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Abstract

Ordinary differential equations are ubiquitous in science and engineering, as they pro-
vide mathematical models for many physical processes. However, most practical pur-
poses require the temporal evolution of a particular solution. Many relevant ordinary
differential equations are known to lack closed-form solutions in terms of simple analytic
functions. Thus, users rely on numerical algorithms to compute discrete approximations.

Numerical methods replace the intractable, and thus inaccessible, solution by an ap-
proximating model with known computational strategies. This is akin to a process in
statistics where an unknown true relationship is modeled with access to instances of
said relationship. One branch of statistics, Bayesian modeling, expresses degrees of uncer-
tainty with probability distributions. In recent years, this idea has gained traction for the
design and study of numerical algorithms which established probabilistic numerics as a
research field in its own right.

The theory part of this thesis is concerned with bridging the gap between classical
numerical methods for ordinary differential equations and probabilistic numerics. To
this end, an algorithm is presented based on Gaussian processes, a general and versatile
model for Bayesian regression. This algorithm is compared to two standard frameworks
for the solution of initial value problems. It is shown that the maximum a-posteriori es-
timator of certain Gaussian process regressors coincide with certain multistep formulae.
Furthermore, a particular initialization scheme based on an improper prior model coin-
cides with a Runge-Kutta method for the first discretization step. This analysis provides
a higher-order probabilistic numerical algorithm for initial value problems.

Based on the probabilistic description, an estimator of the local integration error is
presented, which is used in a step size adaptation scheme. The completed algorithm is eval-
uated on a benchmark on initial value problems, confirming empirically the theoretically
predicted error rates and displaying particularly efficient performance on domains with
low accuracy requirements.

To establish the practical benefit of the probabilistic solution, a probabilistic boundary
value problem solver is applied to a medical imaging problem. In tractography, diffusion-
weighted magnetic resonance imaging data is used to infer connectivity of neural fibers.
The first application of the probabilistic solver shows how the quantification of the dis-
cretization error can be used in subsequent estimation of fiber density. The second ap-
plication additionally incorporates the measurement noise of the imaging data into the
tract estimation model. These two extensions of the shortest-path tractography method
give more faithful data, modeling and algorithmic uncertainty representations in neural con-
nectivity studies.
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Zusammenfassung

Gewohnliche Differentialgleichungen sind allgegenwértig in Wissenschaft und Technik,
da sie die mathematische Beschreibung vieler physikalischen Vorgédnge sind. Jedoch be-
notigt ein Grofiteil der praktischen Anwendungen die zeitliche Entwicklung einer be-
stimmten Losung. Es ist bekannt, dass viele relevante gewohnliche Differentialgleichun-
gen keine geschlossene Losung als Ausdriicke einfacher analytischer Funktion besitzen.
Daher verlassen sich Anwender auf numerische Algorithmen, um diskrete Anngherun-
gen zu berechnen.

Numerische Methoden ersetzen die unauswertbare, und daher unzugéngliche, Lo-
sung durch eine Anndherung mit bekannten Rechenverfahren. Dies dhnelt einem Vor-
gang in der Statistik, wobei ein unbekanntes wahres Verhiltnis mittels Zugang zu Bei-
spielen modeliert wird. Eine Unterdisziplin der Statistik, Bayes’sche Modellierung, stellt
graduelle Unsicherheit mittels Wahrscheinlichkeitsverteilungen dar. In den letzten Jah-
ren hat diese Idee an Zugkraft fiir die Konstruktion und Analyse von numerischen Algo-
rithmen gewonnen, was zur Etablierung von probabilistischer Numerik als eigenstandiges
Forschungsgebiet fiihrte.

Der Theorieteil dieser Dissertation schlédgt eine Briicke zwischen herkémmlichen nu-
merischen Verfahren zur Losung gewohnlicher Differentialgleichungen und probabilisti-
scher Numerik. Ein auf Gaufs’schen Prozessen basierender Algorithmus wird vorgestellt,
welche ein generelles und vielseitiges Modell der Bayesschen Regression sind. Dieser
Algorithmus wird verglichen mit zwei Standardansétzen fiir die Losung von Anfangs-
wertproblemen. Es wird gezeigt, dass der Maximum-a-posteriori-Schétzer bestimmter
GaufSprozess-Regressoren {ibereinstimmt mit bestimmten Mehrschrittverfahren. Weiter-
hin stimmt ein besonderes Initialisierungsverfahren basierend auf einer uneigentlichen
A-priori-Wahrscheinlichkeit tiberein mit einer Runge-Kutta Methode im ersten Rechen-
schritt. Diese Analyse fithrt zu einer probabilistisch-numerischen Methode hoherer Ordnung
zur Losung von Anfangswertproblemen.

Basierend auf der probabilistischen Beschreibung wird ein Schitzer des lokalen In-
tegrationfehlers prasentiert, welcher in einem Schrittweitensteuerungsverfahren verwendet
wird. Der vollstindige Algorithmus wird auf einem Satz standardisierter Anfangswert-
probleme ausgewertet, um empirisch den von der Theorie vorhergesagten Fehler zu be-
statigen. Der Test weist dem Verfahren einen besonders effizienten Rechenaufwand im
Bereich der niedrigen Genauigkeitsanforderungen aus.

Um den praktischen Nutzen der probabilistischen Losung nachzuweisen, wird ein
probabilistischer Loser fiir Randwertprobleme auf eine Fragestellung der medizinischen
Bildgebung angewandt. In der Traktografie werden die Daten der diffusionsgewichteten
Magnetresonanzbildgebung verwendet, um die Konnektivitdt neuronaler Fasern zu be-
stimmen. Die erste Anwendung des probabilistische Losers demonstriert, wie die Quanti-
fizierung des Diskretisierungsfehlers in einer nachgeschalteten Schitzung der Faserdich-
te verwendet werden kann. Die zweite Anwendung integriert zusitzlich das Messrau-
schen der Bildgebungsdaten in das Strangschidtzungsmodell. Diese beiden Erweiterun-



gen der Kiirzesten-Pfad-Traktografie reprasentieren die Daten-, Modellierungs- und algo-
rithmische Unsicherheit abbildungstreuer in neuronalen Konnektivitdtsstudien.
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Listen master, can you answer a question?

Is it the fingers or the brain that you're teaching a lesson?
Oh, I can’t tell you how proud I am

I'm writing down things that I don’t understand

Well, maybe I'll put my love on ice

And teach myself, maybe that’ll be nice

The White Stripes. “Black Math.” Elephant. V2 Records, 2003.
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Disclaimer

Gauf$ has been attributed to have said “no architect leaves the scaf-
folding after completing the building” (Kline [118, §5]), writing “ele-
gant, but highly compact, carefully polished papers with no hint of
the motivation, meaning or details of the steps” (Ibid.).

While I agree that there is an ideal level of abstraction in scientific
communication, it depends both on the purpose of the communica-
tion and the audience. This manuscript is intended for fellow re-
searchers of (probabilistic) numerical analysis. The purpose of this
work is to find the connections between classical algorithms and
probabilistic models and to enable colleagues, new and old, to speak
a common language and to understand the motivation and the re-
sults of their respective counterparts.

This motivation entails important stylistic decisions. I have de-
cided to use a more colloquial first person plural “we” throughout
the thesis, to invite you, dear reader, on a common tour of discov-
ery. Together, we will take the leap from classical numerical meth-
ods to probabilistic ordinary differential equation solvers, retracing
our steps from its audacious beginnings to its first maturity and the
establishment of a small, but steady, research community.

This style has been inspired by the excellent textbooks Hairer and
Wanner [84] and Hairer, Norsett, and Wanner [82]. I hope to follow
their example, if not in quality, then at least in spirit. I apologize to
readers not inclined to this style of presentation and commend my
scientific publications to them.
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Introduction

The expansion of available scientific knowledge has always been a
history of the development of richer mathematical models suitable of
describing complex natural systems in an accessible language. Ever
since the invention of calculus by Gottfried Wilhelm Leibniz!, or-
dinary differential equations (ODEs), as well as partial differential
equations, have played a fundamental role in describing natural phe-
nomena. The long list of famous equations include:

¢ The linear ordinary differential equation

da
=2 —Ka.
a

This equation describes exponential growth (or decay), and ap-
pears, e.g., in rate equations for chemical reactions.

¢ Newton’s law of planetary motion

2., n Y
i Cclitzz = G)_ mim; W9 yl)s
7

for n bodies with masses m;, positions y; and the gravitational
constant G.

* The law of population growth

dP P
= —yp(1-=
a ~ Py
describing the size of population P growing at rate r with limited
resources K and its generalization to the Lotka-Volterra equations
dp; dp,

S _p - P, &2 = -
 — BP P, i 0P P, — P,

of a predator-prey relationship.

¢ Oscillator equations, like the universal oscillator equation

d*q | .dg
g"‘zgaﬁ-q—o

or generalizations thereof, e.g., the Van der Pol equation

d2x o, dx
@—‘u(l—x)a—i-x—O

1 that settles it



and the FitzHugh-Nagumo model

3
%/ = V—%—W%—I dd—vf =1 Y (V+4a—bW)

However, with new tools come new challenges. Setting aside
partial differential equations which are a whole different beast al-
together, many ordinary differential equations are very hard to solve.
While the existence of solutions can already be shown with elemen-
tary methods (Piccard iteration), closed-form analytical expressions
are hard to find. In some cases, it can even be shown that closed-
form solutions don’t exist. One example has already been given: for
n = 3, Newton’s equation is the famous three-body problem which has
historically been focused on in lunar theory. Bruns [26] provided a
first proof of the non-existence of a closed-form solution which was
completed later by Poincaré [172].

Even before the advent of fast automatic computers, mathemati-
cians have come up with numerical approximate methods to the ex-
act solutions. Early attempts are Runge [179] and Kutta [124]. An-
other set of now fundamental methods are the family of multistep
methods, originally developed by Adams (see Bashforth and Adams
[11]) probably predating Runge-Kutta methods almost 50 years ([82,
§III.1]). An excellent overview of the historical development is out-
lined in Butcher [27]. Nowadays, ODEs are solved routinely as part
of numerical partial differential equation solvers, in physical, chemi-
cal or biological problems, in image processing applications, etc.

In a similar fashion, the advent of the calculus of probability the-
ory has allowed the rigorous analysis of uncertain knowledge. Laplace
[127] famously asserted an uncertain value to the specific weight of
the planet Saturn, Reverend Bayes (in Bayes and Price [14]) is cred-
ited for coming up with turning prior beliefs and likelihood assump-
tions into posterior uncertainty, and Gaufs has both invented the
Gaussian normal distribution as well as the method of least squares.

While both these tools have a well-deserved place in a modern
scientist’s toolbox, there has not been a lot of attention on bringing
both together to “speak a common language”. While some problems
are determined up to floating point precision, other systems might
only be known up to a probabilistic uncertainty description. And yet,
numerical analysists have developed a completely independent set
of descriptions to articulate the additional uncertainty introduced by
the finite description of the infinite dimensional problem. Thus, up
to now practitioners have been forced to abandon probability theory
once they enter the realms of numerical approximations and have
had to awkwardly pick up the pieces again afterwards.

This thesis is concerned with a first attempt of “bridging the gap”
between classical numerical analysis and probabilistic modeling of



uncertainty. More specifically, this thesis will develop probabilistic
numerical methods which attempt to model the numerical approx-
imation uncertainty in the language of probability theory. To this
end, we will study the connection of Gaussian process regression to
numerical spline models in order to arrive at probabilistic interpre-
tations of classical numerical methods. Conversely, we will interpret
some classical methods in light of their probabilistic assumptions to
critique or improve upon them. We will investigate how prior infor-
mation about dynamical systems can be incorporated into methods
and how numerical methods fit into a larger chain of scientific com-
putations.

1.1 Outline

This thesis is structured in three major parts. Part ii provides the nec-
essary background material. In Chapter 2, we introduce the mathe-
matical framework of probabilistic inference which serves as the lingua
franca in this manuscript. Chapter 3 gives a short introduction to
the theory of ordinary differential equations and the analysis of al-
gorithms for their numerical solution. Prior work on probabilistic
methods applied to the numerical solution of ODEs is presented in
Chapter 4.

We will present contributions in both theory (Part iii) and applica-
tions (Part iv) of probabilistic ODE solvers. Part iii opens with gen-
eral considerations about probabilistic ODE solvers and formulates
the open questions in Chapter 5. Based on these, we will describe and
analyze our probabilistic filtering ODE solver in Chapter 6. Chapter 7
provides an extension of the basic algorithm and tests our reference
implementation on a standard benchmark set.

In Part iv, we discuss how probabilistic ODE solvers can provide
novel functionality. We start by presenting our area of application:
tractography (Chapter 8). We show how the estimated solution un-
certainty of a probabilistic ODE solver can be used in subsequent
computations (Chapter 9) and how uncertainty in previous compu-
tations can be used within the ODE solver itself (Chapter 10).

In the final Part v, we will summarize and reflect upon our work
in Chapter 11.2.

1.2 Publications

In partial fulfillment of this thesis, research was conducted and pub-
lished with colleagues. In particular, the following manuscripts have
been published after scientific peer-review:



* M. Schober, N. Kasenburg, A. Feragen, P. Hennig, and S. Hauberg.
“Probabilistic shortest path tractography in DTI using Gaussian
Process ODE solvers.” In: Medical Image Computing and Computer-
Assisted Intervention—-MICCAI 2014. Springer, 2014

* M. Schober, D. Duvenaud, and P. Hennig. “Probabilistic ODE
Solvers with Runge-Kutta Means.” In: Advances in Neural Informa-
tion Processing Systems (NIPS) (2014) This work has been selected
for full oral presentation.

® M. Schober, S. Sarkkd, and P. Hennig. “A probabilistic model for
the numerical solution of initial value problems.” In: Statistics and
Computing (2018). por: 10.1007/s11222-017-9798-7

I have also contributed major parts in the following contribution
of my colleague Seren Hauberg:

¢ S. Hauberg, M. Schober, M. Liptrot, P. Hennig, and A. Feragen. “A
Random Riemannian Metric for Probabilistic Shortest-Path Trac-
tography.” In: Medical Image Computing and Computer-Assisted In-
tervention-MICCAI 2015. Vol. 18. Springer, Sept. 2015

During an internship at Microsoft Research, Cambridge, I have
been able to conduct research on an unrelated problem in depth
imaging. This work culminated in the publication of the following
peer-reviewed manuscript which will not be included in this thesis:

® M. Schober, A. Adam, O. Yair, S. Mazor, and S. Nowozin. “Dy-
namic Time-Of-Flight.” In: The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). July 2017


https://doi.org/10.1007/s11222-017-9798-7
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Probabilistic inference

This chapter provides the necessary mathematical background on the
statistical models applied within this thesis.

2.1 Bayesian regression

This thesis is concerned with the numerical solution of ODEs from
the perspective of probabilistic modeling. In regression analysis, the
goal is to determine an unknown function y : RP — R from pairs
of (noisy) observations (x,,zx), X, € RP,z, ~ y(xy),n = 1,...,N.
The inputs x;, are called the independent variables, regressors or simply
inputs. It is assumed that the behavior of the response variables z, can
be expressed as a conditional expectation E[y(x;) | x,] of x,.

The set D = {(xn,z4) |n =1,...,N} of all available observations
is called training data. It is used to make a prediction J(X) at a previ-
ously unobserved input % or to get hopefully more accurate estima-
tion §(x,) for the corrupted value z, of input x;,.

To this end, we will apply Bayesian inference, wherein all model-
ing choices and assumptions are encoded by specifying a joint prob-
abilistic model for all unknowns and observables. A prior distribution
Py(y) is placed over a set of possible functions y € ). A likelihood
P,(z|y(x)) specifies the probability of obtaining z for the input x of
y. Bayes’ theorem

(v)
(y) dy

), lending the

P(y(x) | D) = L2 Y3, ()

XN
= TP | v, ) @

Py
Py

is used to obtain the posterior distribution P(y(x)
method its name.

When modeling temporal phenomena, it is often the case that ob-
servations (xy,z,) become available sequentially, yet it might be nec-
essary to make predictions online, i.e., during the runtime of the infer-
ence algorithm. Other times, it suffices to perform offline inference
after all data has become available and no time-critical component is
waiting for immediate answers.

In the literature, a distinction is drawn between three different
posterior distributions that one might be interested in. Let D},,) =

regression analysis

independent variables

response variables

training data
prediction

estimation

Bayesian inference
probabilistic model
prior distribution

likelihood

posterior distribution

online
runtime

offline



1 1 1 1 > observations

L 5
s predictions

tn<m tn:m tn>m

{(xn,2n) | n < m} be the set of observations up to and including z,.
We are interested in (posterior) conditional distributions of the form

P(y(xn) | Dpyyp)- )

If n = m in (2), this is called the filtering distribution and determining
(2) is called the filtering problem. The cases n > m and n < m are
called the predictive and smoothing distribution, respectively.

For the most part, we will be concerned with ODEs obtaining
unique, well-defined, deterministic solutions. Yet, we will model the
solution with a random variable (RV) and we will assign a probability
measure over it. The intension of the probability measure here is
expressly not to describe randomness, but to characterize a lack of
complete certainty over its value, akin to the Laplace probability of
a die before it’s thrown. However, unlike a die, the numerical finite
solution will never completely reach the infinite true solution, and as

a consequence, some epistemic uncertainty always remains.

2.2 Inference in Gaussian probability models

A necessary ingredient to inference are assumptions about the re-
lationships between involved quantities. This thesis builds up on
Gaussian process regression wherein all variables are related to each
other by multivariate normal distributed, or simply Gaussian, RVs.
The (multivariate) Gaussian distribution holds a dominant role in
statistics:

1. The Gaussian distribution is a member of the exponential family,
and thus, can be completely characterized by its sufficient statis-
tics consisting of a mean vector and a covariance matrix.

2. Linear and affine transformations of Gaussian distributed RVs are
again Gaussian distributed.

3. If two RVs X, Y are jointly Gaussian distributed, the conditional
distribution of X given Y = y is normally distributed as well.

Together, these properties lead to efficient algorithms for inference
under Gaussian model assumptions.

10

Figure 1: Illustration of the filtering,
predictive and smoothing distribution.

filtering distribution
filtering problem
predictive

smoothing distribution

random variable (RV)

Gaussian process

mean vector

covariance matrix



In the remainder of this section, we present the basic theory of
multivariate normal distributions. For details, we refer the reader to
Durrett [60, §3] and Tong [211, §3]. A rigorous presentation is given
in Bogachev [17].

Denote by ¢x(t) : RP — R, ¢x(t) = E[et'X] the characteristic
function of the g-dimensional random variable X. A random variable
(RV) X € RP is said to have the multivariate Gaussian distribution
P(X) = N(X;m,C) with mean vector m € RP and positive (semi-)

definite covariance matrix C € RP*P  if its characteristic function is
given by
) 1
¢px(t) = exp(itTm — EtTCt). 3)

If C has full rank, the distribution of X has a probability density func-
tion (PDF) p : RP — R, i.e., the probability of X taking a value in the
set E can be written as

P(X €E) = /Ep(x) dx,

p(x) = 20} Cl exp(— 2 (x — m)TC (x — m)).

2
The advantage of working with (3) is that it is also valid for covari-
ance matrices C of rank D’ < D. In particular, we will consider
deterministic variables ¥ = m as degenerate random variables with
Dirac measure 6z

1 ifx=m,
bw(X) = N (x;m,0) =
0 otherwise,

since ¢x(t) = eit™™,

LetY = HX + b, H € REXP b € RE be an affine transformation
of the RV X and denote the resulting RV Y. The joint distribution
P(X,Y) of the RV Z = (X, Y)T is given by

X C CHT
P(Z) =N A . 4)
Y Hm+b HC HCHT

which follows from inserting the transformation into (3) and reorga-
nization of terms. Conversely, let the joint system (X,Y)T have the
joint distribution

P(X,Y)IN X . My ) Cix ny
Y my Cl, Cyy

11

characteristic function

random variable (RV)

Gaussian distribution

probability density function
(PDF)
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Then the conditional distribution P(X |Y = y) of X given Y = y is
also a multivariate Gaussian

P(X|Y =y) = N(X;my+ CyyCy,} (y —my), Cxx — CyyCy, CL,). (5)

If Cyy is singular, C;yl denotes the pseudo-inverse of Cy, in (5). Egs. (4),
(5) imply that Bayes’ theorem (1) has an analytic solution which can
be expressed solely in terms of linear algebra, thus fulfilling the
promises made at the beginning of this chapter.

2.3 Types of Gaussian assumptions

We have built up the necessary mathematical background to consider
various types of model assumptions within the family of Gaussian
regression. We will now present basic models of Gaussian regres-
sion. For a more detailed introduction, we recommend the books by
Rasmussen and Williams [176] and Lifshits [136].

The most basic model is Gaussian linear regression

Zy = wan + Vn, (6)

where w € RP is a parameter vector of weights and v, ~ N(0,0?)
are observation errors. Positing a prior distribution on the unknown
weights parameter w ~ N (m, C), we can use Equations (4) and (5)
to obtain the (predictive) posterior conditional distribution

P(w|D) = N(mp,Cp),
mp =m+ CXT(XCXT+0%1) 1 (z— Xm), )
Cp=C—CXT(XCXT+I)lXxC,

where I denotes the identity matrix. In (7), we have written the
training set D in a N x g matrix (X'),; and a N-dimensional vector
z = (z1,...,zN)7, accordingly.

The matrix G = X CXT + ¢°I of covariances (G)ij = cov(x;, x;) is
also called the Gram matrix [176, §4.1]. Computing the inverse of the
Gram matrix is often the computational bottleneck of Gaussian infer-
ence. Occassionally, we will encounter models where the measure-
ment noise v, is independent, but non-identically distributed, accord-
ing to v, ~ N(0,02). In these cases, we will write (xy,z,,02) for ob-
servations with non-identically distributed noise and the Gram ma-
trix consequently turns into G = XCXT + diag(alz, e, (712\]), where
diag(Aj,...,Ax) denotes the (block) diagonal matrix with entries
Aq,... AL

In many cases, a model in the form of(6) will not be sufficient in
practice as most relationships are nonlinear. In these cases, one can
try to design a nonlinear transformation of the inputs ® : RP —
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RE and perform linear regression on the transformed variables y =
wT®P(x). The problem with this approach is that one needs to find
an appropriate transformation manually which might not always be
possible.

Another option is to specify a nonparametric model in form of a
(nonlinear) Gaussian process (GP) GP(Y; u, k) with mean function y :
RP — R and covariance kernel k : RP x RP — R. This assumes
that the function Y(x) lies in the sample space of the GP which is
closely related to the reproducing kernel Hilbert space (RKHS) Hy. of k
(for details, see [143]). Formally, the GP is an infinite collection of
RVs Y, such that any finite subset (Yy,, ..., Yy, )T is jointly Gaussian
distributed with mean vector u(X) = (u(x1),...,u(xN))T and co-
variance matrix k(X, X') with entries (k(X,X));; = k(x;,%;),i,j =
1,...,N.

Valid covariance kernels are positive (semi-) definite (p.s.d.) func-
tions, i.e.,

N
Y anamk(x,x') >0 VYN €N, ay,am € R, x,x" € RP.

n,m=1

An example for such a function is the squared exponential (SE) kernel
k(x,x') = exp(— |[x = &[|? (2A%)71), A€ R

with lengthscale parameter A.

As before, denote by D = {(x4,z4)|n = 1,...,N} with z, =
Y(xy) 4 vy, vy ~ N(0,0?) iid., a data set of training points. The
posterior process distribution is given as

P(Y(x)|D) = GP(Y(x); py(x), kp(x,x'))
pp () = p(x) +k(x, X)(k(X, X) + 1)1 (z = u(X)), ()
kp(x,x') = k(x,x') —k(x, X)(k(X, X) + *1) " 'k(X, %)),

with the notation as in (7).

Note that in the general setting of an infinite dimensional Hilbert
space, the mathematical concepts of a posterior or conditioning are
subject to measure-theoretic complexities [205, 71]. In this work, we
will only be dealing with finitely many Gaussian RVs of the dis-
cretized underlying process and, thus, we do not have to worry about
these restrictions in practice.

Analogous to the finite dimensional case, Gaussian processes are
closed under linear maps £ : H — H' [163, §10], [17, §2.10]

o) (2 (o 22

P(Y,LY) =GP
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where LT is the application of £ to the second argument of k. In
particular, if ) contains the set C1(RP,R) of g-times continuously
differentiable functions y : RP — R, then

PY(), 5
Y(x) | [ n( Kxx)  Zkx) || @

7 7 2
2v()) \du) \Zkxr) shokien)

Y(x)) =

is the joint distribution over Y(x) and its derivative & Y(x) and sim-
ilarly for higher derivatives. Conversely, it can be shown that )
contains C7(RP, R), if 4 € C7(RP,R) and k is 2g-times continuously
partially differentiable. Eq. (9) can be used in conjunction with (8)
to use derivative observations % y for inference of function values y.
This discussion is a bit overly simplistic, but it suffices for our prac-
tial applications. For details, we refer the reader to Adler [2, §3.3].

In some applications, we will require online predictions, i.e., fast
access to the filtering and predictive distribution. This is not feasible
with the model (8), as the Gram matrix G € RN*N grows with the
number of observations and its inversion is of cubic cost O(N?3).

In the parametric model (6), this issue can be solved by using the
Shermann—Morrison—Woodburry formula [80], sometimes also called the
matrix inversion lemma,

(A+ucv)yl=a"1-Alu(ct+vatu)va!
to find expressions which are less taxing to compute
S (' S ATA) (L ATz

x
o2

(10)

Cp=(Cl+SxTx) L.

Eq. (10) only requires the inversion of two D x D matrices. Assum-
ing the number of dimensions D is much less than the number of
observations N, we find these expressions much faster to evaluate.

Note that this can only be applied to parametric regression whose
fixed number of parameters cannot be fitted to complicated data sets.
However, it is still possible to achieve fast inference for some non-
parametric models. The key lies in understanding where the com-
putational benefit comes from—the extra knowledge of structure of
the involved computations. In the next section, we will describe a
nonparametric model for one-dimensional inputs that obtains a fast
inference algorithm.
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2.4  Stochastic differential equations and Kalman filtering

We still require a model that is both expressive enough for compli-
cated data sets as well as structured enough to yield fast inference
algorithms for online prediction. In this section, we will present such
a model based on stochastic differential equations (SDEs). However, we
will need the additional assumption that the input space X C RP
is one-dimensional, i.e., g = 1. It will turn out that this is no re-
striction for the application at hand, since we will mostly deal with
one-dimensional problems of time. To highlight this restriction, we
change the notation of the input variables x, to t, € T C R. More
information on this subject is given in Jazwinski [102].

Gaussian processes are a particular class of stochastic processes
which are completely specified by their first and second moments.
Another special case of stochastic processes are Markov processes.

Lett > sy > -+ > s1 be a finite collection of elements from the
ordered set T. A vector-valued stochastic process (X;)c is a Markov
process if it satisfies the Markov property

P(Xt|Xs,,n=1,...,N) = P(X¢| Xsy), (11)

that is, the distribution of X; conditioned on any set of previous RVs
{Xs, } only depends on the most recent RV X,,. A colloquial descrip-
tion is to say “the future is independent of the past given the present”.
Technically, Eq. (11) is a simplification of the full measure-theoretic
description which can be found, e.g., in Karatzas and Shreve [114,
§2.5].

One particular class of models that gives rise to Markov processes
are linear time-invariant (LTI) stochastic differential equations (SDEs) of
the form

dX; = FX;dt + L dW,, (12)

where (X})eT is a stochastic process mapping to the so-called state
space R9. The parameters F € R7*7 and L € R7 are the drift (or
feedback) matrix and (continuous) diffusion matrix, respectively. dW;
is the increment of a Wiener process with intensity a2, ie., dW; ~
N(0,02dt).

Conditioning on (random) initial conditions X}, at a starting time
t. of the process, the solution of Eq. (12) has the analytic form

t
X = ePAi*Xt* +/ ePAtT L dW(T),
ty

where ef% = Y5> o[FAL]F[k!] 71 is the matrix exponential of FA!, and
A =t—s.
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If Xy, ~ N (m.,C,), then the distribution of X; remains Gaussian
for all ¢ by linearity and its statistics can be computed explicitly [75,
181] via

m; =E(X;) = e,

/
cov(Xy, Xy) —efhL C*(eFAg*)T

min(t,t) ; (13)
+ efir LUZLT(ePAtT)TdT.
Ex

=Qu, (bt)

This implies that linear SDEs with a Gaussian initial distribution
P(X:,) = N(m,, C,) define a Gauss-Markov process, i.e., a stochastic
process that is both Gaussian and Markovian. Examples of Gauss-
Markov processes include the Wiener process GP(0, min(t,t')) and
the (one-dimensional) Matérn processes, e.g., GP(0, ks, (t,t')) where
kapa(tt)) = (14 VBA L |t —]) exp(—VBAL [t = F)).

Denote by A(h) = ef A" the transition matrix of step size h and
Q(h) = Q;(t+ h,t+h) the (discrete) diffusion matrix of step size
h, respectively. For LTI SDE systems, A(h) and Q(h) fulfill matrix-
valued differential equations which can be solved analytically via
matrix fraction decomposition [75, 181]. Define

®(h) = (q’ll(h) ‘I’lz(h)) _ exp{ (F 0‘2LLT> h} .
@y (h) @x(h) 0 —FT
Then, matrix A(h) and Q(h) are given by

A(h) = exp(Fh) Q(h) = ®15(h)®5, (h). (14)

¢521(h) can be computed efficiently: from the two properties of
the matrix exponential, exp(M)~! = exp(—M) and exp(MT) =
exp(M)T, it follows that ®,,'(h) = A(h)T and therefore Q(h) =
@15 (h)A(h)T. In the following, it will be beneficial to write Q(h)
as Q(h)T = A(h)®q,(h)T, which is valid since Q(h) is a covariance
matrix and, therefore, symmetric.

The importance of Markov processes stems from the fact that the
joint distribution over a finite subset {X;, |[n =0,..., N} factorizes

N
P(Xtorth/ .- -/XtN) = P(Xfo) H P(th |an71)

n=1

which can be exploited to speed up inference computations.
Assume as in the previous section a data set (t,,z,),n =0,...,N
and a linear relationship

zy = HXy, + v, v ~N(0,Ry)
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between the observations z, and the (hidden) state X;, at time ¢,
perturbed with observation noise v,. The matrix H € R is called observation noise
the observation matrix of the sytem.

Let us first consider the filtering problem. We will factorize Eq. (2)
appropriately

observation matrix

P(th |Z[1’l}) = P(Zn |th)P(th |Z[n71])
= P(zn | X1, )P(Xt, | X1, )P(Xs,_y [ Zjn—1))

to arrive at a recursive scheme known as the Kalman filter [113, 112]:

P(Xt, | zjy—1)) = N(m; ,C;)
mt_n = A(hn)mtn—]’ (153)
C, = A(hn)Cy, A(hy)T + Q(hy) (15b)

and

P(xt, |zfy) = N (my,, Ct,)

An =z —Hmy , (16a)
K, =C; H'[HC, H" + R,] ", (16b)
my, = m; + KyAy, (16¢)
Ci, = C; — Ky [HC; HT + R, K], (16d)

where h, = t, — t,_1. Equations (15a) and (15b) are referred to as
the prediction step and Equations (16a) through (16d) are referred to
as the update step. The newly defined variables A, and K, are the
residual and the Kalman gain, respectively. Equations (15a), (15b) fol-
low directly from (13), whereas Equations (16a)—(16d) can be derived
from repeated applications of Egs. (4) and (5).

The prediction problem P(X;|z,), t > tu, is particularly simple,
once the filtering problem has been solved, using the Markov prop-
erty (11) and the decomposition P(X¢ | zp,) = P(X¢ | Xt,)P(X4, [ Z[))-

The smoothing problem can be solved by updating the filtered
distributions p(X, | z[,) in a backward sweep with the Rauch-Tung-
Striebel smoothing equations [177, 181, 182] which will be given be-
low.
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Type Form # parameters Cost

Linear parametric y = wTx D O(D3)
Nonparametric y=f(x),f~GP(f;uk) « N O(N?)
Markov y=HX,X~dX =FXdt+LdW «N O(Ng?)

Table 1: Gaussian regression models

Define mj = my,, Ci, = Cy. The posterior smoothing distribu-
tion can be computed recursively as

P(X:, , \Z[N]) = N(m? Ci )
my = Ahn)my,_, (17a)
Cy, = A(hn)Ct, , A(hn)T + Q(hn) (17b)
Gt, , =Ct, A(h n) (Cn) (17¢)
my  =my, , + Gy, (m —m, ) (17d)
ZH =G, + G, 1(Ctn - C; )GTn r (17e)

A good description of sampling strategies for this model as well as
further relevant references can be found in Doucet [59].

The Kalman filter Equations (16) and RTS smoother Equations (17)
reveal that inference in LTI SDEs can be performed at cost linear in
the number of observations O(Ng?). And yet, these systems also
being Gaussian processes, we know that equivalent expressions of
the form (8) must exist. In the remainder of this section, we will
show how this speed-up can be explained in GP notation.

Define the following block matrices:

(A(t))mn = ﬂmznA(Ai;n)

A<A27t )C A( tl t)T"‘Q( t— t*) m=n=1
(Q(t))mn = Q(A:ZH) m—n>1

0 m # n.

With these definitions, the full covariance matrix is given by (Grig-
orievskiy, Lawrence, and Sarkka [77])

k(Xe, Xt) = A(5)Q(1)A(2)T

18



and we also find an analytic solution of the inverse matrix since

1 m=n
(A = { —A(A ) m+1=n
0 else

[A(AL_ )CABI_ )T +Q(A )] m=n=1
(1)t = { QA1) s

n

0 m # n.

In particular, k(X¢, X¢)~' = A(t)"TQ(t)"'A(t)~! is a banded ma-
trix.

Since we have an analytic solution of k(X¢, Xt)_l, we do not re-
quire a numerical procedure to compute its inverse and the matrix-
vector multiplications can be executed immediately. However, ob-
serve that we had to introduce the latent states (X;;)ier,i =1,...,9
to make the algebra truely equivalent.

In particular, recall that the observations z, = HX, might be
lower-dimensional projections of the full state-space such that H
might not be invertible in which case the necessary inversion [(H ®
I)K(H ® I)T]~! does not simply factor into [(H® I)T| 'K~ 1[H ®
-

2.5 Sampling and Monte Carlo methods

The previous chapters have presented algebraic rules for the efficient
manipulation of Gaussian distributions in inference problems. Infer-
ence requires realizations of the involved random variables to draw
conclusions. This section presents the artificial generation of samples
which can be used as a tool to understanding modeling assumptions
or to approximate intractable computations.

Samples, or draws, are realizations of a (generative) probability
model. For example, for a six-sided die a sample would be one of
the elements {1,2,3,4,5,6}. Samples are expected to appear with
a relative frequency in a larger population according to their proba-
bility distribution. When throwing two dice, the sum of their eyes
should more frequently be 7 than 2 or 3.

A collection of independent, identically distributed (i.i.d.) samples
Xy ~ P(X),n=1,...,N, are considered to be a good representative
for the distribution as a whole, in particular, when N is large. The
empirical distribution defined by its cumulative distribution function
Fn(x) = N71YN 1y -, converges almost surely to the cumulative
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distribution function F of P for all x. There exist various characteri-
zations of the convergence speed.

Although computers are deterministic calculators, they can act to
be (pseudo-) random number generators (RNGs). A RNG is a determin-
istic method of producing a sequence of numbers that pass many
tests for randomness. Typically, random numbers u; are generated
from a uniform distribution u; ~ (0,1) over the open unit interval.
From these, almost any desired target distribution can be derived.
For details, we refer the interested reader to Gentle [70].

In Gaussian process models, both samples from the prior as well
as the predictive posterior distribution serve an important role as a
visualization of the correlation. Smoothness in the displayed mean or
marginal variance might give a wrong impression of sample-path
smoothness or the level of variation within the marginal variance.

In cases of very high-dimensional distributions, there is much
more room for variations and thus a bigger sample size is required to
capture the full variablitiy. One particular case of a high-dimensional
distributions are random functions. However, drawing many sam-
ples will not lead to better visualization as more simultaneous real-
izations will merely clutter diagrams. In this situation, it is helpful
to provide animated videos of continuously varying samples that
capture the variability in the added dimension of time. Two ways of
producing such animations are presented in Hennig [90] and Skilling
[199].

Random numbers are also used in Monte Carlo (MC) methods. MC
methods describe quantities of interest as expectations or other sig-
nificant statistics of a particularly designed probability distribution.
Then the empirical distribution can stand in for the intractable target
computation and it can be analyzed with tools from statistics. The
most common example is quadrature where an integral [, f(x) dx
over a closed domain DD is replaced by the empirical expectation
N='YN | f(uy) over N samples drawn iid. wu, ~ U(D). The
main area of application for MC methods are situations in which the
MC method can be proven to converge faster than a corresponding
deterministic method. In the case of high-dimensional quadrature
(D C RP,D > 10), the rate of convergence for the MC method is
O(N~1/2) whereas quadrature methods typically converge with a
rate O(N~%/P) for some order k € IN. Thus, even for relatively small
numbers of D, Monte Carlo integration converges faster than general
purpose quadrature codes.
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2.6 Hyper-parameter selection

So far, we have seen how to perform necessary inference computa-
tions within a specific model. Begging the question, which model
should be selected in the first place?

In a probabilistic model, a criterion that can be used is the (model)
evidence

P(zon) = [ Plzon | IP(F) df, (18)

where P(f) needs to be understood as the abstract prior over individ-
ual realizations. The higher the evidence, the better the explanatory
power of the model, which is a combination of goodness-of-fit and
simplicity.

Typically, the prior P(f) = Py(f) over f will be an algebraic ex-
pression relying on another set of parameters § which are called
hyper-parameters. Hyper-parameters can take many different forms.

201‘

Continuous parameters, for instance, are the output variance o
the length scale A. The dimensionality g of a state-space is an exam-
ple of a discrete parameter. Some choices cannot meaningfully be
indexed such as the form of explicit feature maps ®.

Of course, a proper Bayesian would put another probability distri-
bution over these decisions. In practice, this is most often computa-
tionally prohibitive and we are forced to more practical decisions. A
standard procedure is to fix the general form, maybe compare two
or three different discrete choices, and use a standard statistical pro-
cedure for the remaining continuous parameters. This approach is
commonly known as empirical Bayes.

In this thesis, two empirical Bayes methods are applied: type-II
maximum likelihood (ML) estimation and moment matching. In the for-
mer case, one maximizes the marginal likelihood, i.e., Equation (18).
Commonly, this requires a numerical optimization algorithm. Simi-
larly, moment matching involves matching the moment of a prior to
the empirical moment of the data.
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Ordinary differential equations

This chapter provides a primer in ordinary differential equations,
and an introduction to numerical methods and their analysis for
the solution of ordinary differential equation problems with modern
codes.

3.1 Introduction to ODEs

An ordinary differential equation (ODE) is the expression of a function
y: T C R — RP of one variable over a closed interval T = [ty, T] in
terms of its derivative

d
ay:f(t/y)- (19)

For the most part, we will use Lagrange’s notation % y =y to de-
note the derivative of y, but occasionally we will use Newton’s nota-
tion % y = y when it is more convenient. A particular y, : T — RP
that satisfies Eq. (19) for all ¢+ € T is called a solution of (19). We will
denote both the equation variable as well as possible solutions by y
where possible without confusion.

The graph of f is also called vector field or phase space of y. As an
example, consider the logistic growth equation

y =ry(1— Iy<) (20)

with growth rate r € IR+ and capacity K € R-(. The vector field of
Eq. (20) with rate = 3 and capacity K = 1 is depicted in Figure 2.

If the right-hand side of Eq. (19) does not include the indepen-
dent variable t, the ODE is called autonomous, otherwise it is called
non-autonomous. The logistic growth equation (20) is autonomous.
A non-autonomous ODE y’ = f(t,y) can be transformed to an au-
tonomous ODE by writing

) ()
dt \y f(t.y)

Eq. (19) might include more than just the first derivative

y " = f(tyy,y®, .y,

in which case the ODE is called of n-th order. A D-dimensional n-th
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order ODE can be transformed to a nD-dimensional first order ODE

via the transformation

/

y
L, d| ¥ y@
S :

y( D) ftyy.....y"m)

To simplify the notation, we will present the theory for one-dimen-
sional first-order problems. Where multi-dimensional problems re-
quire special treatment, we will indicate so in the text.

More general types of differential equations exist, such as delay
differential equations, implicit ODEs or general differential-algebraic equa-
tions. However, we will not be concerned with these more general
types of equations here.

We will now present the two most important existence theorems
regarding ODEs from Peano [167] (see also Mie [151]) and the theo-
rem of Picard [170] and Lindelof [137]. The theorems are cited with-
out proofs as they can be found in standard textbooks, e.g., Hairer,
Norsett, and Wanner [82] or Deuflhard and Bornemann [53].

Theorem 1 (Peano). Let O C T x R be an open subset and f : () — R be
continuous. Then for every (to,yo) € Q exists a solutiony, : Y C T — R
on a neighborhood U of ty such that y.(to) = yo and y.(t) = f(t,y«(t))
forallt € U.

Peano’s theorem guarantees existence under very mild conditions,
but solutions need not be unique. The next theorem establishes a
sufficient condition for uniqueness.

Theorem 2 (Picard-Lindelof). Let f : T x R — R be Lipschitz in its
second argument, i.e.,

lf(tty) = fEP)| < Lly—7l

for some L € Rsq forall y, 7 € R and all t € T. Then for all (to,yo) €
T x R there exists an € > 0 such that there exists a unique solution y.(t) :
[to — €, to + €] — R satisfying y.(to) = yo and y,(t) = f(t,y«(t)) for
all t € [ty —€,tp +€].

In the following, we will tacitly assume the existence of a suitable
Lipschitz constant L for f on T which is usually the case for closed
integration domains T.

Solutions to D-dimensional n-th order ODEs usually contain nD
free parameters [82, §[.1]. Since the solution of an ODE is uniquely
defined if its value y, = y(to) is completely specified at some time ¢,
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we can distinguish two classes of problems. If the user can provide
a point on the solution graph

() D D
(to,ygr---yy ) €T XMJ

n times

called the initial condition, an approximate solution can be constructed
iteratively, expanding locally from ty. In this case, the problem is
called an initial value problem (IVP).

As a concrete example consider again the logistic growth (20) with
initial conditions y(tg) = yo. The solution of (20) can be found ana-
lytically to be

_ Kyoexp(r(t — to))
Y= Kt yolexp(r(t—to)) — 1)

Figure 3 plots the solution for the particular condition y(0) = 107!,
rate r = 3 and capacity K = 1. Although this IVP can be solved
in closed-form, it will serve as a non-linear example for numerical
methods throughout this thesis.

Alternatively, the problem may be stated in terms of boundary con-
ditions (BCs)

8(y(a),y(0)) =0, abeT 1)

for some function g, and the problem is called a boundary value prob-
lem (BVP). Often, (21) takes the form

y(@a) =y, yb)=y,

for some y,,y, € RP. The numerical solution of BVPs is more diffi-
cult as it typically requires multiple iterations over the entire domain
T. It can be argued that IVPs are a special subclass of BVPs that are
particularly easy to solve [7, p. xxiii]. BVPs will be discussed in more
detail in Section 3.5.

An important special case of an ODE is the linear equation

y = Ay

with the general solution y(t) = exp(A(t — to))y,. The linear ODE is
also called the (Dahlquist) test equation (Dahlquist [49, 50], Hairer and
Wanner [83, §IV.2]), in particular for the one-dimensional case

y =My, 22)

A € C. For values A € C~, the solution converges to zero for t — o
and the problem is called stable. For details, we refer the reader to
Deuflhard and Bornemann [53, §3] and Brugnano and Trigiante [25,

§1].
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The test equation plays a dominant role in the study of numerical
ODE solvers. Inserting (22) into the algebraic description of a nu-
merical ODE solvers often leads to a closed form description of the
algorithm’s output which can be compared to the true solution. Sta-
bility analysis can reveal pathological behavior of an algorithm. This
will be discussed in more detail in Section 3.3.

3.2 Numerical solution of initial value problems

The numerical solution of an ODE is the approximation yo.n to the
true solution y(t,) on some discrete mesh {ty,...,fy} = A C T. The
process of numerically solving an ODE is also known as integration
(in contrast to quadrature) and a particular implementation of an
algorithm is called a code. Excellent introductions can be found in
the textbooks by Hairer, Norsett, and Wanner [82], Brugnano and
Trigiante [25] and Deuflhard and Bornemann [53].

Initial value problems are typically solved by step-by-step methods.
Assume for the moment that we want to compute an approximation
to the solution on an equidistant mesh t,, = to +nh,n =0,...,N, of
step size h = N~1(ty — to). Step-by-step methods exploit the special
structure of the IVP wherein the solution y(t,1) is entirely defined
by its state at y(t,). As a consequence, the numerical solution y,, 1 at
(evaluation) knot t,1 is constructed from its predecessor vy, and the
process continues in a step-by-step fashion without revisiting former
approximations y,_1 at a later stage.

One such method is used in the constructive proof of the Picard-
Lindelof theorem. At knot t,, define a sequence i = 0,1,... of ap-
proximations

yn,O(t) = Yn,
t
i1 (8) =yt [ (5, i(s)) s

The iterative process is called Picard iteration and the numerical solu-
tion is set to Y41 = Yu,i(f4+1) for some i > 0. The integral typically
requires a numerical quadrature method to be solved and every ODE
solver can also be understood as an approximation to the quadrature
problem.

In this thesis, we will only consider linear methods of the form

"t

K
f(s,y(s))ds = Y wif(sp,y(sk)) KeN
=1

Jt,

with suitable weights wy € R and knots s; € [ty, f,+1]. Since we do
not have access to the solution y., the quadrature method has to be
evaluated at approximations f, x to the true dynamic function evalu-
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ations f (s, y«(sx)). The easiest way to obtain the approximations is
to set f, x = f(Sk, yn) for s € [ty tyi1].

Overall, this defines a lower (block) triangular linear system of
equations for the unknown variables y,, f, y which can be solved by
forward substitution in one pass. The methods presented in Sec-
tions 3.2.1 and 3.2.2 will be of this type, although the linear system
will not be written down explicitly.

But before we look at individual methods, let’s start to get an
intuition for the classical error analysis. There are three sources of
errors for a numerical IVP solvers.

The first error source are roundoff errors which are the difference
between the ideal real-valued numbers y, and their finite represen-
tations on a digital computer (Goldberg [73]). In this thesis, all com-
putations are carried out using the IEEE 754 floating point standard
with double precision (Kahan and Palmer [111]). In double preci-
sion, roundoff errors are almost always dominated by the other error
sources and we may ignore these in our analysis.

The second source of error stems from the approximation of the
quadrature problem. Let

NS

K
f(s,y«(s)) ds — kz Wi f (sk, Y+ (sk))
& =1

n

T, =

denote the error from approximating the integral by a quadrature
method whilst assuming access to the true solution y.. We will call
T, the truncation or local error and we will say that a method is of g-th
order, if T, € O(h1*1).

The overall error is called the discretization error and will also be
denoted by 1, where the distinction is not important. This error
includes the effects of inserting previous approximations into the
linear system leading to propagated and accumulated errors. In most
cases, the overall discretization error will be of order O(h7) if the
local error is of order O(h7*1), i.e., if the method is of order q.

3.2.1 Runge-Kutta methods

Runge-Kutta (RK) methods, named after their inventors Runge [179]
and Kutta [124], belong to the class of one-step (cf. Section 3.2.2)
shooting methods. At time t,, 1, the numerical approximation is

defined as
s—1
ki,n:f(tn+hci/ ytn—i—hZaijkjrn), i=0,...,s—1
= (23)

s—1
ytn+l = ytn + h Z biki,n'
i=0

1
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The parameters a;;, ¢; and b; are usually expressed as a matrix A and
two vectors b, ¢, written compactly in a so-called Butcher tableau:

Co aoo ao1 ag,s—2 ag,s—1
1 a10 a1 a1,5—2 a1,5—1
Cs—2 | As—2,0 0as—2,1 As—2,5—2 As—1,5—1
Cs—1 | 4510 as—1,1 As—1,5—2 As—1,5—1

bo by - bs_» bs_1

If the matrix A is strictly lower triangular and c¢; = 0, Equation (23)
simplifies to an iterative procedure of explicit equations

i—1
ki = f(tn 4+ hei, yn + 1Y aikjy), i=0,...,s—1 (24a)
j=0
s—1
Yns1 =Yn+h ) bikj,, (24b)
j=0
and in this case, the formula is called an explicit RK method. Other-
wise Eq. (23) defines a system of nonlinear equations that needs to be
solved at every step and the method is called an implicit RK method.
In this thesis, we will be mostly concerned with explicit methods.
For instance, the simplest Runge-Kutta method is the well-known
Euler’s method

kO,n = f(tn/ ]/n>/ Ynt1 =Yn + hkO,n (25)

which is a first order method. Other popular examples include the
midpoint rule

kO,n = f(tn/yn)/

yn+l = yn + hkl,n/

h h
kl,)’l = f(tn + E/ ]/n + EkO,Vl)/

and the trapezoidal method

kO,n = f(tn/yn)/

h
Yngl = Yn + E(ko,n +ki,n)-

kl,n = f(tn + hryn + hkO,n)/
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The last two methods get their name from their counterparts in nu-
merical quadrature and are second order methods. The Butcher
tableaus of the examples are displayed in Eq. (26).

0 0 O 0ol 0 O
0|0
/21 1/2 0 111 0
1
0 1 /2 1/2 (26)
Euler’s midpoint trapezoidal
method method method

We will now analyze the local truncation error of explicit Runge-
Kutta methods. To this end, consider the error 7y = |y(t1) —y1|. If
71 € O(hTt!) for some q € N, then it is possible to show that the
global error E, = |y(tn) — yn| is bounded by h1C(exp(L(t, — to)) — 1)
and, thus, the method converges to the true solution if the step size
h decreases. However, note that this is not only a statement about
an asymptotic behavior. Even for small but finite h, the local error
will be a function of h7t!, which decreases faster than a function
of h1. In this sense, a method of high order is more efficient, since
it will require less computational effort to achieve the same level of
accuracy.

Recall from calculus the total derivative of f

T F0) = 5 FEaO) G+ 50 FEyO) T o0
= filt,y) + fy(LY) (L Y).

Using Eq. (27), we can also find the higher derivatives of y with

(27)

recursive applications. Write y(ty + 1) in Taylor expansion form and
replace higher deriatives of y by f and its partial derivatives:

2
ylto + ) = yo + hf (to, o) + = [fi + fuf(t0,y0)

3
F L 2fuf + e+ fuf + S Ao y0) + OO,
(28)
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If y; is defined by Euler’s method (25), it follows from (28) that
71 € O(h?). Similarly, we can compute the Taylor expansion of the
trapezoidal method (as a function of h):

d 1 1
an yl‘hzo = Ef(fo,yo) + Ef(to +h,yo + hf(to,yo))

20 Syt o) o+ hyo +hf(to, o))
= f(to,yo),
2
%yl\ o =0t %[ﬁ + fyf (to,y0)](fo+ b, yo + hf(to, o)) (29)

43U+ Sy (o, y0)](to + B yo + hf (to,yo))

h d

2
+ E@f(to + 1, yo + hf(to, yo))

= [ft + fyf (to, yo)](to, yo)-

Substracting (29) from (28), we find that |y; — y(to + )| = O(h%), ie.,
the trapezoidal method is convergent at order O(h%). One important

o

aspect of (29) is that y|,—g = f|t=t,y=y,, Which is why the evaluation
of f can always be considered at (to, yo).

The manual calculation becomes cumbersome very quickly. The
general theory for evaluating the order of a specific Runge-Kutta
method, represented by its coefficients, is usually derived using la-
beled trees for representing the combinatorial problem of computing
higher (partial) derivatives of y and f [82]. The result is a system-
atic way for generating (non-linear) algebraic equations for the co-
efficients which must be satisfied in order to obtain a certain order.
For methods of order q < 4, the algebraic equations can be summa-
rized by a parameterized Butcher tableau which capture all available
methods of low order. For g > 4, there is no explicit method of order
q with s = g stages, because there are more constraints than number
of free parameters. However, methods of all orders 4 € IN can be
achieved by using a higher number s; > g of stages.

3.2.2 Multistep methods

The Runge-Kutta methods from Section 3.2.1 have the advantages
of being easy to both analyze and implement, because their global
behavior is completely determined by their local behavior and indi-
vidual steps are mutually independent.

However, it should be intuitively clear that this mutual indepen-
dence comes at the cost of a computational overhead. Each evalua-
tion of f contains information about the unknown function y, and
ignoring previous evaluations can be thought of as learning from
scratch after each step.
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Thus, it is natural to consider methods that carry some informa-
tion from previous steps. Keeping the constraint of linear methods
and general approximations, one arrives naturally at methods that
use polynomial interpolation over several steps. Methods of this
type are called linear multistep methods (LMMs) and are defined by

q q
Yo aYu—grj =hY Bifaq+j (30)
=0 =0

The numbers &, f; are the parameters of the method which will be
chosen to gain high convergence order. The y,,_;; are the numerical
solution of y(t) and f,_g1; = f(tu_gijsYn—g+j)- U Bg =0, fu_gyjis
only required after y,,_,; has been computed and (30) is an explicit
computation scheme. If B, # 0, then y,,_,,; and f, 4, are defined
simulateously, and (30) turns into the implicit equation

g-1
XgYn — hﬁqf(tn/]/n) = Z(:J(“jynfqﬂ - hlB]'fﬂ*t]Jr]') (31)
=
for y,.

Since LMMs are commonly derived by interpolation or quadra-
ture problems, there are two natural ways to solve (31). The first
way is a direct solution of (31) with Newton-type solvers [55] which
is always feasible. Alternatively, one can look at the corresponding
explicit version of (31) to use this as a predictor y,(f” of y,. Then, one
updates yEZO) with the iterative procedure

m _ 1 -1y
i = & (hﬁqf (") + ,Z;)(“/yn—qﬂ'_hﬁjfn—ﬁj)) >
j=

form =1,..., M, a pre-defined fixed number M of times. Eq. (32)
is called the corrector step of (31) and the whole procedure is called
a M-steps predictor-corrector P( ECM method. Solving (31) via (32) is
also called solving via function iteration.

The analysis of the numerical error can be carried out to some
extend similarly as in the Runge-Kutta case. First, we analyze the
idealized local truncation error by considering the operater

q
Ly, t,h) =) (ajy(t — (g +j)h) —hBjy' (¢t — (g +))h)) - (33)

]

By subtracting (33) from (30), we arrive at the local error

Ty = (agl — hBofy(te, 7)) "' Ly, to, h),

where the Jacobian f, is evaluated at appropriately chosen values 7
whose existence is guaranteed by the mean value theorem. Thus, it
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is justified to say that a LMM is of order g, if L(y,t,h) € O(hTt1) for
all sufficiently regular functions y (see Hairer, Norsett, and Wanner
[82, SIIL.2]).

Closely connected to the theory of multistep methods are the gen-
erating polynomials of a method. They are defined as

p(0) = aglT +ag107 1+ +ay,
0(2) = gl + Bg—1Z7 " + -+ + Po.

If p({) and ¢(Z) have no common factor, they are called irreducible
and there is a one-to-one correspondence between a multistep method
and its generating polynomials. We will tacitly assume that the poly-
nomials are already in irreducible form. From the generating poly-
nomials, properties of the corresponding multistep method can be
deduced such as order and stability (see Deuflhard and Bornemann
[53]).

Skeel [198] showed that methods of type (30) are equivalent to
multistep methods written in Nordsieck form:

Xy = (yn,hy;, . ,hqyfﬁ)/q!)T , (34)
xpp1 = (I—le]) Pxy + hlzy,yq. (35)

The variable x, now contains the entire information of the local poly-
nomial approximation in terms of its Taylor coefficients. In Eq. (35),
I is the identity matrix, P is the upper triangular Pascal matrix with
i
i
tor, and I = (I, Iy, . ..,l,,)T is a vector of parameters with [; = 1. In

coefficients (P)ij = ]ligj( ), eI = (0,1,0,0,...) is the second unit vec-
this case, the Nordsieck representation corresponds to the multistep
method with the generating polynomials

p(¢) = det(¢I — P)e] ((I—P) 7',
o () = det(¢I — P)e(¢I — P) L.

Similar expressions hold for the reverse case.

The difference in presentation between (30) and (34) can be under-
stood as expressing the interpolation polynomial 7(t) in either La-
grange notation (Equation (30)) or Taylor expansion notation (Equa-
tion (34)) ([53, §7.3.1]). In this case, Px, yields a prediction of the
numerical Taylor expansion at t,,; and the scalar increment z,,1; is
implicitly defined as the solution to

ht (Pxn)1 +hzp4 = f(tn +h, (Pxn)o + ]’llozn+1), (36)
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which is the correction from x, to x,.1 to the Taylor coefficients.
Equation (36) can be solved by iterated function evaluations of the

form

2y = f (b + 1, (Pxa)o), 37)
20 = 1T (4 (P + oz ) =B (P ],

or by directly solving (36) with some variant of the Newton-Raphson
method.

If zM) is used in the computation of (35), the resulting algorithm
is called a P(EC)M method, which stands for predict-evaluate—correct.
If Equation (36) is solved up to numerical precision, the method
is called a P(EC)* method. Generally, these methods are called
predictor-corrector (PEC) methods. Nordsieck methods with suitable
weights I can be shown to have a local truncation error of order q or
q+11[197, 198]. More details can also be found in standard textbooks
[82, 53].

3.3 Sitiff problems and stability of numerical codes

One important concept that is associated with the numerical solution
of ODEs is that of stiffness [48]. While non-stiff ODEs have been
considered to be a solved problem [69], methods for stiff systems are
still an active area of research [24].

While various attempts have been made to characterize and define
stiffness [95, 51, 24], an agreed upon precise definition is still missing.
Many researchers take the perspective that “stiff equations are equa-
tions where certain implicit methods, in particular BDF (Backwards
Differentiation Formulae, note from the author), perform better, usu-
ally tremendously better, than explicit ones”. [48, 83].

An intuition for stiffness can be developed from the test equation
[50]. For ' = Ay, the solution of a linear (multistep) method can be
expressed as a linear (in y) (multi-dimensional) recurrence equation,

usually of the form

yn+1 = R(Z)yn'

where z = hA € C is the product of step size h > 0 and linearity
coefficient A € C, and R is a polynomial of the complex argument z.
Theset S = {z € C : |R(z)| < 1} C C is called the stability domain
of the method. If Re(A) < 0 and hA = z ¢ S, the numerical solution
typically contains diverging oscillations whereas the true solution is
converging.

This thesis will only be concerned with explicit methods which
typically have a small associated stability domain. Thus, the admis-
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sible step sizes h for linear equations with large negative coefficients
will be prohibitively small. In this sense, the methods in this the-
sis can only handle “non-stiff” systems. However, these methods
provide a novel ansatz and novel functionality which may provide a
foundation for future developments for stiff problems.

3.4 Step size adaptation

The methods in the previous sections have been presented using
a constant step size h which generates an equidistant mesh A;, =
{to+nhN~1|n=0,...,N}. This section discusses strategies to com-
pute adaptive step sizes &, in step-by-step methods to minimize the
computational effort while guaranteeing certain error criteria. For
a more detailed introduction, we recommend Deuflhard and Borne-
mann [53, §5].

Most step size adaptation schemes are based on estimates of the lo-
cal discretization error which is defined to be the error 7;, introduced in
the current integration step only, i.e., treating the last approximation
Yn as the correct integration value and considering the IVP

v =f(ty) y(ta) = yu

For both linear method classes, Runge-Kutta and multistep meth-
ods, the local error will typically satisfy

[y(tn—1 + hue1) — yr,| < CHTTE,

for some appropriate g € IN. Now take a second method for the same
integration step which computes #;, at order 4, usually § = g —1, and
estimate

fn = ‘ytn - ytn| ~ Ch. (38)

If 1, is bigger than the desired (relative) tolerance, h;, is reduced and
the step is repeated. If 7, is sufficiently small, Eq. (38) is used to
solve for h,1 which is proposed as tentative step size for the next
step.

Thus, the key to effective step size adaptation is the design of
methods which can compute two integration values with little over-
head. For a Runge-Kutta method (c, A, b), one searches for similar
methods (¢, A,E) with as many common factors as possible which
are called embedded Runge-Kutta (ERK) methods. Typically, only the
final weights b need to be adjusted or only one additional function
evaluation ¢ = (c,csy1) is required to find a suitable pair. In multi-
step methods, in particular PEC methods, one can use the predictor
as a method of order g4 — 1 which makes error estimation particularly
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easy. The application of this feature of PEC methods for step size se-
lection is also called the Milne device (Milne [152]). However, LMMs
with varying step sizes may suffer from certain dynamic behavior
which effectively reduces the convergence order by one (cf. Kulikov
and Shindin [123] and Kulikov [122]).

One important thing to note in the context of this thesis is the nec-
essarily heuristic nature of step size adaptation schemes. Local errors
cannot be computed accurately, but may only be estimated. While
it has rarely been pointed out in the literature, this estimation can
be built upon the concepts presented in Chapter 2. For instance,
Deuflhard [54] suggests an algorithm for both step size and order
estimation in the context of information theory—a close cousin to
probability theory.

Secondly, while the error analyses of linear methods clearly state
required conditions for convergence, the step size adaptation schemes
rely on assumptions which are much harder to validate during run-
time. This needs to be kept in mind for the models which will be
presented later in this thesis, as the assumptions there are not nec-
essarily more restrictive, but merely more explicitely stated than the
requirements and assumptions of a regular numerical algorithm.

3.5 Numerical solution of boundary value problems

BVP solvers can broadly be classified into two categories: shooting
methods and finite difference methods. The former class uses a sequence
of step-by-step methods to find missing initial values, typically by ap-
plying a variant of Newton’s method. Finite difference methods are
representative for a broader class of global methods which are consid-
ered to be state-of-the-art (Cash and Mazzia [33] and Mazzia, Cash,
and Soetaert [146]). This thesis expands on an algorithm by Hennig
and Hauberg [92] to develop medical imaging applications in Chap-
ters 9 and 10. The original algorithm by Hennig and Hauberg [92]
was inspired by a collocation method, which is structurally similar
to finite difference methods.

Here, we present the simplest case of a finite difference scheme to
gain an intuition of the method by Hennig and Hauberg [92] which
will be presented in detail in Section 4.3. The reader is referred to
Ascher, Mattheij, and Russell [7] for details.

First, consider the special case of a linear BVP. A linear BVP is a

problem of the type
y =A(t)y+4q(1), A(t): T—R"™, g(t): T—R", (3%)
B = Bay(a) + Byy(b), Bs B, € R™", B R”, (39b)

where T = [4,b] C R is a closed intervall.
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Assume that we have been given a step size h € IR. Consider the
finite difference approximation to the true derivative

p o tn + Yo+r1 — Yn
2 . 4
y < 5 > 7 (40)

Plugging (40) into (39), we arrive at the linear problem

St Ry 0 ... 0 Y, q(1t2)
0 S R, " ) ‘i(tszrt3)
0 : = : (41)
0 ... 0 Sy Ry|| vy gL
B, 0 ... 0 B,/ \yng B

where S, = —h~'T —271'A(t;) and R, = h~'T —271A(t,1). Thus,
if the matrix on the left hand side is invertible, the numerical solution
exists. If the boundary conditions are separated, i.e., if (39b) can
be written as Byy(a) = Ba, Byy(b) = Bp, the linear system (41)
can be turned into a banded matrix which can be solved efficiently.
Writing the boundary conditions in separated form is always possible
(Ascher and Russell [6]).

For a general non-linear BVP, we can apply the same ansatz of
finite difference which yields

- 1
w = 5 (Ftny,) + ftasr,¥,0)), m=1...,N  (42a)

0=g(y1 Yni1)- (42b)

These are N + 1 non-linear equations for N + 1 unknowns. These
can be solved with standard techniques, e.g., by writing (42) as a root-
finding problem and using some Newton method to solve it. Finally,
Eq. (42) could be solvable by a fixed point iteration scheme, similarly
to the PEC-scheme in linear multistep methods (cf. Section 3.2.2).

As in the case for Runge-Kutta methods, we can generalize the
finite difference approach to also match higher derivatives or to con-
sider more general approximation models (Mazzia and Sgura [145]),
such as B-splines (Mazzia, Sestini, and Trigiante [149]), which will
yield linearizations obtaining truncation errors of higher order. An
introduction can be found in Brugnano and Trigiante [25].
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Probabilistic ODE solvers

Sections 2 and 3 layed out the necessary mathematical machinery.
Now, we want to discuss the general idea of probabilistic numerics
with a special focus on probabilistic numerical methods for the so-
lution of ordinary differential equations. We will also highlight two
early probabilistic algorithms serving as prototypes and motivation
for the developments of Parts iii and iv.

4.1 The probabilistic interpretation of numerical methods and
probabilistic numerics

Interpreting numerical computations as probabilistic inference meth-
ods is almost as old as the oldest numerical methods for solving
differential equations. In Poincaré [171], Poincaré writes:

“Placons-nous a un autre point de vue.

Une question de probabilités ne se pose que par suite de notre igno-
rance: il n’y aurait place que pour la certitude si nous connaissions
toutes les données du probléme. D’autre part, notre ignorance ne doit
pas étre complete, sans quoi nous ne pourrions rien évaluer. Une clas-
sification s’opérerait donc suivant le plus ou moins de profondeur de
notre ignorance.

Ainsi la probabilité pour que la sixieme décimale d’'un nombre dans
une table de logarithmes soit égale a 6 est a priori de 1/10; en réal-
ité, toutes les données du probleme sont bien déterminées, et, si nous
voulions nous en donner la peine, nous connaitrions exactement cette
probabilité. De méme, dans les interpolations, dans le calcul des inté-
grales définies par la méthode de Cotes ou celle de Gauss, etc.

[...]

Dans d’autres problémes, enfin, il peut arriver que notre ignorance soit
plus grande encore, que la loi elle-méme nous échappe. La définition
des probabilités devient alors presque impossible. Si, par exemple, x
est une fonction inconnue de ¢, nous ne savons pas trés bien quelle
probabilité il faut attribuer, au début, a x(, pour connaitre

ot
/ x dt.
to
On se laissera souvent guider par un sentiment vague qui s’‘impose
avec puissance, qu’on ne saurait pourtant justifier, mais sans lequel,

en tout cas, aucune science ne serait possible.”

An English translation can be found in Appendix C.
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In the above section, Poincaré argues for the necessity of assump-
tions for approximation theory—a sentiment that is unchallenged
these days. However, by suggesting the assignment of probabilities,
he also implies to weigh various hypotheses gradually. In contrast,
modern textbooks typically focus on error bounds which could be
interpreted as a proposition of a uniform posterior distribution.

The idea of assigning probabilities to computation outcomes has
been revisited in the last century by only few mathematicians. An
overview of early work in English is given in Larkin [128]. He points
to previous work by Sul’din [206, 207] and Sard [180]. In these works,
the idea of applying probability theory to linear approximation prob-
lems typically considered in numerical analysis is considered in a
way closely resembling modern presentations.

In [56], Diaconis presents a precise equivalence between certain
quadrature rules and Bayesian inference on certain models. A sim-
ilar observation has been repeated by O’'Hagan [159]. Today, this
methodology is an established area of research in its own right and
is referred to as Bayesian quadrature (BQ), an early demonstration of
the applicability of probabilistic numerical methods.

In a parallel development, the theory of function interpolation on
more general spaces than polynomials has started to get more atten-
tion by authors like Schoenberg [188] and later by Ahlberg, Nilson,
and Walsh [3] and Schoenberg [189]. When explicit connections are
found, the results usually rely upon an equivalence between gener-
alized spline smoothing and Gaussian process regression which was
first formulated by Kimeldorf and Wahba [117] in 1970 and later re-
fined by Wahba [217].

However, in the case of the numerical solution of differential equa-
tions, the idea did not seem to catch on. The author is only aware
of two early references, Skilling [199] and Fierro and Torres [64], of
which the latter has not received public awareness until very recently.

4.2 Current understanding of probabilistic numerical methods

Even though the idea of interpreting numerical algorithms as proba-
bilistic inference has been floating around for some time, it has only
attracted sustained research interest in recent years [93]. In fact, the
research area is so novel that there is no clear unique definition yet
of what should be a probabilistic numerical method.

At the time of writing, two sets of authors have presented work-
ing definitions, Hennig, Osborne, and Girolami [93] and Cockayne,
Oates, Sullivan, and Girolami [41]. For the purpose of this thesis,
we will follow the definition of Hennig, Osborne, and Girolami [93,

§3-(a)].
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A probabilistic numerical method is a numerical algorithm for a math-
matical problem which admits an interpretation of probabilistic inference.
For this to be the case, the problem needs to be such that it is typi-
cally solved by an iterative process where each step provides novel
information about the sought solution. In a probabilistic numerical
method, the unknown solution is treated as a latent random variable
and intermediate quantities are treated as observable random vari-
ables. A generative model relates the observable quantities to the
unknown solution. Often, this model admits a natural separation
into a prior over the unknown solution and a likelihood of observing
the data given the solution. In this setting, the methods from Chap-
ter 2 can be used to find the posterior distribution over the solution
which is intended as the desired output.

Contrary to the setting in Chapter 2, wherein inference methods
have no ability to interact with the environment they try to infer, a
probabilistic numerical algorithm additionally consists of an action
rule which may actively decide on how to generate new observable
quantities. This creates a mutual sequential dependence which can
increase the complexity of the analysis in certain cases as, for exam-
ple, in the numerical solution of ODEs.

This situation is similar to ideas in (Bayesian) decision theory
(see, e.g., Parmigiani and Inoue [165]) and sequential analysis (Wald
[218]). Recently, the connection to Wald’s sequential analysis has also
been pointed out in Owhadi and Scovel [162]. In particular, this con-
cept of sequential execution is not yet incorporated in the framework
proposed by Cockayne, Oates, Sullivan, and Girolami [41] which ren-
ders the rigorous theory presented therein unapplicable in our set-
ting.

4.3 The deterministic solver from Hennig & Hauberg

In the remainder of this section, we present two early publications on
probabilistic ODE solvers. These will serve as foundations to extend
upon or as examples to contrast against. First, we consider the work
by Hennig and Hauberg [92]. This algorithm is the basis for the ex-
tensions presented in Chapters 9 and 10. In the next section, we will
have a closer look at the work of Chkrebtii, Campbell, Calderhead,
and Girolami [39].

In Hennig and Hauberg [92], the authors consider the problem
of finding curves y : [0,1] — RP subject to an autonomous, second
order differential equation

y'(8) = fly(t),y'(1)). (43)
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Their algorithm can be applied to initial conditions (y(0),y’(0))T =
(a,v)7, and two-point linear boundary conditions (y(0),y(1))T =
(a,b)T.

The authors base their numerical algorithm on probabilistic infer-
ence with a Gaussian process prior over GP (y(t); u(t),k(t,s)) and
linear observations with Gaussian observation noise. Their prior
mean is chosen as linear functions, i.e., y(t) = a + tv and p(t) = a +
t(b — a) for the IVP and BVP, respectively. They choose a factorizing
prior covariance function cov|(y(t));, (y(s));] = (V);jk(t,s) with pos-
itive semi-definite inter-dimensional covariance matrix V € RP*P
and square-exponential kernel k(t,s) = exp(— |t —s|? [2A2]71) for
the spatial covariance. This factorization can be written compactly
with the Kronecker product cov(y(t),y(s)) = V®&k(t,s).

The initial or boundary conditions are expressed as Gaussian like-
lihoods

P(y(0),y'(0)) = N'(y(0); a,Ca)N (y'(0); v, Cy), (44a)
or
P(y(0),y(1)) = N(y(0); a,Ca)N (y(1); b, Cy), (44b)

for IVPs and BVPs, respectively, where Cy is a D x D positive semi-
definite covariance associated with vector x. For classical problems,
Cy = 0 € RP*D and (44) are Dirac distributions. These can be
used to form (predictive) posterior Gaussian process distributions
GP(y(t); p,(t), kp(t,s)) with mean and covariance

Ve k(0,0)  k°(0,0) (G o
%(0,0) 9%°(0,0) 0 G

i (t) = u(t) + [V @ (k(,0) € (£,0)| !

in the case of the IVP and similarly for the BVP. We have introduced
the short-hand notation k?(t,s) = i% k(t,s), %(t,s) = % k(t,s) and so
forth in Eq. (45).

The predictive posterior distribution is used to construct new data
points which in turn generates a new predictive posterior distribu-
tion. This iterative process is then repeated for a pre-selected amount
of steps.
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Let A = {t,...,tx} € [0,1] be a set of mesh points. Use Eq. (45)
to compute the “observation” z, = f(p. D(tn)fﬁlp(tn))- Since u(ty) ~
y(tn) and similarly for p'(t,), one might assume that z, ~ y'(t,) by
(43). Specifically, the model states

P(zn |y"(tn)) = N (20 y" (tn), An)
Ay = ULy, U+ [UTE U

+ |UTEC‘C/;1U‘ + UTZC‘C',nU (46)
Zyyn Zyy’,n — cov y(tn) ) y(tn) c R2D*2D
Zyyn  Zyyn Y (ta)) \¥'(tn)
and U, U € RP*P are bounds %yy)))] < Ujj on the partial Ja-

cobians of % f(y,y') with respect to y and y’, respectively, which
must be provided by the user. The intuition behind the modeling
assumption (46) is that we do not expect z, to be an accurate evalua-
tion of the second derivative of y at ¢,, but we expect the error to be
bounded by the first-order term.

Conditioning on this observation yields an updated predictive
posterior similar to (45). After all initial derivative observations
z,go) = z, have been added, the algorithm iteratively refines each
data point zils) = f(EDEH(tn),Eg)En(tn)), s =1,...,5 where D, =

{zg,ffl) |m=0,...,N,m # n} is the data set withholding z,(ffl). Cru-
cially, the observation noise matrices A, are kept fixed during this
process as it seems to overfit otherwise. Structurally, this is similar
to the function iteration process (32) of implicit numerical methods.
The algorithm relies on a set of hyper-parameters. The authors use
a fixed mesh A and fixed number of refinements S. The remaining
free parameters are the parameters of the prior covariance. In the ap-
plication of Hennig and Hauberg [92], the vector field f of the prob-
lem (43) is defined by a given data set Dy = {x; € RP|k=1,...,K}.

RP*D js chosen a

The inter-dimensional covariance amplitude V €
priori in an empirical Bayes fashion V = (a — b)TVp f(a — b) where
Vp, = YR (g — E[Dy¢])(xx — E[Dy])T is the sample covariance ma-
trix. The kernel length scale A is optimized during execution with
type-II maximum likelihood (see Section 2.6).

Algorithm 1 presents the pseudo-code for the proposed method.
We want to draw attention to the outer loop starting in line 2. As data
points and uncertainty covariance matrices are depending on the
hyper-parameters, it is necessary to restart the algorithm if a change
in hyper-parameters was determined. In practice, this can lead to a
cyclic sequence of hyper-parameters (A, A1,...,Ax = Ag,...) which
is prevented by stopping the outer loop when a cycle is detected.
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Require: BVP: f(y,y'),a,b,C,, Cy, U, U
Require: Hyper-parameters: A, S, V,k(s,t), Ag
1 u(t) <~ a+tb—a)
2: while do [Aj 1 — Ag| > ¢
3 D+ {(0,a,Cs),(1,b,Cp)}

4 fors=20,...,Sdo

5 forn=20,...,Ndo

6 if s == 0 then

7 Ap 4 UTkp (b, b)) U + ‘UTkaD(tn,tn)U 4o

et UTikD(tn,tn)U’+UTTD(tn,tH)U

: else
9: D < D\ {(ts, 2"V, An)}
10: A, — Ay
11: end if
12 2 e Fljup (ta), g (1))
13: D DU{(ty, 2, Ap)}
14: end for

15: end for

16: Aks1 < argmax, P(zo.n |V, A)
17: end while

18: return GP(y(t); (), kp(s, t))

4.4 The randomized ODE solver from Chkrebitii et al.

In Chkrebtii, Campbell, Calderhead, and Girolami [39] (first commu-
nicated in Chkrebtii, Campbell, Calderhead, and Girolami [38]), the
authors propose various Monte Carlo algorithms for the solution of
(general) differential equations. In this presentation, we will adapt
their notation to our standard.

Structurally, the algorithms of Chkrebtii, Campbell, Calderhead,
and Girolami [39] and Hennig and Hauberg [92] differ mostly in their
application and representation of the involved probability distributions.
In Hennig and Hauberg [92], computations are based deterministically
on the distribution parameters, and (intermediate) results determine
distribution parameters in turn. In Chkrebtii, Campbell, Calderhead,
and Girolami [39], probability distributions are typically represented
by a (randomized) set of samples which can describe a richer set of
non-parametric probability distributions and can be used in conjunc-
tion with many Monte Carlo algorithms. We will present a discus-
sion on these different philosophies in Section 5.2.2.

These differences can be motivated through the different require-
ments of the application in Chkrebtii, Campbell, Calderhead, and
Girolami [39]. Therein, the authors are interested in the inverse prob-
lem of determing the posterior distribution P(6,y | z,9) of unknown
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system parameters 0 in y' = f(t,y,0) given noisy observations z =
y, + v from one realization of the system and hyper-parameters 1,
e.g., the solver configuration and hyper-prior parameters.

Algorithm 2 draws one sample from the conditional distribution
P(y |6, 9) of the ODE solution given its system parameters and hyper-
parameters. Together with the prior distribution P(0 | i) and the con-
ditional distribution P(z | y), a Metropolis-Hastings algorithm can be
used to draw samples from P(6,y | z, ) [39, Alg. 2].

Require: IVP: f(t,y,0),y,
Require: Hyper-parameters: = {An, Ag, ko(s, 1), A, a, ...}
L () < v

2 k(s t) a1 [ fti ko(y, x) dy f;} ko(z,x) dzdx

3 fo < f(to, vy 0) > First update
4: D+ {(to,fo,ﬂ)}

5: forn=1,...,N do > Subsequent updates
6 sn(tn) < un ~ N(y(tn); ppy (tn) kp(tn, tn))

70 f < f(tn, sn(tn),0)

8 D DU{(tu £, %k (tn 1))}

9: end for

10: return spg < upg ~ QP(y(AS);ED(AS),kD(AS,AS))

The main algorithmic differences between Algorithm 1 and 2 are
in line 6 (and to some extend in line 10). In Algorithm 2, the vector
field f is evaluated at samples u,, of the respective predictive posterior.
Empirically, this leads to more expressive posteriors at higher com-
putational cost as each sample from the posterior process requires
a separate run of the algorithm. The authors also suggest a slightly
modified covariance function (Line 2), but the suggestions from both
set of authors could be used in the respective other’s work without
further modification. The common structure will be presented in
abstract form in Section 6.2.
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Facets of probabilistic ODE solvers

The previous chapters presented the preliminaries of statistical and
numerical methods as well as the state of probabilistic ODE solvers at
the commencement of this research. In this chapter, we will discuss
aspects of probabilistic numerical ODE solvers and derive a list of
desiderata for the methods we want to develop. This will serve as a
guiding principle for the material presented in Sections 6 and 7.

5.1 A taxonomy of PN ODE solvers

For the purposes of this thesis, we roughly classify the recent wave of
publications on probabilistic ODE solvers into three categories which
are also depicted in Figure 6:

1. basic probabilistic algorithms which mostly serve the purpose of
establishing proof-of-concepts and showcasing novel functionality

2. algorithms whose main motivation stems from the study of the
numerical error to provide accurate uncertainty quantification

3. algorithms whose main motivation stems from the interpretation
of classical methods to provide fast methods with additional proba-
bilistic output

This categorization is necessarily a bit fuzzy, but it helps in under-
standing the modeling decisions of publications in the field.

Prior to the work of this PhD thesis, there have only been three
publications concerned with the probabilistic numerical solution of
ODEs. The works by Skilling [199] and Hennig and Hauberg [92]
have to be considered proof-of-concept studies as the algorithms pre-
sented therein have only been evaluated empirically. However, these
pieces showcased potential applications of probabilistic integrators.
Later publications within the same context are Schober, Kasenburg,
Feragen, Hennig, and Hauberg [186] and Hauberg, Schober, Liptrot,
Hennig, and Feragen [87] which will be presented later in this thesis.

The work by Chkrebtii, Campbell, Calderhead, and Girolami [39]
was the first work to also provide a proof of convergence. Their
motivation is modeling the uncertainty associated with the numerical
solution as accurately as possible. Yet, their algorithm is prohibitively
slow compared to the standard methods. In earlier work, Fierro and
Torres [64] have presented a formal analysis of their algorithm, but
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Probabilistic model

Sampling methods

[Novel functionalityj

T

Skilling [199] and Hennig and Hauberg [92]
!
Schober, Kasenburg, Feragen, Hennig,

and Hauberg [186] and Hauberg, Schober,

Liptrot, Hennig, and Feragen [87]

Kersting and Hennig [116]

Accurate UQ

Fierro and Torres [64], Chkrebtii, Campbell,
Calderhead, and Girolami [38], Conrad,
Girolami, Sarkka, Stuart, and 7)’gnlnkis
[42], Teymur, Zygalakis, and Calderhead

[210], Cockayne, Oates, Sullivan, and

Girolami [41], and Abdulle and Garegnani [1]

Kalman filter
Fast inference

Schober, Duvenaud, and Hennig [185]
and Schober, Sarkkd, and Hennig [187]

their work has only recently attracted attention by Krebs [120] and
had not received wide-spread attention before.

Following the work of Diaconis [56], the approach of this thesis
focuses on fast methods that resemble the classical solvers presented
in Chapter 3. Thus, we will try to answer the following questions: Is
it possible to cast certain existing methods as (exact) inference in a Gaus-
sian probability model? What would be the resulting interpretation of said
methods and how can this knowledge be used to construct fast (linear) prob-
abilistic numerical ODE solvers?

At the time of completion of this thesis, not all questions have
been fully answered. However, we have made enough progress to
present some of the connections between standard methods and their
probabilistic counter-parts as well as some consequences thereof for
practical numerical methods.

5.2 From classical to probabilistic numerical methods

Currently, there are two different goals of probabilistic numerical
methods—accurate uncertainty quantification and fast inference—
which require according properties of proposed algorithms. For in-
stance, to provide accurate uncertainty quantification for a general
class of problems, one must specify models with a large degree of
flexibility and with as few prior assumptions as possible.

We are interested in fast methods that resemble classical solvers.
In the following, we will try to make the point that this setting
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Figure 6: Based on the early works, re-
search focus has split between methods
more focused on accurate uncertainty
quantification (UQ) and fast methods.
Methods by the author are highlighted
in red. Within categories, works are
sorted by publication date.



provides more leeway in its freedom of approximation but requires
stronger runtime guarantees. The result will be methods which are
not driven by their model assumptions but by their algorithm desider-
ata.

To construct a probabilistic numerical method, we define the fol-
lowing list of desiderata that an algorithm should fulfill. These prop-
erties will be defined and motivated in turn below.

Probabilistic inference: required computations should be operations
on probability distributions.

Global definition: the probabilistic model should not depend on the

discretization mesh.

Analytic guarantees: the algorithm’s output should have desirable an-
alytic properties.

Deterministic execution: when run several times on the same problem,
the algorithm produces the same output each time.

Speed: the execution time should not be prohibitively slow.

Problem adaptive: the user should be able to control the accuracy/speed
trade-off.

5.2.1  The value of a probabilistic model

In this section, we explain and motivate the first three items from
our list of desiderata in turn—probabilistic inference, global definition
and analytic guarantees.

On a high-level view, numerical algorithms can be described as
combinations of tractable approximating function classes and computa-
tion strategies for informative values. Analyses of numerical methods
show to what level the approximations can converge to the true prob-
lem solution and how fast the computation strategies can be carried
out.

Accepting the probabilistic approach as a framework for plausi-
ble reasoning [104, 44, 93], we require a probability distribution Py
over the numerical solution Y. The computations necessary for the
construction of Py should be interpretable as (approximate) proba-
bilistic inference. The motivation behind this requirement is that
there should not be an analysis gap between statistical and numeri-
cal computations. This is particularly beneficial when the differential
equation solver is embedded in a longer chain of computations [41].
This allows us to build fine-tuned methods adapting to sources of
data uncertainty and computational approximation during runtime.
Furthermore, they provide richer feedback of approximation quality
which is demonstrated empirically in Sections 9 and 10.
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Method glob. def.? determ.? guarantees?
Skilling [199] v X X
Chkrebtii et al. [39] v X

Schober et al. [185] ~ v

Conrad et al. [42] X

Kersting v X

& Hennig [116]

Teymur et al. [210] X X ~
PFOS (this thesis) v v v

Furthermore, a probabilistic IVP solver shall be called globally de-
fined on its input domain T, if its probabilistic interpretation does not
depend on the discretization mesh A. PNMs satisfying this property
provide two benefits. Users may evaluate the (predictive posterior)
distribution Py for any ¢t € T. In particular, users may evaluate
Py(Y(t)) for t ¢ A. Thus, users may request Py(Y(ts)),ts € Ag and
the support of a user-defined mesh Ag is not a separate requirement.
Secondly, this implies that the inference can be paused and contin-
ued after every expansion from A, — A, ;. In principle, this also
enables iterative refinement of the solution quality based on its pre-
diction uncertainty.

Table 2 lists PNM ODE solvers that have been proposed in the lit-
erature. A v indicates that the method satisfies a given property, a
x indicates that a method does not satisfy a given property, and a
~ indicates that a property holds with some restrictions. The listing
shows that almost all methods proposed so far are globally defined.
Furthermore, we see that the definition is independent of a method
being sampling-based or not. The method proposed by Conrad et
al. [42] is a generative process on sub-intervals [t,, 1] C T based
on a numerical discretization. It is easy to construct two different
meshes A, A, that define different distributions for Py (Y (t,)) in the
case of ¥ = Ay and a general argument can be made from this exam-
ple. In Teymur et al. [210], the predictive posterior is only defined
on the discretization mesh. This defect is not for lack of definition,
but a consequence of the underlying numerical method the proba-
bilistic algorithm is built upon. Since the method is defined on a
windowed data frame, it is easy to construct a mesh such that the
prediction Y (t) at time t will be different depending on the window
[tn—is- - tnyj] D tis considered to be part of.

The analysis in Schober et al. [185] proposes two main modes
of operation: naive chaining and probabilistic continuation. Naive
chaining is not a globally defined method since mesh points f, are
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part of adjacent Runge-Kutta blocks and the corresponding predic-
tive posterior Py (Y (t,)) is different for these two blocks. Probabilis-
tic continuation is globally defined, but there no convergence theory
has been presented for this case.

This leads to the next item on the list and the last point discussed
in this section: analytic guarantees. As in any mathematical discipline,
the performance of numerical algorithms are subject to rigorous anal-
ysis. These typically take the form of limiting behavior for certain
properties of a code.

For IVPs, where the existence of a solution can be proven under
mild conditions, an algorithm should converge under equally mild
conditions. The examples of Section 3.2 are shown not only to con-
verge for limh — 0, but that the error can be bounded by a known
function. This yields a high rate of convergence even in the non-
limit case. Another important property are the various classes of
stability for IVP solvers which are related to problem stiffness (see
Section 3.3).

5.2.2 Requirements for practical algorithms

This section discusses the remaining three desiderata—deterministic
execution, speed and problem adaptiveness. We will argue that these
three properties are desiderata for practical algorithms. We will now
look at these properties in turn.

In this thesis, a deterministic algorithm has to be understood in
contrast to Monte Carlo methods which rely on (pseudo-) random
numbers. In fact, our argument for deterministic methods could
mainly be thought of as an argument against random numbers.

Before we start, we want to highlight that there are cases where
the usage of random numbers is called for, in particular in the setting
of high-dimensional problems where the stochastic convergence is
provably faster than its deterministic counter-part (see Section 2.5).

In the context of probabilistic numerics, however, randomized
methods are typically applied to guard against model errors (Cock-
ayne, Oates, Sullivan, and Girolami [41] and Rainforth [174]). The
sampling mechanism adds independence over steps during runtime
execution, the argument being that discretization errors exhibit an
independent behavior per step. It has been shown that floating point
rounding errors can be accurately modeled by independent Gaussian
noise [98, 94].

From a more abstract view, modeling discretization errors by inde-
pendent additive Gaussian noise is an additional assumption that is
omitted in deterministic schemes. As a consquence, the randomized
algorithms should indeed fare better if the discretization errors of a
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combination of problem and method at hand are of this kind. For
instance, one setting where this might come up are systems with
chaotic attractors.

In practice, however, most problems do not converge to a chaotic
attractor, in which case the independence of the discretization error
is doubtful. In these cases, discretization errors typically fulfill an
unknown, but systematic drift. This is obvious from the pathological
example y' = ¢ for some constant ¢ # 0. Even the explicit Euler
scheme can recover the exact solution y(t) = ct without discretiza-
tion error, so any non-zero discretization error assumption is wrong.
In practically relevant problems, systematic errors can be observed
with unstable methods or stiff problems ([82, §II1.3]).

Secondly, the finite sample size of the randomized method adds
another problem in its own right (O’Hagan [160]). Since sampling
methods are only required if the posterior distribution, i.e., its den-
sity, cannot be computed analytically, the user has to check the con-
vergence of the empirical density estimate. This problem can some-
times be tackled by analyzing the convergence rates, e.g., as in Cock-
ayne, Oates, Sullivan, and Girolami [41]. While we had to worry
about one convergence before, we now have to worry about two.

To make matters worse, this obstacle of the (theoretical) algorithm
has multiple facets for any actual implementation. Markov Chain
Monte Carlo methods, in particular, can suffer from a missing mode
problem if the sampling chain cannot escape a local high density area
during the finite runtime (Betancourt [16, §2.3]). In any case, the
indeterminism makes a program harder to debug as guarantees can
only be checked up to probabilistic uncertainty (Gentle [70] and Cook
[43]). In deterministic methods, the pre- and postconditions are typ-
ically easier to establish. For the methods presented in Chapter 6,
these are identical to the requirements for classical numerical solvers.
The disadvantage comes in the form of very weak global bounds, but
these are known to hold under every condition.

The final two requirements—speed and problem adaptiveness—can
be understood as two different aspects of the common desiderata of
low computational budget. The runtime of a numerical code should
be as short as possible.

In the context of ODE solvers, speed is a function both of con-
vergence order and computational complexity. Classical algorithms can
achieve higher order convergence at linear computational cost (see
Section 3.2). A probabilistic numerical algorithm may be a little more
time consuming, but its runtime behavior needs to be on a similar
scale. Otherwise, other means of error quantification such as sensitiv-
ity analysis [134, 30] is to be preferred.

Problem adaptiveness describes the property of a code to allocate an
efficient integration strategy automatically for a specific task. This
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property usually operates within the convergence order and complex-
ity class constraints. In the context of ODE solvers, the most common
functionality in this regard is the ability to select the coarseness of
the discretization mesh based on accuracy requirements. This is not
only important as a convenience tool, but might be a necessity for
non-expert users who might not be able to choose an appropriate
strategy by themselves.

5.3 A roadmap to probabilistic numerical methods

Chapter 6 will present a model and corresponding algorithm that
fulfills the desired properties. The description will follow the pro-
gression of its mathematical building blocks. As a consequence, this
might obfuscate its chronological discovery making it harder for the
uninitiated reader to follow the motivation. Thus, before we start
with the mathematical description we will outline a roadmap to the
methods presented in the next chapter.

Following the example of O’Hagan [159] and Diaconis [56], we
want to find methods that closely resemble existing numerical meth-
ods for the solution of initial value problems. Reflecting on the struc-
ture of the methods presented in Chapter 3, it is possible to construct
numerical methods from linear combinations of function evaluations
and suitable weights. More importantly, the appropriate weights can
be determined statically (at compile time) working for a large class of
dynamics functions. Reframing this, one could say that the optimal-
ity of a set of weights is a property of the approximation model, not
of the specific problem at hand.

The key insight now is to observe that Gaussian process regres-
sion models fit this description; the posterior process is given by
linearly weighted function observations (see Eq. (8)). Additionally,
the weights are only determined by the covariance structure which is
purely a property of the model, not of the specific problem at hand.!

Given only the location of the function evaluation, but not the
evaluation itself, the weights are completely determined.

The rest of the program is almost a natural consequence: search
for those Gaussian models which produce the weights of any classi-
cal method. A consequence of the global definition property will be
that this analysis has to be applied twice: once for the initial ramp
up phase and once for the stationary phase of the algorithm. In
fact, it will turn out that globally defined methods have strong con-
nections to spline smoothing via the equivalences found by Kimeldorf
and Wahba [117] and Wahba [217]. We conjecture that this severly
limits the space of all globally defined methods and it is an open
problem to trade off this property against approximation quality.
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The Probabilistic Filtering ODE Solver

This chapter introduces a concrete probabilistic model for the numer-
ical solution of IVPs. We will prove that the maximum a posteriori
estimator resulting from this model conincides with certain classical
numerical methods. As a consequence, our probabilistic numerical
method shares analytic guarantees of the classical methods which
guarantee convergence at favorable rates.

This chapter mostly follows the presentation given in Schober,
Sarkkd, and Hennig [187]. Additionally, Section 6.6 presents the the-
oretical results from Schober, Duvenaud, and Hennig [185] in the
notation of [187].

6.1 Gauss-Markov process priors for IVPs

Our approximation model of the true solution y(t) is a vector

x(t) = (O ),y D)7, (47)

where y(7) (1) is the true ith derivative of y(t) at time ¢. We represent
the prior uncertainty about x(t) by the distribution P(X;) of the ran-
dom variable X;—or more generally as the law Px of the stochastic
process X—which is then conditioned on the observed values.

As has been argued in Section 5.3, the goal is to find models that
share the underlying building blocks of classical general purpose
methods, i.e., linear methods with low (linear) inference cost. It has
been shown in Section 2.4 how these models can be constructed from
linear time-invariant (LTI) stochastic differential equations (SDEs).

Here, we consider models of the form

dX; = (Ugs1 + fTeg) Xidt+ ¢, dW,, (48)

where L is the last standard basis vector e; and F is a (transposed)
companion matrix. That is, U, 1 denotes the upper shift matrix and
the row vector fT contains the coefficients in the last row of F. In
this case, the vector-valued process X; = (X, ..., X;4)T obtains the
interpretation X; = (Y3, Y/, .. .,Yt(q>)T, because the form of F and L
implies that the realizations of Y; are g-times continuously differen-
tiable on R. Later, we will also consider scaled systems X = BX with
an invertible linear transformation B. In this case, we denote by H;
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the matrix that projects onto the ith derivative Yt(i) =HX; = eiTBX I
Two particular models of this type are the g-times integrated Wiener
process (IWP(g)) and the continuous auto-regressive processes of or-
der q. Detailed introductions can be found, for example, in [114,
161, 181]. SDEs can also be seen as path-space representations of
more general temporal Gaussian processes arising in machine learn-
ing models [183].

Models of the form (48) are also related to nonparametric spline
regression models [216] which often have a natural interpretation in
frequentist analysis [117]. Conceptually, these models are a compro-
mise between globally defined parametric models, which might be
too restrictive to achieve convergence, and local parametric models,
which might be too expressive to be captured by a globally defined
probability distribution. Models of this type have been studied in the
literature [141, 5], but the presentation here starts from other princi-
ples.

The choice of prior P(X) in Eq. (48) can be interpreted as a prior
assumption or belief encoded in the algorithm, in the sense that the al-
gorithm amounts to an autonomous agent. We emphasise that if one
adopts this view, then the results reported in later sections amount
to an external analysis of the effects of these assumptions. That is,
we will show that if the agent is based on this prior measure Px with
a likelihood to be defined in Section 6.3, it gives rise to a posterior
distribution with certain desirable properties. By contrast, one could
also take a more restrictive standpoint internal to the algorithm, and
state that the proposed method works well if the true solution x is
indeed a sample from P(X). This is expressly not our viewpoint
here, and it would be a flawed argument, too, given that in practice,
x is defined through the ODE, thus patently not a sample from any
stochastic process.

For the rest of this manuscript, we will focus on the g-times inte-
grated Wiener process IWP(g), which is defined by

dXt = Uq+1Xt dr + Eq th

In this case, fT = (0,...,0) and there is no feedback from higher
states X;; to lower states X; ;,i < j. In particular, this process is non-
stationary and does not revert to the initial mean m;,. In this system,
the (discrete) drift matrix A (k) and the diffusion matrix Q(h, 0?) can
be be computed analytically

i

(A<h))ij = ﬂigjm,

W2q9+1—i—j (49)

29+1—i—j)g—i)q—)"

(Q(n))ij = 02(
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which can be derived directly from Eq. (13). Notice how Q(h) lin-
early depends on the diffusion scale 2. It will be convenient to

write Q(h) in this explicit multiplicative way Q(h) = 02Q(h).

6.2 Data generation mechanism

Many problems in statistics assume the existence of an externally
produced, thus fixed data set {(,,z,)|t, € A} and develop appro-
priate solutions from there. An analogous concept in numerical al-
gorithms for solving differential equations would be to pose a global
discretization scheme and to obtain a solution with other tools from
numerical analysis. Methods of this type are often applied to bound-
ary value problems (BVPs) and partial differential equations (PDEs)
where the integration domains need to be specified a priori in any
case. Cockayne et al. [41] take this approach by assuming a fixed
information operator A. However, there are cases where the final
time T cannot be stated beforehand, when the quantity of interest
depends on a qualitative behavior of the solution. For example, in
modeling of chemical reactions, an user might be interested in the
long-term behavior of the compounds and it is unknown when the
reaction reaches equilibrium.

In contrast, many numerical IVP solvers proceed in a step-by-step
manner. Having computed a numerical approximation Py | 2 O0 the
mesh Ay, a prediction y, ; of y(t,11) is used to evaluate f(t,1,Y, 1),
and the resulting output z,.1 is used to update the approximation
Py|z[n+1] on the extended mesh A, ;. For example, in a determin-
istic IVP the data (tp,y0) can be used to construct the observation
2o = f(to,yo) which is y/(tg) ~ 6(zo — y'(tp)) in the probabilistic in-
terpretation. This serves as a corner case for the general situation.
Setting t_1 = tg and z_1 = ¥, it follows that y(to) ~ 6(z_1 —y(t_1))
and the initial value requires almost no special treatment. The con-
cept is illustrated in Algorithm 3 and can, in principle, be extended
indefinitely, at constant cost per step. The term predict—evaluate—
correct (PEC) or predictor—corrector methods have a more technical
meaning in classic textbooks [82, 53], but the idea is common to
many numerical IVP solvers. Chkrebtii et al. [39] calls the process
of evaluating f(,,y, ) with tentative y, to generate z, a model inter-
rogation. From a statistical perspective, this concept of active model
interrogation is similar to the sequential analysis of Wald [218, 162].

Algorithm 3 conveys the general idea of a probabilistic ODE solver
while omitting parameter tuning aspects like error control and step
size selelgction. The exact form of lines 5 and 6 depends on the
choice of observation construction and data likelihood model. With-
out data, the prior induces a probability distribution on the hidden
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: P(X; ) < moDEL(hyper-parameters)
2 P(Xty [ zp)) ¢ mN1T(f, T, 90, P(X: )
: forn=0,...,N—1do
P(Xt,,, |2[y) < PREDICT(P (X4, | Z[y)))
P(zp41 | Xt,,,) < OBSERVE(f, P(Xt,,,))
P(Xt, |Z[n+l]) < UPDATE(P(zy41 | X, ), P(Xt, 4 |Z[n]))
end for

NS @ e

state X;,. It remains to construct an observation z, and a likelihood
model P(z, | X4,).

6.3 Observation assumptions

Recall from Section 6.1 the prior state-space assumption
X = (Yo, Y, .., YN ~ N (my, Cy). (50)
Combining Egs. (19) and (50) gives

N ((mi)1,(Ce)11) = P(Y{) = faN ((m+)o, (Ct)oo)

where fyp is the push-forward measure of ji. The exact form of that
push-forward is not usually tractable for general f (one exception
is linear ODEs, which of course do not require nontrivial numerical
algorithms).

We will show below, however, that using an approximate Gaussian
likelihood leads to good analytic properties of the resulting Gaussian
posterior. This likelihood will be parametrized as

P(za|Y{) =N(Y],R}) (51)

where z, are the observations that have yet to be constructed and
R2 can be interpreted as an observation uncertainty. Another way to
phrase Eq. (51) is to write

Zn = Hlth +v,

where the latent variable v = y/(t,) — f(t,, HoX:,) captures the er-
ror between the estimated solution f(t,, HyX;,) and the derivative
of the true solution y’'(t,). The approximation in Eq. (51) is to assign
a centered Gaussian distribution P(v) = N(0,R?) to this latent vari-
able. Purely from a formal perspective, this v is a “random variable”,
but we stress again that P(v) captures uncertainty arising from lack
of computational information about a deterministic quantity, not any
physical sort of randomness in a frequentist sense. That is, solving
the same IVP several times will always produce the exact same v, be-
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cause the algorithm is deterministic. But that same v will always be
just as unknown. Repeated runs will not refine the uncertainty. Fig-
ure 7 displays a graphical model corresponding to the construction.
All current probabilistic numerical ODE solvers share this particular
assumption (51) [199, 39, 185, 42, 116, 210]. The differences between
these algorithms lies mainly in the prior on X, and how the observa-
tion z, is produced within the algorithm.

It remains to construct z, and R2. One possible way to achieve
this is to compute the expected value of the vector field f under the
prediction for the true solution

zn + E[f] = /f(fn/Ytn)N(Ytn;(mfn)o,(C;)oo) dYs,, (52)

where N(Xy,;m; ,C; ) = P(Xt,|zj,_q)) is the prediction distribu-
tion of Xy, given the data z,, ;) and <— denotes assignment in code.

With these conventions, two new issues emerge: the evaluation of
the intractable Eq. (52) and the determination of RZ. Kersting and
Hennig [116] propose to put

R [ £t 10,2 N (X, (i o, (Ci o) Y, — ELf?

and to evaluate both integrals by Bayesian quadrature. Chkrebtii et
al.’s [39] method draws a sample u, ~ N ((m; )o, (C; )oo), computes
zy 4 f(tn,un) and R is set to (C;)11- In light of Kersting and
Hennig [116], this could be thought of as a form of Monte Carlo
scheme to evaluate (52).

As a further restriction to the likelihood (51) more widely used by
other probabilistic numerical solvers, we will here focus on models
with vanishing R2 — 0. That is

Zy f(tn/ (m;n)0>/

/ / / (53)
P(zn|Y;,) = 6(za =Y, ) = N(Y;,0).
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Figure 7: The graphical model corre-
sponding to the proposed construction.
White circles represent unobserved hid-
den states and the black circle repre-
sents the observed data. Gray squares
represent a jointly normal distribution.
The arrow indicates a model interroga-
tion. An implied non-Gaussian factor
between Y©)(t,) and z, is ignored to
obtain a practical algorithm.



This means the estimation node y; for the evaluation of f is simply
the current mean prediction, and the resulting observation is mod-
eled as being correct.

6.4 The complete algorithm

In this section, the algorithm components—the prior 6.1, the action
rule 6.2 and the likelihood 6.3—are combined to produce a com-
plete algorithm. The pseudo-code Algorithm 3 is turned into a code
blueprint. The resulting Algorithm 4 serves as the groundwork for
the main Definition 1 of this thesis.

The prior and the likelihood are linear models in the sense of Sec-
tion 2.4, which stated that the predictive and filtering distribution
can be computed by the linear-time algorithm known as the Kalman
filter [113]. The resulting PFOS Algorithm 4 returns the filtering
distribution at every mesh point t, = ty + hn. For many applica-
tions, the posterior distribution at the end of the integration domain
mrT, CT suffices, but the complete posterior can be computed from
the filtering distribution.

Require: IVP: f,T, Yo
Require: hyper-parameters: 4, q, 02

1 F< Uy +eJ0,L < e5, Hy < eg, Hy  e] > Create model
2 A+ A(h),Q + c?Q(h) > Eq. (49)
3 my,, Cy, < INIT(f, T, yo,model) > see Section 6.6
4: forn=2,...,N do

5: m, < Amy, > Predict (Egs. (15))
6 C;’ — Act,,,lAT +Q

7: zn < f(to+hn,Hom, ) > Evaluate (Eq. (53))
8: A 4 zp — Hymy > Update (Egs. (16))
9 K, < C, H[[HC, H]]™!
10: my, <— m; + KAy
11: Cy, « (I —KnHl)C[n
12: end for
13: return {m,, Cyy, n =—1,...,N}

Since the first version of the algorithm is not adaptive, the user
has to provide a couple of hyper-parameters. We have decided to
focus on the IWP(g) process, which has two remaining degrees of
freedom: the integration order g and the diffusion scale ¢?. A low
order of g € {1,2} is a robust choice if the problem is expected to
be mildly stiff. The diffusion ¢ could also be adapted after-the-fact
via type-II maximum likelihood optizimation (see Section 2.6). At
this point, no uniquely “right” formal way to fix this uncertainty
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has been identified. One possible approach is due to Kersting and
Hennig [116]. We will present an alternative later in Section 7.2.

Additionally, the user must provide an appropriate step size h. It
is common to choose a number of steps N and set /1 < (T — to)N 1.
Time and computational resources permitting, a standard technique
to obtain reasonable step size is to lower the step size until the solu-
tion yr at the final time T does no longer change in a desired number
of digits.

Although this thesis focuses on the integrated Wiener process
IWP(g), Algorithm 4 can, in principle, be applied to IVPs using any
prior of the form (48). This motivates the following definition:

Definition 1. A probabilistic filtering ODE solver (PFOS) is the Kalman
filter applied to an initial value problem with an underlying Gauss—Markov
linear, time-invariant SDE and Gaussian observation likelihood.

For sake of completeness, Algorithm 5 presents the explicit form
of the Rauch-Tung-Striebel (RTS) smoother [177] which can be used to
compute the posterior smoothing distribution. The execution of the
RTS smoother can also be used to simultaneously draw K samples
S;, x from the posterior distribution which is helpful to visualize the
overall covariance structure. Algorithm 5 can also be extended to
compute the posterior and draw samples on a user-defined mesh Ag,
thus providing dense output functionality. The required changes are
the additional logic for merging the output mesh Ay with Ag and
extra book-keeping of drift and diffusion matrices which has been
omitted for clarity.

In Algorithm 5, RANDN generates a g + 1-dimensional standard
multivariate normal sample. cHOL(C) computes the Cholesky factor-
ization LLT = C, L lower triangular. The Cholesky factorization can
be circumvented with a bit of extra algebra if necessary [59].

These computations approximately double the required work. But
they are only necessary if a dense output, i.e., a solution at a point
other than T, is desired, for example, when the solution is required
on a pre-defined grid which might not coincide with the mesh se-
lected by an automated step size selection criterion (cf. Section 7.2),
or when a large subset of points from T is selected to get a contin-
uous plot of the numerical solution. Classical algorithms share this
overhead.

We conclude this section by considering again the example from
Section 3.1, page 25. Recall the IVP definiton

v =f(ty) = fly) = ry(1 —v/x),
y(to) =yo =110, r=3K=1,

to be solved on the interval [0, 1.5].
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y'(t)

to ty tne1 T to ty tne1 T to ty tno1 T

Figure 8: The 2-times integrated Wiener process dX; = U3X; df + e, dW; applied to the logistic growth problem y' = ry(1 — y/K).
The plot shows the true solution (gray) of the function y and its first two derivatives, as well as the numerical solution Y, given by
its mean m; (red line) and covariance C, visualized as point-wise plusminus twice the standard deviation m; +2./C;;. Empty circles
are predicted values at time ¢, filled circles represent updated values, orange dots are function and derivative observations. The
first two columns display two predict—evalute—update—predict cycles. The last column shows the smoothed final solution (green, thick
lines) and three samples from the predictive posterior (thin lines).
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Require: filtering distribution: {m;,, Csy, n=—1,...,N}
Require: hyper-parameters: h,q,02%, K

1: ms < My, C‘tSN «— CtN

5%
2. fork=1,...,Kdo
3: Stk < mtSNJr CHOL(CfN) RANDN(g + 1)
4: end for

5 F < Ugq +€J0,L < 5, A < A(h),Q < 0?Q(h)
6: forn=N—-1,N—-2,...,—1do

7: my < Amy,
. - T
8: Cthrl — ACy A 4: Q
9: Gi, CtnAT(Ct”H)T
S S —
10: mtn A mt" + Gt” (mtn+1 - mtn+1)
S S — T
11: Ct,, — Cy, + th(Cth — Ctn-H)th
12: fork=1,...,Kdo
13: St,k < CHOL(Ct, — G, C; G/ ) RANDN(g + 1)
14: Stn,k —my, + th(Sth,k — mt;“) + Stk
15: end for
16: end for
17: return {mfN,CfN, n=-1,...,N}

Figure 8 shows the state of the algorithm after 2 steps have been
taken. The solution looks discontinuous, because the information of
later updates z, has not been propagated to previous time points
tm,m < n. The last column of Figure 8 shows the (predictive pos-
terior) smoothing distribution wherein all the information is globally
available.

6.5 Interpretation

From the analytical viewpoint external to the algorithm itself, of
course, one does not expect that the model assumption of a Gaussian
likelihood, much less one with vanishing width, holds in reality. The
point of the analysis in Section 6.7 is to demonstrate that this model
and evaluation scheme yield a method satisfying sufficient condi-
tions to prove that its point estimate converges at a nontrivial order
for some choices of state spaces, while simultaneously keeping com-
putational cost very low (that is very similar to that of classical mul-
tistep solvers). That is because the predictive posterior distributions
P(X4, | z[,)) can be computed by the linear-time algorithm known as
Kalman filtering [113, 181, 182]. The marginal predictive posterior dis-
tributions given all data P(Xx |4, zpy)) can be computed using the
Rauch-Tung-Striebel smoothing equations [177, 181, 182]. Simultane-
ously, one can draw samples from the full joint posterior. These two
operations increase the computational cost marginally: They require
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additional computations comparable to those used for interpolation
in classical solvers, but neither smoothing nor sampling requires ad-
ditional evaluations of f. The computational complexity stays linear
in number of data points collected. If the full joint posterior is also
required for some reason, this is also possible to construct [201, 77].
As a second consequence, the computation becomes deterministic
which enables unit testing of the resulting code.

As a side remark, we note some obvious restrictions of the com-
bination of Gaussian (process) prior and likelihood used here: Since
the posterior is always a Gaussian process, one cannot hope to cap-
ture bifurcations, higher-order correlations in the discretization er-
rors or other higher order effects.

6.6 Connection to Runge-Kutta methods

So far, we have presented an algorithm without a convergence anal-
ysis. In this section, we will show how the MAP of an IWP(g) coin-
cides with an explicit Runge-Kutta method of order g for g < 4. This
can be used to create a one-step initialization scheme to a multistep
method similar to Gear [68].

Let us first recall the general form of explicit Runge-Kutta formu-
las (24) from Section 3.2.1:

i—1

ki,n :f<tn —i—hci,yn—i—hZaijkj,n), i=0,...,5—1

=0
s—1

Ynt1 =Yn+h Z b]k],n
=0

Let us rewrite this equation a little bit:

th—1 = tn, tn,i:tn+hci,i:0,...,s—1

i—1
Z—l,}’l - ]/n/ Zi,}’l - f <t1’l,i/ Z haijzj,n> 7 1 - O/° . '/S - ]-

j=—1

s—1

Yns1 = ) hbjzj,.
=1

Compare this form with the MAP of an iteratively growing predictive
posterior
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0 0
0olo 0 0 u u 0
u u 0 v(v—u v—
1 ‘ 1 ) v v- u((ZU—3u)) 17(<273uu)) 0
(1 - ﬂ) 2u 2-3v _ _2-3u 2-3v 2—3u
6u(u—v) 6v(v—1u) 6u(u—v) 6v(v—1u)
Table 3: All explicit Runge-Kutta meth-
ods of order g4 < 3 and number of
stages s = g (see [82]).
-1
E{yn} (tn,O) = [k(tn,o, tnlfl)} [k(tnlfl, tn,fl)} {yn] ’ (543)
:Mn,(]
5 -1
k(t —1,t 71) k (t —1,t 0) Yn
1 (tn1) = |k(tu1, tn—1) K (tn1,tuo) e e , (54b)
Hynkont Art, Artn, ) a0
k(tno tn,—1) k% (tno,tno) Z0,n

:lxtn,l

and so forth for z; ,,i > 0. The first two factors on the RHS of Eq. (54)
define a weight-vector & which is determined by the choice of evalua-
tion knots t,, ; and the kernel. Thus, if we want to achieve equivalence
in the predictive posterior MAP, we have to match evaluation knots
and calculate algebraically, whether the weights 4;;, b; and the vectors
(wt,); match.

Table 3 lists all explicit Runge-Kutta methods of orders 4 = 1,2,3
where s = g. Explicit methods necessarily have ¢y = 0, the remaining
knots are free parameters. The table shows how the weights a;;, b; are
algebraic expressions depending on the evaluation knots.

Consider now the once integrated Wiener process INP(1) and let
m; =0and0<C, € IR?>*2 be an arbitrary covariance matrix. At
to, we have [y(to),y'(to)] = [vo, f(to,yo)] which are linear transfor-
mations of the model (47), i.e.,

vo = eo Xy, zo = f(to,yo) = e1 Xy,
= yO _ 10 th,O
Z0 01 Xfo,l
=Hy

where the observation matrix Hy; is the identity matrix I.
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These observations lead to the predictive posterior conditional

P(Xty | (Xtg)o = Yo, (Xty)1 = 20) = N (X1y;m, C),
m=m; + CLH(TH(HOlC;lH(Tn)*l(z — mtil)

=I
= Z,
— — — -1 —
C= Ct,l - Ct,lH(Tn(HmCt,lH(gl) (HOlCt,1>
=0

according to Eq. (5). Given this filtering distribution, the prediction
at to + h, using (15) and the algebraic expressions for A(h) and Q(h)
in Eq. (49), yields

P(Xty1n | yo,20) = N(Xp; A(h)z, Q(h))

(55)
— N(Xu,: [yo + hzo, z0]T, Q).

We see that Hym, , = e} my = Yo + hzo is equivalent to the explicit
Euler step which is the result from [185] written in state-space form.

However, continuing with the filtering formulation, we will now
perform the next Kalman update

zZ1 = f(tl,]/o +h20)
Ky = QU H] (Hy QW H]) ™" = [1/2 1]

B T
my, = (I — K1Hy)m, +Kyz1 = {yo +1/2(z0 + z1) Zl}

T

to observe that m;, does not correspond to Euler’s method. This im-
plies that the argument above cannot be applied to the operation
mode “probabilistic continuation” suggested in [185]. Analogous
results hold for the arguments presented in the remainder of this
section.

One might assume that this is a strong negative result, since we
excluded the operation mode “naive chaining” (see [185]) to obtain
globally defined models, but we do not recover Runge-Kutta meth-
ods for the alternative. However, we will show in Section 6.7 that we
can retain an alternative equivalence still.

Nevertheless, in the remainder of this section, we will show that
similar models and arguments can be used to construct Runge-Kutta
predictions of orders g = {2,3,4} as well, which will motivate an
initialization procedure. Before we can do that, however, we will an-
alyze the results and the methods which will simplify the derivations
significantly.

First, we recall that the notation ¢, _; = t, o was only introduced
for convenience, thus, we have ar,, =1in all models. When search-
ing for Runge-Kutta methods, we find that Eq. (54a) is always of the
right form for n = 0.
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Secondly, the analysis of Runge-Kutta methods in Section 3.2.1
tells us that a Runge-Kutta method of order g matches the first g
derivatives of the true solution at y(t,) which implies that appropri-
ate models will require a state-space of dimensionality at least g + 1.
The matrix-vector algebra of the Kalman filter will soon become to
cumbersome to work with without the help of computer algebra sys-
tems. However, we can use the equivalence result from Grigorievskiy,
Lawrence, and Sarkka [77] (see Section 2.4) to get sub-expressions of
«y, i which can be evaluated more easily.

To this end, let Hy; = [ep 1] € R2*@+1) consider ;1 of (54b)
written in the notation of Section 2.4:

a1 = el A(her)Cp A(0)TH] [Hp A(0)TC; A(0) "HJ, ™. (56)

Recall that A(0) = I from the basic properties of the matrix expo-
nential. In the case of ¢4 = 1, Hy; = I and Eq. (56) simplifies to
K1 = e(T)A(hcl) which is, again, the result from above. However, in
the case of g4 > 2, we find that the intermediate matrix products in
Eq. (56) do not cancel.

So let us look at Eq. (56) for the case of the INP(2). The equation
looks identical, but the involved matrices have an additional row and
column. We split the multiplication into three parts:

a1 = efA(her) C; HY [HnC; H{ ™' (57)
D L N S —
M, M, M3

From Eq. (49) we find My = [1 hc; 27Y(hep)?]. Matrix M3 is the
inverse of the upper left part of matrix C;_ whereas Expression M,
yields the left side of said matrix. Lets put C; = Q(T) to get con-

crete values

1 0

MoMz= |0 1 (58)
—20 4
312 T

and we see that this yields the correct result only in the case of
lim T — oo. Contrasting Equation (58) to Equation (12) from Schober,
Duvenaud, and Hennig [185], we can appreciate the easier algebra
of the state-space formulation.

We finish the proof of Theorem 2 from [185] by inserting the values
from Table 3 into

M = ej[A(h) A(h(1—u))],

M, = Q(t)A(t)THy, ,,

M3 = [Ho11 A(t)Q(t)A(t)TH] |17,
ap o = M1 MMs3,

(59)
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where t = (to,to + hu)T and Hy; = diag(Ho, Hq) is the block-
diagonal matrix of size (24 1) x 2(q + 1) with blocks Hy; and Hj.
Analogous to Eq. (57), we find

= W2 hz(l_u)2
M, [1 I T Y G ) s El
(° ¢ ah 3 4]
0 8§ 6r tF
©“ w2, T
T 3 20t73
T3 T2 '['2
= 5 uht+ %
My=0> |6 2 L 2
o 0 5
u3h3
00 5
u?h?
L0 0 5 ]
960ul+720T _ 360u?h?4-360uhT+60T> 60
0 (3uh+T) uht* (3uh+7) uht?(3uh+7)
Ms — o2 | _ 3602H24360uht 607> 480> (ul+7)+9t(duh+1)’  3eun+9t
uht* (3uh+7) u2h273 (3uh+7) u2h2t (3uh+T1)
60 36uh+9t 9
uht2(3uh+7) uZh2T (3uh+71) uZh2 (3uh+T)

Multiplying and taking the limit as T — oo yields a second-order
Runge-Kutta as the mean of the predictive distribution.

We now turn our attention to the (posterior) covariance. Letting
limT — oo leads to an improper prior covariance model, similar to
Wahba [217] and Koopman [119]. For instance, calculating the poste-
rior GP(y; i, k| yo, z0), we find for the predictive posterior covariance

k(t,s) = k(t,s) — k(t, t)K(t, t) " k(t,s)

= A1) (Q() ~ QVAM)TH], ;G Ho i A(DQ() ) Als )T,

=Q(t)

where G = Hoi,1A(t)Q(t)A(t)TH(; ;. Taking the limit as T — oo
yields a finite value after three observations. It is not immediately
obvious that this should be the case. An intuitive explanation is that
the IWP(2) is 3-dimensional and each observation provides a rank-
1 update to the state space. Similar to the case in (59), it suffices
to check Q(t). This involves algebraically calculating the inverse of
G, a (2-3) x (2-3) matrix of polynomials which yields a matrix
of polynomial fractions. Doing this manually is a cumbersome and
error-prone process, so we omit the details. An implementation in
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SymPy can be found in Appendix A. Here, we only present the final

result

00 o 0 0 0 |

0 0 0 0 0 0

h hu)3 hu ) h
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In this case of g = 2, the philosophical reservations for chaining
such single-step methods together to build a Runge-Kutta solver are
even more severe. Equivalence is achieved for C, = limr—e Q(7)
only which can be thought as a “diffuse state” (cf. Wahba [217]) or
“infinitely uninformative prior”. Matching Runge-Kutta over two
consecutive steps would require to brush over the predictive poste-
rior of the first step and reset the the initial believe to the diffuse state.
Thus, we would ignore information that we have collected, although
our task is to infer the solution with as little effort as possible.

However, the connection to Runge-Kutta can still be harnessed
to initialize the algorithm. Just as we did above, we can compute
the algebraic expressions for the entries (m;l )is (C;l)l-]-, i,j=0,...,9
of the predictive distribution P(X}, | {yo,z1,...,2;4-1}) in state-space
formulation with the formal initializationm,  =0and C; | = Q(1).
From the preceeding analysis, we know that this will yield

s—1
(mg)o =1yo+ h Z b]-z]-

j=0
which coincides with the Runge-Kutta prediction in the limit as
T — o0 and will produce finite expressions for the entries of C; .
Thus, it is valid to compute the z; from a regular Runge-Kutta step,
and then insert these into the expressions of lim¢ . m; , C; . Algo-
rithm 6 presents a pseudo-code where m; denotes the mean-vector
with symbolic expressions for zo,;—1. This approach is structurally
similar to an algorithm given by Gear [68] for the case of classical
Runge-Kutta and Nordsieck methods.

1: function INTT(f, T, o, model)

2: 20.(g—1) < RUNGE-KuUTTA(f, t0, ¥0,9)
3: mt_],C; — SYMPY(m;‘_1 =0, Cil =Q(71),9)
4: my < INSERT(m; , Z0.9-1)

5. end function

Note that the expression of C;  is independent of the observations
and can be computed directly. While the expressions are not inde-
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pedent of the evaluation knots hc;, in practice, we have decided to
always use the same evaluation knots since in the case of 4 = 3,4,
not all combinations are feasible (see below).

Analoguous calculations for the case of 4 = s = 3 and the IWP(3)
can be made to achieve equivalence in the mean for the correspond-
ing Runge-Kutta methods, except for the case when v # % Schober
et al. [185] noted that this could be remedied by considering a spe-
cial element in the reproducing kernel Hilbert space of the thrice-
integrated Wiener process kernel, and it was conjectured that this
special element bears a meaningful interpretation. However, with
the more advanced understanding of diffuse priors, this view has to
be updated.

Underlying the construction of higher-order Runge-Kutta meth-
ods are Taylor expansions of increasing order, i.e., local polynomial
fits. To achieve ever higher order, the fitted polynomials need to ful-
fill an ever bigger set of constraints. These conditions are satisfied
by comparing the derivative of the true solution and the numerical
approximation viewed as a function of h at the end of the current
step [82, §2]. Notably, these are the only constraints the coefficients
need to satisfy. Conversely, the INP(q) model assumes noise-free
derivative observations at the intermediate knots ¢y + hc;. This can
be understood as additional constraints on the coefficients of the nu-
merical solution to satisfy certain derivative values in the middle of
the integration step. Thus, it is natural that the set of high order
filtering methods is smaller than the set of high order RK methods.

4

yo:/‘

| |
to to+hu ty+ho to+h
t

The situation is also depicted in Figure 9 for the IWP(3). After
obtaining the second derivative z;, the Runge-Kutta extrapolation
yri(t) is formally depicted by the solid yellow line. Notice, how this
curve does not satisfy yrx(to) = zo, i.e.,, does not satisfy the first
derivative observation known to be correct. The dashed yellow line
represents the predictive posterior mean of the INP(3). At hv,v = 2/3
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Figure 9: Runge-Kutta mismatch in the
case q = 3. For a description see text.



the two predictions intersect yielding a method probabilistic Runge—
Kutta method. In the cases v # 2/3, this constraint is not enforced by
the algebra of the Runge-Kutta analysis.

In [187], a match was reported between a four step Runge-Kutta
formula and the IWP(4). This match is obtained for the evaluation
knots tg + ¢;h with the vector ¢ = (0,1/3,1/2,1)T. Exact expressions
are listed in Appendix B.

Finally, it should be pointed out that this is only one feasible ini-
tialization. In cases where automatic differentiation (see Griewank
and Walther [76]) is available, this can be used to initialize the Nord-
sieck vector up to numerical precision and set C; , to 0. Nordsieck
[156] originally proposed to start with an initial vector m; , = 0, fol-
lowed by g + 1 steps with positive and g + 1 with negative direction
(that is, integrating backwards to the start). One interpretation is
that the method uses m; | = E[X; ,|Z_1,...,Z;], with tentative Z;
computed out of this process.

6.7 Connection to multistep methods

We will now show how the Kalman filter (15), (16) can be rewritten
such that the mean prediction takes the form of (35). This enables
to analyze the proposed algorithm in light of classical Nordsieck
method results, but can also guide the further development of the
probabilistic approach with the experience of existing software.

We rescale the state space and SDE of the IWP(g) by scaling ma-
trix B to define an equivalent notation:

~ T
Xe= (v, nyl, Byy, .. By9)
:diag<1, hoB, o Z—T)Xt
-B

This state vector is the Nordsieck vector. The advantage of this nota-
tion is that (48) simplifies to

dX; = BU, 1B~ 'X,dt + Be; dW,, (60)
where A(h) = P, the Pascal triangle matrix, and

(Q(h));j = (BQ(h)BT);

K ) KW2q9+1—i—j W

= 0 ; . . ~

i (2q+1—-i—j)(g—i)l g =) ]!
o2)20+1

(2q+1—i—j)(q—1)q— )4
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which can be seen by inserting (60) into (13) and simplifying. Fur-
thermore, the observation matrices become Hy = HyB~! = ¢; and
A, = H\B~! = h~'e;. Rewriting the filtering equations, we arrive at

C, =PC;, ,PT+ Q(h),

K, = C; H{[H,C, H]]™! (61)
and

mi, = (I - Knﬁl)Pmtn,] +KHZ}(’11)/ (62)

Ctn = (I — KnI:Il)P(Ct,,,lpT + &)12(1’1>T). (63)

Choosing a prior covariance matrix with entries (C,” ) )ij = (fzhz‘”lcij,
for some cij € R such that C; ) is a valid covariance matrix, it can
be shown by induction that all entries of C;, for all n have this struc-
tural form. As a by-product, K, = h (ky,0,1,kyp,... ,knrq)T for some
kn; € R which follows from (61).

Given these invariants, Equation (62) has the structure of a mul-
tistep method written in Nordsieck form (35). The only difference
is the changing weight vector K;, (62) as compared to the constant
weights in (35). Multistep methods with varying weights have been
studied in the literature [47, 23]. These works are often in the context
of variable step sizes h; # h. But variable-coefficient methods have
also been studied for other purposes, for example, cyclic methods
[4]. These works have in common that the weights are free variables
which are not limited through the choice of the model class. As a con-
sequence, determining optimal weights can be algebraically difficult
[82, SIIL.5].

Here, variable step sizes are easily obtained by working with the
representation (48) instead of (60) and computing (14) according
to hy. In contrast to classical methods, the weights K, cannot be
chosen freely, but are determined through the choice of model (48),
and the evolution of the underlying uncertainty C;,. While Kersting
and Hennig [116] provide some preliminary empirical evidence that
these adaptive weights K, might actually improve the estimate, more
rigorous analysis is required for theoretical guarantees.

The model is agnostic to the generative model used to create the
observation data z,: We could also choose to solve the implicit equa-
tion (31) corresponding to the weight vector K. This should be con-
sidered a criticsm of the proposed model, since the associated numer-
ical uncertainty C;, is ignorant to the evaluation strategy, although
we know from classical analysis that the P(EC)* yields a more accu-
rate solution than the P(EC)! method.

We will now study the long-term behavior of the PFOS. In par-
ticular, we will ask what the long-term behavior for the sequence of
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Kalman gains (K ),—o,.. is and how this will influence the solution
quality. It can be shown that its properties are linked to properties of
the discrete algebraic Riccati equation, of which the theory has largely
been developed [126]. Denote by y : RUTD*(a+1) _ R(3+1)x(q+1)
the function that maps the covariance matrix C;,_, of the previous
knot t,,_1 to the covariance matrix C;, at the current knot ¢, (Equa-
tion (63)). If there exists a (unique) fixed point C* of 7, it is called
the steady state of the model (48). Associated with a fixed point C*
is also a constant Kalman gain K* that is obtained at the (numerical)
convergence of C*.

We will now show that there is a subset of model (48) that con-
verges to a steady state. This subsystem completely determines a
constant Kalman gain K* at least in the case of the IWP(1) and
IWP(2). Thus, like in the equivalence result for the Runge-Kutta
methods in Schober et al. [185], the result of the PFOS is equivalent
(in the sense of numerically identical) after an initialization period to
a corresponding classical Nordsieck method defined by the weight
vector K* and we can apply all the known theory of multistep meth-
ods to the mean of the PFOS.

Proposition 1. The PFOS arising from the once integrated Wiener pro-
cess IWP(1) is equivalent in its predictive posterior mean to the P(EC)!
implementation of the trapezoidal rule.

Proof. The trapezoidal rule, written as implicit linear multistep method
of form (30), is given as

h
Yt, = Yty + E(ftn—l +ftn)'

We will show that (my,)o = (my, ,)o + #/2[(my, )1+ (my,)1] for all
n by induction. Let m, = 0and C,_ € R?*2 be an arbitrary co-
variance matrix. Applying the first three lines of Algorithm 4 alge-
braically, the predicted values are

0 0 0
mi = Y ’ Ct—l = ’

M1 0 ¢

for some My 15 Cho11- Continuing in this fashion yields zg = f(to, y0)
and my, = (y0,20)7, Ct, = 0. Using (15a) and (15b) to compute the
predictions at t;, we arrive at

m. = Yo +hZO , Ct—1 — Q(h),

20
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and we see that Hom, ., = yo + hzo = (P(yo,hz)T)o. Completing
the Kalman step by applying Equations (16a)-(16d) yields

h 1
+ 5|20+ 2 77 0
mtl — yO 2[ 0 l} , Ctl — 0_2 12 , (64)
Z1 0 0

where z1 = f(t,yo + hzo). Comparing with (37), we see that z; is of
the desired form, which completes the start of the induction. Finally,
we observe that the second column of C;, = 0 = Cy, i.e., this will be
invariant and, as a consequence, the second column of C, is simply
the second column of Q(%), and the induction is completed. O

The following Theorem 3 for the IWP(2) requires a bit more alge-
bra, but is based on the same principle.

Theorem 3. The predictive posterior mean of the INP(2) with fixed step
size h is a third order Nordsieck method, when the predictive distribution
has reached the steady state.

Proof. The proof proceeds in two steps. First, we show that the up-
date equations induce a specific form for the covariance matrix Ct,.
Then, we will analyze individual entries.

We proof by induction that C;, is of the form

cr00 0 cr02
Pl o o o |, (65)

Cro02 0 ¢

Cth(T

with coefficients ¢, ;; such that C;, is a valid covariance matrix. The
base case is achieved after the first derivative observation f(tg, o)
at top which can be checked by algebraic computation. The inductive
step can be verified by assuming the form (65) for f,,_; and compute
one step ahead using Equations (61) and (63) similar to the base case.
Next, for the individual entries we find

) 53840c00c22+320000—3840c%2+110c02+32022+1
Ct, 1,00 =0 320(12c+1)
Chyi,02 = 02}15% = (Ct,1)20 (66)
Chyy22 = O°H° 16%?222;21)
Cty i =0, 4j=012iVvj=1,

where we put ¢;; = ¢, ;; on the respective right-hand sides of Equa-
tion (66) for brevity.

We will now consider the behavior of the coefficients ¢;;. Con-
sider the dynamical system 7;(c) = (16¢ + 1)[16(12c + 1)]~! which
maps the coefficient of the last entry in C;, to the next. The range
and image of 9y, are the nonnegative reals, since variances cannot
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be negative. On this domain, 97, has a continuous and bounded
derivative |7),| < %. In particular, 9, is a contraction with Lips-
chitz constant 1. Thus, the entries converge to the fixpoint ¢}, = g
(which can be found with some simple algebra). Similarly, one can
either insert cj, into the respective form of g, or one considers the
two-dimensional mapping of both entries. In both cases, a similar
argument guarantees the convergence to a fixpoint, which is found
to be cj, = —%. Inserting these into Equation (61), we find that
K, = K* = (%ﬁ,l, B%E)T is the static probabilistic Nordsieck
method of the IWP(2) filter. Inserting these weights into [198, Theo-
rem 4.2] yields the result. O

Although Theorem 3 is only valid when the system has reached
its steady state, we find that the convergence (visualized in Figure 10)
is rapid in practice. In the extreme case of g = 1 (not shown) it is
instantaneous, in fact, and Proposition 1 is valid from the second
step onwards. This limitation could also be circumvented in practice
by initializing C; , at steady state coefficients, but this possibility is
not required to achieve high-order convergence on the benchmark
problems we considered.

Figure 10 shows the situation for a constant value of the diffusion
amplitude o2, In Section 7.2, we will discuss error estimation and
step size adaptation. This process leads to a continuous adaptation of
this variable, which in turn means that the convergence shown in the
figure continues throughout the run of the algorithm. So the practical
algorithm presented here and empirically evaluated in Section 7.3 is
not formally identical to Nordsieck methods, merely conceptually
closely related.

Inspecting the weights of the IWP(2), we find that this method
has not been considered previously in the literature, and, in par-
ticular, cannot be related to any of the classical formulas, such as
Adams-Moulton or backward differentiation formulae. This is not
surprising, since the result of this method has been constructed to
be globally twice continuously differentiable, whereas there is no
such guarantee for the solution provided by the typical methods. In
fact, the probabilistic Nordsieck method is much closer related to
spline-based multistep methods such as [141, 140, 29, 5] since Gaus-
sian process regression models have a one-to-one correspondence to
spline smoothing in a reproducing kernel Hilbert space of appro-
priate choice [117, 216]. This also justifies the application of a full-
support distribution, even though it is known that the solution will
remain in a compact set. In the former case, the interpretation is one
of average-case error, whereas in the latter, the bound corresponds to
the worst-case error [166].
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Additionally, the forms of C;, found in Equations (64) and (66)
show that the standard deviation std[Y;, | = (Ctn)(l)é2 can be mean-
ingfully, if weakly, interpreted as an approximation to the expected
error |y, — y(tn)| of the numerical solution in the following local,
asymptotic sense: From our analysis of the IWP(g), g € {1,2}, we
have [y;, — y(ts)| < ChIt1, whereas (Cy,)i)* € O(ch11/2). Estimat-
ing the intensity o of the stochastic process amounts to estimating
the unknown constant C.
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Figure 11 displays the work-precision diagram for the IWP(1) and
IWP(2) applied to the examplary problem of Section 6.4. The plot
shows a good agreement between the theoretical rate and the ob-
served rate of convergence.

We conclude this section by considering some implications of the
probabilistic interpretation in contrast to other classical multistep
methods.

Keeping all hyper-parameters (order g, prior diffusion intensity o2,
and step size h) fixed, the gain K, is completely determined, and, as a
consequence, solving Equation (36) up to numerical precision would
also have been an admissible action rule for the generation of z.
This can be interpreted as observing the true value of the model (48)
at t, which gives another justification for using RZ = R? = 0. Since
the P(EC)® and the P(EC)M have the same order for all M [53], this
argument can be extended to the case of the PEC' implementation
which gives the most natural connection to the Kalman filter.

In fact, a PECOM, M > 1, implementation would collect and put
aside the values z,(ll), e, z,(lel), which seems unintuitive from an in-
ference point of view, where it is natural to assume that more data
should yield a better approximation. A natural question would be
whether this is a case of diminishing returns of approximation qual-
ity for computational power, but this is beyond the scope of this
thesis.

One current limitation of the PFOS is its fixed integration order
g over the whole integration domain T. The reason for this limita-
tion is that it is conceptually not straight forward to connect spline
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Figure 11: Work-precision diagram for
the IWP(1) (green) and IWP(2) (red) ap-
plied to the logistic growth problem
from Section 6.4. Plotted are the loga-
rithms of the number of function evalu-
ations (#FE) against the logarithmic er-
ror at the end of the integration do-
main. Dotted lines mark ideal conver-
gence rates of orders two and three, re-
spectively.



models of different orders at knots t,. However, the ability to adapt
the integration order during runtime has been key in improving the
efficiency of modern solvers [28]. Furthermore, the method corre-
sponding to the IWP(2) model has a rather small region of stability
which is depicted in Figure 12, specially in comparison with back-
ward differentiation formulas (BDFs) [53]. This makes the method
impractical for stiff equations.

0.8 |- =
0.6 =
04 ’ s

0.2 ! |

0 | | :\ |
-1 —08 —0.6 —04 —02 0

It is natural to ask what happens in the case of the IWP(g), g > 2.
Using techniques from the analysis of Kalman filters, one can show
that these models also contain a stable subsystem and that the weights
K, will converge to a fixed point K*, even for nonzero, but constant,
R2. However, it remains unclear whether they will be practical. In
particular, these methods might even be unstable for most spline
models [141]. We have tested the IWP(g), g € {1,...,4}, empirically
on the Hull et al. benchmark (see Section 7.3) and have observed that
these converge in practice on these non-stiff problems.

6.8 Connection to other related work

Since the first publication of Schober, Duvenaud, and Hennig [185],
various other authors have also looked into the construction of prob-
abilistic numerical methods. These methods share a connection to
Gaussian (non-) parametric regression or Gaussian processes. The
differences lie in their use of randomization, their motivation and
their generality.

The connection to Chkrebtii, Campbell, Calderhead, and Girolami
[39] has already been discussed in Section 6.3. Similarly, the work
of Kersting and Hennig [116] can be considered a generalization of
Schober, Sarkkd, and Hennig [187] as has been pointed out in Sec-
tion 6.3.

Similar in spirit is the work by Cockayne, Oates, Sullivan, and
Girolami [40]. In this work, the main contribution is a model and al-
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Figure 12: Partial stability domain of
the probabilistic filtering ODE solver us-
ing the IWP(2) in the negative real, pos-
itive imaginary quadrant. The method
converges for step sizes h on linear
problems y' = Ay, if hA = z € C lies in
the region of stability in the lower right
corner. See [53] for details.



gorithm for the solution of linear partial differential equations, which
can also be applied to linear IVPs and BVPs. In the case of linear
problems, the differential operator can be incorporated into the ob-
servation without approximations, yielding a problem that can be
solved globally in one step. To observe ' = Ay < iy’ — Ay = 0, they
propose to consider the observation matrix H = [—A,1,0,...,0] and
the noise-free observation z, = 0 and similar for non-autonomous
problems. Recent work of Raissi, Perdikaris, and Karniadakis [175]
generalizes this approach to integro-differential equations and oper-
ator equations of fractional order. For IVPs, these algorithms are of
limited applicability, because the linear problem is only considered
as a model problem.

Other authors who are mainly motivated by accurate uncertainty
quantification [208, 131] have proposed novel randomized algorithms.
Conrad, Girolami, Sarkkd, Stuart, and Zygalakis [42] and Teymur,
Zygalakis, and Calderhead [210] propose to randomize Runge-Kutta
and multistep methods, respectively.

Conrad, Girolami, Sérkkad, Stuart, and Zygalakis [42] proposed a
sampling-based single step method built on Runge-Kutta methods.
Denote by y, = =¥y, ) =y, +h Z;;é bjkj, a Runge-Kutta one-
step integrator of order O(h**!). The authors propose to model the
solution by

y(t+tn) = Yer, (yy,) +Cnlt —tn),

where ¢, is a continuous Gaussian process with covariance of order
Ch**1. That is, the algorithm adds a continuous Gaussian error to
a one-step integration scheme. The overall result is a randomized
solver with a free-form posterior. Lie, Stuart, and Sullivan [135] have
improved the convergence analysis for this method. A special case
of this general scheme has been proposed earlier in Fierro and Torres
[64] and analyzed in some more detail in Krebs [120].

Analogously, Teymur, Zygalakis, and Calderhead [210] proposed
a construction similar in spirit to Conrad, Girolami, Sarkké, Stuart,
and Zygalakis [42] for multistep methods. They show that a multi-
step method of order s perturbed by additive Gaussian noise with
variance of order (h°**1)2 maintains the convergence order in expec-
tation. Their proof is analogous to Conrad, Girolami, Sarkka, Stuart,
and Zygalakis [42], but the multistep method requires less function
evaluations for the same order.

Abdulle and Garegnani [1] have presented a symplectic algorithm
that randomizes step sizes.

In an orthogonal approach, John and Wu [106] apply Bayesian
analysis to the output of non-probabilistic finite difference schemes
to provide credible intervals for the numerical solution. Their method
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is more of a hybrid method than a pure probabilistic method as the
Bayesian analysis is applied only after a numerical solution is found.
Nevertheless, the final result is a probability distribution over the
numerical solution which justifies its inclusion in this list.
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A practical PFOS implementation

The previous chapter has introduced a probabilistic method for the
solution of IVPs with known guarantees. However, solving IVPs is
considered to be a “solved task” [69] and, as a consequence, the novel
description and functionality will only gain momentum when users
not familiar with the literature are provided with a reliable reference
implementation at the same time.

This chapter presents another main contribution of this thesis: An
implementation of the probabilistic filtering ODE solver which offers
the novel probabilistic description while retaining most of the extra
functionality of commonly available implementations.

The work of this chapter is based on Schober, Sdrkkd, and Hennig
[187].

7.1 Requirements of a reference implementation

Practitioners are interested in code that reliably solves their problem
as fast as possible, and they will use available features as they see fit.
The theoretical analysis can serve as a convincing justification, but
only if the method stands the test of empirical evaluation. If we hope
to convince users of applying the probabilistic approach, we must
offer a code that can compete on par with existing implementations.

As has already been pointed out (cf. Sections 3.4 and 5.2), a good
numerical code will automatically adapt its step size during runtime
throughout the integration domain. The first computational scheme
proposed with this feature has been reported by Richardson and
Gaunt [178] for an extrapolation method. Merson [150] introduced
the standard technique of embedded Runge-Kutta pairs. Ceschino
[36] and Nordsieck [156] proposed heuristics for multistep methods.
In this latter case, the convergence theory of methods with variable
step size is more involved due to memory effects in the system and
is still an active area of research [123, 122].

Soon after the introduction of step size adaptations, it was consid-
ered a standard requirement for numerical integrators as is evident
by the first established benchmark [99]. Other useful features, such
as order selection [28, 32], stiffness detection [192, 193, 169], and
stiffness-aware step size adaptation [78] have not been established as
default requirements.
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For this work, we have to refrain from these advanced features,
as the theory of the probabilistic integrators has not been developed
thus far yet. Furthermore, recent trends in the theory of boundary
value methods [10, 25, 148] may hint that the development of these
features might not be the next logical step.

In the design of our API, we have been guided by the existing
codes in the MATLAB programming environment [195]. It can be ar-
gued that these codes are one of the most applied libraries besides
the Sundials suite [96]. MATLAB can be considered the de facto stan-
dard for engineers in many industries. We provide a function inter-
face that is identical to MATLAB’s default ODE method in its standard
activation. Thus, we expect that future users can easily integrate our
implementation into existing projects and can start experimenting
with the probabilistic formulation with little overhead.

7.2  Error estimation and step size selection

While the general algorithm described in Section 6.7 can be applied
to any IVP at this stage, a modern ODE solver also requires the ability
to automatically select sensible values for its hyper-parameters. The
filter has three remaining parameters to choose: the dimensionality
q of the state space, the diffusion amplitude ¢ and the step size h.

To obtain a globally consistent probability distribution, we fix
g = 2 throughout the integration to test the third-order method pre-
sented in Section 6.7. For the remaining two parameters, we first
note that estimating ¢ will lend itself naturally to choose the step
size. To see this, one needs to make the connection to classical ODE
solvers and the interpretation of the state-space model. In classical
ODE solvers, h;, is determined based on local error analysis, i.e., hy
is a function of the error 7, introduced from step t,_q to step t,.
Then, h, is computed as a function of the allowed tolerance and the
expected error which is assumed to evolve similarly to the current
€erTor.

As is common in solving IVPs, we base error estimation on local
errors. Assume that the predicted solution m;, | at time t,_; is error-
free, ie., Ct, , = 0. Then, by Equations (15b) and (16a), we have

p(An|0?) = N(Anzn — Hlmt_n,Hla2Q_(h)HI). (67)
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One way to find the optimal ¢? is to construct the maximum likeli-
hood estimator from Equation (67) which is given by

0% = (zn — Hym, )T(H1Q(WH]) (24 — Him,; )
(zn — Hlm;71)2

H,Q(h)H]

For the last equation, we used the fact that all the involved quantities
are scalars.

To allow for a greater flexibility of the model, we allow the am-
plitude o to vary for different steps ‘Tt2n . Note that the mean values
are then no longer independent of ¢, because the factor no longer
cancels out in the computation of K, in Equation (16c). However, this
situation is indeed intended: If there was more diffusion in [t, 1, f,],
we want a stronger update to the mean solution as the observed
value is more informative. Additionally, Equation (16a) is indepen-
dent of (thn or any other covariance information C; , Q(h). Therefore,
we can apply Equation (16a) before Equation (15b), update (thn and
then continue to compute the rest of the Kalman step. This infer-
ence scheme is similar in spirit to [102, §11], but follows the general
idea of error estimation in numerical ODE solvers—in particular, the
Milne device (see Milne [152] and Section 3.4)—, where only local
error information is available.

At this point, the inference interpretation of numerical computa-
tion comes to bear: once the initial modeling decision—modeling a
deterministic object with a probability measure to describe the un-
certainty over the solution—is accepted, everything else follows nat-
urally from the probabilistic description. Most importantly, there are
no neglected higher-order terms, as they are all incorporated in the
diffusion assumption.

This kind of lightweight error estimation is a key ingredient to
probabilistic numerical methods: one goal of a probabilistic model is
improved decisions under uncertainty. This uncertainty is necessarily
a crude approximation, since a more accurate error estimator could
be used to improve the overall solution quality. However, the reduc-
tion in computational efforts up to a tolerated error is exactly what
modern numerical solvers try to achieve.

This error estimate can now be used in the conventional way of
adapting the step size which we will restate here to give a complete
description of the inference algorithm (see also [28]). Given an error
weighting vector w, the algorithm computes the weighted expected
error

(Dy,)i = (H10?, Q(hy) HqT)} 2w,

83



where Q(h,) = [07]7'Q(hy) is the normalized diffusion matrix.
Then, it checks whether some error tolerance with parameter € is
met

hy

Dtngé:es

(68)

where h;, is the step length and either S = 1 (error per unit step) or
S = hy (error per step) as per user’s choice. If Equation (68) holds,
the step is accepted and integration continues. Otherwise, the step
is rejected as too inaccurate and repeated. In both cases, a new step
length is computed which will likely satisfy Equation (68) on the next
step attempt. The new step size is computed as

where p € (0,1), p = 1 is a safety factor. Additionally, we also fol-
low established best practices [82] to limit the rate of change #min <
hui1/hy < fimax. In our code, we set p = 095, #min = 0.1 and
Nmax = O.

7.2.1 Global vs. local error estimation

The results presented in preceding sections pertain to the estimation
of local extrapolation errors. It is a well-known aspect of ODE solvers
[82, SIIL.5] that the global error can be exponentially larger than the
local error.

More precisely, to scale the stochastic process such that the vari-
ance of the resulting posterior measure relates to the square global
error, the intensity o2 of the stochastic process must be multiplied by
a factor [82, Thm IIL.5.8] exp(L*(T — t()), where L* is a constant de-
pending on the problem. Although related, L* is not the same as the
local Lipschitz constant L and harder to estimate in practice (more
details in [82, §IIL.5]).

We stress that this issue does not invalidate the probabilistic inter-
pretation of the posterior measure as such. It is just that the scale of
the posterior has to be estimated differently if the posterior is sup-
posed to capture global error instead of local error. In practice, the
global error estimate resulting from this re-scaling is often very con-
servative.

7.3 Experiments

To evaluate the model, we provide two sets of experiments. First,
we qualitatively examine the uncertainty quantification by visualiz-
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ing the posterior distribution of two example problems. We also
compare our proposed observation assumption against the model
described by Chkrebtii, Campbell, Calderhead, and Girolami [39].
Second, we more rigorously evaluate the solver on a benchmark and
compare it to existing non-probabilistic codes. Our goal in this work
is to construct an algorithm that produces meaningful probabilistic
output at a computational cost that is comparable to that of classi-
cal, non-probabilistic solvers. The experiments will show that this
is indeed possible. Other probabilistic methods, in particular that of
Chkrebtii, Campbell, Calderhead, and Girolami [39], aim for a more
expressive, non-Gaussian posterior. In exchange, the computational
cost of these methods is at least a large multiple of that of the method
proposed here, or even polynomially larger. These methods and ours
differ in their intended use-cases: More elaborate but expensive pos-
teriors are valuable for tasks in which uncertainty quantification is a
central goal, while our solver aims to provide a meaningful posterior
as additional functionality in settings where fast estimates are the
principal objective.

7.3.1  Uncertainty quantification

We apply the probabilistic filtering ODE solver on two problems with
attracting orbits: the Brusselator [132] and van der Pol’s equation
[173]. The filter is applied twice on each problem, once with a fixed
step size and once with the adaptive step size algorithm described
in Section 7.2. To get a visually interesting plot, the fixed step size
and the tolerance threshold were chosen as large as possible with-
out causing instability. Both cases are modeled with a local diffusion
parameter o2 which is estimated using the maximum likelihood es-
timator of Section 7.2. In the following plots, the samples use the
scale ¢? arising from the local error estimate. Because these systems
are attractive, the global error correction mentioned in Section 7.2.1
would lead to significantly more conservative uncertainty.

The Brusselator is the idealized and simplified model of an auto-
catalytic multi-molecular chemical reaction [132]. The rate equations
for the oscillating reactants are

yi=A+yiya— (B+ 1y

! 2 (69)
Y2 = By1 —yiy2,

where A and B are positive constants describing the initial concen-
trations of two reactants. Following [82], we set A =1, B = 3 and
(y1(0),y2(0))T = (1.5,3)7. The integration domain T = [0,10] has
been chosen such that the solution completes one cycle on the attrac-
tor after an initial convergence phase.
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The results in Figure 13 demonstrate the effectiveness of the error
estimator. This problem also demonstrates the quality and utility
of the step size adaptation algorithm, since on the majority of the
solution trajectory the algorithm is not limited by stability constrains.
In the right plot, it can be seen how an increase in step size h;, 1 >
hy, can also lead to a reduction in posterior uncertainty. This is a
consequence of (Tfn . / Ut2n < 1.

Figure 14 also displays the solution as a function of time.

Van der Pol’s equation [173] describes an oscillation with a non-
linear damping factor a

0:]//4-06]/—1-]/

(70)
w=p(y?-1)

with a positive constant p > 0. Originally, this model has been used
to describe vacuum tube circuits. The limit cycle alternates between
a non-stiff phase of rapid change and a stiff phase of slow decay. The
larger u the more pronounced both effects are. In our example, we
set 4 = 1 and integrate over one period with the initial value on the
graph of the limit cycle. Exact values can be found in [82, §1.16].

Figure 15 plots the filter results. Figure 16 displays the solution
as a function of time. In the case of van der Pol’s equation, the
benefit of step size adaptation is essentially nil, because conserva-
tive adaptation—in particular from a cautious starting step size—
consumes the gains on the non-stiff parts. However, the example
demonstrates the capability to learn an anisotropic diffusion model
for individual components.
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Figure 13: Numerical solution of the
Brusselator (69) using the probabilistic
filtering ODE solver. The plots show
the solution computed by ode45 using
RelTol = AbsTol = 1 x 10713 (black,
background), the posterior mean (red,
thick line), iso-contourlines of twice
the posterior standard deviation at a
subsample of the knots (green) and
samples from the posterior distribution
(red, dashed lines). Left: Using a fixed
step size of h = h, = 0.0834. The
computation requires 120 steps. Right:
Using the adaptive step size selection
with error weighting w;(y) = (ty; +
7)1, = 0.1. The computation re-
quires 43 steps. See [82, §1.6] for details.
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Figure 14: Numerical solution of the Brusselator (69) using the probabilistic filtering ODE solver plotted against time. The plot
shows the true solution (black line), the mean of the filtering distribution (red dots), the posterior mean (red, thick line) plusminus
two times standard deviation (light red, filled area) and samples from the posterior (red, dashed line). Tickmarks in f indicate mesh
points. Top: Using a fixed step size. Bottom: Using adaptive step size selection.
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Finally, we compare two different strategies of quantifying the un-
certainty. To this end, we compare our proposed model to the obser-
vation model proposed by Chkrebtii et al. [39, §3.1]. In this case, we
set zy = f(tn, (ut,)o), ut, ~ N(m, ,C; ). Figure 17 shows samples
of the posterior distribution, computed with two different evaluation
schemes. This scheme is not exactly the same as the one proposed by
Chkrebtii et al.—their algorithm actually has cubic complexity in the
number of f-evaluations; thus, it is limited to a relatively small num-
ber of evaluation steps. But our version captures the principal differ-
ence between their algorithm and the simpler filter proposed here:
Their algorithm draws separate samples involving independent eval-
uations of f at perturbed locations, while ours draws samples from
a single posterior constructed from one single set of f-evaluations.
As expected, the model of Chkrebtii et al. provides a richer output
structure, e.g., by identifying divergent solutions (right subplot) if
the solver leaves the region of attraction. However, to obtain indi-
vidual samples, the entire algorithm has to run repeatedly, so the
cost of producing S samples is S times that of our algorithm, which
produces all its samples in one run, without requiring additional
evaluations of f.

7.3.2 Benchmark evaluation

As is the case with many modern solvers, the theoretical guarantees
do not extend to the full implementation with error estimation and
step size control. Therefore, an empirical assessment is necessary
to compare against trusted implementations. We compare the pro-
posed Kalman filter to a representative set of standard algorithms on
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Figure 15: Numerical solution of van
der Pol’s equation (70) using the prob-
abilistic filtering ODE solver, integrated
over one limit cycle period T = [0, T}
with initial value y(0) = (A,0)T, where
T ~ 6.6633 and A = 2.0086. The plots
show the solution computed by ode45
using RelTol = AbsTol = 1 x 10713
(black, background), the posterior mean
(red, thick line), iso-contourlines of
twice the posterior standard deviation
at a subsample of the knots (green) and
samples from the posterior distribution
(red, dashed lines). Left: Using a fixed
step size of h = h;, = 0.1667. The
computation requires 40 steps. Right:
Using the adaptive step size selection
with error weighting w;(y) = (ty; +
7)™, t = 0.1. The computation re-
quires 41 steps. See [82, §1.6] for details.
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Figure 16: Numerical solution of van der Pol’s equation (70) using the probabilistic filtering ODE solver plotted against time.
The plot shows the true solution (black line), the mean of the filtering distribution (red dots), the posterior mean (red, thick line)
plusminus two times standard deviation (light red, filled area) and samples from the posterior (red, dashed line). Tickmarks in f
indicate mesh points. Top: Using a fixed step size. Bottom: Using adaptive step size selection.

89



ya(t)

ya(t)

the DETEST benchmark set [99]. While other standardized tests have
been proposed [46, 121], DETEST has repeatedly been described as
representative [194, 54]. By choosing the same comparison criteria
across all test problems and tested implementations, the benchmark
provides the necessary data to make predictions on the behavior on
a large class of problems.

Two different dimensions of performance are considered in [99]:
the computational cost and the solution quality. Computational cost
is reported in execution time (in seconds) and number of function
evaluations (abbreviated as #FE). Although the former is more rele-
vant in practice, we only report the latter here as the codes in [99]
are outdated and our proof-of-concept code is not yet optimized for
speed. Nevertheless, since the execution times are proportional to
the #FE, this provides a reliable estimator of computational efficiency.
DETEST only considers methods with automatic step size adaptation,
and thus measures the solution quality by comparing the local er-
ror with the requested tolerance €. A code is considered to pro-
duce high quality solutions if the results are within the requested
tolerance, but are also not of excessive unrequested higher accuracy.
Therefore, errors are reported per unit step. Reported are the maxi-
mum error max{&,[hq€] ! |n =1,...,N} per unit step and the per-
centage of deceived steps |[{¢y |&n > hye,n = 1,...,N}|/N, where
the local errors &, are defined as ||ytn —y(ty(te—1) =y, ) |oo and
Y(tuiy(tus) = i) defines the VP ' = F(t,y), y(tut) = 1, ,,
te [tn—lztn]'

Here, we report the results from the proposed solver originating

from the IWP(2) model as well as the results from the original Hull
et al. paper [99]. We haven’t been able to obtain a copy of the codes
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Figure 17: Comparison of two dif-
ferent evaluation strategies on prob-
lems (69) and (70). Red: samples from
the posterior as in Figs. 13 and 15.
Green: Similar, but evaluating at z, =
f(tu, (ur,)o), s, ~ N(m; ,C, ). This is
similar to [39].



Method Total fcn. evals.  Avg. % deceived =~ Max. error
e=10"3

Extrapolation 16553 2.0 7.8
Adams (Krogh) 5394 1.1 53
Adams (Gear) 9498 0.9 1.5
RK (4th, Kutta) 8363 5.1 25.9
RK (6th, Butcher) 11105 5.1 1788.1
RK (8th, Shanks) 12355 6.3 1120.6
RK (3th, Shampine) 15085 59 24
RK (5th, Shampine) 5785 11.2 9.5
Adams (Shampine) 5692 6.5 7.7
PNM 19091 0.2 15
e=10"°

Extrapolation 26704 0.1 2.3
Adams (Krogh) 11353 1.4 7.3
Adams (Gear) 18155 0.8 2.6
RK (4th, Kutta) 30763 1.8 29.1
RK (6th, Butcher) 23540 1.6 142.5
RK (8th, Shanks) 20493 42 47
RK (3th, Shampine) 430975 0.0 1.9
RK (5th, Shampine) 19879 0.0 1.1
Adams (Shampine) 10777 3.6 6.3
PNM 405469 0.0 14
e=10"

Extrapolation 43054 0.0 0.6
Adams (Krogh) 18984 0.5 4.0
Adams (Gear) 38439 23 2.7
RK (4th, Kutta) 146262 0.3 29
RK (6th, Butcher) 58634 0.9 4434
RK (8th, Shanks) 39663 2.1 20.9
RK (3th, Shampine) 13587187 3.1 689.0
RK (5th, Shampine) 103345 0.1 24
Adams (Shampine) 18274 22 11.5
PNM 12731730 45 1938.0

Table 4: Summary of DETEST results
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used in Hull et al. and only report their numbers for sake of com-
pleteness. We also ran the tests on the solvers provided in MATLAB.
Table 4 lists the summary results for all methods and all tolerances.
Detailed results on individual problems are depicted in Figures 18-
20. For a complete and detailed description of the benchmark, we
refer to [99]. Our implementation is publicly available.!
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In addition to the benchmark results, we analyze the error estima-

S Y
A

tion model from a probabilistic perspective. Figure 21 plots the cu-
mulative distribution function (CDF) of the local error &, as defined
above, divided by the estimated local error (Q(tn))l/ 2= (c2Q(h ))1/ 2
for each set of five tasks (different blue colored lines) of each of
the five problem classes (figures from left to right). Under the al-
gorithm’s internal model, the error is assumed to follow a Gaussian
distribution

P(yt, | 9t,) = N (Yt 9t (Q(n))00)-
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Figure 21: Empirical cumulative distriubtion function (CDF) of true local errors ¢, divided by the estimated local errors (Q(tn))(l)éz.
Ticks on the y-axis are spaced at 0.1 intervals from 0 to 1. Values less than 1 (red line) are over-estimated leading to a conservative

step size adaptation. Green dashed line shows the CDF of the x(1)-distribution which implies that the empirical distribution has
weaker tails. See text for more details.
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Hence, if that model were a perfect fit, the scaled absolute error plot-
ted in this figure would be x-distributed:

P(lys, — 9ta] (Q(1n))o0?) = x(1).

The comparison with the CDF of x(1) shows that the true local error
has weaker tails than the predicted x-distribution.

So, as expected, the error estimator is typically a conservative one.

While the probabilistic method does not achieve the same high
performance as modern higher-order codes, the performance matches
the results of a production Runge-Kutta code of the same order. This
is of particular interest since applications in the low-accuracy regime
could benefit the most from accurate error indicators [69].
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Applications of Probabilistic BVP Solvers






Introduction to tractography

We will now present an application of probabilistic ODE solvers in
the field of neuroscience. Tractography is the computational task of
finding neural connections based on medical imaging techniques.
Tractography has both applications in medicine [209] and neuro-
science [8]. However, the difficult physical measurement process as
well as our limited understanding of the brain introduce uncertain-
ties to the problem. It is reasonable to assume that the methodology
introduces another source of errors and uncertainty in the process.
Probabilistic ODE solvers are one way to communicate and prop-
agate these uncertainties through the computational pipeline, thus
providing a more complete picture to practitioners.

In this chapter, we will provide the necessary background for this
application. In Chapters 9 and 10, we will demonstrate how proba-
bilistic ODE solvers can utilized in medical imaging.

8.1  Neural connectivity studies

In the brain, nerve cells—called neurons—are the main computational
units responsible for signal propagation and processing [19]. Neu-
rons consist of the soma, dendrites and the axon. Axons are long, thin,
pipe-like extensions of neurons that forward the electrical signals of
the brain where the signals are received by corresponding dendrites
of other neurons via synapses. The soma, or cell body, contains the
nucleus and its function is to maintain and support the signal pro-
cessing parts of the neuron.

In the human brain, axons are often surrounded by myelin lay-
ers of glia cells. The myelination isolates parts of the axon which
increases the speed of the signal propagation. In post mortem dissec-
tions, volumes including much myelination appear lighter in color.
These areas are called white matter (WM) and they contain the bulk
of the inter-neural connections. Accordingly, the gray matter (GM)
contains most of the cell bodies [19].

One way to study the brain, is to analyze the various connections
in the brain. Since the brain is a complex organ and the available
methodology is quite recent, our understanding of the brain is cur-
rently fragmented over levels both of physical extension and struc-
tural facilities.
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Figure 22: Illustration of a neuron.
(Source: Wikipedia CC BY 3.0 by Bruce-
Blaus  https://commons.wikimedia.
org/w/index.php?curid=28761830)
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Early research on structural facilities has mostly focused on cor-
tical localization [139], i.e., mapping specific areas of the brain to be-
havioral functions such as speech [22]. With the advent of modern
imaging technology, research interest has shifted on studying the
inter-neural connections [34]. This area has since come to be known
as connectomics [203, 215].

There are three levels of connectivity studies. Structural connec-
tivity studies the anatomical foundations of whether there exists any
connection between two regions-of-interest (ROI) [74]. Functional con-
nectivity refers to observations of correlations and other patterns in
neural activity [66]. The third level—effective connectivity—tries to
identify the causal dependencies of the functional level [66]. A good
introduction can be found in [97].

In physical extensions, the analysis reaches from individual inter-
cellular connections [89] on the microscopic scale to cortical tissue of
functional brain units [45] on the macroscopic scale. The mesoscopic
scale is concerned with the analysis of axon bundles—called fibers or
fascicles—that connect different functional units. A group of fibers
that has similar origin and destination is called a tract. Reconstruc-
tion of these tracts is called tractography and has both neuroscientific
[154] and clinical [58] applications.

Since tractography is a key methodology to building connectomes,
it is imperative to provide measures of uncertainty to researchers and
physicians such that the results can be interpreted accordingly.

8.2 Diffusion-weighted MR imaging

Diffusion-weighted MR imaging (DWI) is a particular type of magnetic
resonance (MR) imaging technique to measure molecular diffusivity
in vivo. The theoretical foundations [212] and first practical imple-
mentations [204] have been developed in the middle of the 20th cen-
tury while the first applications to neuroscience have been published
in the late 1980s [222, 129, 155]. Until then, the only way to construct
(partial) tractographies was ex vivo analysis using fluorescent tracers
[79, 88]. However, there is only one generation of research experi-
ence and knowledge available yet [130] and best practices are only
beginning to be formulated [108] and discussed [219].

DWI, like any magnetic resonance imaging technique, is based
on the excitation of the spins in hydrogen nuclei. Frequency and
phase properties of these spins can be changed by inducing magnetic
(gradient) fields with coils. These changes cause echo effects whose
magnetic fields can be translated into signals and measured with the
same coils. For details, we refer the reader to [81] and references
therein.
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The hydrogen atoms in water and fat of the body undergo a dif-
fusion process. In a homogeneous medium, this process could ade-
quately be described by Brownian motion. In the brain, this diffusion
is anisotropic due to fiber membranes and other inhomogeneities
which leads to varying apparent diffusion coefficients (ADCs) for dif-
ferent directions g and voxels v. In the special case of DWI, the
Torrey-Bloch equations [212] can be used to relate a signal S(v) at
voxel v using a gradient g; to the ADC D(v, gx) as [204]

Sk(v) = Soexp(=bD(v, gk))

where Sy is a diffusion-free reference signal and b are constants that
include physical properties and other experiment parameters like the
field strength [219] (see Section 8.4).

In diffusion tensor imaging (DTI) [12], measurements from various
gradient directions are taken successively, such that the main axes of
anisotropy can be resolved. The result is a voxel-wise second-order
tensor, i.e., a symmetric positive (semi-)definite 3 x 3 matrix

Dyx(v) [)xy(v) Dy (v)
D(v) = Dyy(v) Dyy(v) Dy:(v) |-
sz(v) Dyz(v) DZZ(U)

where D;j(v) describes the ADC in the ij direction in voxel v. This
diffusion tensor describes the second-moment of the local orientation
distribution function (ODF) for every voxel. The advantages of DTI
are the fast acquisition time, the wide availability of respective hard-
ware, and the high signal-to-noise ratio (SNR) (as compared to more
advanced imaging techniques).

However, voxels containing many fiber crossings or only partial
tracts, the second-order tensor is an inadequate description of the
ODF [81]. To deal with these problematic voxels, researchers have de-
veloped imaging techniques with more advanced imaging protocols
and models. These are commonly refered to as high angular resolution
diffusion imaging (HARDI) and examples of these models include dif-
fusion spectrum imaging (DSI) [221] and g-ball imaging [214]. But these
methods require advanced hardware and long imaging time, thus
limiting the applicability in larger studies or common clinic appli-
cations [81]. These methods also suffer from lower SNRs [213] such
that more advanced post-processing is required—which also induces
more human bias towards the current understanding of the brain.

Conceptually, DTI can be thought of as estimating the second mo-
ment of a random process by measuring the Fourier transform of
a finite difference scheme. Connecting this to the overall theme of
this thesis, it is clear that this process is inherently noisy with many
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Figure 24: Mlustration of DTI
voxel data. (Source:  Wikipedia
CC BY-SA 3.0 by Thomas Schultz
https://commons.wikimedia.org/w/
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sources of uncertainty. On top, there are the usual problems of a
physical realization. In addition to the common measurement noise
of any physical device, sources of uncertainty in DWI include motion
artifacts, eddy currents and partial volume effects [15, 108] with SNR
sometimes as low as 3 : 1 [108].

This is not to say that the situation is futile, but modeling and
communicating the inherent uncertainty is a necessity in order to ad-
vance the scientific knowledge. Even more so when it is considered
how costly and laborious neurological research is.

8.3 Tractography

Tractography refers to the process of generating 3D models of tracts
based on DWI data. The output of tractography algorithms are
streamlines, or candidate tracts, that are consistent with the measured
diffusion process. The common interpretation of these streamlines is
that they represent the locations of fiber bundles in the white mat-
ter. A good introduction to the whole processing pipeline is given in
[200]. [213] presents a good overview of methods and [103, 219] put
tractography into the wider research perspective.

There exists a variety of models and algorithms to turn DWI data
into streamlines. Common to all approaches is the idea that the dif-
fusion information can be turned into a distance or cost function.
Locally, streamlines are extended by minimizing the distance or cost.

Algorithms can broadly be classified according to three different
features.

The first feature is the modeling domain. Streamlines can either
be modeled continuously [153, 133], i.e., as curves ¢ : R — R3 or
discretely [157, 100, 115], in which case the output is a path on the
weighted graph of neighboring voxels. In principle, this allows to
investigate the problem independently of the resolution limitations,
but challenges arise when the DWI data needs to be interpolated
between voxels [63, 65].

A second design choice is the method of including streamlines.
One common approach are tracking methods [13, 164], which define
a starting seed region and extend the current streamline until some
defined stopping criterion is met. Shortest-path tractography (SPT)
methods [133, 157, 115] specify two regions-of-interest of which it
is known that a connecting tract exist. Of these two choices, tracking
methods are more popular at time of writing. Yet, these suffer from
two problems:

1. Tracts of tracking methods often terminate in low-connected areas

or in areas of crossing fibers because these are typically areas with
no clear directional information.
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2. Voxels near the starting region are explored more thoroughly than
voxels far away. Some parts of the brain can, thus, be under-
explored. This not only introduces a bias towards paths close to
the starting region, but may also have the effect that the optimal
path is never explored.

On the other hand, SPT methods will always return some tract be-
tween two input voxels regardless of whether there actually is a tract
present in the subject.

A third criterion of separation is the usage of deterministic methods
(e.g., [13, 142, 37]) on one hand and randomized methods (e.g., [15, 164,
196]) on the other hand. Methods from the first category expand the
local tract via deterministic rules from the ODF, whereas randomized
methods take the probabilistic nature of the diffusion into account.

The fourth and final criterion is the type of data that is used in
the tractography algorithm. In some cases, this could also be con-
sidered as a priori constraints from the imaging device or data pre-
processing pipeline of the scientific project the data stems from. But
as a general rule, it is usually the case that simpler imaging data
types can be constructed from more advanced reconstruction tech-
niques and, therefore, a researcher might opt knowingly for a sim-
pler algorithm.

8.4 Data

For the applications in Sections 9 and 10, data were provided [in
part] by the Human Connectome Project (HCP), WU-Minn (Principal
Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657)
funded by the 16 NIH Institutes and Centers that support the NIH
Blueprint for Neuroscience Research; and by the McDonnell Center
for Systems Neuroscience at Washington University.

Experiments were run on diffusion data of 40 and 20 subjects in
Sections 9 and 10, respectively, provided as a subsample from the
Q3 release of the HCP [62, 202, 72, 215]. This pre-processed diffu-
sion data contains 270 diffusion directions distributed equally over
3 shells with b-values b = 1000,2000,3000s/mm? [202]. dtifit [12]
and FAST [225] were used to compute DTI tensors and perform seg-
mentation, respectively. Two different tracts have been used in the
experiments: the cortico-spinal tract (CST) and the inferior longitudi-
nal fasiculus (ILF) were obtained from the expert annotated Catani
tract atlas [35]. ROI atlases were constructed in “template space” by
overlapping the tract atlas with regions from the Harvard-Oxford at-
las [52]. For the CST, the ROIs are the overlap with the brainstem, the
hippocampus and the amygdala for one region, and the overlap with
the superior frontal gyrus, the precentral gyrus and the postcentral
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gyrus for the the other region. The ILF ROIs are the two respective
overlaps with the temporal pole on one end and the superior occip-
ital cortex, the inferior occipital cortex and the occipital pole on the
other end. Warps provided by the HCP were applied to warp the
respective ROIs from “template space” to “subject space.”
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A probabilistic ODE solver for the uncertainty
quantification in shortest-paths tractography

We have seen in Section 8 that tractography is an important method-
ology for physicians and scientists to non-invasively create connec-
tomes of the human brain. However, the output of these tractogra-
phy algorithms can be misleading since streamlines reconstructions
depend on more or less motivated modeling assumptions and al-
gorithmic decisions. In this chapter, we will present a way to use
probabilistic ODE solvers to quantify and visualize this uncertainty.

This chapter is based on the publication Schober, Kasenburg, Fer-
agen, Hennig, and Hauberg [186].

9.1 Introduction

A core difficulty in tractography is the large gap that needs to be
bridged from the physical measurements to the algorithm output. In
particular, coarse voxel data needs to be transformed into a contin-
uous model to achieve resolutions that are on the same scale as the
underlying biological fascicles.

Depending on the sophistication of the applied tractography model,
fitting procedures might introduce additional algorithmic uncertainty.
For instance, wavefront propagation schemes [101] are usually based
on initial value problems that have to be solved numerically. Stochas-
tic schemes [196] might suffer from the missing mode problem as
discussed in Section 5.2.2.

In order to draw reliable conclusions from tractography algorithms,
it is important to communicate the degree of uncertainty associated
with the algorithm output. In this work, we present a consistent way
to estimate and visualize the uncertainty introduced by the algorithmic
approximation error.

9.1.1 Related work

While some of these methods provide some visualization of uncer-
tainty for fibers, these visualizations typically do not include the un-
certainty in the method. E.g., wavefront propagation techniques are
usually model by IVPs, but usually fixed step sizes are used which
adds numerical error in the integration.
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Ehricke, Klose, and Grodd [61] color code streamlines either ac-
cording to a global confidence score or a locally varying confidence
score.

The graphical user interface tool PASTA, presented in Jones, Travis,
Eden, Pierpaoli, and Basser [110], can display various measures of
uncertainty by varying width and color along the the streamline.
PASTA can be thought of as an orthogonal work since their main fo-
cus is on representation strategies for otherwise obtained measures.
These strategies could be, in principle, transfered to our method.

Similarly, Brecheisen, Platel, Haar Romeny, and Vilanova [21] pro-
pose a method of visualizing tracts by confidence level sets. If the
model evidence of the GP posterior is interpreted as a confidence
level, the method of [21] can directly be applied to our model.

Wiens, Schlaffke, Schmidt-Wilcke, and Schultz [224] incorporate
the anisotropy of the diffusion tensor as local deformation of the
streamtubes. However, no uncertainty in the diffusion tensor data or
algorithm uncertainty is tracked.

Details and further references can be found in Brecheisen [20] and
Schultz, Vilanova, Brecheisen, and Kindlmann [191].

9.2 Manifold models for continuous tractography

Recall from Section 8.2 that the measured DTI signal corresponds
to apparent diffusion as the diffusion is anisotropically restricted via
the cell membranes. One way to obtain a fiber model is to transform
the geometry of the model space such that streamlines correspond to
isotropic diffusion in the warped space. Mathematically, this can be
modeled with a Riemannian manifold. Models of this type have been
considered, e.g., in [133, 157, 67].

Riemannian manifolds are manifolds that are endowed with a
Riemannian metric M(x), which is a smoothly changing inner prod-
uct (a,b)y = aTM(x)b in the tangent space Ty M of each point
on the manifold M. Typically, the metric M(v) in voxel v is de-
fined by M(v) = a,D(v)~!, where a, is a voxel-wise scaling fac-
tor. A smoothly-varying inner product is obtained by applying tri-
linear interpolation to the voxel-wise DTI data similar to Lenglet,
Deriche, and Faugeras [133]. The necessity of a, has been demon-
strated by Hao, Whitaker, and Fletcher [85] who also propose a
numerical scheme for its computation. Fuster, Tristan-Vega, Haije,
Westin, and Florack [67] provides a derivation which demonstrates
that a, = det D(v) can be interpreted as Brownian motion under the
thus constructed metric. In this chapter, we will evaluate the choice
of a, empirically.
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On a Riemannian manifold, the length of a curve y(t) : [0,1] — M
is defined by integrating the induced infinitesimal norm

1
Length(y(t)) :/o Hyl(t)HM(y(t)) a
- /01 \/y,(t)TM(y(f))y’(t)dt.

Let C,p, = {y : [0,1] = M |y(0) = a,y(1) = b} denote the set of
piecewise smooth curves connecting points a and b, then the distance

between a and b is defined to be

Dist(a,b) = min Length(y(t)). (71)
yeca,b

The curve §(t) that minimizes (71) is called the geodesic between a
and b. Geodesics satisfy the following ODE [86, 168]:

W' ()a=fatbyy)=-T-(Y(H®y' (), d=1,..,D=3,
(72a)

1 dvec Mp

D
kzzl[ y(t)Ll,k Ipy p=y(t)

where ® denotes the Kronecker product and vec stacks the columns

;=

NI

of a matrix. The geodesic between two points a,b € M is given by
the solution to the BVP:

y(0)=a, y(1)=b, y'(t)= fult,yy).

For our work, we have considered an shortest-path algorithm as
these algorithms do not suffer from path-length dependency [138].
However, the approach presented in this chapter can be readily ap-
plied to wavefront propagation schemes as well.

9.3 Methods

To quantify the model uncertainty, we apply the probabilistic solver
proposed by Hennig and Hauberg [92] to the geodesic BVP (72). It
was empirically found that convergence was harder to obtain in this
setting which required a couple of modifications, specifically in the
GP model selection.

In this setting, the prior function u(t) needs to be initialized much
closer to the true solution y(t). Otherwise, the model will too often
be evaluated in known areas of gray matter where the data is mean-
ingless. This was circumvented by running Dijkstra’s algorithm [57]
on the discrete model vg = a,v1,...,vy = b and fitting a GP regres-
sion model to the data {(t, = nN~1,v,) |n=0,...,N}.
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Furthermore, the hyper-parameter selection strategy of Hennig
and Hauberg [92] did not prove to be adequate. Line 16 of Al-
gorithm 1 was replaced by a marginal empirical moment match-
ing method for both the output covariance V and the kernel length
scale A.

9.4 Experiments

In a first experiment, we test the validity of the Riemannian model by
comparing the results from the mathematical model with the expert
annotated Catani atlas [35].

We subsample 250 pairs of points at random from the ROIs of
the CST for all 40 subjects and compute the discrete and continuous
shortest paths. For each continuous path, we mark all voxels it passes
through. We measure accuracy as the percentage of voxels that have
been classified as belonging to the CST tract by at least one expert.
The results can be found in Figure 25.

GP samples (inverse)

GP mean (inverse) - e o0 0 OF==mmmmmmcmman= T F----1
Discrete (inverse) | k======secaaeaannnnn- { | Fone--- 1
GP samples (adjoint) + 00 OOOWD CUATF========-= :D |

GP mean (adjoint)

Discrete (adjoint) - 00 QAT = = = = =

0 01 02 03 04 05 06
Accuracy

Figure 26 shows example paths from both algorithms and metrics
computed on a single subject. To visualize the uncertainty associated
with each solution, we have created a video displaying animated
samples from the GP posterior using a technique described in [90]
which is included in the electronic supplements of this thesis. A
modified version of this video presented at the MICCAI conference
can be found online at URL https://www.youtube.com/watch?v=
VrhulgVaRMg.

In a second application of the solution uncertainty, we marginalize
over the posterior using Monte Carlo quadrature to compute density
heat maps. Figure 27 shows a 2D heat map slice of the 3D density.
The slice has been chosen to contain maximal variance which has
been determined by principal component analysis.
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Figure 25: Box plot displaying percent-
age of voxels that are considered to be
part of the CST by at least one expert in
the Catani atlas.
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Figure 26: Geodesics in the CST un-
der the inverse and adjoint metric com-
puted in discrete and continuous space.
Blue area shows voxels in the CST ac-
cording to at least one expert in the
Catani atlas. From top left clockwise:
discrete voxels with inverse metric, dis-
crete voxels with adjoint metric, contin-
uous solution under adjoint metric, con-
tinuous solution under inverse metric.

Figure 27: 2D heat map slice displaying
candidate tract densities. Blue outline
delineates the CST as defined above.
From top left clockwise: discrete vox-
els with inverse metric, discrete vox-
els with adjoint metric, continuous so-
lution under adjoint metric, continuous
solution under inverse metric.



9.5 Discussion

The experiments show that the GP ODE framework can be used to
capture uncertainty inherent in the shortest path computation. In
both clinical and scientific applications, it is important to communi-
cate this methodological uncertainty. Probability theory can be used
to communicate the uncertainty, visualize results accordingly as well
as incorporate it in down-stream computations, e.g., in the genera-
tion of path densities heat maps.

Compared to discrete methods, these heat maps display an over-
all larger domain of support with sharper peaks. This can partially
be explained by the higher resolution of the continuous paths. Alter-
natively, this could also indicate that the graph-based paths dispro-
portionately favor subsequences of low-cost compared to the overall
model.

Figure 26 shows the classic “spaghetti plot” used for visualiz-
ing tractography results. The discrete solutions show tendencies to
straight line segments connected by rather sharp turns which can-
not solely be explained by the discretization error. In general, the
continuous solutions bend less drastically, as we would expect from
actual fibers. The figure only shows the mean function of the GP
estimates of the geodesics; the supplements contain an animation of
the uncertainty. This provides a visualization of the solutions which
makes it very clear that individual paths cannot, and should not, be
interpreted as individual fibers in the brain—a common misinterpre-
tation of “spaghetti plots”.

We introduce a quality measure to compare different methods.
First, we compare the standard inverse metric [157, 133] to the re-
cently suggested adjoint metric of Fuster, Tristan-Vega, Haije, Westin,
and Florack [67]; empirical results show that the theoretically strong
adjoint metric is consistently better. Secondly, we find that the GP
posteriors agree with experts slightly more often than the discrete
solutions.

Samples from the posterior score lower than the mean prediction
which is expected as the posterior mean is modeled to be the best
approximation. Interestingly, these samples score higher on average
than the discrete solutions which suggests that even sub-par solu-
tions of the continuous model agree more than the optimal solution
of the discrete model—at least according to our metric.

A general disadvantage of shortest path tractography is that there
will always be some path connecting any two points, whether it is
anatomically there or not. This can be alleviated to some extent by
discarding improbable paths. Future work could try to identify a
cut-off criterion using the model evidence of the GP posterior. Alter-
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natively, the probabilistic IVP solver can be applied to the continuous
model for wavefront propagation methods.

Work by Wassermann, Rathi, Bouix, Kubicki, Kikinis, Shenton,
and Westin [220] illustrates that GPs form a particularly useful repre-
sentation of shortest paths for population studies of brain connectiv-
ity. Our GP solution to the tractography problem lends itself particu-
larly well to this type of population analysis as it avoids the post-hoc
GP fitting used by Wassermann et al. This could be further investi-
gated in future work.
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Propagating model uncertainty in shortest-path
tractography using a probabilistic BVP solver

Probabilistic numerics promises to capture uncertainty across a com-
putational pipeline [41]. In this section, we empirically test a method
that can capture both data and algorithmic uncertainty in a tractog-
raphy model.

This chapter is based on the publication Hauberg, Schober, Lip-
trot, Hennig, and Feragen [87]. An explanatory video for this pub-
lication was created by my co-authors which can be found online at
URL https://www.youtube.com/watch?v=xQwoT92BOYU.

10.1 Introduction

The biggest source of uncertainty in tractography remains the noisy
measurement process and the associated data uncertainty. While
there are established methods to quantify the uncertainty on the
model of interest [109, 196, 223], algorithms are either limited to
Monte Carlo integration schemes [105] or fit streamlines to the best
guess and only visualize the uncertainty post fitting [190].

Using a probabilistic numerical method, model approximation er-
ror as well as algorithmic approximation error can be expressed in a
common inference scheme. As in Chapter 9, this can be used to visu-
alize the model uncertainty to users. More importantly, this allows
to separate the influence of data and algorithmic uncertainty, giv-
ing practioners feedback as to where more computational resources
might still lead to more accurate models.

10.2 A model for random Riemannian manifolds

Existing SPT algorithms regard the diffusion tensor D,, and hence
the corresponding metric, as a deterministic object faithfully repre-
senting the data. However, the diffusion tensor D, at voxel v is esti-
mated from diffusion data. Like any estimation process, the resulting
diffusion tensor is a stochastic variable, not an exact representative of
the true underlying diffusion process [107]. If we interpret the adju-
gate diffusion tensor field as a Riemannian metric, then this metric
should also be considered stochastic. This, however, complicates the
geometric interpretation as the resulting object is now a random Rie-
mannian metric [125] rather than a deterministic metric.
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We approximately solve the geodesic ODE (72) using a proba-
bilistic description of the uncertainty over f(t,y,’), the stochastic
variable arising from Eq. 72 with a stochastic metric. We approxi-
mate f with a Gaussian distribution (using the shorthand notation

ft,y,y’ = f(t’ Y, yl))

P (f t,y,y/) =N (f tyy's Mty s Ct,y,y’) . (73)

The mean and covariance that form this approximation are computed
from

mg = —E(Ty)T (v @)

and

Ci=(y®y) cov(ly) (v @),

where m, ,, , = (m1,my,m3)7 and C,,,,» = diag (C3,C5,C3).

We estimate the mean and covariance of I'; empirically, subsam-
pling the gradient directions used to generate the local diffusion
tensors into S = 20 batches each containing 80% of the directions.
For each subsample we fit a diffusion tensor field and compute I';
(72b). Finally, we estimate the moments E(I'y) ~ %Zle l"‘(;) and

cov(Ty) ~ s 25, (1))~ E(T)) (T8 - ]E(l“d))T.

10.3  Solving uncertain boundary value problems

When the metric is uncertain, the geodesic ODE can only be evalu-
ated probabilistically as P(f). To handle this situation, we extend
the probabilistic ODE solver to cope with Gaussian uncertain obser-
vations.

In the random geometry setting of Eq. 73, the curvature at the ex-
trapolation point, y; = f(t;, §(t;),¥'(t;)), cannot be observed directly.
Instead, the numerically accessible variables are the parameters m, C
of a Gaussian distribution over function values P(y;, | My Ct,g,g’) =
N (y;;my g4, Cry ) As the normal distribution is symmetric around
the mean, this is a likelihood for v,

P(mt’y,y/ ‘ Yi Ct,g,y’) = N(mt’y,y/; Yir Ct’y’yl). (74)

Since both likelihoods (46, 74) are Gaussian, the latent y; can be
marginalized analytically, giving the complete observation likelihood

for my 5

P(mt,y,g’ ‘y//(ti)) =N (mt,g,g’;y;// Ct,g,g’ =+ Ai) . (75)
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Solutions to noisy ODEs are then inferred by replacing Eq. (46) with
Eq. (75), using m; 55 = E[f; /] in place of the (inaccessible) func-
tion evaluations y; = f; 54, such that the approximation error is
modeled by the additive uncertainty C; ; ;.

The ODE solver relies on two noise terms: #; ~ N (0, A;) captures
the numerical error, whereas C in Eq. 74 describes the uncertainty
arising from the data. While the terms are structurally similar, they
capture different error sources; e.g., changes in the number of grid
points imply a change in #, while C is unaffected. Both noise terms
are approximated as Gaussian to ensure efficient inference.

Hyper-parameter adaptation in this work was done by type-II
maximum likelihood optimization for V,A on the positive definite
cone using the open source library Manopt (Boumal, Mishra, Absil,
and Sepulchre [18]).

10.4 Experiments

As a first illustration, Figure 28 shows the density of a single geodesic
within the CST projected onto a slice. The center column shows that
the geodesic density roughly consists of two certain vertical line seg-
ments with an uncertain connection between them (green box). The
bottom row shows the standard deviation of I'y. The geodesic uncer-
tainty appears related to data noise. This is not attained with other
GP ODE solvers [186] as they model constant observation noise.

GP density

Std(rl, Iy, 1"3)

Next we sample 250 endpoint pairs and compute the correspond-
ing geodesics. Figure 29 shows the resulting heatmaps. The GP
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solution provides a more coherent picture of the tract compared to
the picture generated with Dijkstra’s algorithm.

Dijkstra in CST GP in CST

Dijk

o

" e [
. y ] ¥

stra in ILF GP in ILF

Figure 29: Example shortest paths in the CST and ILF using both Dijkstra’s algorithm on a deterministic metric, and a GP solver

with a random Riemannian metric.

Solution qualities are computed in accuracy as defined in Section 9.4.
Figure 30 shows the results for 20 subjects. In ILF the median accu-
racy is comparable for Dijkstra and GP paths, but the GP error bars
are significantly smaller. For the CST, we observe similar quality
results for Dijkstra and GP paths. This is expected, as the ILF is
generally considered the harder tract to estimate.

ILF T —~ CST )

Dijkstra | + + w—mwmwmmmwum_————D b e - ED_‘
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10.5 Discussion

SPT methods are advantageous for tracts that connect two brain re-
gions, e.g. for structural brain networks. However, a long-standing
problem is that SPT only finds a single connection without insight
to its uncertainty. This is in contrast to walk-based methods, which
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one expert in the Catani atlas as esti-
mated by Dijkstra’s algorithm and the
GP solver.



are often probabilistic in nature. We provide a fully probabilistic
SPT algorithm that models stochastic diffusion tensors and returns
a distribution over the shortest path. While uncertainty propagates
in probabilistic walk-based methods, the uncertainty of probabilis-
tic SPT only depends on local data uncertainty, not the seed point
distance.

Through experiments we visualize the estimated geodesic densi-
ties between brain regions, and validate that the estimated geodesic
densities are less certain in areas where the estimated diffusion ten-
sor is uncertain. We see that the visualized geodesic densities from
the probabilistic SPT yield smoother and more coherent tract than
the corresponding Dijkstra solutions.

While Riemannian SPT only applies to second order tensor mod-
els, a Finsler geometry framework has emerged enabling continuous
SPT with higher order tensors for HARDI data [9]. Our proposed
numerical tools also extend to these models, and can provide a prob-
abilistic interpretation of Finsler models. Future work includes shape
analysis on the resulting estimated geodesic densities, which are suit-
able for GP-based tract shape analysis [220].

This work has extended our previous work from Chapter 9 to also
include data uncertainty. As we have already pointed out, there are
several intermediate computational steps from data to the Rieman-
nian model. Feragen and Fuster [63] have recently pointed out that
the interpolation algorithm to create the Riemannian manifold also
plays a crucial role. Another natural extension would be to model
the tensor interpolation using a probabilistic description, for exam-
ple, with a generalized Wishart process [31].
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Discussion

In this last chapter of the thesis, we will reexamine and reflect upon
our contribution as well as point towards potential future directions.

11.1  Summary and contribution

The aim of this thesis was to extend probabilistic modeling approach-
es to the numerical solution of ordinary differential equations. Our
contributions can broadly be classified into two categories.

In search of fast and reliable algorithms, we have explored connec-
tions between Gaussian inference and linear solvers for initial value
problems. We have proposed a specific Gauss-Markov filtering algo-
rithm and have shown links to the theory of both Runge-Kutta and
Nordsieck methods. As a consequence, we have established the first
probabilistic numerical method for initial value problems of higher-
order convergence in the posterior mean with step size adaptation.
We have demonstrated its applicability on a standard benchmark
problem set and provided an open source reference implementation.

In a parallel investigation, we have demonstrated how the prob-
abilistic model may provide novel functionality to practitioners. To
this end, we have applied a Gaussian process boundary value prob-
lem solver to the problem of tractography in neuro-imaging. Our
experiments have shown how uncertainties in the numerical compu-
tation can be both propagated through the modeling pipeline as well
as visualized to the domain expert.

11.2 Critical reflection

On a higher level, the work presented in this thesis has demonstrated
how the common language of probability theory can help to express
the many aspects of a numerical pipeline holistically. In Section 5.1,
we have identified two different application scenarios for probabilis-
tic numerical methods, and have derived desiderata which can be
used to guide the search of suitable numerical methods. In contrast,
the analysis of classical algorithms considers problems individually
and independently. Sometimes, algorithms are based on other nu-
merical algorithms, e.g., when implicit methods require a non-linear
equation solver. While this allows to match algorithms freely to solve
a problem stack, it is much more difficult to consider the combined
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behavior of said stack. Where we have developed probabilistic nu-
merical ODE solvers so far, the interaction with different methods
almost occurs naturally.

On the search for probabilistic ODE solvers, we have pursued to
find equivalences similar to [117, 158, 91]. This approach has the ad-
vantage that methods are immediately familiar to a wide audience
and one can concentrate on expanding its applications as desired.
However, we have also seen in Section 6.6 that not all classical meth-
ods can be recovered this way. At their roots, numerical methods are
algebraic expressions that try to optimize certain analytic properties.
These algebraic expressions may be manipulated in any legal way to
obtain the desired result. A probabilistic numerical method is by its
very definition constrained to those subsets of algebraic and analytic
manipulations that carry a probabilistic interpretation. This has two
important consequences.

First, this will severely limit the search for viable algorithms for
more restrictive problem classes. In the case of ordinary differential
equations, the most urgent next steps are probabilistic solvers for stiff
equations and differential algebraic equations. Many practically rel-
evant problems belong to one of these two classes. This is evidenced
by a more recent benchmark problem set [147]. At the time of writ-
ing, it is an open question whether there exist efficient probabilistic
numerical algorithms for these problems.

But even within the domain of applicable problems, our state of
knowledge is lagging behind best practices. Many modern solvers
additionally provide order selection per step. In our model, this
would correspond to modeling the solution by a different stochastic
process per step. This, however, would directly violate our desider-
ata of a globally defined model.

Thus, another important open problem is to formulate criteria un-
der what circumstances which desiderata are beneficial or maybe
even potentially harmful. This may be equivalently stated as a taxon-
omy of applications for probabilistic numerical methods. Importantly,
this includes the understanding when not to apply a probabilistic nu-
merical method altogether. While the study of probabilistic numeri-
cal algorithms will deepen our understanding of numerical methods
regardless, it has to be critically reflected when the probabilistic inter-
pretation brings additional benefit to the user. In optimization, this
has been clearly demonstrated in the novel probabilistic line search al-
gorithm by Mahsereci and Hennig [144], and we argue that our con-
tributions (see Chapters 9 and 10) in tractography offer added value.
The resonance has not been conclusive so far.

As a second consequence, this suggests that future research should
look into more variants of probabilistic numerical methods for ordi-
nary differential equations. Current methods under investigation are
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either entirely sampling based or entirely based on Gaussian approx-
imations. These are two ends of a spectrum of approximate inference
method which is largely unexplored. The machine learning literature
has a large body of approximate inference techniques that could be
considered as building blocks in probabilistic numerics. Understand-
ing the theory of approximate inference for numerical solvers might
lead to novel applications for probabilistic methods, to algorithms
that might be able to scale even in larger chains of numerical meth-
ods, and it might even develop new analysis tools for approximate
inference itself.

11.3 Conclusion

While we have not been the first to propose probabilistic numerical
algorithms for ordinary differential equations, this idea has gained
considerable momentum as evidenced by the recent wave of publi-
cations on the matter. The first cornerstones have been set, but only
sustained progress on its modeling benefits will establish probabilis-

tic numerics as a standard tool in science and engineering.
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Source code listings

This chapter contains the source of the symbolic algebra implemention of Section 6.6 in
SymPy. The runtime of the entire program takes about 2 days on my machine.

## Setup, Configuration
import sympy as sp
sp.init_printing(use_unicode=True)

## Helper functions
# creates a 1x1 matrix with element sym
def mat(sym):

return sp.Matrix ([[sym]])

# creates e_i in R~ (q+1)
def basisVector(i,q):
return sp.Matrix(q+1, 1,
lambda m,n: 1 if m == i else 0)

# applies 1limit elementwise
def limitElements (A, t, 1lim):
return sp.Matrix(A.rows, A.cols,
lambda i,j:
sp.limit (A[i,j], t, 1lim))

# returns the finite differences of a list
def diff (1):
res = [0]
for i in range(1l, len(l)):
res.append (1[i] - 1[i-11)

return res

# returns the culumative sum of a list
def cumsum(l):
sum = 0
res = []
for e in 1:
sum = sum + e
res.append (sum)

return res
# displays a variable during execution
def show(var):

sp.pprint (var)

print

## State space functions
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h, sig = sp.symbols(’h sigma’)

# creates the matrix [F, L*L.T; 0, -F.T], needed for
# the discretization
def Phi(F,L):
return F.row_join(L*L.T).col_join(
(0 * F).row_join(-F.T))

# creates the discrete A(h)
def discreteDrift(F, h = h):
return sp.exp(Fxh)

# creates the discrete Q(h)
def discreteDiffusion(F, L, h = h, ssq = sig**2):
q = F.rows - 1
P = sp.exp(Phi(F,L)*h)
A P[:q+1,:q+1]
Q = ssq * P[:q+1,q+1:] * A.T

return Q

# creates the pair (A(h), Q(h)) (convenience wrapper)
def discreteTransfer(F, L, h = h, ssq = sig*x*2):

A = discreteDrift (F, h)

Q = discreteDiffusion(F, L, h, ssq)

return (A, Q)

# executes one Kalman predict/update step

def kalmanStep(N, F, L, deltaT, ssq, H, z):
(A, Q) = discreteTransfer(F, L, deltaT, ssq)
Cp = A % N[1] * A.T + Q

K =Cp *x H.T * (H * Cp * H.T)**-1
S = sp.eye(F.rows) - K * H

m =S8 % A *x N[0] + K * z

C =8 % Cp

return (m, C)

## State space / GP equivalence computations
# creates the big A matrix to construct
# the GP representation, page 20
def gpA(F, deltaTs):
q = F.rows -1
N len(deltaTs)

A = sp.zeros ((N+1)*(q+1),0)
for i in range(N):
colA = sp.diag([sp.zeros(i*x(q+1),q+1),
sp.eye(q+1)]
+ [discreteDrift(F, sp.simplify(e))
for e in cumsum(deltaTs[i:])1])
A = A.row_join(colA)
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A = A.row_join(sp.diag([sp.zeros(N*(q+1),q+1),
sp.eye(q+1)1))
return A

# creates the big Q matrix to construct
# the GP representation, page 20
def gpQ(F, L, PO, deltaTs, ssq = sig**2):
Qs = [discreteDiffusion(F,L,h,ssq)
for h in deltaTs]
return sp.diag(*([P0O] + Qs))

## Definitions

# algorithm parameters

a, u, v = sp.symbols(’alpha u v’)
# problem constants

t0, yO = sp.symbols(’'t_0 y_0")

tau = sp.symbols(’tau’)

z = sp.Matrix (1, 10, lambda i,j:
sp.symbols('z_%d" % j))

# creates the feedback matrix F for the IWP(q)
def feedbackMatrix(q):
return sp.Matrix(q+1l, q+1,
lambda i,j: 1 if j == i+1 else 0)

# creates the diffusion matrix L for the IWP(q)
def diffusionMatrix(q):
return sp.Matrix(q+l, 1,
lambda i,j: 1 if i == q else 0)

## equivalence of IWP(2) and second-order RK methods
print ('q=2:")

q =2

# basic state-space definitions

B = sp.eye(g+l)

F = B * feedbackMatrix(q) * B.inv ()
L = B * diffusionMatrix(q)

HO = basisVector(0,q).T * B.inv ()
basisVector(1,q).T * B.inv ()

o]
[
]

# Runge-Kutta connection

# C_{t-1}"-

Cmtml = discreteDiffusion(F, L, tau)
HO1 HO.col_join (H1)

1]
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# Uncomment this block for Egs. (102) and (103)

M3q2 = (HO1 * Cmtml * HO1l.T)**-1

M2q2 = Cmtml * HO1.T

M1qg2 = basisVector(0,q).T * discreteDrift(F, hx*u)
M2M3q2 = M2q2 * M3q2

print ("alpha_{t_0,1}:")

sp.pprint (M2M3q2)

print(’limit tau —> oo:’)
sp.pprint(limitElements (M2M3q2, tau, sp.oo))

print ('limit tau —> oo for MIl+M2+M3: ")
sp.pprint(limitElements (M192 * M2M3q2, tau, sp.oo))

HO11

sp.diag(HO1, H1)

Qhu

discreteDiffusion(F, L, h*u)

bigQt = sp.diag(Cmtml, Qhu)
bight gpA(F, [hx*ul)

# Uncomment this block for Egqs. (104) and (105)

M1gq2 = basisVector(0,q).T * discreteDrift(F,h).row_join(discreteDrift
(F,h*(1-u)))

M2q2 = bigQt * bigAt.T * HO11.T

M3q2 = sp.simplify ((HO11 * bigAt * bigQt * bigAt.T * HO11.T)**-1)

print ('Ml: ")

sp.pprint (M1q2)

print ('M2: ")

sp.pprint (M2q2)

print ('M3: ")

sp.pprint (M3q2)

print ('M1=M2+M3, limit tau —> oo:’)

sp.pprint(limitElements (M1q2 * M2q2 * M3q2, tau, sp.oo))

1imQtq2 = sp.simplify(bigQt - M2q2 * M3q2 * M2q2.T)

print (/_Q_(t):")

sp.pprint(limitElements (1imQtq2, tau, sp.oo))

# Runge-Kutta initialization

# define grid points
hs = [0, hx*u]

# initialization
Nm1 = (sp.zeros(q+1,1), Cmtml)

Ns [Nm1]
NO = kalmanStep(Nml, F, L, 0, sig#**2, HO, mat(y0))
Ns.append (NO)

deltaTs = diff (hs)

for (hi,zi) in zip(deltaTs, z):
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print (hi)

Npl = kalmanStep(NO, F, L, hi, sigx**2, H1, mat(zi))
Ns.append (Np1l)

NO = Npi

Ahimu = discreteDrift(F,h*x(1-u))
Qhimu = discreteDiffusion(F, L, h*(1-u))

mt1q2 = sp.simplify(Ahlmu * limitElements(sp.simplify(NO[0]), tau,

.00))
sp.pprint (mt1q2)

Qt1q2 = sp.simplify(Ahimu * limitElements(sp.simplify(NO[1]), tau,

.00) * Ahimu.T + Qhilmu)
sp.pprint (Qt1q2)

## equivalence of IWP(2) and second-order RK methods
print ('q=3:")

qQ =3

# basic state-space definitions

B = sp.eye(g+1)

F = B * feedbackMatrix(q) * B.inv ()
L =B * diffusionMatrix(q)

HO = basisVector(0,q).T * B.inv ()
basisVector(1l,q).T * B.inv()

==
-
1]

# Runge-Kutta connection

# C_{t-1}"-
Cmtml = discreteDiffusion(F, L, tau)
HO1 = HO.col_join (H1)

# Uncomment this block for Eqs. (102) and (103)

M3q3 = (HO1 * Cmtml * HO1.T)**-1
M2q3 = Cmtml *x HO1.T
M1q3 = basisVector(0,q).T * discreteDrift(F, hxu)

M2M2q3 = M2q3 * M3q3

print ('Eq. (103):7)

sp.pprint (M2M2q3)

print ('limit tau —> oo:’)

sp.pprint (limitElements (M2M2g3, tau, sp.oo))

print ('limit tau —> oo for I+II=«III:")
sp.pprint(limitElements (M1q3 * M2M2q3, tau, sp.oo))

twothirds = sp.Rational(2,3)

HO11 = sp.diag(HO1, H1)

Qhu

discreteDiffusion(F, L, hx*u)

sp

sp
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bigQt = sp.diag(Cmtml, Qhu)
bight gpA(F, [h*ul)

# Uncomment this block for Egs. (104) and (105)

M1q3 = basisVector(0,q).T * discreteDrift(F,h*v).row_join(
discreteDrift (F,h*x(v-u)))
M2gq3 = bigQt * bigAt.T * HO11.T

M3g3 = sp.simplify ((HO11 * bight * bigQt * bigAt.T * HO11.T)**-1)
print ('Eq. (104), 1:7)

sp.pprint (M1q3)

print ('Eq. (104), II:”")

sp.pprint (M2q3)

print ('Eq. (104), III:")

sp.pprint (M3q3)

print (' » II = III, limit tau —> oo:")

sp.pprint (limitElements (M19q3 * M2q3 * M3q3, tau, sp.oo))

HO111 = sp.diag(HO1, H1, H1)
Qhv = discreteDiffusion(F, L, h*x(v-u))

bigQt = sp.diag(Cmtml, Qhu, Qhv)
bigAt gpA(F, [h*u, h*(v-u)l)

# Uncomment this block for _Q_(t)

M1q3 = basisVector(0,q).T * discreteDrift(F,h).row_join(
discreteDrift (F,h*(1-u))) .row_join(discreteDrift (F,h*x(1-v)))
M2q3 = bigQt * bigAt.T % HO111.T

M39g3 = sp.simplify ((HO111 * bigAt * bigQt * bigAt.T * HO111.T)**-1)

print ('Eq. (104), I:7)

sp.pprint (M1g3)

print ("Eq. (104), II:")

sp.pprint (M2q3)

print ('Eq. (104), III:")

sp.pprint (M3q3)

print ('l = II = IIT, limit tau — oo:’)

M2M3q3 = sp.simplify(M2q3 * M3q3)

M1M2M3g3 = sp.simplify(M193 * limitElements (M2M3q3, tau, sp.oo))

sp.pprint (M1M2M3q3)

print ('_Q_(t):")

1imQtq3 = limitElements(sp.simplify(bigQt - M2M3q3 * M2q3.T), tau, sp
.00)

sp.pprint (1imQtq3)

# Runge-Kutta initialization

# define grid points
hs = [0, h*u, hx*v]

# initialization

Nmi = (sp.zeros(q+1,1), Cmtml)
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Ns [Nm1]
NO = kalmanStep(Nmi, F, L, O, sig#**2, HO, mat(y0))
Ns.append (NO)

deltaTs = diff (hs)

for (hi,zi) in zip(deltaTs, z):
print (hi)
Npl = kalmanStep(NO, F, L, hi, sig**2, H1, mat(zi))
Ns.append (Npl)
NO = Npi
NO (sp.simplify (Np1[0]), sp.simplify(Np1[1]))

# NO = (sp.simplify(Np1[0]), sp.simplify(Np1[1]))
# NO = (sp.expand(Np1[0]), sp.expand(Npl1([1]))
Ahimu = discreteDrift(F,h*x(1-v))

Qhimu = discreteDiffusion(F, L, h*x(1-v))

mti1g3 = sp.simplify (Ahimu * limitElements(NO[O], tau, sp.oo))

sp.pprint (mt1q3)

Qt19q3 = sp.simplify(Ahimu * limitElements(NO[1], tau, sp.oo) * Ahlmu.
T + Qhimu)

sp.pprint (Qt1q93)

## equivalence of IWP(2) and second-order RK methods
print ('q=4:")
q =4

# basic state-space definitions

B = sp.eye(g+1l)

F = B * feedbackMatrix(q) * B.inv ()
L B * diffusionMatrix(q)

HO = basisVector(0,q).T * B.inv ()
H1 = basisVector(1,q).T * B.inv ()
Cmtml = discreteDiffusion(F, L, tau)

# Runge-Kutta initialization

# define grid points
hs = [0, h*u, h*v, h]

# initialization
Nm1 = (sp.zeros(q+1,1), Cmtml)
Ns [Nm1]

NO = kalmanStep(Nmi, F, L, O, sig**2, HO, mat(y0))
Ns.append (NO)

deltaTs = diff (hs)
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for (hi,zi) in zip(deltaTs, z):
print (hi)
Npl = kalmanStep(NO, F, L, hi, sig#**2, H1, mat(zi))
Ns.append (Np1)

NO = Npi1
NO = (sp.simplify(Np1[0]), sp.simplify(Np1[1]))
NO = (sp.simplify(Np1[0]), sp.simplify(Np1[1]1))

mtlq4 = sp.simplify(limitElements (NO[O], tau, sp.oo))
sp.pprint (mtiq4)
Qtiq4 = sp.simplify(limitElements(NO[1], tau, sp.oo))
sp.pprint (Qt1q4)
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Runge-Kutta initialization values

This chapter provides the algebraic expressions for the integrated Wiener process after
the improper prior has collapsed to finite value.

The once integrated Wiener process does not require an improper prior model to
match a Runge-Kutta initialization scheme.

For q = 2, the predictive posterior at ty 4 h = t; is normally distributed with mean

T
- 1 1 1 z1—2
my = (yo + h(l — E)ZO + hﬂzl zo + 3 (Zl — Zo) 7]}”4 0)
and covariance matrix

13 (—=5u%+20u*—20u+6)

o ) | i [symmetric]
_ 2 h*(—ul+-6u>—8u+3 3 (u—1)
= A\ )
Chy 24 3
W (44> —8u+4)  B2(u—3)(u—1) h(3—2u)
2 6 3

The predictive posterior mean of the IWP(3) is defined by

I h hz, hz . .
(huzvzof ”T0u2+ %uthuvzzo+%”zof %zz+ Tov27 TIUZ, }%}Zo+%]21 +uzvy07uv2y0>

uo(u—o)

(u2020 7u220+u222 7uv220+uzo 7uzz+0220 —0?2

21—02Z0+0z1 )

my, = uv(u—ov)
2 (7u220+u222+2uzo —2uzy 40229 —v%21 —2029+202; )

huv(u—v)
(2uzy—2uzp —2vz9+20vz1)
h2uv(u—o)

The entries of the covariance matrix C;, are

7.2
(Ch)oo = — 1'; 1;'00 (210*0? — 14uto + 211%0° — 140030 + 14700 — 4208
+ 21u%0* — 140u%0% + 210u%0? — 126120 + 28u? + 21uv® — 140uv*
+399uv® — 378uv? + 112uv — 140° + 84v* — 2100° + 1960% — 600) ,
Koo
(Cty)10 = ~ 7500 (u402 —uo + 120° — 10u%0* + 14uP0 — 50 + u?o*
—10u20® + 20u%0? — 15420 + 4u? + uv® — 10uv* + 38uv® — 45u0?
+16uv — v° + 8v* — 250% + 2802 — 100) ,
Koo
(Ct,y)20 = ~705 (u4vz — 2uto + 1uP0® — 8uPv? + 18udv — 8u + 1ot

— 8u20% + 24u%0? — 24u%v + 8u® + uv® — 8uv* + 42uv® — 72uv?
132uv — 20° + 120* — 400° + 560% — 240) )
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o2
(Cty)30 = ng (v (u4 — 2130 + 6uv® — 30t +15 (v - 1)4>

+4(v—1)° (u2 + 4uv — 802) +3(v—1) (u3 — 1?0 — Tuv® + 703)) ,

hoo?
(Ct2)1,1:m<32 2180 + 13 + u?0® — 3u%v? + 3uPv — u?

+uv* — 6uv® + 9uv? — duv — v* + 50° — 70% + 30) ,

hto?
(Ciy)21 = 200 (M?’vz — 4180 + 3u® + u?0® — 6u0? + 9uPv — 4u? + uvt

—12u0® + 27uv? — 16uv — 20* + 150° — 280 + 150) )

Wo? 3, .2 2 3 2
(Cty)31 = 0o (v—1) (—u + u v + 7uv® — 7v° — 100 (v — 1)
+2(v—1) ( u? — 4duv + 8v ))
h3 2

_ 2 21202 — 612
(Cty)22 0o (u v —2u3 + 2uv* — 6uv

+4u? + 5u0® — 18uv? + 16uv — 100° + 280 — 207)) ,

h2 2
(Cty)32 = €00 (u + 3u?v — 4u? + 9uv® — 16uv + 50° — 280% + 300) ,

ho 2
(Cty)33 = — 5o (u + duv + 70° —157))

and the rest are defined implicitely since C, is a symmetric matrix.
The predictive posterior mean of the INP(4) is defined by

B —2(u+v)+6uv 2v0—1
(3 )o = yo +h 12u0 M o) 1)
1—2u 3—4(u+v)+6uv
e 2 M R ne-1 @
(mi;)1 = z3
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(mt3)27ﬁ uv ZO+ﬁu(u—U)(u—1)zl
1 u—1 . +13—2(u—|—v)+uvz
ho(u—ov)(v—1) 27T (u—1)(v-1) 3
_12u+v-2) 1 2(2—0)
(11 )3 = h2 uv Zo—i_hzu(u—v)(u—l)z1
L1 2w-2) 1 2B-u-v)
Rou-—0)o-12" " Ru-1)b-1)"
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Furthermore, we get the following algebraic equations for the elements of the covariance

matrix Cy,:

(Cty)o0 = o?H7 [6ubv? — 3ubv + 6u°v® — 27u°0* + 20u°v
— 4u® + 6utv* — 27ut0® 4 28utv? — 12uto
+ 2u* + 6u*0° — 27u3v* + 28103 — 121302
+ 2uBv 4 6uv® — 27u0° + 28uv* + 68u0°
— 78u%0? + 20uv — 9ur® + 38uv® — 42uv?
— 48uv® + 70uv?® — 20uv + 30° — 130° + 170*
+5v° — 150” + 50] /7257600 (1 — u)]

(Ct3)1,0 =0

(Cty)20 = o?H” [(v — 1) (Bubo + 3u’v* — 16u°v + 6u° + 3utv®
—16u*v? + 14utv — 4u* + 3uP0* — 161503
+ 14130 — 4uPv + 3u%0° — 16uv* + 14u%0°
+ 76u%0% — 40u*v — 6uv® + 29uv* — 24uv’
— 85uv? + 50uv + 30° — 14v* + 150° + 200?
—15v)]/[120960v(u — 1)]

(Cty)30 = 0?h®[3ubv?® — 6ubv + 3u°v® — 18u°0* + 32u°v
—10u® + 3uto* — 18u*0® + 40u*0? — 30u*v
+ 8u* + 3u®0® — 18u3v* + 40u%0° — 30u30?
+ 8u3v 4 3uv® — 18u0° + 40uv* + 50u°0°
—192u%0? + 80u?v — Yuv® + 41uv® — 69uv*
— 81uv® 4 271uv® — 117uv + 6v° — 280°
+500* + 20° — 780% + 390] / 604800 (u — 1)]
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(Cty)a0 = 0?H°[3ubv + 3u’v® — 12u°0 + 4u® + 3uto®
—12u*0? + 12u*v — 4u* + 3uPo* — 120303
+ 12u%0% — 4uPv 4 3u0® — 12u0* + 12u%0°
+ 76u%0% — 40u*v + 3uv® — 12uv’ + 12uv*
+ 16uv® — 140uv* + 72uv — 30° + 130° — 190*
+ 50 + 4507 — 270]/[201600(1 — u)]

0
0
C;)31 =0
Ci, 0

(Cty)
(Chy )2 =
(Cty)
(Ct)

_
I

4,

The last four equations are a consequence of the noise-free observation z3 at fg + c4h =
to + h = t3. The remaining entries are given by the expressions

(Cty)20 = ?H2[(v — 1)?(u* + uPv + u?0? + uv® — 10uv

— 20° + 20% + 6v)] / [25200]
(Cty)32 = o?h*[(v — 1) (v — 3u° + uto® — 5uto + 4u

+ u30® — 5u%0? + 4ubo + w0t — 5u?0?

— 16uv* + 40uv — 5uv* 4 15u0° + 37uv?

— 77uv + 5v* — 150> — 110* 4 330)] /[25200(u — 1)]
(Cty)ap = B3 [(v — 1) (—u® — uto + 2ut — uP0? + 2130

— 1?0 + 2u?v? 4 20u%v — uv* 4 2uv®

+ 5uv? — 50uv + 20* — 50° + 250)]/ [8400(u — 1)]
(Cty)33 = W3 [Py — 2u° + 2ut0? — 6utv + 4u* + 20303

— 6130? + 410 + 2uto* + 4u0® — 36u0?

+40u%0 + uv® — 12uv* — 12u0° + 104uv? — 96uv

—20° + 160" — 80® — 480 + 48v]/[6300(1 — u)]
(Cty)a3 = o?h2[u® + 3uto — 4ut 4 3uP0? — 4uv + 3u%0®

+ 16u20? — 40u*v + 3uv* + uv® — 95uv* 4 135uv

+v° — 100" 4 140° 4 540% — 810] /[4200(u — 1)]
(Cty)a4 = ?hu* + u30 + u?0? + 10?0 + uv® + 20uv?

— 60uv + v* — 50° — 150% + 450] /[700(1 — u)]

which defines the entire matrix since Ct, is a symmetric matrix.
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For the entries of Q(t) in the case g = 3, we get the following expressions:

(Q(t)oo =0 (Q(£)10=0 (Q(t)20=0 (Q(£))30=0
(Q(t)s0=0 (Q()s0=0 (Q(t)eo=0 (Q(¢))70=0
(Q(t))s0 =0 (Q(t))oo=0 (Q(t)100=0 (Q(%))11,0=0
(Q(1)11=0 (Q(t)21=0 (Q(t))31=
(Q(t)s1 =0 (Q(t)51 =0 (Q(t)s1 =0 (Q(t))71=0
(Q(t)s1=0 (Q(t))o1=0 (Q(£)101=0 (Q(#))111=0
(Q(£))22 = —%u (u—30) (Q(t)32 = —hzgz” (—u2 4 2uv 4 602)
5+2,,5 4.2 4
(QU))s2 = "o (~u-+50)  (Q()s2 = 'S0 (~u +40)
3 2u3 2 2u2
Q)52 = "2 (~ut30) Q)72 =" (~ut20)
5 2M 4 Zu
Q)52 =~ (w0 (Q)9op =" (o)t
(Q(t)102 = _h38(7;u (u—2)° (Qt)na2= _h:r;u (—u2 + 2uv — vz)
2 4 2M4
(Q(0)33 = 10 (12— 6uo—307)  (QU1))s3 = " (u—150)
3,2,.3 22,2
Q)53 =" (1~ 100) (Q(1)e3 = "2 (4~ 60)
2 4 2
(Q1))73= "2 (u~30) Q)3 = 20 (u—0)°
3,2 2,2
(Q6)o3 =~ (u— )’ Q0103 = "7 (u o)
(QE)11a = 2 (u—o)?
(QEsa = 5T (@)= s
4 2
(Q@ENes = " (@)=
(Q(t))sa =0 (Q(t)oa =
(Q(#))104=0 (Q(t)114=0
ha? h*o?
(Q(t))s5 = 20 (Q(t))ss5 = 5 4
(QE)rs =T (Q(E))ss =0
Q)9s=0  (Q)s=0  (Qt)ns=0
2.2
QENss = "5 (@)= ""T0 (Q(E))ss =0
(Q(t))9e =0 (Q(t))106 = (Q(t)116 =
Q)77 =ho*u  (Q(t)s7 =0 (Q(t))e7 =0
(Q(t))107 =0 (Q(#)11,7 =0
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7 2 6,2
(QE))ss =~ (=) (QB))os = oo (u—0)°
5,2 4 2
Q)05 =~ (w0 (QE)ns = "o (1)’
502 4 2
(Q(1)ss = "2 (4 —0)° (@) = "o (u—0)*
I’l30'2 3

The rest of the entries follow from Q(t) being a symmetric matirx.
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Poincaré translation

Dr. Johannes Dahlem and Dr. Michael Perrot helped me to translate the passage from
[171], quoted in Section 4.1, into English:

“Let us take a different point of view.

A question of probability arises as a consequence of our ignorance: there would only be
place for certainty, if we would know all the givens of a problem. On the other hand, our
ignorance should not be complete or we could not evaluate anything. A classification would,
therefore, follow our degree of ignorance.

For instance, the probability of the the sixth decimal of a number in a logarithmic table being
equal to 6 is 1/10 a priori; in reality, all the givens of the problem are well determined, and,
if we wanted to go to such lengths, we would know this probability exactly. Similarly, the
same holds for interpolation, for the computation of definite integrals after the method of
Cotes or of Gaufs, etc.

[..]

In other problems, finally, it might happen that our ignorance is bigger still, such that the
law itself eludes us. Then the definition of probabilities becomes almost impossible. For
example, if x is an unknown function of ¢, then we do not know very well which probability
we need to initially assign to xy to know

t
/ x dt.
to

One will often let oneself be guided by a vague feeling which will impose mightyly, which
one will not be able to justify, but without which science is not possible in any case.”
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