
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

High-Performance Match-Action Table Updates
within Programmable Software Data Planes

Manuel Simon, Henning Stubbe, Dominik Scholz,
Sebastian Gallenmüller, Georg Carle

Thursday 7th April, 2022

3. KuVS Fachgespräch "Network Softwarization"

Chair of Network Architectures and Services
Department of Informatics

Technical University of Munich



Introduction

State Keeping in Data Planes

• State keeping is essential for many applications
• Registers (arrays) are unstructured memory areas accessible by indices

• may be fragmented in memory
• no matching support
• limited functionality

• In tables, structured state can be accessed by sophisticated key matching
• State is often kept by the control plane which decreases performance for state-heavy applications
• We implemented state keeping via tables directly in the data plane

M. Simon et al. — Table Updates within Data Planes 2



Introduction
Background

P4

• P4 [1] is a domain-specific language for SDN data planes
• In P4, registers are changeable within the data plane, tables only by the control plane

→ Updatable table entries would increase performance

→ We implemented this for the P4 software target t4p4s using a @__ref annotation

T4P4S

• t4p4s [10] is a hardware-indepent transpiler from P4 to C code linked with DPDK developed by ELTE
• The Data Plane Development Kit (DPDK) [2] is an open-source framework enabling fast packet processing in user

space
• DPDK performs Receive Side Scaling (RSS) to split traffic among several lcores/threads

M. Simon et al. — Table Updates within Data Planes 3



Introduction
Background

P4

• P4 [1] is a domain-specific language for SDN data planes
• In P4, registers are changeable within the data plane, tables only by the control plane

→ Updatable table entries would increase performance

→ We implemented this for the P4 software target t4p4s using a @__ref annotation

T4P4S

• t4p4s [10] is a hardware-indepent transpiler from P4 to C code linked with DPDK developed by ELTE
• The Data Plane Development Kit (DPDK) [2] is an open-source framework enabling fast packet processing in user

space
• DPDK performs Receive Side Scaling (RSS) to split traffic among several lcores/threads

M. Simon et al. — Table Updates within Data Planes 3



Introduction
Related Work

• The Portable NIC Architecture (PNA) [5] allows adding table entries on lookup misses
• Flexible match-action tables in Pensando SmartNICs [6, 8] allow table update via write-back table fields

• using target-specific annotations translated to externs
• no adaption of P4 language/compilers required

• FlowBlaze [7] allows state updates in programmable data planes relying on registers

M. Simon et al. — Table Updates within Data Planes 4



Table Updates
Digest - Current P4 Way

Data Plane Control
Plane

Match-Action

Parser

Deparser Tables

lookup

change

digest

Current State
• For changes in match-action tables, the data plane has

to send a digest to the control plane
• in t4p4s: the controller is a separate process, commu-

nication via a socket (low round-trip time (RTT))

• Controller requests data plane to update the table

→ Digest-based approach introduces overhead

→ Avoid the detour over the controller could improve per-
formance

Investigated Approaches
• Digest: introduces a sleep of 1 second
• Change method: close to original implementation, but

avoids detour
• uses original timing-based synchronization mechanism
• sleep time of 200 µs

• Pointer method: directly changes entries using their
pointers

• requires alternative synchronization mechanism

M. Simon et al. — Table Updates within Data Planes 5



Table Updates
Double-Buffering

lcore
active replica

. . .
lcore

active replica

Table Replica 1 Table Replica 2

Current State
• Lock-free double-buffering

• Changes are done to the currently passive replica
• Replicas are swapped
• Sleep between replica change of 200 µs
• Changes then promoted to now passive

• Pointer method not compatible

M. Simon et al. — Table Updates within Data Planes 6



Evaluation
Topology

LoadGen DuT10Gbit/s
▶
◀

▶
◀

Setup

• MoonGen [3] is used to generate traffic
• DuT (t4p4s): Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10 GHz, L3-cache size: 15 MiB
• Packets specifies key and new value of updated table entry
• Old value sent back → read and write
• 4 Byte key and value size

Typical cache-based optimizations
• Load whole cache lines (e.g. 64 B) (spatial locality)
• Heuristic-based prefetching (time locality)

Measure worst-case scenario → maximize cache misses
• Key is pseudo-randomly selected in [0; TABLE_SIZE)
• Large table size exceeding cache size

M. Simon et al. — Table Updates within Data Planes 7



Evaluation
Table Update Methods, 700 B Packets

Change Method Pointer Method Digest (mod.)
0

400

800

1,200

L
a
te
n
cy

[µ
s]

Change method
• Bad performace

• 3.39 kpps
• 322 µs median latency

(high variance)

• uses original synchronization
mechanism → wait time of 200 µs

Pointer method
• Good performance

• 1.73 Mpps (hits linerate)
• 26.5 µs median latency

(almost constant)

• Not compatible with synchroniza-
tion mechanism

Digest method
• Ignoring sleep

• 4.1 kpps (else out of memory )
• 65.3 µs median latency

(low variance)

• Hardcoded sleep of 1 second
would allow < 1 pps

M. Simon et al. — Table Updates within Data Planes 8



Table Architecture
Overview

lcore
active replica

. . .
lcore

active replica

Table Replica 1 Table Replica 2

Current State
• Lock-free double-buffering

• Changes are done to the currently passive replica
• Replicas are swapped
• Sleep between replica change of 200 µs
• Changes then promoted to now passive

• Pointer method not compatible

Consistency
• Insert/Update consistency

→ one replica of lock-free DPDK hash map

• Inter-packet race conditions
→ per-entry locks

M. Simon et al. — Table Updates within Data Planes 9



Table Architecture
Overview

lcore
active replica

. . .
lcore

active replica

Table Replica 1 Table Replica 2

Current State
• Lock-free double-buffering

• Changes are done to the currently passive replica
• Replicas are swapped
• Sleep between replica change of 200 µs
• Changes then promoted to now passive

• Pointer method not compatible

Consistency
• Insert/Update consistency

→ one replica of lock-free DPDK hash map

• Inter-packet race conditions
→ per-entry locks

M. Simon et al. — Table Updates within Data Planes 9



Table Architecture
Insert/Update-Consistency, 84 Byte Packets

1 2 3 4 5 6
0

2

4

6

8

10

lcores

T
h
ro
u
gh

p
u
t
[M

p
p
s] DPDK LF 1

DPDK LF 256
DPDK LF 131072
DPDK LF 1048576
t4p4s 1
t4p4s 256
t4p4s 131072
t4p4s 1048576

Replace double-buffering mechanism (t4p4s) through lock-free DPDK hash table implementation (DPDK LF)

• DPDK design is also lock-free → nearly same performance
• Only one replica required → allowing pointer method to work

M. Simon et al. — Table Updates within Data Planes 10



Table Architecture
Avoiding Inter-Packet Data Races, 84 Byte Packets

1 2 3 4 5 6
0

2

4

6

8

10

lcores

T
h
ro
u
gh

p
u
t
[M

p
p
s] Unsynced 1

Unsynced 256
Unsynced 131072
Unsynced 1048576
Synced 1
Synced 256
Synced 131072
Synced 1048576

Each entry includes an (optional) lock (Synced)

• Lock is acquired before executing action, and released afterwards
• Locking decreases performance up to 10 %
• Only necessary for global (i.e., flow-independent) entries/state

M. Simon et al. — Table Updates within Data Planes 11



Conclusion

Contributions

• Implementation of writable table entries in t4p4s using @__ref annotation
→ comparable performance to only reading entries

• Synchronization and storage design configurable using @tableconfig annotation
• Avoiding inter-packet races using per-entry locks
• Source code available on GitHub [4]

Further contributions not presented
• Cache-efficient storage design
• Cache fitting models

→ read our paper [9]

M. Simon et al. — Table Updates within Data Planes 12



Bibliography

[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker.
P4: Programming Protocol-Independent Packet Processors.
Computer Communication Review, 44(3):87–95, 2014.

[2] DPDK.
Data Plane Development Kit, 2021.
Last accessed: 2021-10-03.

[3] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle.
Moongen: A scriptable high-speed packet generator.
In K. Cho, K. Fukuda, V. S. Pai, and N. Spring, editors, Proceedings of the 2015 ACM Internet Measurement Conference, IMC 2015, Tokyo, Japan, October
28-30, 2015, pages 275–287. ACM, 2015.

[4] Manuel Simon.
manuel-simon/t4p4s - GitHub Repository, 2021.
Last accessed: 2021-12-02.

[5] P4 Language Consortium.
P4 Portable NIC Architecture (PNA), 2021.
Last accessed: 2021-10-03.

[6] Pensando.
Pensando DSC-25 Distributed Services Cardi—Product Brief, 2021.
Last accessed: 2021-10-11.

[7] S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone, M. Spaziani, V. Bruschi, D. Sanvito, G. Siracusano, A. Capone, M. Honda, et al.
Flowblaze: Stateful packet processing in hardware.
In 16th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 19), pages 531–548, 2019.

M. Simon et al. — Table Updates within Data Planes 13



Bibliography

[8] Prem Jain.
The Value of P4 Programmability at the Network Edge, 2021.
Last accessed: 2021-10-11.

[9] M. Simon, H. Stubbe, D. Scholz, S. Gallenmüller, and G. Carle.
High-performance match-action table updates from within programmable software data planes.
In ANCS ’21: Symposium on Architectures for Networking and Communications Systems, Layfette, IN, USA, December 13 - 16, 2021, pages 102–108. ACM,
2021.

[10] P. Vörös, D. Horpácsi, R. Kitlei, D. Leskó, M. Tejfel, and S. Laki.
T4P4S: A Target-independent Compiler for Protocol-independent Packet Processors.
In IEEE 19th International Conference on High Performance Switching and Routing, HPSR 2018, Bucharest, Romania, June 18-20, 2018, pages 1–8. IEEE,
2018.

M. Simon et al. — Table Updates within Data Planes 14



Additional slides

Additional slides

M. Simon et al. — Table Updates within Data Planes 15



Storage Design
Original Storage Design

• So far, we only considered fast table updates and consistency
• Performance can be further improved by a cache-efficient storage design

→ Ensure spatial locality

uint8_t* entries[]

<key, value>

char[] key = ...
*data = NULL
index = 2

<key, value>

char[] key = ...
*data = NULL
index = 6

...

table_entry
actionId = ...
params = ...

table_entry
actionId = ...
params = ...

t4p4s
(DPDK target)

DPDK
Hash
Table

Problems
• Double indirection
• Memory lost due to alignment

to 64 Byte
• Entries lay fragmented in

memory

M. Simon et al. — Table Updates within Data Planes 16



Storage Design
Dynamic Storage Design

uint8_t* entries[]

<key, value>

char[] key = ...
*data = NULL
index = 2

<key, value>

char[] key = ...
*data = NULL
index = 6

...

table_entry
actionId = ...
params = ...

table_entry
actionId = ...
params = ...

t4p4s
(DPDK target)

DPDK
Hash
Table

Advantages
• Only one indirection
• Dynamic allocation of required

memory for entries
• Flexible table size

Problems
• Memory lost due to alignment

to 64 Byte
• Entries lay fragmented in

memory

M. Simon et al. — Table Updates within Data Planes 17



Storage Design
Static Storage Design

table_entry entries[]

<key, value>

char[] key = ...
*data = NULL
index = 0

<key, value>

char[] key = ...
*data = NULL
index = 2

...

table_entry
actionId = ...
params = ...

table_entry
actionId = ...
params = ...

t4p4s
(DPDK target)

DPDK
Hash
Table

Advantages
• Only one indirection
• Enforcing spatial locality
• Aligned to 16 Byte
• Better cache utilization

Problems
• Fixed table size
• Lost memory for low table fill

rates

M. Simon et al. — Table Updates within Data Planes 18



Storage Design
Throughput and Cache Misses for Static and Dynamic Storage, 84 Byte Packets

100 101 102 103 104 105 106
0

2

4

6

8

10

Table Entries

T
h
ro
u
gh

p
u
t
[M

p
p
s] dynamic

static

100 101 102 103 104 105 106

0

1

2

3

4

5

·108

L
3
M
is
se
s

• Static design achieves more throughput, especially for large table sizes
• Performance gain up to 40 %

M. Simon et al. — Table Updates within Data Planes 19


	Introduction
	Table Updates
	Evaluation
	Table Architecture
	Conclusion
	Bibliography
	Additional slides
	Storage Design

