilistic
numerical solvers. The extra scaling factor removes the Δ𝑡-dependence of Σ𝜈 (Δ𝑡 , 𝛾).

Schober et al. [152] use the normalised Taylor coefficient representation, also known
as the Nordsieck representation of 𝑌 (𝑡) (after Nordsieck [123]), to show that a specific
instance of a probabilistic numerical solver is equivalent to a multi-step method
with time-varying weights. Multi-step methods benefit from implementation in the
Nordsieck representation [e.g. 29]. The above explanation shows how an extra scaling
factor in the Nordsieck representation stabilises estimation with multiply-integrated
Wiener processes for (arbitrarily) many derivatives 𝜈 and small step sizes Δ𝑡 .

7.4 Correction

Section 7.1 (and Chapter 3) explained how the sequential IVP solver alternates
between extrapolation and correction steps after initialisation. With initialisation and
extrapolation covered by Sections 7.2 and 7.3, we consider the correction step next.
In general, correction combines the linearisation techniques from Chapter 5 with
the manipulation of linearly related Gaussian variables in Cholesky parametrisation
from Chapter 4. To this end, define the 𝑞th unit vector 𝑒𝑞 as the 𝑞th column of the
identity matrix with 𝜈 + 1 rows and columns. Assume a Cholesky parametrisation of
the extrapolation

𝑝(𝑌 (𝑡𝑛+1) | R 𝑓 ,0:𝑛 = 0,R𝑦0 = 0, 𝛾) = N(𝑚𝑛+1 |𝑛, 𝐶𝑛+1 |𝑛 (𝛾)). (7.29)
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Recall the definition of the residualR 𝑓 ,𝑛 from Equation (7.3) or Section 3.4 respectively.
For example, the logistic differential equation d𝑦 (𝑡 )

d𝑡 = 𝑦(𝑡) (1−𝑦(𝑡)) would correspond
to the residual

R 𝑓 ,𝑛 = 𝑌
(1) (𝑡𝑛) − 𝑌 (0) (𝑡𝑛) (1 − 𝑌 (0) (𝑡𝑛)). (7.30)

The remainder of this section provides detailed instructions for the correction step in
a sequential solver for nonlinear IVPs.

Affine problems can be solved with the algorithms in Chapter 4. If the vector field
of the differential equation 𝑓 is not affine, we linearise it with a Taylor approximation
or statistical linear regression around the current best guess of the IVP solution: the
marginal distribution

𝑝(𝑌 (0) (𝑡𝑛+1) | R 𝑓 ,0:𝑛 = 0,R𝑦0 = 0, 𝛾) = N(𝑒0𝑚𝑛+1 |𝑛, 𝑒0𝐶𝑛+1 |𝑛 (𝛾)𝑒⊤0 ), (7.31)

which derives from the extrapolated state. The generalised Cholesky factor of
𝑒0𝐶𝑛+1 |𝑛 (𝛾)𝑒⊤0 results from that of 𝐶𝑛+1 |𝑛 (𝛾) by QR-decomposing (𝐶𝑛+1 |𝑛 (𝛾))1/2𝑒⊤0 .
The linearised vector field becomes either one of

TS0: 𝑓 (𝑧) ≈ 𝑏, 𝑏 ∈ R (7.32a)
TS1: 𝑓 (𝑧) ≈ 𝑎𝑧 + 𝑏, 𝑏 ∈ R (7.32b)

SLR0: 𝑓 (𝑧) ≈ 𝑏, 𝑏 ∼ N(𝑏̃cond, 𝐶̃cond) (7.32c)
SLR1: 𝑓 (𝑧) ≈ 𝑎𝑧 + 𝑏, 𝑏 ∼ N(𝑏̃cond, 𝐶̃cond) (7.32d)

Equation (7.32) abbreviates first- and zeroth-order Taylor series approximation (TS1,
TS0) and first- and zeroth-order statistical linear regression (SLR1, SLR0). Each of
the parameters 𝑎, 𝑏, 𝑏̃cond, 𝐶̃cond result from either Algorithm 5.1, or Algorithm 5.2,
Algorithm 5.6, Algorithm 5.7, or Algorithm 5.8; the choice between the methods
depends on preferences for Taylor linearisation or statistical linear regression, zeroth-
/first-order methods, and the availability of Jacobians. Taylor-linearisation yields a
deterministic transformation, whereas statistical linear regression yields a stochastic
transformation. Both setups require different routines, so the implementation for
statistical and Taylor-based approaches are explained separately. We begin with
Taylor-linearisation and conclude with statistical linear regression.

Combining the definition of the differential equation residual (Equation (7.3))
with that of zeroth- or first-order Taylor linearisation (Equation (7.32)) yields an
approximation of the type

R 𝑓 ,𝑛+1 ≈ (𝑒1 − 𝑎𝑒0)𝑌 (𝑡𝑛+1) − 𝑏, (7.33)

which is affine in 𝑌 (𝑡𝑛+1). For a zeroth-order approximation, 𝑎 is zero. The correction
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step thus reduces to calling Algorithm 4.5:

Algorithm 7.5 (Correction, Taylor approximation). To approximate the condi-
tional distribution, proceed as follows:

1. Linearise the vector field according to Equation (7.32) with one of the
Taylor approximations (TS0 or TS1).

2. Call Algorithm 4.5 with the inputs

𝑚in = 𝑚𝑛+1 |𝑛 (7.34a)

(𝐶in)1/2 = (𝐶𝑛+1 |𝑛 (𝛾))1/2, (7.34b)
𝐴cond = 𝑒1 − 𝑎𝑒0, (7.34c)
𝑏cond = −𝑏. (7.34d)

Algorithm 4.5 returns parameters (𝑚out, (𝐶out)1/2, 𝐴rev, 𝑏rev, (𝐶rev)1/2).
Assign

𝑚𝑛+1 |𝑛+1 = 𝑏rev, (𝐶𝑛+1 |𝑛+1 (𝛾))1/2 = (𝐶rev)1/2, (7.35)

discard 𝐴rev, and assign

𝑠𝑛+1 = 𝑚out, (𝑆𝑛+1 (𝛾))1/2 = (𝐶out)1/2. (7.36)

Return the resulting approximate Cholesky parametrisation of the conditional

𝑝(𝑌 (𝑡𝑛+1) | R 𝑓 ,0:𝑛+1 = 0,R𝑦0 = 0, 𝛾) ≈ N (𝑚𝑛+1 |𝑛+1, 𝐶𝑛+1 |𝑛+1 (𝛾)) (7.37)

as well as a Cholesky parametrisation of the marginal

𝑝(R 𝑓 ,𝑛+1 | R 𝑓 ,0:𝑛 = 0,R𝑦0 = 0, 𝛾) ≈ N (𝑠𝑛+1, 𝑆𝑛+1 (𝛾)). (7.38)

The linearisation parameters do not depend on 𝛾. If 𝐶𝑛+1 |𝑛 (𝛾) = 𝛾2𝐶𝑛+1 |𝑛 (1), the
conditional and marginal means do not depend on 𝛾, and the conditional and marginal
covariances satisfy 𝐶𝑛+1 |𝑛+1 (𝛾) = 𝛾2𝐶𝑛+1 |𝑛+1 (1) and 𝑆𝑛+1 (𝛾) = 𝛾2𝑆𝑛+1 (1). If the
differential equation is affine and for first-order Taylor-linearisation, Algorithm 7.5
yields the exact posterior. The same holds if the differential equation is constant and
for zeroth-order Taylor linearisation.

Other than Taylor linearisation, statistical linear regression quantifies the lineari-
sation error in an error covariance; as a result, linearised residuals are stochastic
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transformations,

R 𝑓 ,𝑛+1 ≈ (𝑒1 − 𝑎𝑒0)𝑌 (𝑡𝑛+1) − 𝑏, 𝑏 ∼ N(𝑏̃cond, 𝐶̃cond). (7.39)

For zeroth-order approximation, 𝑎 is zero. The stochastic nature of this transformation
requires replacing Algorithm 4.5 with Algorithm 4.2 in Algorithm 7.5:

Algorithm 7.6 (Correction, statistical linear regression). To approximate the
conditional distribution, proceed as follows:

1. Linearise the vector field according to Equation (7.32) with statistical
linear regression (SLR0 or SLR1)

2. Call Algorithm 4.2 with the inputs

𝑚in = 𝑚𝑛+1 |𝑛, (7.40a)

(𝐶in)1/2 = (𝐶𝑛+1 |𝑛 (𝛾))1/2, (7.40b)
𝐴cond = 𝑒1 − 𝑎𝑒0, (7.40c)
𝑏cond = −𝑏̃cond, (7.40d)
𝐶cond = 𝐶̃cond. (7.40e)

Algorithm 4.2 returns parameters (𝑚out, (𝐶out)1/2, 𝐴rev, 𝑏rev, (𝐶rev)1/2).
Assign

𝑚𝑛+1 |𝑛+1 = 𝑏rev, (𝐶𝑛+1 |𝑛+1 (𝛾))1/2 = (𝐶rev)1/2, (7.41)

discard 𝐴rev, and assign

𝑠𝑛+1 = 𝑚out, (𝑆𝑛+1 (𝛾))1/2 = (𝐶out)1/2. (7.42)

Return the resulting Cholesky parametrisation of the conditional

𝑝(𝑌 (𝑡𝑛+1) | R 𝑓 ,0:𝑛+1 = 0,R𝑦0 = 0, 𝛾) ≈ N (𝑚𝑛+1 |𝑛+1, 𝐶𝑛+1 |𝑛+1 (𝛾)) (7.43)

as well as a Cholesky parametrisation of the marginal

𝑝(R 𝑓 ,𝑛+1 | R 𝑓 ,0:𝑛 = 0,R𝑦0 = 0, 𝛾) ≈ N (𝑠𝑛+1, 𝑆𝑛+1 (𝛾)). (7.44)

In contrast to Taylor approximation, all linearisation parameters depend on 𝛾, which
implies that the marginal and conditional means depend on 𝛾. However, in the
remainder of this manuscript, we sometimes ignore this – the results in Section 7.5
would not apply to statistical linear regression without pretending that 𝑚𝑛+1 |𝑛 and
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𝑠𝑛+1 are independent of 𝛾, among other things. Where statistical correctness is crucial,
do not combine statistical linear regression with the following calibration of 𝛾.

Algorithm 7.5 and Algorithm 7.6 summarise how to perform the correction step in a
probabilistic numerical IVP solver. Surrounding both algorithms and the extrapolation
algorithm in Algorithm 7.4, we discussed whether and how the parameters depend
on 𝛾. This discussion is essential for the upcoming sections in this chapter. The
remainder of this chapter discusses the automatic calibration of 𝛾 and combines it
with all previous algorithms in two templates for sequential IVP solvers.

7.5 Calibrating the output scale

All previous sections concerned state estimation of the IVP solution assuming an
unknown but fixed parameter 𝛾. The following two sections discuss estimating 𝛾. To
this end, recall the output scale 𝛾 of the integrated Wiener process from Chapter 3 and
the Mahalanobis norm ∥𝑥∥2

𝑀
= ∥((𝑀)1/2)⊤𝑥∥2

2 from Section 4.6. Let det[𝑀] be the
determinant of a matrix 𝑀 . This section proceeds with deriving a maximum-likelihood
estimate of 𝛾 before the next section discusses time-varying models for 𝛾.

Selecting an unknown parameter that maximises the likelihood of the constraints,

MLE(𝛾) B arg max
𝛾∈R

𝑝(R𝑦0 = 0,R 𝑓 ,0:𝑁 = 0 | 𝛾), (7.45a)

= arg max
𝛾∈R

log 𝑝(R𝑦0 = 0,R 𝑓 ,0:𝑁 = 0 | 𝛾), (7.45b)

= arg min
𝛾∈R

{− log 𝑝(R𝑦0 = 0,R 𝑓 ,0:𝑁 = 0 | 𝛾)}, (7.45c)

is called maximum-likelihood estimation and is one of the most common approaches
to parameter estimation in probabilistic models. If instead of the likelihood of the
constraints itself, an approximation of the likelihood of the constraints is optimised, we
call the procedure quasi-maximum-likelihood estimation. The sequential factorisation
of the likelihood of the constraints allows estimating the quasi-maximum-likelihood
estimate efficiently: To see this, combine the Gaussian approximation of the marginal
distributions from Algorithm 7.5 or Algorithm 7.6 with the sequential factorisation in
Chapter 3 to obtain

MLE(𝛾) = arg min
𝛾∈R

{− log 𝑝(R𝑦0 = 0,R 𝑓 ,0:𝑁 = 0 | 𝛾)} (7.46a)

≈ arg min
𝛾∈R

{
𝑁∑︁
𝑛=0

(
∥𝑠𝑛∥2

𝑆𝑛 (𝛾)−1 + log [det [𝑆𝑛 (𝛾)]]
)

+ ∥𝑠𝑦0 ∥2
𝑆𝑦0 (𝛾)

−1 + log [det [𝑆𝑦0 (𝛾)]]
}
.

(7.46b)
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All parameters in the above equation are byproducts of the initialisation and correction
steps. Whether or not the summands involving 𝑠𝑦0 and 𝑆𝑦0 (𝛾) appear in this expression
depends on choices made at initialisation: For initialisation via Gaussian conditioning,
the terms are part of the likelihood of the constraints; for initialisation via Taylor-series
estimation, computing the marginal distribution is possible but usually skipped in prac-
tice. In this case, the terms are not present in the sum. In the remainder of this chapter,
we include the marginal distribution of the initial state in the exposition; adapting the
formulas to the case of Taylor-series initialisation is relatively straightforward and
left to the reader. In either case, the minimisation problem in Equation (7.46) can be
solved in closed form:

Recall Assumption 7.1 from the introduction in Section 7.1. Assumption 7.1 together
with the factorisation of all relevant covariance matrices into

Σ𝜈 (Δ𝑡𝑛, 𝛾) = 𝛾2Σ𝜈 (Δ𝑡𝑛, 1) (7.47a)

𝐶𝑛 |𝑛 (𝛾) = 𝛾2𝐶𝑛 |𝑛 (1), 𝑛 = 0, ..., 𝑁, (7.47b)

𝐶𝑛+1 |𝑛 (𝛾) = 𝛾2𝐶𝑛+1 |𝑛 (1), 𝑛 = 0, ..., 𝑁 − 1, (7.47c)

Ξ𝑛 |𝑛+1 (𝛾) = 𝛾2 Ξ𝑛 |𝑛+1 (1), 𝑛 = 1, ..., 𝑁, (7.47d)

𝑆𝑛 (𝛾) = 𝛾2 𝑆𝑛 (1), 𝑛 = 0, ..., 𝑁. (7.47e)

(unless statistical linear regression is involved, in which case we resort to pretending
that Equation (7.47) is true) is the reason that the quasi-maximum-likelihood problem
can be solved in closed form:

1. Equation (7.47) implies that Equation (7.46) reads

MLE(𝛾) ≈ arg min
𝛾∈R

1
𝛾2

{
𝑁∑︁
𝑛=0

(
∥𝑠𝑛∥2

𝑆𝑛 (1)−1 + log [det [𝑆𝑛 (1)]]
)

+ ∥𝑠𝑦0 ∥2
𝑆𝑦0 (1)

−1 + log [det [𝑆𝑦0 (1)]]
}
.

(7.48)

First-order optimality conditions imply [25, 163],

MLE(𝛾)2 =
1

𝑁 + 2

(
∥𝑠𝑦0 ∥2

𝑆𝑦0 (1)
−1 +

𝑁∑︁
𝑛=0

∥𝑠𝑛∥2
𝑆𝑛 (1)−1

)
. (7.49)

Each summand in Equation (7.49) is a byproduct of Algorithm 7.5 and Algo-
rithm 7.6, respectively, the initialisation step. All quantities can be computed
during the forward pass and in a constant number of iterations.

2. All covariance matrices in Equation (7.47) are the product of 𝛾2 and a factor
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independent of the output scale. Therefore, we may choose an appropriate
output scale after the simulation and scale all covariance matrices without
losing statistical correctness.

In other words, Algorithm 7.7 (below) is a valid strategy for calibrating 𝛾 [163].

Algorithm 7.7 (Maximum-likelihood estimation of the output scale). Under
Assumption 7.1, and if a Taylor approximation is used for linearisation, calibrate
the output scale 𝛾 as follows:

1. Choose 𝛾 = 1. Estimate the backward transition densities and the condi-
tional distributions with the algorithms in Sections 7.2 to 7.4. Store the
parameters 𝑠𝑦0 , 𝑆𝑦0 (1), {𝑠𝑛}𝑁𝑛=0, and {𝑆𝑛 (1)}𝑁𝑛=0.

2. Estimate 𝛾 by evaluating Equation (7.49).

3. Scale the covariance matrices with the estimated output scale according to
Equation (7.47).

The reason behind the validity of Algorithm 7.7 is Equation (7.47), which holds
because of Assumption 7.1 and because the constraints are approximated as affine
transformations. If statistical linear regression is used for linearisation instead of
a Taylor series, Algorithm 7.7 can still be applied but requires pretending that
Equation (7.47) is true (which it is generally not).

Remark 7.8. If the constraints are corrupted by (pairwise independent) additive
Gaussian noise with covariance matrices {𝑅𝑛 (𝛾)}𝑁𝑛=0, Algorithm 7.7 remains
true as long as 𝑅𝑛 (𝛾) = 𝛾2𝑅𝑛 (1) holds for all 𝑛 = 0, ..., 𝑁 . Otherwise, calibration
is more complicated.

In conclusion, the final unknown parameter to be discussed in this manuscript, the
output scale 𝛾, has also been calibrated automatically now: maximum-likelihood-
estimating the output scale is possible in closed form and during the forward pass
because all algorithm steps preserve the factorisation 𝑀 (𝛾) = 𝛾2𝑀 (1) for arbitrary
covariance matrix 𝑀. This technique will resurface in upcoming chapters about
vector-valued and spatiotemporal models with minimal modification. For problems
that fit the assumption of a time-constant output scale, Algorithm 7.7 is, therefore, a
valid strategy. However, some problems are incompatible with such an assumption,
and alternatives are discussed in the next section.

7.6 Time-varying output-scale

Many problems are suitable for applying a constant-time output scale and Algorithm 7.7.
However, in some scenarios, time-varying output scales are more appropriate than
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constant output scales. For example, consider the linear differential equation d𝑦 (𝑡 )
d𝑡 =

2𝑦(𝑡), 𝑦(0) = 1, which is solved by 𝑦(𝑡) = exp(2𝑡). This example has been discussed
in the context of Figure 3.2. The exponential function grows too quickly for a single
scale to describe its magnitude; assuming a constant 𝛾 is too restrictive and leads
to inaccurate estimation. To solve this problem, we need to refine the model for 𝛾.
Recall the (approximate) representation of a time-varying output scale 𝛾 : R→ R as
a step-function

𝛾 (𝑡) B

𝛾0 if 𝑡 ∈ (−∞, 𝑡0],
𝛾𝑛 if 𝑡 ∈ (𝑡𝑛, 𝑡𝑛+1], 𝑛 = 0, ..., 𝑁 − 1,
𝛾𝑁 if 𝑡 ∈ (𝑡𝑁 ,∞] .

(7.50)

from Chapter 3. For a piecewise-constant output scale, the prior evolves as

𝑝(𝑌 (𝑡𝑛+1) | 𝑌 (𝑡𝑛), 𝛾𝑛) = N(Φ𝜈 (Δ𝑡𝑛)𝑌 (𝑡𝑛), Σ𝜈 (Δ𝑡𝑛, 𝛾𝑛)). (7.51)

Except for using 𝛾𝑛 instead of 𝛾, Equation (7.51) is identical to Equation (3.6). For
a piecewise-constant output scale, we can apply a technique similar to that from
Section 7.5 with only one additional assumption.

Assumption 7.9. Assume that the initial covariance factorises as 𝐶0 (𝛾0) =

𝛾2
0𝐶0 (1).

Assumption 7.9 is almost identical to Assumption 7.1, the only difference is the
notation of a time-varying output scale. In general, Assumption 7.9 is mild.

Assumption 7.10. To implement the estimator for 𝛾0:𝑁 , assume that at each
time-point, the previous estimate is error-free; that is, assume that𝐶𝑛 |𝑛 (𝛾0:𝑛) = 0
holds.

Assumption 7.10’s only role is to derive a formula for the parameter estimate of 𝛾𝑛. It
does not affect the algorithms in Sections 7.2 to 7.4. While it may seem restrictive,
assuming that the previous step has been error-free is a common assumption for
step-size adaptation in non-probabilistic solvers [152], so implementing a similar
assumption for calibrating the probabilistic numerical solver seems reasonable. With
both assumptions satisfied, local quasi-maximum-likelihood estimates can be evaluated
in closed form.

Assumptions 7.9 and 7.10 contribute to the calibration of 𝛾0:𝑁 as follows. Let
𝑛 ∈ {1, ..., 𝑁 − 1}. Recall from Section 3.5 that the process noise covariance matrix
decomposes into Σ𝜈 (Δ𝑡𝑛, 𝛾𝑛) = 𝛾2

𝑛Σ𝜈 (Δ𝑡𝑛, 1). This decomposition, together with
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Assumption 7.9 and Assumption 7.10, implies that when Taylor-linearisation is used,

𝑆𝑛 (𝛾𝑛) = 𝛾2
𝑛𝑆𝑛 (1), 𝑆𝑛 (1) = (𝑒1 − 𝑎𝑒0)Σ𝜈 (Δ𝑡𝑛, 1) (𝑒1 − 𝑎𝑒0)⊤, (7.52)

holds; thus, the quasi-maximum-likelihood estimate of 𝛾𝑛 is [152]

MLE(𝛾𝑛)2 ≈ ∥𝑠𝑛∥2
𝑆𝑛 (1)−1 . (7.53)

If the initial 𝛾0 shall be calibrated, use

MLE(𝛾0)2 ≈ 1
2

(
∥𝑠0∥2

𝑆0 (1)−1 + ∥𝑠𝑦0 ∥2
𝑆𝑦0 (1)−1

)
, (7.54)

Natural modifications apply for initialisation via Taylor-series estimation; details are
left to the reader. Algorithm 7.11 summarises the procedure.

Algorithm 7.11 (Maximum-likelihood estimation of the time-varying output
scale). Let 𝑛 = 0, ..., 𝑁 . Estimate the time-varying output scale as follows.

1. Before each extrapolation, apply Assumption 7.10 and estimate the output
scale 𝛾𝑛 according to Equation (7.53) and Equation (7.54), respectively.
Afterwards, ignore Assumption 7.10.

2. Extrapolate with Algorithm 7.4 but use Equation (7.51) with the estimated
output scale instead of Equation (3.6). Other than using a different output
scale, Algorithm 7.4 does not change.

Then, perform the correction as usual and proceed to the next iteration.

Note how in Item 1 of Algorithm 7.11, Assumption 7.10 is ignored as soon a calibrated
output scale is available.

Estimating a time-varying output scale is similar to estimating a time-constant
one but requires more heuristics and approximations. But the reward is that some
problems can now be solved significantly more accurately than with a constant scale;
for example, the linear differential equation in Figure 3.2 benefits greatly from a
time-varying model. Some of the additional assumptions may seem overly restrictive
at first, for example, Assumption 7.10. But not only are variants of this assumption
typical for estimating local errors in non-probabilistic numerical IVP solvers [e.g.
76, Chapter II.4]; Algorithm 7.11 has been used successfully for many years since
its introduction by Schober et al. [152] and subsequent refinement by Bosch et al.
[25]. To conclude this chapter, Section 7.7 combines the algorithms in templates for
probabilistic numerical IVP solvers that guide the implementation of these methods.
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7.7 Conclusion

This chapter has presented the steps involved in implementing a sequential probabilistic
numerical IVP solver: initialisation, extrapolation, correction, and calibration. The
three algorithms below summarise the main versions of probabilistic numerical
IVP solvers. The first applies to a calibration-free solver. The second refers to
quasi-maximum-likelihood-estimating a constant output scale and elaborates on
Algorithm 7.7. The third corresponds to time-varying output scales and extends
Algorithm 7.11. It is titled “dynamic IVP solver” because the model (including the
output scale) changes dynamically over time and with the IVP solution.

Algorithm 7.12 (IVP solver, calibration-free). Assume an initial value problem,
a 𝜈-times integrated Wiener process prior with a constant output scale 𝛾, and
(optionally) a point set 𝑡0, ..., 𝑡𝑁 .

1. Initialise with Taylor-series estimation routines in Chapter 6, if available;
otherwise, use Gaussian conditioning.

2. Then, for each 𝑛 = 0, ..., 𝑁 − 1, alternate the steps:

(a) Extrapolate with Algorithm 7.4 using the user-provided 𝛾.
(b) Correct with Algorithm 7.5 or Algorithm 7.6.
(c) Optionally, estimate the local error and adapt the step-size [25, 152].

3. Return the results.

Use Algorithm 7.12 for IVP-parameter-estimation, in which case the output-scale can
be optimised jointly with the IVP parameters [165].

If 𝛾 is unknown but time-constant, benefit from maximum-likelihood estimation:

Algorithm 7.13 (IVP solver, maximum-likelihood). Assume an initial value
problem, a 𝜈-times integrated Wiener process prior with a constant output scale,
and (optionally) a point set 𝑡0, ..., 𝑡𝑁 .

1. Initialise with Taylor-series estimation routines in Chapter 6, if available;
otherwise, use Gaussian conditioning.

2. Set an initial estimate of the output scale as

MLE(𝛾)0 ≈ 1
√

2

(
∥𝑠0∥2

𝑆0 (1)−1 + ∥𝑠𝑦0 ∥2
𝑆𝑦0 (1)−1

)1/2
. (7.55)
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If the full Taylor series has been initialised exactly, replace 𝑠𝑦0 and 𝑆𝑦0 (1)
accordingly or skip this step and initialise the maximum-likelihood estimate
with the user-specified parameter (or one).

3. Then, for each 𝑛 = 0, ..., 𝑁 − 1, alternate the steps:

(a) Extrapolate with Algorithm 7.4 using 𝛾 = 1.
(b) Correct with Algorithm 7.5 or Algorithm 7.6.
(c) Update the maximum-likelihood estimate of the output scale as

MLE(𝛾)𝑛+1 ≈
(
𝑛

𝑛 + 1
MLE(𝛾)2

𝑛 +
1

𝑛 + 1
∥𝑠𝑛+1∥2

𝑆𝑛+1 (1)−1

)1/2
.

(7.56)

This update can be implemented in Cholesky arithmetic using the
techniques from Chapter 4.

(d) Optionally, estimate the local error and adapt the step-size [25, 152].

4. Scale all covariance matrices with MLE(𝛾) B MLE(𝛾)𝑁 (Equation (7.47)).

When using this algorithm, be aware that Algorithm 7.13 relies on assumptions only
satisfied by Taylor linearisation and that statistical linear regression does not fulfil this
framework unless certain dependencies are ignored.

Algorithm 7.14 (Dynamic IVP solver). Assume an initial value problem, a
𝜈-times integrated Wiener process prior with a prior output scale, and (optionally)
a point set 𝑡0, ..., 𝑡𝑁 .

1. Initialise with Taylor-series estimation routines in Chapter 6, if available;
otherwise, use Gaussian conditioning.

2. Initiate a current estimate of the output scale as

MLE(𝛾)0 ≈ 1
√

2

(
∥𝑠0∥𝑆0 (1)−1 + ∥𝑠𝑦0 ∥𝑆𝑦0 (1)−1

)
. (7.57)

with natural modifications for full Taylor series (or skip this and choose
the user-specified output scale).

3. Then, for each 𝑛 = 0, ..., 𝑁 − 1, alternate the steps:
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(a) Estimate the local output scale 𝛾𝑛 with the maximum-likelihood
estimator in Equation (7.53).

(b) Extrapolate with Algorithm 7.4 using the tuned output scale 𝛾𝑛.
(c) Correct with Algorithm 7.5 or Algorithm 7.6.
(d) Optionally, estimate the local error and adapt the step-size [25, 152].

Use the dynamic IVP solver for problems that follow time-varying scales, for example,
linear equations or the stiff version of the van-der-Pol system [72].

The main difference between the templates in Algorithms 7.13 to 7.14 and early
works on probabilistic numerical IVP solvers that implemented IVP solvers as
extended Kalman filters are Taylor-series initialisation, Cholesky arithmetic, and
preconditioning. And these differences matter:

Example 7.15. We compute a probabilistic numerical approximation of the
solution of the logistic IVP

¤𝑥(𝑡) = 4𝑥(𝑡) (1 − 𝑥(𝑡)), 𝑥(0) = 0.15, 𝑡 ∈ [0, 2] . (7.58)

We calibrate a time-varying output scale and solve the IVP adaptively with
(relative and absolute) tolerance 10−5. We employ first-order and zeroth-order
Taylor linearisation and vary the number of derivatives 𝜈.

We implement two versions of each solver. One version uses the recommenda-
tions from this chapter, including the Taylor series initialisation, preconditioning,
and Cholesky arithmetic. The other version does not initialise high-order Taylor
coefficients accurately, does not use a preconditioner, and implements Gaus-
sian random variable arithmetic conventionally. Table 7.2 displays how the
modifications make a drastic difference in the successful integration of IVPs.

Cholesky arithmetic and preconditioning could be used for Kalman filtering with
integrated Wiener process priors; initialisation, step-size adaptation, and dynamic
calibration are specific to differential equation solvers.

In summary, best practices and templates for implementing IVP solvers have been
discussed in this chapter—first, separately for initialisation, extrapolation, correction,
and calibration, and then put together in three holistic templates. The upcoming
chapters discuss extensions to vector-valued, spatiotemporal, and boundary-value
problems. The present chapter serves as the foundation for those discussions, and
upcoming explanations will frequently refer back to the best practices for implementing
probabilistic numerical solvers for scalar-valued IVPs.
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Table 7.2: Successful approximation of an ODE solution. A “✓” indicates the
successful estimation with an error below the prescribed tolerance. A “×” is a failure.
“TS0” and “TS1” are zeroth- and first-order linearisation, respectively.

𝜈
Naive implementation Stabilised implementation
TS0 TS1 TS0 TS1

2 ✓ ✓ ✓ ✓
3 ✓ ✓ ✓ ✓
4 ✓ ✓ ✓ ✓
5 × ✓ ✓ ✓
6 × × ✓ ✓
7 × × ✓ ✓
8 × × ✓ ✓
9 × × ✓ ✓
10 × × ✓ ✓
11 × × ✓ ✓
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8.1 Introduction

The previous chapter(s) explained best practices for implementing probabilistic
numerical solvers for scalar initial value problems (IVPs). Next, we discuss extending
those algorithms to vector-valued problems. Even though most components will
remain the same as in previous parts, the overall structure of the state-space model
changes and is thus separate from scalar problems.

Let 𝑑 ∈ N and assume a vector field 𝑓 : R𝑑 → R𝑑 . Consider an initial value
problem based on an ordinary differential equation,

d𝑦(𝑡)
d𝑡

= 𝑓 (𝑦(𝑡)), (8.1)

constrained by the initial condition 𝑦(0) = 𝑦0 ∈ R𝑑 . As usual, the IVP is assumed to
be autonomous to simplify the notation; the same modifications as in the previous
chapters apply to other types of IVPs.

Previously, the IVP has always had dimension 𝑑 = 1. From now on, 𝑑 may be
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Figure 8.1: Probabilistic numerical solution of a discretised FitzHugh-Nagumo partial
differential equation [5]. Marginal mean (top row) and marginal standard deviation
(bottom row), from 𝑡 = 0 (left) to 𝑡 = 20 (right). The patterns in the uncertainties
match those in the solution. The simulated IVP is 125k-dimensional.

arbitrarily large, and we invite the reader to think of a dimension up to 𝑑 = 106 or
beyond. High-dimensional IVPs describe large networks of dynamical systems and
are ubiquitous in the natural sciences and machine learning. For example, discretising
a partial differential equation on 𝐾 spatial grid points yields a 𝐾-dimensional initial
value problem (refer to the upcoming Chapter 11).

To construct efficient probabilistic numerical solvers for vector-valued IVPs, we
explore three different approaches, which amount to choosing three different correlation
structures in the (vector-valued) integrated Wiener process prior:

⋄ Dense models: A vector-valued integrated Wiener process in dimension 𝑑, via
a multi-dimensional version of Equation (3.4) in Chapter 3 (Section 8.4).

⋄ Block-diagonal models: A collection of 𝑑 statistically independent, scalar-
valued integrated Wiener processes, each of which is defined as in Chapter 3
(Section 8.5). This model was used to create Figure 8.1.

⋄ Kronecker models: Vector-valued integrated Wiener processes with a Kronecker-
structured covariance matrix (Section 8.7).

We name the three options in line with the kind of covariance structure they impose.
Some of them are known under different names in different communities. For example,
the dense model is a conventional multi-output Gaussian process [e.g., 4, 118], the
block-diagonal model makes an independence assumption, and Kronecker factorisation
connects to separable covariance kernels [e.g., 24, 180]. Naming state-space models
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after their covariance matrix factorisation recommends itself for two reasons: (i) It
closely relates to numerical linear algebra concerns, which are the focus of the present
chapter; (ii) terms like “independence”, “vector-valued”, or “separability” feature
prominently in all other chapters, and (re)using them here would lead to confusion.

The remainder of this chapter proceeds as follows: Section 8.2 recalls important
concepts from previous parts and introduces the probabilistic numerical solution of
vector-valued IVPs, Sections 8.3 to 8.7 discuss implementation strategies, Section 8.8
contains some preliminary benchmarks (more are in Chapter 9), and Section 8.9
concludes the exposition.

8.2 Vector-valued IVP solutions

Recall the setup from Chapter 3: A one-dimensional, 𝜈-times integrated Wiener
process is the zeroth element 𝑌 (0) (𝑡) of the stack of states 𝑌 (𝑡), which are pairwise
related through a Wiener-process-driven stochastic differential equation (that was
Equation (3.4)). The underlying Wiener process is one-dimensional with output scale
𝛾 > 0. Restricted to a grid 𝑡0, ..., 𝑡𝑁 , the scalar integrated Wiener process evolves as

𝑝 (𝑌 (𝑡𝑛+1) | 𝑌 (𝑡𝑛), 𝛾) = N (Φ𝜈 (Δ𝑡𝑛)𝑌 (𝑡𝑛), Σ𝜈 (Δ𝑡𝑛, 𝛾)) (8.2)

with the Pascal matrix Φ𝜈 (Δ𝑡) and the Hilbert matrix Σ𝜈 (Δ𝑡, 𝛾) = 𝛾2Σ𝜈 (Δ𝑡, 1); again,
detailed expressions are in Chapters 3 and 7.

Constraining 𝑌 = (𝑌 (0) , ..., 𝑌 (𝜈) ) to attaining zero differential equation residual,

R 𝑓 ,𝑛 B 𝑌 (1) (𝑡𝑛) − 𝑓 (𝑌 (0) (𝑡𝑛)) = 0, (8.3)

and zero initial condition residual, R𝑦0 B 𝑌 (𝑡0) − 𝑦0 = 0, approximates the IVP
solution. In other words, solving the IVP amounts to estimating

𝑝

(
𝑌 (𝑡)

�� [R 𝑓 ,𝑛 = 0]𝑁𝑛=0, R𝑦0 = 0, 𝛾
)
. (8.4)

To improve numerical stability and accuracy, constraining the prior to R𝑦0 = 0 is
replaced by Taylor-series estimation, which usually uses automatic differentiation or
solves a regression problem (Chapter 6). Extrapolation, correction, and calibration
implement Cholesky arithmetic with Gaussian variables (Chapters 4 and 7). Precon-
ditioning stabilises the extrapolation; Either Taylor linearisation or statistical linear
regression enables a Gaussian correction, and approximate maximum-likelihood
calibrates the output scale in closed form. All of this has been discussed thoroughly in
Chapter 7, and we generalise this approach to multi-dimensional models next.

The overall approach remains the same when moving from scalar to vector-valued
differential equations. The only difference is that the prior model 𝑌 (𝑡) becomes an
appropriate vector-valued process with a potentially vector-valued output scale Γ and
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that the residuals R 𝑓 ,𝑛 and R𝑦0 are vector-valued, too.
Each one of Sections 8.4, 8.5 and 8.7 constructs one such vector-valued integrated

Wiener process, exposes the covariance matrix factorisation after time discretisation,
and emphasizes which linearisation strategies preserve this factorisation. Where
required, the sections explain the calibration of a time-constant output scale. Turning
the calibration of a time-constant output scale into that of a dynamic (time-varying)
output scale follows the same strategy outlined in Chapter 7 and is therefore omitted.

The following Sections 8.3 to 8.7 can be read independently with one exception:
Section 8.7 builds on the tools reviewed in Section 8.6.

8.3 Initialisation

Initialising the IVP solver at time 𝑡 = 0 amounts to computing the first 𝜈 Taylor
coefficients of the IVP solution. Chapter 6 explained how this is possible with
automatic differentiation by repeatedly differentiating the IVP dynamics. The two
modes for automatic differentiation were recursive forward-mode differentiation and
the propagation of Taylor polynomials coined “Taylor-mode” differentiation. Chapter 6
also explained how a Taylor series can be estimated by solving a specific regression
problem, in the absence of automatic differentiation. For low-dimensional problems,
initialisation with Taylor-mode automatic differentiation is the state of the art.

Estimating a Taylor series of an IVP solution with recursive forward-mode differ-
entiation is inefficient, especially when the IVP dimension increases. There exists
a version of Taylor-mode differentiation that is based on propagating univariate
Taylor polynomials and can thus be implemented more cheaply [69, 70], which
makes it a valuable option for medium- to high-dimensional problems. For extremely
high-dimensional problems, automatic differentiation can be problematic.

The regression-based approach inherits its complexity from the underlying state-
space model factorisation because it uses the same extrapolation and correction steps
as the IVP solver (Chapter 4; generalised to vector-valued models below). Thus, it
scales to high dimensions as well as the IVP solver (discussed next) and becomes the
default initialisation method for extremely high-dimensional problems.

8.4 Dense models

The first option for building vector-valued models is a dense covariance structure
instead of a block-diagonal or Kronecker covariance structure (Sections 8.5 and 8.7).
We choose to present dense models first because they are a natural extension of
scalar-valued integrated Wiener processes and because they have received more
attention than the other factorisations in the literature on probabilistic numerical IVP
solvers (references below).

Solving IVPs using a dense covariance is almost identical to the scalar setup
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discussed in the previous chapter; it works as follows. Recall Φ𝜈 (Δ𝑡), Σ𝜈 (Δ𝑡, 𝛾), 𝑚0,
and 𝐶0 (𝛾) from Section 8.2 above. Let 𝐼𝑑 ∈ R𝑑×𝑑 be the identity, and let Λ ∈ R𝑑×𝑑
be a fixed and known matrix (usually, Λ is also the identity). Let𝑊 be a 𝑑-dimensional
Wiener process with unit diffusion.

Define a 𝜈-times integrated Wiener process as the solution of the system of stochastic
differential equations

d𝑌 (𝑞) (𝑡) = 𝑌 (𝑞+1) (𝑡) d𝑡, 𝑞 = 0, ..., 𝜈 − 1, (8.5a)

d𝑌 (𝜈) (𝑡) = 𝛾Λ d𝑊 (𝑡), (8.5b)

subject to the Gaussian initial condition

𝑝(𝑌 (0) | 𝛾) = N(𝑚0, 𝐶0 (𝛾)). (8.6)

As usual, assume 𝐶0 (𝛾) = 𝛾2𝐶0 (1). The only difference to the stochastic differential
equation in Chapter 3 is that the Wiener process𝑊 (𝑡) in Equation (8.5) is vector-valued,
and that 𝑚0 ∈ R𝑑 (𝜈+1) and 𝐶0 (𝛾) ∈ R(𝜈+1)𝑑×(𝜈+1)𝑑 have more rows and columns.

Restricted to some grid 𝑡0, ..., 𝑡𝑁 with spacing Δ𝑡𝑛 B 𝑡𝑛+1 − 𝑡𝑛, the process follows

𝑝 (𝑌 (𝑡𝑛+1) | 𝑌 (𝑡𝑛), 𝛾) = N
(
[Φ𝜈 (Δ𝑡𝑛) ⊗ 𝐼𝑑]𝑌 (𝑡𝑛), Σ𝜈 (Δ𝑡𝑛, 𝛾) ⊗ ΛΛ⊤)

(8.7)

where ⊗ is the Kronecker product. The preconditioner for the extrapolation, discussed
in Chapter 7, has the same Kronecker structure as the transition matrix. Extrapolation
thus remains identical to the extrapolation for scalar problems (Chapter 7), but
the system matrices have 𝑑-times as many rows and columns. The computational
complexity of the extrapolation step is thus 𝑂 (𝜈3𝑑3), including preconditioning and
Cholesky parametrisation.

Recall the Euclidean basis vector 𝑒𝑞 , which is the 𝑞th row of an identity matrix with
𝜈 + 1 rows and columns. Define 𝐸𝑞 B 𝑒𝑞 ⊗ 𝐼𝑑 . By construction, 𝑒𝑞 selects the 𝑞th
derivative from the full state, 𝑌 (𝑞) (𝑡) = 𝐸𝑞𝑌 (𝑡), and we use it to define the differential
equation residual

R 𝑓 ,𝑡 B 𝐸1𝑌 (𝑡) − 𝑓 (𝐸0𝑌 (𝑡)). (8.8)

A first-order Taylor-linearisation of 𝑓 around some 𝑧 ∈ R𝑑 ,

𝑓 (𝑥) ≈ 𝐴𝑥 + 𝑏 (8.9)

for some 𝐴 ∈ R𝑑×𝑑 and 𝑏 ∈ R𝑑 , approximates R 𝑓 ,𝑡 as an affine function of 𝑌 (𝑡),

R 𝑓 ,𝑡 ≈ (𝐸1 − 𝐴𝐸0)𝑌 (𝑡) − 𝑏 C 𝐻𝑌 (𝑡) − 𝑏 (8.10)
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with 𝐻 ∈ R𝑑×𝑑 (𝜈+1) . Zeroth-order linearisation and statistical linear regression work
similarly. Like the extrapolation step, the correction step is identical to that for scalar
problems after linearisation (Chapter 7), except that the system matrices have 𝑑-times
as many rows/columns, which raises the computational complexity of the required
numerical linear algebra to 𝑂 (𝑑3𝜈3).

With the same argument as in Chapter 7, we can show that under the above
assumptions, all covariances involved in the dense state-space model are of the form
𝐶 (𝛾) = 𝛾2𝐶 (1), and a quasi-maximum likelihood estimate for 𝛾 emerges in the same
fashion as in Chapter 7. The detailed expression can be found in the paper by Tronarp
et al. [163]; see also the work by Bosch et al. [25], Schober et al. [152].

The dense model is standard for implementing algorithms like the Kalman filter
for vector-valued problems. Moreover, perhaps unsurprisingly, a dense covariance
model has also been standard for solving vector-valued IVPs with a probabilistic
numerical algorithm; for example, refer to Bosch et al. [25, 26], Kersting and Hennig
[91], Kersting et al. [93], Krämer and Hennig [100], Schober et al. [152], Tronarp
et al. [163, 164]. The computational advantages of the factorisations presented next
have not been exploited until recently, which is one contribution of this thesis.

Overall, solving an IVP with the dense state-space model costs 𝑂 (𝜈3𝑑3) per step
and follows the same strategy as the implementation for scalar problems. Compared
to the block-diagonal or Kronecker models below, the dense covariance structure is
the most expressive because it does not factorise the covariance matrices. However, it
is also the most expensive state-space model because estimation scales cubically with
the IVP dimension.

8.5 Block-diagonal models

A block-diagonal state-space model factorises all covariances into block-diagonal
matrices as follows. Recall the system matrices for the scalar modelΦ𝜈 (Δ𝑡), Σ𝜈 (Δ𝑡, 𝛾),
𝑚0, and 𝐶0 (𝛾) from Section 8.2.

Define 𝑌 (𝑡) = [𝑌𝑖 (𝑡)]𝑑𝑖=1 as a stack of 𝑑 independent, scalar-valued, 𝜈-times
integrated Wiener processes, each with output scale 𝛾𝑖 , 𝑖 = 1, ..., 𝑑, and some
Gaussian initial distribution

𝑝(𝑌(𝑡𝑖) | 𝛾𝑖) = N(𝑚𝑖0, 𝐶
𝑖
0 (𝛾𝑖), ) (8.11)

whose parameters are assumed to be known. The joint initial distribution over 𝑌 (𝑡)
has a block-diagonal covariance, the 𝑖th block being 𝐶𝑖0 (𝛾), which is why we call this
state-space model “block-diagonal”. As usual, assume 𝐶𝑖0 (𝛾𝑖) = 𝛾

2
𝑖
𝐶𝑖0 (1).

Every process 𝑌𝑖 (𝑡) transitions independently from the others as

𝑝 (𝑌𝑖 (𝑡𝑛+1) | 𝑌𝑖 (𝑡𝑛), 𝛾𝑖) = N (Φ𝜈 (Δ𝑡𝑛)𝑌𝑖 (𝑡𝑛), Σ𝜈 (Δ𝑡𝑛, 𝛾𝑖)) , 𝑖 = 1, ..., 𝑑, (8.12)
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and extrapolation happens dimension-wise, applying the algorithms from Chapter 7
for every dimension, in overall complexity 𝑂 (𝑑𝜈3).

Ideally, we would like to apply the correction-step dimension-wise as well, but this
is only feasible under a specific condition on the IVP:

Proposition 8.1 (Block-diagonal correction). If the vector field of the IVP is
affine with a diagonal Jacobian matrix, then:

⋄ The correction step can be implemented dimension-wise.

⋄ A quasi-maximum likelihood estimate of the output scale involves calibrat-
ing each 𝛾𝑖 independently with the technique from Chapter 7, 𝑖 = 1, ..., 𝑑.

Proof. If the vector field of the IVP is affine with a diagonal Jacobian, we write it as

𝑓 (𝑦) = [𝑎𝑖𝑦𝑖 + 𝑏𝑖]𝑑𝑖=1 (8.13)

and all elements in the residual R 𝑓 ,𝑡 are conditionally independent given 𝑌 (𝑡).
Therefore, estimation happens coordinate-wise, and both statements must be true. □

If the vector field of the IVP does not satisfy the conditions in Proposition 8.1 – for
example, when it is nonlinear – we approximate.

Zeroth-order Taylor linearisation induces an affine approximation of the IVP with a
zero Jacobian matrix, so it satisfies the assumptions of Proposition 8.1. In other words,
correction and quasi-maximum likelihood calibration with zeroth-order linearisation
can be implemented in 𝑂 (𝑑𝜈3).

First-order linearisation requires additional care. Let 𝑧0, 𝑧 ∈ R𝑑 and define 𝐴 and 𝑏
as the first-order Taylor linearisation of 𝑓 ,

𝑓 (𝑧) = 𝐴𝑧 + 𝑏, 𝐴 B 𝐷 𝑓 (𝑧0), 𝑏 B 𝑓 (𝑧0) − 𝐷 𝑓 (𝑧0)𝑧0. (8.14)

Unless 𝑓 has a diagonal Jacobian, 𝐴 is not diagonal; but approximating

𝐴 ≈ diag(𝐴) (8.15)

yields a linearisation compatible with Proposition 8.1. This diagonal approximation
has not been explored much in past literature; one rare occurrence is Murtuza and
Chorian [119]’s work on the node-decoupled Kalman filter. Provided the diagonal of
the Jacobian matrix can be assembled in𝑂 (𝑑), the correction and calibration steps can
be implemented in 𝑂 (𝑑𝜈3). If the diagonal of the Jacobian is unknown, Hutchinson’s
trick [83] yields an estimate that only requires access to Jacobian-vector products.
Block-diagonal statistical linear regression is an open problem.

In conclusion, a block-diagonal correlation structure can be implemented in a
complexity that increases linearly with the IVP dimension instead of the cubic
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complexity in Section 8.4. As such, it is significantly more efficient than the dense
model but requires discarding correlations between dimensions. For some problems,
this assumption may be appropriate; for others, alternatives must be considered. One
such alternative is the Kronecker factorisation in Section 8.7. However, examining
Kronecker models requires a detour via discussing the relationship between Kronecker
products and matrix-normal distributions, presented next in Section 8.6. Afterwards,
Section 8.7 studies the Kronecker-factorised state-space model.

8.6 Kronecker products and matrix-normal distribution

Before discussing the solution of IVPs in Kronecker-factorised state-space models,
we recall some fundamental tools for matrix-normal distributions and linear algebra
with Kronecker products. All statements below are either well-known facts about Kro-
necker products or follow directly from the definition of matrix-normal distributions.
Textbooks like the ones by Golub and Van Loan [67] and Gupta and Nagar [74], as
well as the paper by Gupta and Varga [73], treat these topics in more depth.

The product 𝐴 ⊗ 𝐵 is the Kronecker product of matrices 𝐴 and 𝐵. For any matrix
𝑀 ∈ R𝑛×𝑚, let vec(𝑀) ∈ R𝑛𝑚 be the row-vectorised representation of 𝑀 . Kronecker
products and vectorisation interact as (𝐴⊗𝐵) vec(𝑀) = 𝐴𝑀𝐵⊤. Like in Chapter 4, let
𝑚in, 𝑏cond, 𝑚joint, 𝐶in, 𝐶cond, 𝐶joint be arbitrary mean vectors and covariance matrices,
and let 𝐴cond be an arbitrary matrix. All of these vectors and matrices shall have
compatible dimensions in the sense that the matrix-vector operations are well-defined.

Let (MN)𝑛×𝑚 be a matrix-normal distribution over the space of 𝑛 × 𝑚 matrices,
defined as follows: Random variables with a matrix-normal distribution yield multi-
variate Gaussian distributions with Kronecker-factorised covariance after vectorisation
[74]; this means that the matrix-normal distribution

𝑝(𝑋) = (MN)𝑛×𝑚 (𝑚in, (𝐶in)1, (𝐶in)2) (8.16)

is equivalent to the multivariate normal distribution

𝑝(vec(𝑋)) = N(vec(𝑚in), (𝐶in)1 ⊗ (𝐶in)2) (8.17)

after vectorisation (flattening). In Equation (8.17), we call (𝐶in)1 the “left” Kronecker
factor, and (𝐶in)2 the “right” Kronecker factor.

From the equivalence between Equation (8.16) and Equation (8.17), standard
properties of matrix-variate Gaussian distributions emerge by translating properties of
multivariate normal distributions with Kronecker-factorised covariances. For example,
a matrix-normal conditional distribution 𝑝(𝑌 | 𝑋) that shares a right Kronecker factor
with 𝑋 (that is, a “row-wise” conditional distribution; note the same (𝐶in)2 as in
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Equation (8.16)),

𝑝(𝑌 | 𝑋) = (MN)((𝐴cond)1𝑋 + 𝑏cond, (𝐶cond)1, (𝐶in)2) (8.18)

implies a matrix-normal joint distribution

𝑝(𝑋,𝑌 ) = (MN)(𝑚joint, (𝐶joint)1, (𝐶in)2) (8.19)

with parameters

𝑚joint B

(
𝑚in

(𝐴cond)1𝑚in + 𝑏cond

)
, (8.20a)

(𝐶joint)1 B
(

(𝐶in)1 (𝐶in)1 (𝐴cond)⊤1
(𝐴cond)1 (𝐶in)1 (𝐴cond)1 (𝐶in)1 (𝐴cond)⊤1 + (𝐶cond)1

)
. (8.20b)

The marginal and conditional distributions inherit the matrix-normal factorisation
from the joint distribution, and since all terms share a right covariance factor, Gaussian
conditioning involves linear algebra only with the left one. This information is crucial
for implementing Kronecker-factorised IVP solvers, where the right factor describes
the spatial correlation (which depends on the IVP dimension), and the left factor
models the integrated Wiener process (independent of the IVP dimension).

The same would hold for “column-wise” conditional distributions, where the
operation (𝐴cond)1𝑋 in Equation (8.18) becomes 𝑋𝐴cond

⊤, the left Kronecker factor
remains, and the right Kronecker factor changes. However, considering only row-wise
operations suffices for Section 8.7.

Square-root parametrisation of matrix-normal distributions amounts to storing the
generalised Cholesky factors of each covariance matrix. As discussed above, the
Cholesky arithmetic of two matrix-normal variables that share one covariance factor
(as in Equation (8.20b)) is carried out only in “the other” factor. This brings with it the
computational advantages of manipulating matrix-normal variables with shape 𝑛 × 𝑚
in either 𝑂 (𝑛3 + 𝑛2𝑚) or 𝑂 (𝑛𝑚2 + 𝑚3) instead of 𝑂 (𝑛3𝑚3), depending on row-wise
versus column-wise conditionals. The only task of the next section is thus to construct
a state-space model where extrapolation and correction preserve a matrix-normal
factorisation, and IVP simulation will be efficient by construction.

8.7 Kronecker models

Next, we apply the knowledge from Section 8.6 to vector-valued integrated Wiener
processes. Let Γ ∈ R𝑑×𝑑 be a fixed but unknown matrix and let𝑊 be a 𝑑-dimensional
Wiener process with unit diffusion. The matrices𝑚0 ∈ R(𝜈+1)×𝑑 and𝐶0 ∈ R(𝜈+1)×(𝜈+1)

shall be known. Note how unlike in previous sections, 𝑚0 is a (𝜈 + 1) × 𝑑-dimensional
matrix instead of a (𝜈 + 1)𝑑-dimensional vector.
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Define a 𝑑-dimensional, 𝜈-times integrated Wiener process as the zeroth component
𝑌 (0) (𝑡) of the solution of the system of stochastic differential equations

d𝑌 (𝑞) (𝑡) = 𝑌 (𝑞+1) (𝑡) d𝑡, 𝑞 = 0, ..., 𝜈 − 1, (8.21a)

d𝑌 (𝜈) (𝑡) = Γ d𝑊 (𝑡), (8.21b)

subject to the matrix-normal initial condition

𝑝(𝑌 (0) | Γ) = (MN)𝜈+1×𝑑 (𝑚0, 𝐶0, ΓΓ
⊤). (8.22)

This setup is almost the same as for the dense model in Section 8.4, but the present
section replaces the product 𝛾Λ with Γ, and imposes a matrix-normal initial condition.
Restricted to a grid 𝑡0, ..., 𝑡𝑁 , the integrated Wiener process follows the matrix-valued
conditional

𝑝 (𝑌 (𝑡𝑛+1) | 𝑌 (𝑡𝑛), Γ) = (MN) (𝜈+1)×𝑑
(
Φ𝜈 (Δ𝑡𝑛)𝑌 (𝑡𝑛), Σ𝜈 (Δ𝑡𝑛, 1), ΓΓ⊤)

(8.23)

which is a direct result of writing Equation (8.7) as a matrix-normal distribution (and
replacing 𝛾Λ with Γ). Following the argument in Section 8.6, extrapolation can be
implemented in 𝑂 (𝑑𝜈2 + 𝜈3) because the initial condition and the conditional share
the right Kronecker factor and because the left Kronecker factor has exactly 𝜈 + 1 rows
and columns, which is independent of 𝑑. Preconditioning happens row-wise.

The logic behind the correction step is similar to that for block-diagonal models:
First, identify which kinds of affine models preserve the matrix-normal structure; then,
linearise the nonlinear vector field accordingly.

Proposition 8.2. If the vector field 𝑓 : R𝑑 → R𝑑 is affine and of the form

𝑓 (𝑥) = 𝑎𝑥 + 𝑏 (8.24)

for scalar 𝑎 ∈ R and vector 𝑏 ∈ R𝑑 , the correction step preserves the matrix-
normal structure in the unobserved states, conditionals, and constraints,

(MN)𝑘×𝑑 (★,★, ΓΓ⊤) (8.25)

where“𝑘” is either 𝜈 + 1 (for the hidden states and backward transitions) or 1
(for the constraints), and “★” is a placeholder for varying values.

The proof of Proposition 8.2 mirrors that of Proposition 8.1 by combining the fact
that the selection operator 𝑌 (𝑡) → 𝑌 (𝑞) (𝑡) is a row-wise operation – thus, it preserves
matrix-normal factorisations – with the statements in Section 8.6.

Under the assumption of Proposition 8.2, the correction step preserves the matrix-
normal structure and can be implemented in 𝑂 (𝑑𝜈2 + 𝜈3) because the right Kronecker
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factor, ΓΓ⊤, remains constant and because the size of the left Kronecker factor is
independent of the IVP dimension. As such, correction in the Kronecker model is
even more efficient than the block-diagonal factorisation (𝑂 (𝑑𝜈3) vs 𝑂 (𝑑𝜈2 + 𝜈3)). A
matrix-normal integrated Wiener process implies the assumption that all rows in 𝑌 (𝑡)
have the same prior distribution and that all columns may vary with covariance ΓΓ⊤

and as such, it is neither more nor less general than the block-diagonal model.
Proposition 8.2 requires that the vector field is affine with a Jacobian that is the

product of a scalar and an identity matrix. If the IVP does not satisfy this condition, for
example, if the vector field is nonlinear, then a zeroth-order Taylor linearisation yields
an appropriate form. Forcing first-order methods and statistical linear regression into
this form is an open problem and left for future work.

By construction, the marginals of the probabilistic numerical IVP solution and the
likelihood of the constraints are matrix-normal with an identical right factor, ΓΓ⊤.
Like in Chapter 7, this implies that Γ can be calibrated offline, i.e., after the simulation.
Furthermore, we can find a (quasi-)maximum likelihood estimate for Γ in closed form
as follows. The derivation uses the following identities from matrix calculus and can
be found in, e.g., the work by Petersen et al. [130].

Lemma 8.3. Let 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑚×𝑚, and 𝑀 ∈ R𝑛×𝑚 be given matrices. ∇ is
the gradient operator. Then,

vec(𝑀)⊤ (𝐴 ⊗ 𝐵) vec(𝑀) = tr(𝑀⊤𝐴𝑀𝐵⊤), (8.26a)
∇𝐵 tr(𝐴𝐵⊤) = 𝐴, (8.26b)

log det(𝐴 ⊗ 𝐵) = 𝑚 log det 𝐴 + 𝑛 log det 𝐵, (8.26c)
∇𝑋 log det 𝑋 = −𝑋−⊤. (8.26d)

Let “const” be a placeholder for unimportant values that are independent of Γ.
Assume that the IVP is of the form 𝑓 (𝜉) = 𝑎𝜉 + 𝑏 for 𝑎 ∈ R and 𝑏 ∈ R𝑑 and satisfies
Proposition 8.2; otherwise, we apply zeroth-order Taylor linearisation to derive a
quasi-maximum likelihood estimate instead of a maximum-likelihood estimate. Recall
the Euclidean basis vector 𝑒𝑞 , which is the 𝑞th row of the identity matrix with 𝜈 + 1
rows and columns.

At any grid-point 𝑡𝑛, the differential equation residual is an affine, Kronecker-
factorisation-preserving transformation of the state,

R 𝑓 ,𝑛 B 𝐻𝑌 (𝑡𝑛) − 𝑏, 𝐻 B (𝑒1 − 𝑎𝑒0) ∈ R1×(𝜈+1) (8.27)

with a matrix-normal marginal distribution

𝑝
(
R 𝑓 ,𝑛 | R 𝑓 ,0:𝑛−1 = 0, Γ

)
= (MN)1×𝑑

(
𝐻𝑚−

𝑛 , 𝐻𝐶
−
𝑛 𝐻

⊤, ΓΓ⊤)
(8.28a)

= (MN)1×𝑑
(
𝑠𝑛, 𝑆𝑛, ΓΓ

⊤)
(8.28b)
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for 𝑠𝑛 ∈ R1×𝑑 and 𝑆𝑛 ∈ R1×1 that depend on the IVP and the extrapolated mean 𝑚−
𝑛

and covariance 𝐶−
𝑛 of the state at time 𝑡𝑛. Notably, 𝑠𝑛 is a “row-vector” and 𝑆𝑛 is a

scalar, which is important for the upcoming step.
For the sake of simplicity, ignore the initial condition constraints in the derivation

below, which is reasonable when the solver is initialised with automatic differentiation;
otherwise, the derivation below adapts straightforwardly. The negative log-likelihood
of the differential equation constraints is (using Lemma 8.3)

− log 𝑝(R 𝑓 ,0:𝑁 = 0 | Γ) (8.29a)

∝
𝑁∑︁
𝑛=0

(
∥ vec(𝑠𝑛)∥2

(𝑆𝑛⊗ΓΓ⊤ )−1 − log det(𝑆𝑛 ⊗ ΓΓ⊤)
)
+ const (8.29b)

∝
𝑁∑︁
𝑛=0

tr
[
𝑠⊤𝑛 𝑆

−1
𝑛 𝑠𝑛 (ΓΓ⊤)−1] − (𝑁 + 1) log det ΓΓ⊤ + const. (8.29c)

Setting the derivative with respect to
(
ΓΓ⊤)−1 to zero yields the closed-form maximum-

likelihood estimate (again, using Lemma 8.3)

ΓΓ⊤ B
1

𝑁 + 1

𝑁∑︁
𝑛=0

𝑠⊤𝑛 𝑆
−1
𝑛 𝑠𝑛 (8.30)

If the residual corresponding to the initial condition is not ignored, the sum involves
a corresponding extra term. If the IVP is nonlinear, zeroth-order linearisation turns
Equation (8.30) into a quasi-maximum likelihood estimate.

Since 𝑠𝑛 ∈ R1×𝑑 is a row-vector, 𝑠⊤𝑛 𝑆𝑛 (1)𝑠𝑛 is an outer product, not an inner product;
and since 𝑆𝑛 is scalar, each summand can be computed in 𝑂 (𝑑). The expression
in Equation (8.30) requires 𝑂 (𝑁𝑑) storage because each 𝑆−1/2

𝑛 𝑠𝑛 must be stored.
Matrix-vector multiplications with ΓΓ⊤ can be implemented with summand-wise
matrix-vector multiplications in Equation (8.30), in complexity 𝑂 (𝑁𝑑). Extracting Γ

from ΓΓ⊤ is possible via a single QR-decomposition of a matrix with 𝑁 + 1 rows and
𝑑 columns, which costs 𝑁𝑑2.

For all scenarios where this is too expensive, we can formulate a model for the
output scale like in Section 8.4. That is, if Γ = 𝛾Λ holds for an unknown 𝛾 ∈ R and a
known Λ, mimicking the above derivation yields an estimator of the form

𝛾 B
1

𝑑 (𝑁 + 1)

𝑁∑︁
𝑛=0

tr
[
𝑠⊤𝑛 𝑆

−1
𝑛 𝑠𝑛 (ΛΛ⊤)−1] = 1

𝑁 + 1

𝑁∑︁
𝑛=0

𝑆−1
𝑛 𝑠𝑛 (ΛΛ⊤)−1𝑠⊤𝑛 (8.31)

due to the cyclic property of traces and because 𝑆𝑛 is scalar. If (ΛΛ⊤)−1 admits
linear-complexity matrix-vector products – which includes the most common case of
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Λ being the identity – the estimator can be implemented in 𝑂 (𝑑). But other relevant
scenarios apply, too, for example, when the covariance Λ results from the stochastic
partial differential approach to simulating Gauss-Markov random fields [107].

In conclusion, zeroth-order linearisation preserves matrix-normal structure in the
state-space underlying a probabilistic numerical IVP solver. As a result, a single
algorithm step can be implemented in𝑂 (𝑑𝜈2+𝜈3), which is significantly more efficient
than the dense model (𝑂 (𝑑3𝜈3)) and slightly more efficient than the block-diagonal
model (𝑂 (𝑑𝜈3)). The benchmarks in the next section corroborate this analysis.

8.8 Benchmarks

In the following section, we demonstrate the computational complexity of the factori-
sations in two example setups. First, Section 8.8.1 examines the runtimes of a single
step of the IVP solver; second, Section 8.8.2 demonstrate how a million-dimensional
IVP can be solved within a few hours using the Kronecker model. This section does
not include runtime comparisons of the solver to state-of-the-art non-probabilistic
algorithms because those are all in Chapter 9.

8.8.1 A single step

We begin by evaluating the cost of a single step of the IVP solver variations on the
Lorenz96 problem, a chaotic dynamical system [108]. It is given by a system of 𝑁 ≥ 4
differential equations

¤𝑦1 = (𝑦2 − 𝑦𝑁−1)𝑦𝑁 − 𝑦1 + 𝐹, (8.32a)
¤𝑦2 = (𝑦3 − 𝑦𝑁 )𝑦1 − 𝑦2 + 𝐹, (8.32b)
¤𝑦𝑖 = (𝑦𝑖+1 − 𝑦𝑖−2)𝑦𝑖−1 − 𝑦𝑖 + 𝐹 𝑖 = 3, . . . , 𝑁 − 1, (8.32c)
¤𝑦𝑁 = (𝑦1 − 𝑦𝑁−2)𝑦𝑁−1 − 𝑦𝑁 + 𝐹, (8.32d)

with forcing term 𝐹 = 8, initial values 𝑦1 (0) = 𝐹 + 0.01 and 𝑦𝑘 (0) = 𝐹, 𝑘 ≥ 2, as
well as time span 𝑡 ∈ [0, 30]. This chaotic dynamical system recommends itself for
the first experiment, as its dimension can be increased freely. We time a single step
with a probabilistic numerical IVP solver for increasing IVP dimension 𝑑 and different
solver orders 𝜈 ∈ {2, 4, 6}. The results are in Figure 8.2. The experiment shows how
the dense model quickly becomes infeasible due to its cubic complexity in the IVP
dimension. The block-diagonal and Kronecker models exhibit their 𝑂 (𝑑) complexity.
Altogether, Figure 8.2 confirms the analysis in Sections 8.3 to 8.7.
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Figure 8.2: Runtime of a single IVP solver step: Run time (wall-clock) of a single step
of IVP solver variations on the Lorenz96 problem (a) for increasing IVP dimension
and 𝜈 = 2, 4, 6 (b to d). The dense models (marked with “Trad.”) cost 𝑂 (𝑑3) per step,
and both the block-diagonal and the Kronecker model cost 𝑂 (𝑑) per step. “EK1” is
first-order, and “EK0” zeroth-order Taylor linearisation.

8.8.2 Extremely high dimensions

To evaluate how well the improved efficiency translates to extremely high dimensions,
we solve the discretised FitzHugh–Nagumo partial differential equation (PDE) model
on high spatial resolution (which translates to high-dimensional IVPs).

Let Δ =
∑𝑑
𝑖=1

𝜕2

𝜕𝑥2
𝑖

be the Laplacian. The FitzHugh–Nagumo PDE is [5]

𝜕

𝜕𝑡
𝑢(𝑡, 𝑥) = 𝑎Δ𝑢(𝑡, 𝑥) + 𝑢(𝑡, 𝑥) − 𝑢(𝑡, 𝑥)3 − 𝑣(𝑡, 𝑥) + 𝑘, (8.33a)

𝜕

𝜕𝑡
𝑣(𝑡, 𝑥) = 1

𝜏
(𝑏Δ𝑣(𝑡, 𝑥) + 𝑢(𝑡, 𝑥) − 𝑣(𝑡, 𝑥)), (8.33b)

for some parameters 𝑎, 𝑏, 𝑘, 𝜏, and initial values 𝑢(𝑡0, 𝑥) = ℎ0 (𝑥), 𝑣(𝑡0, 𝑥) = ℎ1 (𝑥).
We chose 𝑎 = 208 · 10−4, 𝑏 = 5 · 10−3, 𝑘 = −5 · 10−3, 𝜏 = 0.1. We used random
samples from the uniform distribution on (0, 1) as initial values. We solve the PDE
from 𝑡0 = 0 to 𝑡max = 20 on a range of spatial domains 𝑥 ∈ [0,𝑊] × [0,𝑊] ⊆ R2,
with𝑊 ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50}. We discretised the Laplacian with central,
second-order finite differences schemes on a uniform grid to turn the PDE into a
system of ordinary differential equations. The mesh size of the grid determines the
number of grid points, which controls the dimension of the IVP.

All probabilistic numerical solutions are computed with a 3-times integrated
Wiener process prior, a time-varying scalar diffusion, and with step-size adaptation
for chosen tolerances 𝜏abs = 10−3, 𝜏rel = 10−1. The DOP853 solutions are computed
with tolerance levels 𝜏abs = 10−6, 𝜏rel = 10−3. The results are in Figure 8.3. The
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Figure 8.3: High-dimensional PDE discretisation: Run time of IVP solvers on the
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spatial resolution), including calibration and adaptive time steps. SciPy’s DOP853
for reference. Simulating ≫ 106-dimensional ODEs takes ≈ 3ℎ with a Kronecker
model. Like in Figure 8.2, “EK1” is a first-order Taylor linearisation and “EK0” is a
zeroth-order Taylor linearisation.

main takeaway is that with Kronecker or block-diagonal models, IVPs with millions
of dimensions can be solved probabilistically within a realistic time frame (hours),
which is impossible with dense models. GPUs improve the runtime for extremely
high-dimensional problems (𝑑 ≫ 105).

8.9 Conclusion

This chapter extended the best practices for scalar models to vector-valued problems.
Three different approaches have been presented: A dense model, a block-diagonal
model, and a Kronecker model. Each of those has its advantages and disadvantages;
for example, the dense model is the most descriptive but costs 𝑂 (𝑑3𝜈2), whereas the
Kronecker model is essentially restricted to zeroth-order linearisation but costs only
𝑂 (𝑑𝜈2). If the application allows, factorisations can also be combined (e.g., solve a
matrix-valued differential equation by combining a Kronecker factorisation in one
dimension and a block-diagonal factorisation in another).

The choice between the three options reduces to two decisions:

1. Which covariance factorisation is meaningful for a specific simulation problem?

2. Which computational complexity can be afforded?

Ultimately, the state-space model factorisations depends on the application. A JAX
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[28] implementation of all three factorisations is provided by ProbDiffEq1, which
plays an essential role in the upcoming benchmarks in Chapter 9.

1https://pnkraemer.github.io/probdiffeq/
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9.1 Wall-time evaluation of IVP solvers

Some numerical solvers for initial value problems (IVPs) are more efficient than
others. Not only are there dedicated methods for, e.g., stiff or high-dimensional IVPs,
but even within a confined problem class, some methods converge more quickly than
the competition. This difference in performance is why benchmarking the numerical
efficiency on realistic problems is central to the evaluation of numerical algorithms.

Among all possible benchmarks, comparing solvers’ wall times per realised precision
is most instructive because, ultimately, wall time is what every user must endure.
Plotting the work required to compute an approximation against the approximation’s
error is called a work-precision diagram, a standard tool for visualising numerical
efficiency. For instance, Wanner and Hairer [176, Section IV.10] (and many others)
evaluate only work-precision diagrams. In the same spirit, all figures in the present
chapter will contain work-precision diagrams that plot solvers’ wall times against
approximation errors.

By focussing narrowly on benchmarks that display the numerical efficiency of
probabilistic numerical solvers, this chapter ignores many alternative considerations
that determine the “usefulness” of a probabilistic numerical method: for instance,
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the precision per number of function evaluations or the calibration.1 This choice is
deliberate: Thus far, wall-time evaluations of probabilistic numerical IVP solvers
simply have not been as popular as measuring the solver’s precision per function
evaluations or calibration.

Recently, this changed – not only through the papers discussed in this thesis but
also in the parallel work by, e.g., Bosch et al. [25, 26]. Two confounding factors
for this rise in popularity of wall-time benchmarks seem to be improved numerical
stability (Chapter 7) and the broader availability of probabilistic numerics software;
in other words, existing wall-time evaluations of probabilistic solvers use many of
the techniques discussed in this thesis. The remainder of this chapter reproduces a
selection of these benchmarks. In fact, and to the best of the author’s knowledge, the
work-precision diagrams that follow are the first of their kind to demonstrate rare
configurations where probabilistic solvers are more efficient than the most efficient
non-probabilistic method available in Python.

9.2 Multi-framework benchmarks

The results of a simulation study always depend on the used framework, including
factors like the programming language and computing platform but also the sophistica-
tion of code optimisations. For example, both SciPy [170] and Diffrax [95] implement
the same Dormand-Prince 5(4) pair [46] in Python, but the benchmarks below will
demonstrate how Diffrax’s implementation is many times faster than SciPy’s. One
reason for this difference is that Diffrax relies on JAX’s JIT-compiler [28], whereas
SciPy uses native Python code.

The upcoming simulations compare an implementation of probabilistic numerical
solvers in JAX against the recommended algorithms in SciPy and Diffrax. The
implementation of the probabilistic solvers is open-source and contained in the
ProbDiffEq package, which can be installed via

pip install probdiffeq.2

ProbDiffEq implements the algorithms almost exactly as recommended in this
manuscript. The only differences are specialised modifications such as caching and
reusing outputs of certain subfunctions. SciPy and Diffrax were selected because
they provide the state-of-the-art Python-based IVP solvers: SciPy is the de-facto
standard for scientific computing in Python, and Diffrax implements a wide range
of non-probabilistic solvers in JAX and, as such, shares its computing framework
with ProbDiffEq. In the remainder of this chapter, we will see how both ProbDiffEq
and Diffrax consistently outperform SciPy in almost all benchmarks. The comparison

1Refer to Kersting et al. [93], Tronarp et al. [164] for the former, and read Bosch et al. [25], Schober
et al. [152] for the latter.

2https://pnkraemer.github.io/probdiffeq/
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between ProbDiffEq and Diffrax will reveal the actual performance differences between
probabilistic and non-probabilistic methods.

The test problems cover different scenarios, including varying stiffness, dimen-
sionality, and second-order dynamics. Specifically, we compute the solutions of the
Lotka-Volterra (Section 9.3), Pleiades (Section 9.4), and Hires problem (Section 9.5),
as well as a stiff version of the Van-der-Pol system (Section 9.6). A version of these
benchmarks is open-source, available as part of ProbDiffEq’s online documentation.3
Comparing all implementations on these four example problems will provide a realistic
image of the actual numerical efficiency of modern probabilistic numerical solvers
when implemented as this manuscript recommends.

9.3 Problem: Lotka–Voltera

The Lotka–Volterra problem [109, 111, 171] describes predator-prey dynamics and
is one of the most common test problems for IVP solvers. Many modern benchmark
projects for dynamical systems [e.g. 113, 136] include a version of Lotka–Volterra.
We parametrise the predator-prey dynamics as

d𝑦1
d𝑡

= 0.5 · 𝑦1 − 0.05 · 𝑦1 · 𝑦2,
d𝑦2
d𝑡

= −0.5 · 𝑦2 + 0.05 · 𝑦1 · 𝑦2, (9.1)

with initial values 𝑦1 (0) = 𝑦2 (0) = 20, and simulate the solution at 𝑡 = 50 from 𝑡 = 0.
The following configurations are included:

⋄ ProbDiffEq: All solvers use a constant output scale and calibrate it with
maximum-likelihood estimation, combine adaptive step-size selection with
proportional-integral control [75], and initialise with Taylor-mode automatic
differentiation. The linearisation, number of derivatives, and state-space model
factorisation vary.

⋄ Diffrax: All solvers use the proportional-integral-derivative-controller [179]
in Diffrax’s default configuration, which replicates a proportional-integral
controller, and set the max_steps to 105. The solver parameters vary.

⋄ SciPy: All solvers use adaptive steps. The method parameters vary.

We compute the IVP solutions for a range of relative tolerances (setting the absolute
tolerances to 10−3 times the relative tolerances) and measure each simulation’s wall
time and absolute root-mean-squared error. The reference solution is a high-precision
estimate based on SciPy’s LSODA. Every simulation is run 20 times, and sample mean
and standard deviations are reported by Figure 9.1. In Figure 9.1, Diffrax’s solvers are
the most efficient methods. ProbDiffEq’s algorithms consistently outperform SciPy’s
implementations.

3https://pnkraemer.github.io/probdiffeq/
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Figure 9.1: Work-precision benchmark on the Lotka-Volterra problem. The closer a
curve is to the bottom left of the figure, the more efficient the implementation.

9.4 Problem: Pleiades

The Pleiades problem describes the motion of seven stars in a plane [76, p. 245]. It is
a 14-dimensional, second-order differential equation. The Pleiades problem is part of
this benchmark because it challenges a solver to scale to medium-high-dimensional
problems. It is particularly interesting as a second-order equation, and solvers that
target second-order equations will have an advantage over those that must transform it
into a first-order equation. Since this affects the methods present in this benchmark,
one can expect potentially different results from the Lotka-Volterra study.

We use the same parametrisation as Hairer et al. [76, p. 245], calling the 𝑥- and 𝑦-
coordinates of the seven stars 𝑥𝑖 and 𝑦𝑖 with masses 𝑚𝑖 , 𝑖 = 1, ..., 7, and implementing

d2𝑥𝑖

d𝑡2
=

∑︁
𝑖≠ 𝑗

𝑚 𝑗 (𝑥 𝑗 − 𝑥𝑖)/𝑟𝑖 𝑗 , (9.2a)

d2𝑦𝑖

d𝑡2
=

∑︁
𝑖≠ 𝑗

𝑚 𝑗 (𝑦 𝑗 − 𝑦𝑖)/𝑟𝑖 𝑗 , (9.2b)

𝑟𝑖 𝑗 = ((𝑥𝑖 − 𝑥 𝑗 )2 + (𝑦𝑖 − 𝑥 𝑗 )2)3/2. (9.2c)
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The initial values are

𝑥(0) = (3, 3,−1,−3, 2,−2, 2), 𝑦(0) = (3,−3, 2, 0, 0,−4, 4), (9.3a)
d𝑥(0)

d𝑡
= (0, 0, 0, 0, 0, 1.75,−1.5), d𝑦(0)

d𝑡
= (0, 0, 0,−1.25, 1, 0, 0), (9.3b)

and we compare the wall time and absolute root-mean-square error of the approximation
to a high-precision estimate at time 𝑡 = 3, starting the simulation at 𝑡 = 0.

The following solvers are included:

⋄ ProbDiffEq: ProbDiffEq’s solvers solve the second-order problem without
transforming it into a first-order problem, which keeps the dimension of the IVP
at 14. All methods use dynamic calibration of the output scale, zeroth-order
Taylor linearisation, and proportional-integral control (interpolating at the
terminal value if the controller suggests a too-large step), and initialise with
Taylor-mode automatic differentiation. The state-space model has a Kronecker-
factorisation, and the number of derivatives varies.

⋄ Diffrax & SciPy: All solvers transform the problem into a first-order equation,
which increases the dimensionality from 14 to 28. The remaining parametrisation
is identical to Section 9.3. SciPy solvers include a version with and without
JIT-compiling the vector field via Numba [104].

We run each code three times. The sample-mean and sample-standard-deviation are
displayed in Figure 9.2. Notable differences between the results on Pleiades and
Lotka-Volterra are that on Pleiades, ProbDiffEq’s solvers are on par with Diffrax’s
solvers. Both are by a factor ∼10 faster than the SciPy/Numba combination and
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by a factor ∼20 faster than SciPy without Numba. The relative improvement of
ProbDiffEq’s algorithms compared to Lotka–Volterra presumably stems from the
fact that the probabilistic solver can solve the second-order IVP directly without
transforming it, which keeps the IVP dimension low and improves the calibration of
the probabilistic model [26]. That said, there exist non-probabilistic numerical solvers
dedicated to second-order IVPs. However, neither Diffrax nor Scipy provided one at
the time of implementing this benchmark.

9.5 Problem: High irradiance resistance

The “high irradiance resistance” problem [148], “Hires” in short, describes the growth
and differentiation of plant tissue independent of photosynthesis at high levels of
irradiance by light [176]. It is an eight-dimensional, stiff problem and a standard
benchmark for solvers for stiff differential equations.

We implement the same parametrisation as Wanner and Hairer [176], with the
differential equations

d𝑦1
d𝑡

= −1.71 · 𝑦1 + 0.43 · 𝑦2 + 8.32 · 𝑦3 + 0.0007 (9.4a)

d𝑦2
d𝑡

= 1.71 · 𝑦1 − 8.75 · 𝑦2 (9.4b)

d𝑦3
d𝑡

= −10.03 · 𝑦3 + 0.43 · 𝑦4 + 0.035 · 𝑦5 (9.4c)

d𝑦4
d𝑡

= 8.32 · 𝑦2 + 1.71 · 𝑦3 − 1.12 · 𝑦4 (9.4d)

d𝑦5
d𝑡

= −1.745 · 𝑦5 + 0.43 · 𝑦6 + 0.43 · 𝑦7 (9.4e)

d𝑦6
d𝑡

= −280.0 · 𝑦6 · 𝑦8 + 0.69 · 𝑦4 + 1.71 · 𝑦5 − 0.43 · 𝑦6 + 0.69 · 𝑦7 (9.4f)

d𝑦7
d𝑡

= 280 · 𝑦6 · 𝑦8 − 1.81 · 𝑦7 (9.4g)

d𝑦8
d𝑡

= −280 · 𝑦6 · 𝑦8 + 1.81 · 𝑦7, (9.4h)

and the initial values 𝑦1 (0) = 1, 𝑦2 (0) = ... = 𝑦7 (0) = 0, as well as 𝑦8 (0) = 0.0057.
A high-accuracy reference solution is computed with SciPy’s “BDF” method, which
implements a backward-differentiation-formula [176, Chapter V], and tolerance
10−13. We compare the relative root-mean-square error of the approximations at time
𝑡 = 321.8122, starting the simulation at 𝑡 = 0. The following solvers are included:

⋄ ProbDiffEq: All methods use dynamic calibration of the output scale, first-order
Taylor linearisation, proportional-integral control (clipping a step if the step-size



113 9.6. Problem: Stiff van-der-Pol

10 9 10 7 10 5 10 3 10 1

Precision [relative RMSE]

10 4

10 3

10 2

10 1

100
W

or
k 

[w
al

l t
im

e,
 s]

Benchmark
ProbDiffEq: TS1(3)
ProbDiffEq: TS1(5)

Diffrax: Kvaerno3()
Diffrax: Kvaerno5()

SciPy: 'LSODA'
SciPy: 'Radau'

0 100 200 300
Time t

0.0

0.2

0.4

0.6

0.8

1.0

So
lu

tio
n 

y

Hires

Figure 9.3: Work-precision benchmark on the Hires problem. The closer a curve is to
the bottom left of the figure, the more efficient the implementation.

controller proposes a too-large increment), and initialise with Taylor-mode
automatic differentiation. The state-space model does not factorise (i.e., the
covariance matrices are dense), and the number of derivatives varies.

⋄ Diffrax & SciPy: As in Section 9.3 but with methods for stiff problems.

We run each code ten times. The sample-mean and sample-standard-deviation are
displayed in Figure 9.3. The benchmarks demonstrate how Diffrax’s solvers are
the fastest and that SciPy and ProbDiffEq are similarly efficient. More specifically,
ProbDiffEq is slower than SciPy’s LSODA for low precision (which wraps a Fortran
implementation) – with the roles reversed for higher precision – and faster than SciPy’s
Radau (which is pure Python). Altogether, ProbDiffEq’s solvers appear competitive
but not superior to non-probabilistic solvers.

9.6 Problem: Stiff van-der-Pol

The van-der-Pol system is a non-conservative oscillator subject to non-linear damping
due to Van der Pol [169]. It is a widespread benchmark problem because it includes a
parameter 𝜇, whose magnitude controls the stiffness of the equation. We choose it as
𝜇 = 105, which makes the problem stiff (in which case explicit solvers such as the
Dormand-Prince 5(4) pair are inefficient [176]). More specifically, we implement the
same parametrisation as Wanner and Hairer [176, p. 144],

d2𝑦

d𝑡2
= 105 ((1 − 𝑦2) · d𝑦

d𝑡
− 𝑦)), (9.5)
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Figure 9.4: Work-precision benchmark on the Van-der-Pol problem. The closer a curve
is to the bottom left of the figure, the more efficient the implementation. In the left
figure, the 𝑦-axis is clipped to (-6, 6), even though the ¤𝑦 values far exceed these limits.

with initial values 𝑦(0) = 2 and d𝑦 (0)
d𝑡 = 0. We solve from 𝑡 = 0 to 𝑡 = 6.3, calling

each code three times, and use the same algorithms as in Section 9.5, with one
difference: ProbDiffEq implements the differential equation as the (original) second-
order problem, which keeps the dimensionality at one. In contrast, SciPy and Diffrax
transform the problem into a two-dimensional, first-order equation. As in Section 9.4,
this transformation has a significant effect on the numerical efficiency (Figure 9.4)
to the point that (i) all of ProbDiffEq’s considered solvers outperform all of SciPy’s
considered solvers, and (ii) high-order, probabilistic numerical solvers based on
first-order Taylor linearisations are the most efficient method overall.

9.7 Outlook

The benchmarks expressed how ProbDiffEq’s implementation of probabilistic numer-
ical solvers has been more efficient than SciPy’s methods (on all but one example)
and competes with Diffrax’s algorithms for the fastest method overall as soon as the
differential equation is not a first-order, nonstiff problem. For example, the most numer-
ically efficient solver on a stiff version of the van-der-Pol system was a probabilistic
numerical one. For the future development of probabilistic numerical algorithms,
this implies that provided one carefully implements numerically stable and scalable
versions of the algorithms in “fast” frameworks, the real-time performance of a
probabilistic solver is no longer a blocking issue and that the field of probabilistic
numerical IVP solvers is ready for applications to real-world problems.
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10.1 Numerical differentiation

Most of this thesis centres around the probabilistic numerical solution of differential
equations: estimating an unknown function from derivative information. The present
chapter reverses this task. More specifically, it explains a probabilistic model for
numerical differentiation: estimating derivatives from function evaluations.

Numerical differentiation is helpful for many tasks: for example, for analysing the
sensitivity of a computer program to changing one of its input parameters or the
numerical simulation of partial differential equations. Numerical differentiation also
enables the Taylor-linearisation of ordinary differential equations (recall Chapter 5) in
settings where exact Jacobians are unavailable.

Let Ω ∈ Rℓ be a sufficiently regular domain (for example, open, bounded, with a
smooth boundary). Let ℎ : Ω → R be a function. We assume that the functional form
of ℎ is unknown but that we can evaluate ℎ at arbitrary inputs 𝑥 ∈ Ω. For example, such
an assumption is satisfied when ℎ is a computer program or when using numerical
differentiation to estimate ℎ itself, like in the context of partial differential equations
(more details in the upcoming chapter).
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Recall the Jacobian 𝐷ℎ of function ℎ. For any direction 𝜂 ∈ Rℓ ,

𝜕ℎ(𝑥)
𝜕𝜂

B (𝐷ℎ) (𝑥)𝜂 (10.1)

is the derivative of ℎ in direction 𝜂. Let Δ𝑥 > 0 be a given increment. In a non-
probabilistic setting, the directional derivative of ℎ could be approximated as, e.g.,

𝜕ℎ(𝑥)
𝜕𝜂

≈ ℎ(𝑥 + Δ𝑥 · 𝜂) − ℎ(𝑥)
Δ𝑥

(10.2a)

𝜕ℎ(𝑥)
𝜕𝜂

≈ ℎ(𝑥) − ℎ(𝑥 − Δ𝑥 · 𝜂)
Δ𝑥

(10.2b)

𝜕ℎ(𝑥)
𝜕𝜂

≈ ℎ(𝑥 + Δ𝑥/2 · 𝜂) − ℎ(𝑥 − Δ𝑥/2 · 𝜂)
Δ𝑥

(10.2c)

according to forward (Equation (10.2a)), backward (Equation (10.2b)), and central
differences (Equation (10.2c)), respectively.

The present chapter deals with probabilistic numerical differentiation. Why should
we use a probabilistic approach? The advantages of probabilistic numerical differ-
entiation over non-probabilistic numerical differentiation mirror the advantages of
probabilistic numerical solvers over non-probabilistic numerical solvers: The need
for explicit prior distributions enables discussing the modelling aspects of numerical
algorithms, a perspective that usually receives little attention; furthermore, the setup
via a probabilistic model allows combining numerical differentiation with surrounding
computations: for example, an upcoming chapter describes how to combine proba-
bilistic numerical differentiation with probabilistic numerical initial value problem
solvers to construct solvers for partial differential equations.

The remainder of this chapter proceeds as follows. Section 10.2 explains probabilistic
numerical differentiation. Section 10.3 modifies probabilistic numerical differentiation
to more closely replicate the efficiency of finite difference algorithms and discusses
other practical considerations, such as model selection. Section 10.4 links a software-
implementation of probabilistic numerical differentiation.

10.2 Probabilistic numerical differentiation

Let 𝑚ℎ : Ω → R be known and 𝐶ℎ : Ω ×Ω → R be symmetric and positive definite.
D shall be a linear differential operator. The reader may think of directional

derivatives, D = 𝜕
𝜕𝜂

, but D could also be a gradient, divergence, curl, Laplacian, or
any other differential operator. When applying D to a function with two arguments,
D𝐶ℎ applies D to the first argument and D∗𝐶ℎ applies D to the second argument.

Assume that 𝑚ℎ and 𝐶ℎ are sufficiently regular that D𝑚ℎ, D𝐶ℎ, D∗𝐶ℎ, and
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DD∗𝐶ℎ are continuous and that DD∗𝐶ℎ is positive definite. For example, if 𝐶ℎ is
translation-invariant, continuity of DD∗𝐶ℎ and positive definiteness of 𝐶ℎ suffices
for positive definitess of DD∗𝐶ℎ [177, Chapter 16].

Let X B {𝑥0, ..., 𝑥𝐾 } ⊆ Ω be a set of spatial grid points. The below exposition
uses vectorised notation for the mean function 𝑚ℎ (X) B {𝑚ℎ (𝑥𝑘)}𝐾𝑘=0 ∈ R𝐾+1 and
the covariance function 𝐶ℎ (X) B {𝐶ℎ (𝑥𝑘 , 𝑥𝑘′ )}𝐾𝑘,𝑘′=0 ∈ R(𝐾+1)×(𝐾+1) .

While the true functional form of ℎ may be unknown, we may hypothesise that it is
a sample of a Gaussian process,

ℎ ∼ 𝑝(ℎ) = GP(𝑚ℎ, 𝐶ℎ). (10.3)

Then, the joint distribution over ℎ(𝑥) and Dℎ(𝑥) is Gaussian

𝑝(ℎ(𝑥),Dℎ(𝑥)) = N
((

𝑚ℎ (𝑥)
D𝑚ℎ (𝑥)

)
,

(
𝐶ℎ (𝑥, 𝑥) D∗𝐶ℎ (𝑥, 𝑥)
D𝐶ℎ (𝑥, 𝑥) DD∗𝐶ℎ (𝑥, 𝑥)

))
(10.4)

and the derivative Dℎ is a Gaussian process,

𝑝(Dℎ) = GP(D𝑚ℎ,DD∗𝐶ℎ). (10.5)

In other words, we can always derive the parameters of the marginal distribution over
the derivative 𝑝(Dℎ) from the parameters of the distribution over the function 𝑝(ℎ).
Can we also compute the parameters of the conditional distribution 𝑝(Dℎ | ℎ) from
the parametrisation of 𝑝(ℎ)?

Let ℎ be like above and assume a 𝜌2 ≥ 0. Define a random variable 𝜉X that describes
evaluations of ℎ on X corrupted by additive Gaussian noise,

𝑝(𝜉X | ℎ(X)) B N(ℎ(X), 𝜌2𝐼). (10.6)

Manipulating the conditional relationship between 𝜉X , ℎ, and Dℎ implies estimators
for interpolation and differentiation as follows:

Computing the conditional distribution 𝑝(ℎ | 𝜉X) from 𝑝(ℎ) and 𝑝(𝜉X | ℎ) is
interpolation. More specifically, the conditional 𝑝(ℎ | 𝜉X) is a Gaussian process,

𝑝(ℎ | 𝜉X) = GP(𝑊int,X (·)𝜉X + 𝑏int,X (·), 𝐶int,X (·, ·)), (10.7)

where𝑊int,X , 𝑏int,X , and 𝐶int,X are given by

𝑊int,X (𝑥) B 𝐶ℎ (𝑥,X)
[
𝐶ℎ (X,X) + 𝜌2𝐼

]−1 (10.8a)
𝑏int,X (𝑥) B 𝑚ℎ (𝑥) −𝑊int,X (𝑥)𝑚ℎ (X) (10.8b)

𝐶int,X (𝑥, 𝑥′) B 𝐶ℎ (𝑥, 𝑥′) −𝑊int,X (𝑥)
[
𝐶ℎ (X,X) + 𝜌2𝐼

]
𝑊int,X (𝑥′)⊤. (10.8c)
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Equation (10.7) is the standard formula for Gaussian process interpolation [for example,
140]. For 𝜌2 → 0,𝑊int,X (X) = 𝐼𝐾+1 and 𝐶int,X (X) = 0𝐾+1 hold: the observations 𝜉X
are reproduced exactly.

The conditional distribution in Equation (10.7) is a Gaussian process over Ω. The
derivative of this Gaussian process is also a Gaussian process,

𝑝(Dℎ | 𝜉X) = GP(𝑊diff,X (·)𝜉X + 𝑏diff,X (·), 𝐶diff,X (·, ·)), (10.9)

with parameters

𝑊diff,X (𝑥) B D𝑊int,X (𝑥), (10.10a)
𝑏diff,X (𝑥) B D𝑏int,X (𝑥), (10.10b)

𝐶diff,X (𝑥, 𝑥′) B DD∗𝐶int,X (𝑥, 𝑥′). (10.10c)

Equation (10.9) describes numerical differentiation: it estimates Dℎ from point
evaluations 𝜉X . Simply put, probabilistic numerical differentiation involves fitting
a Gaussian process to 𝜉X and differentiating this fit. The result approximates the
derivative of ℎ. Computing the quantities in Equation (10.10) requires access to
D𝐶ℎ (·,X), D∗𝐶ℎ (X, ·), and DD∗𝐶ℎ (·, ·). For known and differentiable 𝐶ℎ, these
derivatives are usually available in closed form or via automatic differentiation.

Algorithm 10.1 (Probabilistic numerical differentiation). Assume that we know
𝑚ℎ, 𝐶ℎ, D𝐶ℎ, D∗𝐶ℎ, DD∗𝐶ℎ, 𝜌2, X, and that we have access to a sample from
𝑝(𝜉X). Diffferentiate ℎ as follows:

1. Compute the probabilistic numerical differentiation parameters from
Equation (10.10).

2. Apply Equation (10.9).

Return the mean and covariance of Equation (10.9).

The differentiation parameters in Equation (10.10) do not depend on 𝜉X but only on
the mean and covariance functions, their derivatives, and the spatial point set. The
parameters in Equation (10.9) can be pre-computed.

If D is not a differential operator but an integral operator, Algorithm 10.1 recovers
probabilistic numerical integration [126], also known as Bayesian quadrature, Bayesian
cubature, or kernel quadrature; see the book by Hennig et al. [79] for an overview. Like
probabilistic numerical differentiation, probabilistic numerical integration relies on
fitting a Gaussian process to sampled evaluations and integrating this approximation,
which is usually possible in closed form. The difference between probabilistic numerical
differentiation and integration is that Algorithm 10.1 applies D and probabilistic
numerical integration applies an integral operator.
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By construction, probabilistic numerical differentiation (Algorithm 10.1) is a
probabilistic numerical method in the definition by Cockayne et al. [37].

Proposition 10.2. Algorithm 10.1 is a probabilistic numerical method according
to the definition by Cockayne et al. [37].

Proof. The proof of Example 2.3 in the paper by Cockayne et al. [37] applies almost
verbatim, except that the quantity of interest is not ℎ ↦→

∫
ℎ d𝜇 but ℎ ↦→ Dℎ. □

For a zero mean 𝑚ℎ = 0 and noise-free function evaluations (that is, 𝜌2 → 0), the
differentiation matrix 𝑊diff,X (X) occurs in a method for solving partial differential
equations with radial basis functions called unsymmetric collocation, or Kansa’s
method [81, 88, 147]. This class of algorithms connects to pseudospectral solvers
for partial differential equations [53, Chapter 42]. A related algorithm, symmetric
collocation [51, 52], estimates not 𝑝(Dℎ | 𝜉X) but conditional distributions like
𝑝(ℎ | Dℎ(X) = 0), and has been translated into a probabilistic numerical solver for
partial differential equations by Cockayne et al. [36]. A linear-time implementation
of symmetric collocation for spatiotemporal problems is another contribution of this
thesis and the content of the next chapter.

By construction, probabilistic numerical differentiation yields marginal distributions
that are consistent with those in Equation (10.4),

𝑝(Dℎ) =
∫

𝑝(Dℎ, 𝜉X) d𝜉X = GP(D𝑚ℎ (·),DD∗𝐶ℎ (·, ·)). (10.11)

In other words, Algorithm 10.1 provides an alternative way of accessing the distribution
of 𝑝(Dℎ), namely, via the conditional distribution 𝑝(Dℎ | 𝜉X). In many settings,
for example, when constructing partial differential equation solvers, access to the
conditional 𝑝(Dℎ | 𝜉X) simplifies the generative model for partial differential equation
solvers (see upcoming chapter).

One of the advantages of Algorithm 10.1 over, say, central finite differences, is that
the statistical description of Algorithm 10.1 provides a natural language for uncertainty
quantification, which is less straightforward for traditional finite difference algorithms.
Further advantages include the transparency of modelling assumptions behind the
algorithm – every user must provide 𝑚ℎ and 𝐶ℎ – and the freedom to numerically
differentiate on scattered point sets instead of being forced to equidistant grids.

The disadvantages of Algorithm 10.1 compared to traditional finite difference
formulas are computational complexity and numerical stability: computing 𝑊diff,X
involves solving a dense linear system with 𝐾 + 1 variables, which usually requires
𝑂 (𝐾3) floating-point operations. Cubic complexity is prohibitively expensive for
large point sets. Numerical ill-conditioning is also problematic: the covariance matrix
𝐶ℎ (X,X) often has a condition number that grows exponentially with the number
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of points in the point set [146]. In contrast, finite difference formulas avoid these
problems, and the next section discusses the required modifications.

10.3 Probabilistic numerical finite differences

For now, we only intend to compute the values of the derivatives at the grid points,

𝑝(Dℎ(X) | 𝜉X) = N(𝑊diff,X (X)𝜉X + 𝑏diff,X (X), 𝐶diff,X (X)) (10.12)

instead of on arbitrary point sets. The modifications below also apply to recon-
structing off-grid derivatives efficiently, but the notation becomes more complicated.
Remark 10.4 discusses off-grid probabilistic numerical finite differences. We proceed
in two steps to reconstruct the computational efficiency of finite difference formulas:

The first step is to pretend conditional independence given 𝜉X ,

𝑝(Dℎ(X) | 𝜉X) ≈
𝐾∏
𝑘=0

𝑝(Dℎ(𝑥𝑘) | 𝜉X) (10.13)

=

𝐾∏
𝑘=0

N(𝑊diff,X (𝑥𝑘)𝜉X + 𝑏diff,X (𝑥𝑘), 𝐶diff,X (𝑥𝑘)). (10.14)

Generally, the derivatives of ℎ on neighbouring points 𝑥𝑘 and 𝑥𝑘+1 are not indepen-
dent. However, approximating them as being independent (Equation (10.13)) has
positive implications for the implementation of numerical differentiation: All terms in
Equation (10.13) can be assembled in parallel, and the covariance matrix 𝐶diff,X (X)
becomes diagonal.

The second step is to restrict the computation of each parameter set{
(𝑊diff,X (𝑥𝑘), 𝑏diff,X (𝑥𝑘), 𝐶diff,X (𝑥𝑘))

}𝐾
𝑘=0 (10.15)

to “small” subsets of X: Let 𝑘 ∈ {0, ..., 𝐾}, and define the stencil

loc𝑠 (𝑥𝑘) = {𝑠 nearest neighbours of 𝑥𝑘 in X}. (10.16)

This stencil replaces the role of X in Equations (10.9) to (10.10), in the sense that we
approximate

𝑝(Dℎ(𝑥𝑘) | 𝜉X) ≈ 𝑝(Dℎ(𝑥𝑘) | 𝜉loc𝑠 (𝑥𝑘 ) ) (10.17)
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which implies replacing

𝑊diff,X (𝑥𝑘) ≈ 𝑊diff,loc𝑠 (𝑥𝑘 ) (𝑥𝑘) (10.18a)
𝑏diff,X (𝑥𝑘) ≈ 𝑏diff,loc𝑠 (𝑥𝑘 ) (𝑥𝑘) (10.18b)

𝐶diff,X (𝑥𝑘 , 𝑥𝑘) ≈ 𝐶diff,loc𝑠 (𝑥𝑘 ) (𝑥𝑘 , 𝑥𝑘) (10.18c)

in Equation (10.10).

Algorithm 10.3 (Probabilistic numerical finite differences). Same as Algo-
rithm 10.1, but using Equations (10.17) to (10.18) instead of Equations (10.9)
to (10.10).

Instead of solving one linear system with 𝐾 + 1 variables, Algorithm 10.3 solves
𝐾 + 1 linear systems with 𝑠 + 1 variables. A small 𝑠 usually suffices; see Figure 10.1.

Remark 10.4 (Off-grid numerical differences). To approximate 𝑝(Dℎ(𝑥) | 𝜉X)
for 𝑥 ∉ X, proceed as follows.

1. Choose a stencil size 𝑠 ∈ N and find the 𝑠 closest neighbours of 𝑥 in X,
loc𝑠 (𝑥) ⊆ X.

2. Compute the parameters as in Algorithm 10.3.

In the same way that Algorithm 10.1 reduces to the special case of unsymmetric
collocation for 𝜌2 → 0, 𝑚ℎ = 0, and when evaluating the derivative at X, Al-
gorithm 10.3 reduces to radial-basis-function-generated finite-difference formulas
[48, 56, 155, 162] under the same restrictions. The connection to finite-difference
formulas stems from the fact that if the covariance would correspond to a polynomial
kernel and the mesh X were equidistant and one-dimensional, the differentiation
weights would equal the standard finite difference coefficients [55]. The advantage
of the more general, kernel-based finite difference approximation over polynomial
coefficients is a more robust approximation for non-uniform grid points and in higher
dimensions [56, 162]. The Bayesian point of view does not only add uncertainty
quantification in the form of the differentiation error covariance 𝐶diff,X respectively
𝐶diff,loc𝑠 (𝑥𝑘 ) , but also reveals how a user must calibrate a probabilistic model for
appropriate numerical differentiation. Since numerical differentiation derives from
Gaussian process interpolation, standard model selection techniques (e.g. type-II
maximum likelihood estimation) apply.

10.4 Software

An implementation of probabilistic numerical differentiation and probabilistic numer-
ical finite differences in Python (based on JAX [28]) can be installed from
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Figure 10.1: Discretise the Laplacian with a local and global approximation: The
target is the Laplacian D = Δ of 𝑢(𝑥) = sin(∥𝑥∥2) (f). Left: Sparsity pattern of the
differentiation matrix and error covariance matrix for the localised approximation (a, b)
and the global approximation (c, d) on 𝑁 = 25 points. Centre: The root-mean-square
error between Δ𝑢 and its approximation decreases with an increased stencil size.
The approximation breaks down for larger stencils (e), likely due to ill-conditioned
kernel Gram matrices. A maximum likelihood estimate of the input scale 𝑟 ∈ R of the
square exponential kernel 𝑘 (𝑥, 𝑦) = 𝑒−𝑟2 ∥𝑥−𝑦 ∥2 based on data 𝑢𝑥 (𝑥) alone does not
necessarily lead to well-conditioned system matrices, nor does it generally imply a low
RMSE (e). Right: Samples from the prior GP 𝑢𝑥 for both length scales are shown next
to the solution and the target function (f; the colours match the colours in the RMSE
plot). Increasing stencil sizes improves the accuracy until stability concerns arise.

https://probfindiff.readthedocs.io/.

The documentation for this code demonstrates further practical considerations for
implementing probabilistic numerical differentiation.

10.5 Conclusion

Numerical differentiation is essential for many scientific applications, for example,
computing the sensitivity of a computer program to changing one of the inputs. Instead
of relying on non-probabilistic finite differences, probabilistic numerical differentiation
fits a Gaussian process to point-evaluations of a function and differentiates this fit,
which is possible in closed form. This procedure is similar to collocation methods
and probabilistic numerical integration. To replicate the efficiency of finite difference
methods, assume conditional independence and use only the 𝑠 closest neighbours of a
point 𝑥𝑘 to compute a numerical derivative.
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11.1 Partial differential equations

All previous parts of this manuscript discussed the basics of probabilistic numerical
solvers for initial value problems based on ordinary differential equations. This chapter
develops a class of probabilistic numerical algorithms for the solution of initial value
problems based on partial differential equations (PDEs). PDEs are a common way of
modelling physical interdependencies between temporal and spatial variables. With the
recent advent of physics-informed neural networks [139], neural operators [106, 112],
and neural ordinary/partial differential equations [33, 64, 142], PDEs have rapidly
gained popularity in the machine learning community, too.

Let Ω ⊂ Rℓ be a domain with boundary 𝜕Ω. Let 𝐹, ℎ, and 𝑔 be given (potentially
nonlinear) functions. D and B shall be linear (differential) operators. The reader may
think of the Laplacian, D =

∑𝑑
𝑖=1

𝜕2

𝜕𝑥2
𝑖

, but the algorithm is not restricted to this case.
Solving PDEs amounts to approximating an unknown function 𝑢 : [0, 1] × Ω → R
that satisfies

𝜕

𝜕𝑡
𝑢(𝑡, 𝑥) = 𝐹 (𝑢(𝑡, 𝑥),D𝑢(𝑡, 𝑥)), (11.1)
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for 𝑡 ∈ [0, 1] and 𝑥 ∈ Ω, subject to the initial condition

𝑢(0, 𝑥) = ℎ(𝑥), 𝑥 ∈ Ω, (11.2)

and the boundary condition

B𝑢(𝑡, 𝑥) = 𝑔(𝑥), (𝑡, 𝑥) ∈ [0, 1] × 𝜕Ω. (11.3)

The differential operator B is usually the identity (Dirichlet conditions), the derivative
along normal coordinates (Neumann conditions), or a combination of both. Without a
loss of generality, this PDE assumes that the solution 𝑢 is scalar-valued. We impose
this restriction for a simpler notation, and modifications for vector-valued problems
follow the same strategy as in previous chapters. Therefore, they are omitted here.

Assume that 𝐹, ℎ, and 𝑔 are sufficiently well-behaved that a unique solution 𝑢 exists.
One common assumption is that Ω must be open and bounded, and that 𝜕Ω must
be differentiable, but requirements vary across differential equations [50]. Except
for only a few problems, PDEs do not admit closed-form solutions, and numerical
approximations become necessary.

11.2 Probabilistic numerical method of lines

One common strategy for solving PDEs, called the method of lines (MOL) [149],
first discretises the spatial domain Ω with a grid 𝑥0, ..., 𝑥𝐾 , and then uses this grid to
approximate the differential operator D with a matrix-vector product

[(D𝑢) (𝑡, 𝑥𝑘)]𝐾𝑘=0 ≈ 𝐷 [𝑢(𝑡, 𝑥𝑘)]𝐾𝑘=0, (11.4)

for a matrix 𝐷 ∈ R(𝐾+1)×(𝐾+1) . For example, the one-dimensional Laplacian can be
approximated with central differences, which leads to (ignoring boundary conditions)

𝐷 B
1

(Δ𝑥)2

©­­«
−1 2 −1

. . .
. . .

. . .

−1 2 −1

ª®®¬ . (11.5)

The previous Chapter 10 discussed numerical differentiation more thoroughly. Re-
placing the differential operator D with the matrix 𝐷 turns the PDE into a system of
ordinary differential equations (ODEs) over the state [𝑢(𝑡, 𝑥𝑘)]𝐾𝑘=0 ∈ R𝐾+1. Standard
ODE solvers can then numerically solve the resulting initial value problem.

This approach has one central problem. Discretising the spatial domain and only
then applying an ODE solver turns the PDE solver into a pipeline of two numerical
algorithms, each of which with its respective approximation error, instead of a single
algorithm. This is bad because, due to this serialisation, the error estimates returned
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Figure 11.1: Posterior means and error/uncertainty ratios of the probabilistic numerical
MOL (“PNMOL”; left) and MOL with a conventional probabilistic solver (right) on a
fine time grid (𝑦-axis) and a coarse space grid (𝑥-axis) for the heat equation. The means
are indistinguishable (PN/2, MOL/2). MOL is poorly calibrated (error/uncertainty
ratios ∼ 105; MOL/1), but PNMOL acknowledges all inaccuracies (PN/1).

by the ODE solver are unreliable. The algorithm lacks crucial information about
whether the spatial grid consists of, say, 𝑁 = 4 or 𝑁 = 107 points. Intuitively, a coarse
spatial grid puts a lower bound on the overall precision, even if the ODE solver uses
small time steps. However, since this is not “known” to the ODE solver, not even to a
probabilistic one, it may waste computational resources by needlessly decreasing its
step size and may deliver (severely) overconfident uncertainty estimates (for example,
Figure 11.1). Such overconfident uncertainty estimates are essentially useless to a
practitioner, which complicates using the method-of-lines approach for the simulation
of differential equations, for example, in the context of parameter estimation problems.

Instead of considering a PDE solver as a combination of two algorithms, numerical
differentiation and an ODE solver, we treat it as a single estimation problem as follows.
Let 𝑝(𝜑) be a prior distribution over the space of functions {𝜑 : [0, 1] × Ω → R}.
Let 𝑡0, ..., 𝑡𝑁 and 𝑥0, ..., 𝑥𝐾 be collocation points on [0, 1] and Ω, respectively. As
discussed in Chapter 2, any sample from the posterior distribution

𝑝

(
𝜑

�� 𝐴PDE, 𝐴Initial, 𝐴Boundary
)
, (11.6)

approximately solves the PDE. Here, 𝐴PDE, 𝐴Initial, and 𝐴Boundary are shorthand for

𝐴PDE B

{
𝜕

𝜕𝑡
𝜑(𝑡𝑛, 𝑥𝑘) = 𝐹 (𝜑(𝑡𝑛, 𝑥𝑘), [D𝜑] (𝑡𝑛, 𝑥𝑘))

}𝑁,𝐾
𝑛,𝑘=0

(11.7a)

𝐴Initial B {𝜑(0, 𝑥𝑘) = ℎ(𝑥𝑘)}𝐾𝑘=0 (11.7b)

𝐴Boundary B {[B𝜑] (𝑡, 𝑥𝑘′ ) = 𝑔(𝑥𝑘′ )}𝑁,𝐾
′

𝑛,𝑘′=0 (11.7c)

and 𝑥0, ..., 𝑥𝐾 ′ are the points in {𝑥0, ..., 𝑥𝐾 } that lie on the boundary of Ω. We call any
approximation of Equation (11.6) the probabilistic numerical PDE solution, and any
algorithm that computes such an approximation a probabilistic numerical PDE solver.
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Without a loss of generality, it will suffice to compute the distribution of the PDE
solution on the grid, i.e., only target the conditional distribution

𝑝

(
[𝜑(𝑡𝑛, 𝑥𝑘)]𝑁,𝐾𝑛,𝑘=0

�� 𝐴PDE, 𝐴Initial, 𝐴Boundary
)
, (11.8)

because off-grid evaluations can be reconstructed by interpolation.
The rest of this chapter explains the implementation of probabilistic numerical

PDE solvers for the setting where 𝜑 is a time-space separable Gaussian process with a
Markovian time component. The resulting algorithm will share its overall structure
with the non-probabilistic numerical method of lines, but the uncertainty quantification
incorporates both space and time errors equally. To this end, Section 11.3 combines
the state-space implementation of spatiotemporal Gauss–Markov processes [159] with
the setup in Chapter 3, Section 11.4 blends the probabilistic numerical differentiation
from Chapter 10 with linearisation and correction schemes from Chapter 7, and the
subsequent sections evaluate the algorithm and compare it to previous work.

11.3 Spatiotemporal prior process

For the rest of this chapter, 𝑝(𝜑) shall be a spatiotemporal Gaussian process, which
we denote by 𝑝(𝑢) (because it models the PDE solution).

The overarching goal is to develop an algorithm that matches the computational
efficiency of non-probabilistic numerical method-of-lines solvers, who inherit their
efficiency from the ODE solver that they employ. To mimic this inheritance, we
develop a scenario where time and space can be handled separately. Thus, the
following assumption is integral for the probabilistic numerical method of lines.

Assumption 11.1. Assume a Gaussian process prior with a time/space-separable
covariance,

𝑝(𝑢 = 𝑢(𝑡, 𝑥)) = GP(0, 𝛾2𝑘𝑡 ⊗ 𝑘𝑥) (11.9)

for some constant output scale 𝛾 > 0. The kernel 𝑘𝑡 ⊗ 𝑘𝑥 is the product kernel,
defined as

(𝑘𝑡 ⊗ 𝑘𝑥) (𝑡, 𝑡′, 𝑥, 𝑥′) = 𝑘𝑡 (𝑡, 𝑡′)𝑘𝑥 (𝑥, 𝑥′). (11.10)

The subscripts in 𝑘𝑡 and 𝑘𝑥 label the temporal and spatial kernels and do not
indicate partial derivatives (like they sometimes do in the PDE literature).

Compared to the traditional method of lines, where the temporal and spatial dimensions
are treated independently and with black-box methods, Assumption 11.1 is mild: even
though the covariance is separable, the algorithm still starts with a single, global
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Gaussian process. Assumption 11.1 allows choosing temporal kernels that (eventually)
lead to a fast algorithm:

Assumption 11.2. Assume that 𝑘𝑡 admits that any Gaussian process with
covariance 𝑘𝑡 , 𝜐 ∼ GP(0, 𝑘𝑡 ), can be written as the output of a state-space model
involving a linear, time-invariant stochastic differential equation,

𝜐(𝑡) = 𝐻𝜐̃(𝑡), d𝜐̃(𝑡) = 𝐴𝜐̃(𝑡) d𝑡 + 𝐵 d𝑤(𝑡), 𝑝(𝜐̃(0)) = N(𝑚0, 𝐶0), (11.11)

for some hidden state 𝜐̃. The parameters 𝐴, 𝐵, 𝐻,𝑚0, and𝐶0 derive from 𝑘𝑡 [144,
Chapter 12], and 𝑤 is a one-dimensional Wiener process with unit diffusion.

Assumption 11.2 is satisfied, for instance, by the integrated Wiener process or the
Matèrn process; many more examples are given in Chapter 12 of the book by Särkkä and
Solin [144]. Together, Assumption 11.1 and Assumption 11.2 unlock the machinery
of probabilistic numerical ODE solvers.

Next, we add spatial correlations to the prior SDE model. As discussed in the
context of Equation (11.8), it suffices to compute the PDE solution at the grid points.
Mirroring the procedure for the non-probabilistic numerical method of lines, we start
with a spatial discretisation and let the time variable remain continuous (for now). The
space-discretised version of a spatiotemporal Gaussian process 𝑢 ∼ GP(0, 𝛾2𝑘𝑡 ⊗ 𝑘𝑥)
is a vector-valued temporal Gaussian process,

𝑝(u(𝑡)) B 𝑝

(
[𝑢(𝑡, 𝑥𝑘)]𝐾𝑘=0

)
= GP(0, 𝛾2𝑘𝑡 ⊗ K), K B [𝑘𝑥 (𝑥𝑖 , 𝑥 𝑗 )]𝐾𝑖, 𝑗=0,

(11.12)

which inherits a state-space model representation from 𝑘𝑡 [159]:

Lemma 11.3. Let 𝑘𝑡 be a covariance function that satisfies Assumption 11.2.
The process u from Equation (11.12) is the output of the state-space model

u = (𝐻 ⊗ 𝐼)ũ (11.13a)

dũ(𝑡) = (𝐴 ⊗ 𝐼)ũ(𝑡) d𝑡 + 𝛾 (𝐵 ⊗ (K)1/2) dw(𝑡), (11.13b)

𝑝(ũ(0)) = N(𝑚0 ⊗ 1, 𝛾2𝐶0 ⊗ K), (11.13c)

where w is a (𝐾 + 1)-dimensional Wiener process with unit diffusion, the matrix
𝐼 ∈ R(𝐾+1)×(𝐾+1) is the identity, and 𝑚0 ⊗ 1 is a vertical stack of 𝐾 + 1 copies of
𝑚0. The parameters 𝐻, 𝐴, 𝐵, 𝑚0, 𝐶0 are from Assumption 11.2.

Lemma 11.3 states how a spatiotemporal prior (Assumption 11.1) may be restricted to
a spatial grid without losing the computational benefits of Markovian temporal priors.
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Processes like ũ in Lemma 11.3 have a Kronecker-factorised time discretisation,

𝑝(ũ(𝑡 + Δ𝑡) | ũ(𝑡)) = N([Φ(Δ𝑡) ⊗ 𝐼]ũ(𝑡), 𝛾2 [Σ(Δ𝑡) ⊗ K]) (11.14)

and together with 𝑝(ũ(0)) as in Lemma 11.3, the sequential representation of
ũ is complete. Φ and Σ are the transition matrices for the temporal process in
Assumption 11.2 and depend on 𝐴 and 𝐵. If 𝑘𝑡 corresponds to an integrated Wiener
process prior, they are the transition matrices from Chapter 3. The effect of Kronecker
factorisations in transition matrices on the numerical efficiency of the solver has been
a part of Chapter 8.

11.4 Information model

Next, we discuss how to impose the constraints on the spatiotemporal prior distribution.
For the moment, assume two simplifications:

1. The absence of boundary conditions, which is the case if, for instance, Ω is the
sphere or another manifold without a boundary.

2. Semilinear dynamics, i.e., a PDE of the form

𝜕𝑢(𝑡, 𝑥)
𝜕𝑡

= D𝑢(𝑡, 𝑥) + 𝑓 (𝑢(𝑡, 𝑥)) (11.15)

instead of the more general form in Equation (11.1).

Omitting the boundary conditions and considering a semilinear problem simplifies
the notation. Neither assumption restricts the generality of the method. Remark 11.4
explains how to incorporate boundary conditions and Remark 11.5 how to handle fully
nonlinear problems; both require a minimal modification of what is explained next.

The following setup connects to Chapter 10: Let 𝑘𝑥 be the (spatial) covariance
kernel from Assumption 11.1. Assume that 𝑘𝑥 is sufficiently differentiable so that
DD∗𝑘𝑥 is a positive definite function, which is usually the case if 𝑘𝑥 is sufficiently
differentiable; detailed assumptions have been listed in Chapter 10.

Fix 𝑡 and recall the abbreviation u(𝑡) B [𝑢(𝑡, 𝑥𝑘)]𝐾𝑘=0 from Section 11.3. Proba-
bilistic numerical differentiation as in Chapter 10 yields the approximation

𝑝

(
[(D𝑢) (𝑡, 𝑥)]𝐾𝑘=0

�� u(𝑡)
)
= GP(𝑊 (𝑥)u(𝑡), 𝐸 (𝑥, 𝑥′)) (11.16)

for differentiation matrices𝑊 and 𝐸 that depend on D, 𝑘𝑥 , and the spatial collocation
points. Details are in Chapter 10. Evaluating the Gaussian process in Equation (11.16)
at the collocation points 𝑥0, ..., 𝑥𝐾 , Equation (11.16) reads

𝑝 ( [Du] (𝑡) | u(𝑡), e(𝑡)) = 𝛿(Wu(𝑡) + e(𝑡)) (11.17)
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u(𝑡0) u(𝑡1) . . . u(𝑡𝑁 )
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𝜃

Figure 11.2: The existence of the bottom row distinguishes the probabilistic numerical
version from non-probabilistic numerical method-of-lines implementations. 𝜃 includes
the algorithm parameters, such as the Gaussian process kernel and the spatial
collocation points. The correlations indicated by the dashed lines can be ignored to
reduce the computational complexity (discussed in the context of Equation (11.22)).

for W = [𝑊 (𝑥𝑘)]𝐾𝑘=0 and e(𝑡) = [𝑒(𝑡, 𝑥𝑘)]𝐾𝑘=0; 𝑒 is a spatiotemporal Gaussian process

𝑝(𝑒(𝑡, 𝑥)) = GP(0, 𝛾2𝑘𝑡 ⊗ 𝐸). (11.18)

Restricted to 𝑥0, ..., 𝑥𝐾 , 𝑒 is a vector-valued temporal Gaussian process

𝑝(e(𝑡)) = GP(0, 𝛾2𝑘𝑡 ⊗ E), E = [𝐸 (𝑥𝑖 , 𝑥 𝑗 )]𝐾𝑖, 𝑗=0 (11.19)

with a temporal structure inherited from 𝑢. In other words, e has same state-space
representation as u after exchanging K for E in Lemma 11.3.

The probabilistic PDE solution in Equation (11.8) can be reconstructed from

𝑝

([
e(𝑡𝑛)
u(𝑡𝑛)

]𝑁
𝑛=0

����� [
du(𝑡𝑛)

d𝑡
= Wu(𝑡𝑛) + e(𝑡𝑛) + 𝑓 (u(𝑡𝑛)

]𝑁
𝑛=0

, u(0) = h

)
, (11.20)

with h = [ℎ(𝑥𝑘)]𝐾𝑘=0, by marginalising over e. The magnitude of the process 𝑒 describes
the temporal evolution of the accumulated numerical differentiation error. Loosely
speaking, it acts as a latent force on the ordinary differential equation that captures
how much the ODE differs from the PDE; in other words, how much information is
lost by spatial discretisation. Tracking e is what distinguishes the proposed algorithm
from non-probabilistic numerical PDE solvers. The complete setup is in Figure 11.2.
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The conditional distribution in Equation (11.20) factorises sequentially because both
u and e are Markovian and because all constraints are conditionally independent given
u and e. It is not Gaussian when 𝑓 is nonlinear, but all estimation and approximation
methods in Chapters 3 to 7 apply. The unknown parameter 𝛾 can be estimated
with quasi-maximum-likelihood estimation and in the same fashion as in Chapter 7;
deriving the precise formulas is left to the reader.

The computational complexity of estimating Equation (11.20) is𝑂 (𝑁 (2𝐾)3), where
the factor (2𝐾)3 stems from tracking the e and u jointly, each of which has 𝐾 + 1
components. To reduce the computational complexity, simplify the model for e as

𝑝(e(𝑡)) = GP(0, 𝛾2𝑘𝑡 ⊗ E) ≈ GP(0, 𝛾2𝑘white ⊗ E) (11.21)

where 𝑘white is a white-noise kernel. The effect of this approximation is that e does
not need to be tracked in the state-space model, in which case the observation model
in Equation (11.17) becomes

𝛿(Wu(𝑡) + e(𝑡)) ≈ N (Wu(𝑡), 𝛾2E). (11.22)

The right-hand side in Equation (11.22) does not depend on e. The dimension of the
state-space cuts in half, and the computational complexity reduces to 𝑂 (𝑁𝐾3) at the
price of discarding temporal correlations in the latent force. The cubic complexity in
the spatial variable could be reduced with further factorisation or similar techniques
that are common in accelerating Gaussian process estimation; but this is future work.

This concludes the discussion of the setup underlying probabilistic numerical
PDE solvers. Before continuing with related work in Section 11.5, we mention the
modifications for boundary conditions and fully nonlinear equations:

Remark 11.4 (Boundary conditions). The effect of the boundary operator, B, can
be handled identically to the differential operator D, with probabilistic numerical
differentiation. Thus, including boundary information involves tracking another
latent state that derives identically to e but with B instead of D. The constraints
remain an affine combination of the hidden states, and inference remains tractable.
The only difference to the algorithm above is that two latent states are tracked
instead of one.

Remark 11.5 (Nonlinear equations). If the differential equation is not semilinear
but nonlinear, that is, if it has dynamics 𝐹 (𝑢,D𝑢) instead of D𝑢 + 𝑓 (𝑢),
linearisation remains similar. The only difference is that the nonlinear dynamics
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must be linearised as a function of u and e,

𝐹transformed (u, e) B 𝐹 (u,Wu + e), (11.23)

instead of as a function of u only. The rest is identical to the semilinear case.

Naturally, if the PDE involves second- or higher-order time derivatives, the PDE
solution and estimation strategy change in the usual way. If the PDE is not constrained
by an initial condition but by an initial and a terminal condition, the strategies discussed
in the upcoming Chapter 12 will be applicable.

11.5 Related work

Method of lines The literature on the method of lines is covered by, e.g., Schiesser
[149]. Dereli and Schaback [43], Hon et al. [82] combine collocation with the method
of lines. None of the above exploits the correlations between spatial and temporal
errors; however, the (general) significance of estimating the interplay of both error
sources has been recognised by Berzins [20], Berzins et al. [21], Lawson et al. [105].

Probabilistic numerical solvers for stationary PDEs Cockayne et al. [36], Owhadi
[128, 129], Raissi et al. [137, 138] describe a probabilistic numerical solver for PDEs
that relates to symmetric collocation approaches from numerical analysis. Chen
et al. [34] extend the ideas to non-linear PDEs via maximum-a-posteriori estimation.
The present algorithm can be loosely regarded as an efficient implementation of the
method by Chen et al. [34] for time-dependent problems, but only if combined with
the algorithm in the upcoming Chapter 12. In its present form, it is more suitably
described as an extension of probabilistic numerical IVP solvers to spatiotemporal
problems.

Probabilistic numerical solvers for time-dependent PDEs Wang et al. [175]
continue the work of Chkrebtii et al. [35] in constructing an ODE/PDE initial value
problem solver that uses (approximate) conjugate Gaussian updating at each time-step.
Duffin et al. [49] solve time-dependent PDEs by discretising the spatial domain with
finite elements and by applying ensemble and extended Kalman filtering in time. They
build on the work on “statistical finite elements” by Girolami et al. [66]. Abdulle and
Garegnani [2], Conrad et al. [38] compute probabilistic numerical PDE solutions by
randomly perturbing non-probabilistic numerical solvers. All of the above discard the
uncertainty associated with discretising the differential operator. Some papers achieve
ODE-solver-like complexity for time-dependent problems [35, 49, 175], while others
compute a continuous-time posterior [34, 36, 128, 129, 137, 138]. The PDE solver
presented in this chapter does both.
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Figure 11.3: Work vs. precision vs. calibration of the probabilistic numerical MOL
(PNMOL) in the latent-force version, which tracks e (blue) and the white-noise version
(orange), compared to a traditional probabilistic numerical ODE solver combined with
conventional MOL (grey), on the spatiotemporal Lotka-Volterra model. Two kinds of
curves are shown: one for a coarse (dotted) and one for a fine spatial mesh (solid). A
reference is computed by discretising the spatial domain with a ten times finer mesh
and solving the ODE with backward differentiation formulas. The root-mean-square
error of both methods stagnates once a certain accuracy is reached, but PNMOL
appears to reach a slightly lower RMSE for Δ𝑥 = 0.2 (left, middle). The run time of
PNMOL-white is comparable to that of MOL, and the run time of PNMOL-latent
is slightly longer (middle). The calibration of PNMOL, measured in the normalised
𝜒2-statistic of the Gaussian posterior (so that the “optimum” is 1, not 𝑑), is close to 1
but slightly underconfident. With decreasing time steps, MOL is poorly calibrated.

11.6 Experiments

Next, we investigate the numerical uncertainty quantification of the probabilistic
numerical PDE solver. As a first experiment, we solve a spatiotemporal Lotka-Volterra
model [80], i.e. nonlinear predator-prey dynamics with spatial diffusion, on a range of
temporal and spatial resolutions. From the results in Figure 11.3, it is evident how
the spatial accuracy limits the overall accuracy; but also how the combination of
a probabilistic numerical ODE solver with a spatial discretisation fails to quantify
numerical uncertainty reliably. At any parameter configuration, it is either the spatial
or the temporal discretisation that dominates the error. Decreasing the time step alone
not only lets the error stagnate but also worsens the calibration because the ODE
solver does not know how bad the spatial approximation is.

To further examine which one ofΔ𝑥 orΔ𝑡 dominates the approximation, we consider
a second example: a spatiotemporal SIR model [57]. We investigate more formally
how increasing either, time-resolution versus space-resolution, leads to a low overall
error. The results are in Figure 11.4 and confirm the findings from Figure 11.3 above.
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Figure 11.4: Which error dominates? The relative root-mean-squared error is only
small if both Δ𝑡 and Δ𝑥 are small, which affects the probabilistic numerical solver
(“PNMOL”; top left) as well as traditional MOL combined with a probabilistic IVP
solver (top right). MOL is severely overconfident for large Δ𝑥 and small Δ𝑡 (bottom
right), while PNMOL delivers a calibrated posterior distribution (bottom left).

Traditional probabilistic numerical ODE solvers with conventional MOL are unaware
of the true, global approximation error. The PDE solver implementation is not, despite
being equally accurate and requiring equal computational effort.

11.7 Conclusion

In conclusion, the derivation of a probabilistic numerical solver for spatiotemporal
problems – i.e., partial differential equations – closely follows the construction
of probabilistic numerical solvers for ordinary differential equations. The central
difference is that probabilistic numerical differentiation induces a latent force in the
ODE that results from discretising the PDE in space. However, the latent force can
be estimated jointly with the PDE solution and at minimal computational overhead.
Altogether, and unlike traditional PDE solvers, the probabilistic numerical method
of lines unlocks the quantification of spatiotemporal correlations in an approximate
PDE solution, all while preserving the efficiency of adaptive ODE solvers. This makes
it a valuable algorithm in the toolboxes of probabilistic numerical algorithms and
may serve as a backbone for latent force models, inverse problems, and differential-
equation-centric machine learning.
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12.1 Boundary value problems

This chapter develops a class of algorithms for solving boundary value problems
(BVPs) based on ordinary differential equations. BVPs are about finding a function 𝑦
that satisfies a system of ordinary differential equations

d2𝑦(𝑡)
d𝑡2

= 𝑓 (𝑦(𝑡)), 𝑡 ∈ [0, 1], (12.1)

and a set of boundary conditions

𝑦(0) = 𝑦0, 𝑦(1) = 𝑦1. (12.2)

The vector field and the boundary conditions are known. Without a loss of generality,
we assume a simplified problem:

⋄ We only consider a scalar, second-order, autonomous differential equation in
Equation (12.1). Modifications for first- or higher-order and non-autonomous
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Figure 12.1: Recovering the trajectory of a pendulum between two positions is a BVP
(left). A lack of initial values can be made up by boundary values in an SEIR model
(middle). Straight lines on manifolds give distance measures and demand solving
a BVP (right; depicted are the mean and ten samples of the probabilistic solution;
principal components of 1000 MNIST images of the digit “1”). In all three figures,
the ball/diamond markers express boundary conditions.

equations are identical to the previous chapters but would complicate the
notation. Vector-valued problems follow the strategy discussed in Chapter 8;
spatiotemporal problems would follow the logic from Chapter 11 but are not
central to this chapter.

⋄ We only consider constraints of the type in Equation (12.2), i.e., linear and
separable boundary conditions. The procedure for other types of separable
boundary conditions is in Remark 12.1; non-separable boundary conditions are
an open problem.

Loosely speaking, solving BVPs amounts to following the law of a dynamical
system when “connecting two points”. This setting is relevant to several scientific
applications. We consider three examples as motivation, all of which are in Figure 12.1.

First, recovering the trajectory of a pendulum between two positions amounts
to solving the ordinary differential equation ¥𝑦(𝑡) = −9.81 sin(𝑦(𝑡)) subject to the
positions as boundary conditions. If the positions were “interpolated” without the
ordinary differential equation knowledge, the output would be physically meaningless.

Second, BVPs arise when inferring the evolution of the case counts of people who
fall victim to an infectious disease [e.g., 11]. A lack of counts of (a specific subset of)
non-infected people at the initial time-point can be made up for by available counts of
infected people at the final time-point of the integration domain.

Third, efficient manifold learning necessitates repeated computation of (geodesic)
distances between two points, which amounts to solving BVPs [9, 44].

Let {𝑡0, ..., 𝑡𝑁 } ⊆ [0, 1] be a set of collocation points. Assume a prior distribution
𝑝(𝜑) over the functions from [0, 1] to R (or R𝑑 if the problem is vector-valued). As
explained by Chapter 2, the probabilistic numerical BVP solution is the conditional
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distribution

𝑝

(
𝜑

����� {
d2𝜑(𝑡𝑛)

d𝑡2
= 𝑓 (𝜑(𝑡𝑛))

}𝑁
𝑛=0

, 𝜑(0) = 𝑦0, 𝜑(1) = 𝑦1

)
. (12.3)

If the differential equation is not autonomous or of first- or higher-order, then the
conditional distribution changes like in the previous chapters. Any algorithm that
approximates the probabilistic numerical BVP solution is a probabilistic numerical
BVP solver. This chapter discusses a probabilistic numerical BVP solver that is similar
to the class of algorithms discussed in previous chapters but with a few differences
due to handling boundary conditions instead of initial conditions.

12.2 Bridge priors

The first step in estimating the probabilistic numerical BVP solution – the conditional
distribution in Equation (12.3) – is handling the boundary conditions. In the following
derivation, abbreviate the probabilistic numerical BVP solution as

𝑝(𝜑 | ODE,BC) B 𝑝

(
𝜑

����� {
d2𝜑(𝑡𝑛)

d𝑡2
= 𝑓 (𝜑(𝑡𝑛))

}𝑁
𝑛=0

, 𝜑(0) = 𝑦0, 𝜑(1) = 𝑦1

)
(12.4)

where “ODE” stands for the differential equation residual, and “BC” abbreviates the
boundary conditions. The BVP solution refactors as

𝑝(𝜑 | ODE,BC) = 𝑝(𝜑,ODE,BC)
𝑝(ODE)𝑝(BC) =

𝑝(ODE | 𝜑)
𝑝(ODE) 𝑝(𝜑 | BC) (12.5)

due to Bayes’ theorem as well as conditional independence of the boundary conditions
and the differential equation residual given 𝜑. Equation (12.5) expresses that in order
to approximate the BVP solution, we first compute the conditional

𝑝(𝜑 | BC) B 𝑝(𝜑 | 𝜑(0) = 𝑦0, 𝜑(1) = 𝑦1) (12.6)

and then use this conditional as a prior for conditioning on the differential equation
residual being zero.

The above strategy works for any prior. Still, the remainder of this chapter concen-
trates on the case where 𝜑 is the same integrated Wiener process prior that has been
central to the previous chapters, 𝑝(𝜑) = 𝑝(𝑌 (𝑡)). For integrated Wiener processes (and
other Gauss–Markov priors), posterior distributions like the one in Equation (12.6)
are available via a single forward-pass because the boundary conditions are affine
functions of the state; refer back to Chapter 3 for detailed instructions. We call the
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Figure 12.2: Wiener velocity model, which is a once-integrated Wiener process, in its
original form (left) and bridged to hit value 0.5 at time 𝑡 = 1 (right). Depicted are the
mean, three marginal standard deviations, and ten samples from the process.

resulting stochastic process an integrated Wiener bridge process because it is an
integrated Wiener process with fixed boundary information, similar to a Brownian
bridge, for example. Figure 12.2 shows such an integrated Wiener bridge process, and
Figure 12.3 summarises the overall procedure.

Remark 12.1 (Nonlinear boundary conditions). If the boundary conditions are
not affine, linearise them with any of the strategies from Chapter 5.

12.3 Maximum-a-posteriori estimation

Once the boundary conditions are incorporated, proceed with the differential equation
information. For affine differential equations, this is possible in a single forward
pass with sequential Gaussian estimation. Nonlinear differential equations necessitate
efficient approximation.

Assume a fixed grid and recall the notation 𝑌 (𝑡0:𝑁 ) B {𝑌 (𝑡0), ..., 𝑌 (𝑡𝑁 )}. Denote
the integrated Wiener bridge process by 𝑌𝑏 (𝑡).

While the exact parametrisation of the probabilistic numerical BVP solution is
intractable, we can approximate the maximum-a-posteriori (MAP) estimate

MAP B arg max
𝜉 ∈R(𝑁+1)×(𝜈+1)

𝑝

(
𝑌𝑏 (𝑡0:𝑁 ) = 𝜉

���� {
𝑌
(2)
𝑏

(𝑡𝑛) = 𝑓 (𝑌 (0)
𝑏

(𝑡𝑛))
}𝑁
𝑛=0

)
, (12.7)

with a state-space-model-based implementation of optimisation algorithms like the
Gauss-Newton scheme, which has been discussed in Chapter 5. Applied to computing
the BVP solution, the Gauss–Newton algorithm is as follows:
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𝑌 (𝑡0) ... 𝑌 (𝑡𝑛) ... 𝑌 (𝑡𝑁 )

𝑦0 𝑦1

ODE ODE ODE

(Integrated Wiener) bridge process

Figure 12.3: Condition on the boundary information to construct a bridge prior. Then,
use the bridge process to solve the BVP.

Algorithm 12.2 (MAP-estimation of the BVP solution with Gauss–Newton).
Assume a grid 𝑡0, ..., 𝑡𝑁 , a sequential decomposition of the Bridge process on
this grid, a differential equation with vector field 𝑓 , and an initial guess 𝜉0. Let
𝑒𝑞 be the 𝑞th row of an identity matrix with 𝜈 + 1 rows and columns. To compute
the Gauss–Newton approximation of the MAP estimate, proceed as follows:

1. Initialise 𝜉 = 𝜉0.

2. Repeat until convergence:

(a) Extract the quantity corresponding to the zeroth derivative𝑌 (0)
𝑏

(𝑡0:𝑁 )
of the Bridge process from 𝜉, 𝜉 B 𝜉𝑒⊤0 .

(b) Linearize the vector field 𝑓 around 𝜉; each row of 𝜉 corresponds to
one grid point.

(c) Solve the affine estimation problem with sequential Gaussian esti-
mation, using preconditioning and Cholesky parametrisation like in
Chapter 7.

(d) Set 𝜉 to the posterior mean and repeat.

Return the most recent posterior mean and covariance estimate.

Algorithm 12.2 implements the iterated (extended) Kalman smoother, which is
equivalent to the Gauss–Newton algorithm [17]. Under mild assumptions on the
non-linearity of 𝑓 and the magnitude of the objective at the optimum, Gauss–Newton
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methods are locally convergent with linear rate [98]. Instead of Gauss–Newton, other
optimisation algorithms could be used (refer back to Chapter 5); however, studying
the feasibility of other algorithms is left for future work. Iterative linearisation of
differential equations combined with closed-form solutions of the equations is known
as quasilinearisation in the literature on differential equation solvers [e.g., 115]. As
such, the general procedure of a probabilistic numerical BVP solver implements
quasilinearisation but in a probabilistic framework.

The rest of this chapter discusses how to tune the algorithm by automatically
selecting parameters of the prior, collocation points, and optimisation parameters:

⋄ Like all quasilinearisation algorithms, computing the MAP estimate of the BVP
solution requires an initial guess. Different options are in Section 12.4.

⋄ The choice of the mesh 𝑡0, ..., 𝑡𝑁 affects the accuracy of the solution; an
automatic mesh-refinement scheme is in Section 12.5.

⋄ The prior process depends on three unknowns: the output scale 𝛾, the initial mean
𝑚0, and the initial covariance 𝐶0 (𝛾). Section 12.6 explains their calibration.

Sections 12.4 to 12.6 are independent of each other and can be read in any order.

12.4 Initialisation

Algorithm 12.2 needs to be initialised with an initial guess 𝜉0. The choice of
initialisation is essential: not only does the number of iterations depend on the
proximity of the initial guess to the optimum, but BVPs often allow multiple solutions,
and the algorithm can find only one of them [96, p. 10]. Non-probabilistic numerical
solvers outsource this issue to the user by expecting that an initial guess is provided.
For example, at the time of this writing, the BVP solvers in SciPy, Matlab, and
DifferentialEquation.jl require the user to pass a vector of initial guesses of the
solution at an initial grid to the algorithm [12, 13, 14]. While the same strategy is
possible for the probabilistic numerical solver, there are natural alternatives that are
not available to non-probabilistic methods. We can roughly group them as follows,
presented in order of increasing computational complexity.

12.4.1 Initialising with the prior mean

Since we put computational effort into deriving a useful prior distribution (in the
bridge process), we may use this information to derive an initial guess as the mean of
the integrated Wiener bridge,

𝜉0 B 𝐸 [𝑌𝑏 (𝑡0:𝑁 )], (12.8)
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which is available by marginalisation. If the backward transitions of the bridge prior
have been derived in a previous forward pass, these marginals can be computed in
a single backward pass. The most obvious benefit of using this initialisation is its
simplicity, combined with the fact that the boundary conditions are always satisfied.

12.4.2 Initialising with user-provided guess

The behaviour of initialising non-probabilistic algorithms, which require a user to
pass an initial guess – we may call it 𝜉 – can be replicated with the conditional mean

𝜉0 = 𝐸 [𝑌𝑏 (𝑡0:𝑁 ) | 𝜉] (12.9)

which, if 𝑌𝑏 (𝑡0:𝑁 ) is represented by a terminal distribution together with a sequence
of backward transition densities, is available with a backward and a subsequent
forward pass. The main benefit of this approach is its similarity to the initialisation of
non-probabilistic algorithms. It generalises such an initialisation in the sense that 𝜉
could be modelled as being subject to additive Gaussian noise or only consist of partial
observations, which helps when the initial guess is uninformed (which is common).

12.4.3 Initialising with a local linearisation pass

If a user-provided guess is not available, the initial guess can be computed with a local
linearisation pass,

𝜉0 ≈ 𝐸
[
𝑌𝑏 (𝑡0:𝑁 )

���� {
𝑌
(2)
𝑏

(𝑡𝑛) = 𝑓 (𝑌 (0)
𝑏

(𝑡𝑛))
}𝑁
𝑛=0

]
(12.10)

where the approximation stems from locally linearising the nonlinear vector field
at the predicted mean at each step. This is equivalent to the extended Kalman filter
[143] and the linearisation of choice for initial value problem solvers; refer back to
Chapters 5 and 7. Again, if 𝑌𝑏 (𝑡0:𝑁 ) is represented by a terminal distribution together
with a sequence of backward transition densities, this amounts to one backward and
a subsequent forward pass. Since the vector field is evaluated at each step, this is
generally more expensive than initialising with a user-provided guess.

The main feature of this approximation is that the user does not need to provide an
initial guess for a solution that one generally does not know much about: Once the
prior bridge has been constructed, the initialisation of the Gauss–Newton algorithm is
fully automatic. If required, the local linearisation pass can be combined with fitting a
user-provided guess to increase the accuracy of the initial linearisation point, which
yields an algorithm reminiscent of one by Schmidt et al. [150]. Ultimately, choosing
between initialisation strategies only matters to the extent that it is sufficiently close to
a fixed point of the Gauss-Newton algorithm, and all of the above strategies are viable.

Of course, a fixed point of the Gauss–Newton method is not necessarily a reliable
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BVP solution: its accuracy depends on the number and distribution of mesh points.
The following Section 12.5 develops a principled and probabilistic approach to error
control and mesh refinement in the BVP solver.

12.5 Mesh refinement

So far, the mesh was assumed as given. The larger the size of this mesh is, the more
accurate the solution becomes. However, the computational cost grows linearly with the
mesh size. Low error tolerances thus require smart meshing via error control. There are
natural candidates for error estimators, all connecting to the probabilistic formulation
of solving BVPs. Sections 12.5.1 to 12.5.3 discuss those candidates; Section 12.5.4
uses them to refine the mesh, and Section 12.5.5 demonstrates numerical feasability.

12.5.1 Error estimate via standard deviations

The output of the Gauss–Newton algorithm is a Gaussian process, which can be
evaluated at any point in the domain of the boundary value problem. Its associated
standard deviation is a natural error estimate. The advantage over the alternatives
explained below is that it comes (essentially) for free by interpolating the posterior
distribution. A potential downside of this intrinsic error estimator is its dependence
on the calibration of a hyperparameter (more on this in Section 12.6).

12.5.2 Error estimate via residuals

The probabilistic numerical BVP solution is constructed by conditioning the integrated
Wiener process 𝑌 (𝑡) on attaining consistently small values in its residual

R 𝑓 ,𝑡 B
d2𝑌 (0) (𝑡)

d𝑡2
− 𝑓 (𝑌 (0) (𝑡)) = 𝑌 (2) (𝑡) − 𝑓 (𝑌 (0) (𝑡)). (12.11)

Recall that if 𝑌 (0) (𝑡) were the true BVP solution, this residual would be zero on the
whole domain. Thus, the magnitude of the residual of the mean of the probabilistic
numerical BVP solution quantifies the error, which is also a common approach in
traditional, non-probabilistic algorithms (for instance [96] or [11, Section 9.5.1]). By
interpolating the BVP solution, the residual can be evaluated on off-grid points.

12.5.3 Error estimates via probabilistic residuals

Considering the full posterior distribution instead of only the posterior mean suggests
how the residual is a deterministic transformation of a random variable. Thus – in
principle – a random variable might make a more appropriate model for the residual
error than a point estimate. For a Gaussian process posterior 𝑌 (𝑡), the law of R 𝑓 ,0:𝑁
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is intractable in general because the vector field is nonlinear. But (re)using a linearised
version of the vector field unlocks a Gaussian approximation: An upper bound of the
probability of ∥R 𝑓 ,𝑡 ∥ exceeding some tolerance,

𝑝

(
∥R 𝑓 ,𝑡 ∥2 > tol2

)
<

(
Trace[Cov(R 𝑓 ,𝑡 )] + ∥𝐸 (R 𝑓 ,𝑡 )∥2

2

)
/tol2, (12.12)

is due to the Markov inequality and another approach to error control. The numerator
of the right-hand side will be treated as an error estimator in the benchmarks below.

The main difference to the point estimate is that the probabilistic version punishes
magnitude and uncertainty in the residual instead of only magnitude. However, this
quantity will reveal itself as underconfident in the benchmarks below and does,
therefore, not play a role in the simulation studies at the end of this chapter.

12.5.4 From error estimates to a finer mesh

All three options, which we denote by a generic 𝑒 : [0, 1] → [0,∞) from now on,
estimate the pointwise error of the approximation, that is, the approximation error
at a given 𝑡. For mesh refinement, however, it is more instructive to consider the
accumulated error between two grid points 𝑡𝑛 and 𝑡𝑛+1,

𝜖𝑛 :=
(∫ 𝑡𝑛+1

𝑡𝑛

∥𝑒(𝑡)∥2
2 d𝑡

)1/2
, 𝑛 = 0, ..., 𝑁 − 1. (12.13)

The integral that underlies 𝜖𝑛 can usually not be computed in closed form but needs
to be approximated by a numerical integration scheme. We use Bayesian quadrature
(BQ) [32]. BQ allows us to place quadrature nodes freely in each domain [𝑡𝑛, 𝑡𝑛+1).
It also provides the option of tailoring an integration kernel to 𝑒. For instance, the
following reproducing kernel Hilbert spaces (RKHSs) are known [164]: (i) the RKHS
of 𝜈-times integrated Wiener process priors 𝑌 (·) is the Sobolev space of (𝜈 + 1)-times
weakly differentiable functions; (ii) under some regularity assumptions on the ODE
vector field, as well as on the (assumed to be) unique solution of the ODE, the RKHS
of the residual R 𝑓 ,𝑡 is the Sobolev space of 𝜈-times weakly differentiable functions.
Therefore, we base the BQ scheme on a (𝜈 − 1/2)th order Matérn prior, which has the
same native space as the residual [177]. (In practice, we use an exponentiated quadratic
kernel for 𝜈 > 3 since its kernel embeddings are more accessible [31, Appendix J]).

Once the accumulated error has been estimated, mesh refinement proceeds as
follows. If each 𝜖𝑛 is below a user-provided threshold, the BVP solution is sufficiently
accurate, and the mesh does not have to be refined. If at least one 𝜖𝑛 is larger than
the threshold, the mesh must be refined. We introduce new grid points on those
intervals where 𝜖𝑛 is too large. Assuming that the integrated error is of order 𝜌 > 0,
𝜖𝑛 ∈ O((Δ𝑡)𝜌), splitting the interval into two equally large parts reduces the error
by a factor 2−𝜌, and splitting it into three equal parts by a factor 3−𝜌. We introduce
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Figure 12.4: Error estimation on the seventh testproblem in [117]. Evaluated at 𝑁 = 5
(left), 𝑁 = 25 (centre left), 𝑁 = 125 (centre right), and 𝑁 = 625 equidistant grid points
(right). Standard deviation (top row) and residual (blue, bottom row), respectively the
probabilistic residual (grey, bottom row). True error in black. The “winners” of each
column have a darker colour.

either one or two new points depending on how far the integrated error exceeds the
required threshold on a sub-interval. Like Kierzenka and Shampine [97], we never
introduce more than two grid points per interval at once. For the experiments, which
use a 𝜈-times integrated Wiener processes, we choose 𝜌 = 𝜈 +1/2 (which has not been
proved yet but seems like a reasonable conjecture in light of Theorem 3 of Tronarp
et al. [164] and our experiments).

12.5.5 Comparing error estimates

Which one is the most reliable error estimate? As a testbed, we use the seventh example
in a collection of test problems for BVP solvers by Mazzia [117] (which will feature
heavily in the remainder of this chapter). The derivative of the solution of this linear
BVP approaches a singularity if a specific parameter is chosen sufficiently small (we
use 10−3). This poses challenges for error estimators and mesh-refinement strategies.

A reasonable estimate accurately measures the magnitude of the error as well as the
location of the largest deviation. Roughly speaking, the magnitude of the error is more
informative in the presence of a few grid points, and the location of the error is critical
when many points are already in place. The error estimates are visualised in Figure
12.4. They suggest that at high tolerances, the standard deviation is more accurate than
the residual; at low tolerances, the situation is reversed. The probabilistic residual is
consistently underconfident, which is a trend that is preserved when moving to more
challenging setups (see Section 12.7).

With everything explained so far, we can solve BVPs with an algorithm that
adaptively refines the mesh when the solution is not sufficiently accurate. The only
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remaining question is that of selecting the integrated Wiener processes parameters,
which affect the calibration of the BVP solution. This is discussed next.

12.6 Parameter estimation

As discussed in Chapter 3, the integrated Wiener process depends on three parameters:
the mean and covariance of the initial distribution

𝑝(𝑌 (𝑡0)) = N(𝑚0, 𝐶0 (𝛾)) (12.14)

and the output scale 𝛾 ∈ R of the driving Wiener process. The previously discussed
algorithm components assume these parameters to be fixed and known. This chapter
discusses their calibration.

Denote the marginal likelihood of the BVP solution as

𝑀 (𝛾, 𝑚0, 𝐶0 (𝛾)) B 𝑝

(
{R 𝑓 ,𝑛 = 0}𝑁𝑛=0,R𝑦0 = 0,R𝑦1 = 0 | 𝛾, 𝑚0, 𝐶0 (𝛾)

)
(12.15)

where R 𝑓 ,𝑛 is the residual of the differential equation, and R𝑦0 as well as R𝑦1 are the
residuals of the initial and terminal conditions, respectively. One way of estimating
the parameters is to combine maximum-likelihood estimation with coordinate ascent,
which repeats alternating updates over the output scale and the parameters of the
initial distribution,

𝛾new := arg max
𝛾

𝑀 (𝛾, 𝑚new
0 , 𝐶new

0 (𝛾new)), (12.16a)

𝑚new
0 , 𝐶new

0 (𝛾) := arg max
𝑚0 ,𝐶0 (𝛾)

𝑀 (𝛾new, 𝑚0, 𝐶0 (𝛾)), (12.16b)

until some stopping criterion is satisfied [181].
A quasi-maximum likelihood update for 𝛾new (Equation 12.16a) is available in

closed form as a by-product of the forward-pass of each Gauss–Newton iteration. The
precise formula is almost identical to the one in Chapter 7 – the only difference is due
to boundary conditions instead of initial conditions – and therefore omitted.

An approximate update for the parameters of the initial distribution can be imple-
mented with the expectation-maximisation (EM) algorithm [42, 156]. The general
idea of EM is to maximise a lower bound of Equation (12.16b) instead of maximising
it directly by computing alternating 𝐸- and 𝑀-steps. For parameter estimates in state-
space models, the 𝐸-step of the EM algorithm amounts to computing the probabilistic
numerical BVP solution (on a fixed grid and with fixed parameters) (see, e.g., [121]),
a Gaussian approximation of which is available through Gauss–Newton. Denote this
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Figure 12.5: EM helps the IEKS overcome unknown initial conditions. Depicted are a
fixed total of the first 25 Gauss–Newton iterations (light to dark in each respective
colour) on 𝑁 = 6 grid points, initialised with a local linearisation using a 7-times
integrated Wiener process bridge prior and on the 20th test problem in [117]. Without
any EM updates to the initial condition, the convergence of the IEKS is inhibited (left).
EM updates every fifth IEKS iteration lead to the residual converging to zero reliably
(centre). Too frequent EM updates are not optimal either (right), likely because the
underlying Gauss–Newton algorithm fails to converge in a single step.

Gauss–Newton approximation of the maximum-a-posteriori estimate by

𝑌MAP (𝑡) ∼ N (𝑚MAP (𝑡), 𝛾2𝐶MAP (𝑡, 𝑡′)). (12.17)

The parameters 𝑚MAP (𝑡), 𝐶MAP (𝑡, 𝑡′) are the result of the Gauss–Newton algorithm. The
𝑀-step now consists of [143, Theorem 12.5 and Algorithm 12.7]

𝑚new
0 = 𝑚MAP (𝑡0) (12.18a)

𝐶new
0 (𝛾) = 𝛾2𝐶MAP (𝑡0, 𝑡0) + (𝑚new

0 − 𝑚old
0 ) (𝑚new

0 − 𝑚old
0 )⊤. (12.18b)

EM steps always increase the likelihood, and for exponential families, convergence to
a stationary point of the likelihood function is guaranteed [156, 182]. Thus, computing
alternating 𝐸- and 𝑀-steps until convergence would eventually yield a good estimate
of the parameters. But already in the pre-asymptotic regime and for a fixed total
number of IEKS iterations, an EM update every few steps helps convergence of the
IEKS in subsequent iterations (Figure 12.5).

In conclusion, the following BVP solver emerges.

Algorithm 12.3 (Probabilistic numerical BVP solver). Assume that the following
parameters are given: an initial grid 𝑡0, ..., 𝑡𝑁 ; initial parameter estimates 𝛾, 𝑚0,



149 12.7. Benchmarks

𝐶0 (𝛾); an initial guess 𝜉0. Then, solve the BVP as follows:

1. Initialise the Gauss–Newton algorithm with any of the strategies from
Section 12.4 (some of them do not require 𝜉0, in which case that input is
not necessary). Initialise the grid.

2. Compute a calibrated BVP solution on an automatically selected mesh by
repeating the following steps until convergence:

(a) Compute a calibrated BVP solution on the current mesh. To this end,
initialise 𝛾,𝑚0,𝐶0 (𝛾) and alternate the following coordinate-descent
steps until convergence:

i. Update the output scale: compute a Gauss–Newton estimate,
and update 𝛾 with the quasi-maximum likelihood estimate

ii. Update the initial distribution: Alternate Gauss–Newton esti-
mates with EM updates until convergence

(b) Estimate the error on the intervals between grid points.
(c) Refine the mesh as appropriate and repeat.

Return the final estimate.

The computational complexity of Algorithm 12.3 is 𝑂 (𝐼Mesh𝐼GN𝐼EM𝑁𝜈
3), where 𝐼GN

is the number of Gauss–Newton iterations, 𝐼Mesh is the number of mesh refinements,
and 𝐼EM the number of EM updates. In our experiments, we found 𝐼GN and 𝐼EM
to be small, usually bounded by 10. The mesh refinement is designed to make
𝐼Mesh as small as possible. Linear complexity in 𝑁 stems from the state-space
implementation of the Gauss–Newton algorithm and could potentially be reduced to
log 𝑁 by temporal parallelisation [184]. The cubic complexity in 𝜈 stems from the
matrix-matrix operations that are required in a Gaussian update [143]. An extension
to vector-valued problems follows the recommendations from Chapter 8 and inherits
their computational complexity.

12.7 Benchmarks

Now that all parts are in place, we evaluate the solver’s performance in various
scenarios. All experiments are implemented in NumPy [77] and use the CPU of a
consumer-level laptop.

An efficient probabilistic numerical method should provide both a reasonable point
estimate (through its posterior mean) and a calibrated error estimate (through its
posterior covariance). First, the approximation error should decrease rapidly with
the number of grid points; we report root-mean-square errors – the lower, the better.
Second, the width of the posterior distribution should be representative of the numerical
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Figure 12.6: Results on Bratu’s problem. The higher-order solvers converge at least
as fast as the SciPy reference (left) and are roughly by factor ∼ 100 slower (centre
left, centre right; linear complexity reference line in the background). The 𝜒2-statistic
remains within 95% confidence (right; intervals shaded in gray, mean (= 1) in black).
The initial grid consists of only three points to display the efficiency of the mesh
refinement. The probabilistic numerical solver initialises with local linearisation and
uses the standard deviation as an error estimate.

approximation error (which has, to some extent, been shown in Section 12.5 already);
we report the dimension-normalised 𝜒2-statistic [15]. If it is close to 1, the posterior
uncertainty is calibrated.

A simulation of Bratu’s problem [30] for varying tolerances and orders 𝜈 suggests
that the solver performs well in both metrics (Figure 12.6). Reassuringly, higher orders
of the solver lead to faster convergence, which motivates the analysis of convergence
rates akin to the analysis of Tronarp et al. [164] for initial value problem solvers.
The experiments also suggest that the uncertainties are calibrated but tend to be
under-confident.

Efficient mesh refinement and fast convergence are evident when considering a more
comprehensive range of test problems. Figure 12.7 depicts the results of simulating
five BVPs (all from Mazzia [117]): the 7th problem approaches a singularity in its
derivative, the 23rd problem has a boundary layer at 𝑡max, the 24th problem describes
a fluid mechanical model of a shock wave, the 28th problem has a corner layer at
𝑡min, and the 32nd problem involves fourth-order derivatives. On all problems, the
probabilistic numerical solver efficiently computes calibrated posteriors at specified
tolerances.

12.8 Related work

How does the proposed algorithm fit into the context of state-of-the-art probabilistic
and non-probabilistic BVP solvers?

Headway on the probabilistic solution of BVPs has been made by Hennig and
Hauberg [78], Arvanitidis et al. [10], and John et al. [85]. Hennig and Hauberg [78]
and Arvanitidis et al. [10] focus on applying BVP solvers to Riemannian statistics.
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Figure 12.7: The solver efficiently computes (mostly) calibrated posteriors on many
problems. Probabilistic solver (▽; 𝜈 = 6) versus SciPy’s BVP solver (♢). Markers are
annotated with the number of grid points and runtime (in seconds). The tolerances are
10−1 (gray) and 10−6 (blue). The closer a coloured marker is to its reference line, the
better. The fewer grid points and the less time required, the better. Fill-color describes
calibration: 𝜒2 is within 80 % (green), within 99% (orange), or outside of these ranges
(red). SciPy does not allow a notion of calibration.

Table 12.1: Comparison of probabilistic and non-probabilistic BVP solvers.

Non-probabilistic Probabilistic (present work)
𝑂 (𝑁) achieved by Sparse matrices Markov property
Error estimate Residual (point est.) Many options, e.g. standard dev.
Initial guess Mandatory Optional
Uncertainty quantification No Yes

None of these algorithms exploit the state-space structure of the prior with its beneficial
computational complexity, nor are they concerned with mesh refinement and the other
practical considerations to the extent what has been presented in this chapter.

In terms of accuracy and cost, the present approach should rather be compared
to off-the-shelf non-probabilistic BVP solvers: for instance, those implemented in
Matlab [96, 97, 154], Python/SciPy [170], and Julia [135]. These toolboxes contain
algorithms that implement collocation formulas and gain linear-time complexity from
sparse system matrices. The Markov property makes our algorithm equally fast (in
terms of the number of grid points 𝑁) (Table 12.1).

12.9 Conclusion

This chapter discussed a computationally efficient BVP solver. The algorithm achieves
the same linear computational complexity as off-the-shelf solvers, with high-quality
point estimates and calibrated uncertainty. Algorithmic parameters can be set automat-
ically by the method, including some that must be manually set for non-probabilistic
numerical solvers.
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Conclusion

Efficient algorithms for simulating differential equations are crucial for many applica-
tions in scientific or industrial environments. Since probabilistic numerical simulation
promises the combination of numerical approximation with reliable uncertainty
quantification, these environments are the primary candidates for benefitting from
a probabilistic approach. And with contributions like the ones discussed in this
manuscript, the promises of probabilistic numerical solvers are no longer out of reach.

This thesis derived a numerically stable and scalable implementation of probabilistic
numerical solvers for time-dependent differential equation problems. This includes
initial value problems based on ordinary differential equations – both scalar and
vector-valued – but also partial differential equations and boundary value problems
(Chapters 7 to 12). The central strategy was the following: first, begin by factorising
conditional distributions of the type

𝑝

(
𝜑(𝑡)

����� {
d𝜑(𝑡𝑛)

d𝑡
= 𝑓 (𝜑(𝑡𝑛))

}𝑁
𝑛=0

, 𝜑(0) = 𝑦0

)
sequentially with the help of a Gauss–Markov prior; second, carefully combine
concepts from numerical linear algebra, algorithmic differentiation, and probabilistic
machine learning to achieve an equally efficient, numerically stable, and statistically
meaningful algorithm.

For example, the sequence of Chapters 2 to 8 constructed an implementation of an
eighth-order probabilistic numerical solver that was competitive to the most efficient
state-of-the-art non-probabilistic solvers (in JAX) on the second-order, 14-dimensional
Pleiades problem (Chapter 9). This was not only because of the stability and efficiency
gains of sequential estimation algorithms but also because the probabilistic solver can
seamlessly switch between solving first-order and second-order differential equations
– non-probabilistic algorithms cannot do that. Previous to the contributions of this
manuscript, implementing eighth-order probabilistic numerical solvers in standard
floating-point arithmetic was impossible – and even if it would have been feasible to
implement one, the implementation would have been orders of magnitude slower than
its non-probabilistic competitors without the factorisations in Chapter 8.

For future applications of probabilistic numerical algorithms, this improved practi-
cality implies that it is now possible to explore how powerful probabilistic numerical
algorithms can be when applied to a challenging, real-world problem. And due
to the (now) broad availability of probabilistic numerical software in a variety of
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programming languages, this exploration is no longer a task for a small community
but has the potential to reach and include a broader audience, which I, as the author of
this thesis, am already looking forward to.
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