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Abstract

Numerical integration or quadrature is one of the workhorses of modern scientific com-

puting and a key operation to perform inference in intractable probabilistic models. The

epistemic uncertainty about the true value of an analytically intractable integral identifies

the integration task as an inference problem itself. Indeed, numerical integration can be

cast as a probabilistic numerical method known as Bayesian quadrature (bq). bq leverages

structural assumptions about the function to be integrated via properties encoded in

the prior. A posterior belief over the unknown integral value emerges by conditioning

the bq model on an actively selected point set and corresponding function evaluations.

Iterative updates to the Bayesian model turn bq into an adaptive quadrature method that

quantifies its uncertainty about the solution of the integral in a principled way.

This thesis traces out the scope of probabilistic integration methods and highlights types

of integration tasks that bq excels at. These arise when sample efficiency is required

and encodable prior knowledge about the integration problem of low to moderate

dimensionality is at hand.

The first contribution addresses transfer learning with bq. It extends the notion of active

learning schemes to cost-sensitive settings where cheap approximations to an expensive-

to-evaluate integrand are available. The degeneracy of acquisition policies in simple bq is

lifted upon generalization to the multi-source, cost-sensitive setting. This motivates the

formulation of a set of desirable properties for bq acquisition functions.

A second application considers integration tasks arising in statistical computations

on Riemannian manifolds that have been learned from data. Unsupervised learning

algorithms that respect the intrinsic geometry of the data rely on the repeated estimation

of expensive and structured integrals. Our custom-made active bq scheme outperforms

conventional integration tools for Riemannian statistics.

Despite their unarguable benefits, bq schemes provide limited flexibility to construct

suitable priors while keeping the inference step tractable. In a final contribution, we identify

the ubiquitous integration problem of computing multivariate normal probabilities as a

type of integration task that is structurally taxing for bq. The instead proposed method is

an elegant algorithm based on Markov chain Monte Carlo that permits both sampling

from and estimating the normalization constant of linearly constrained Gaussians that

contain an arbitrarily small probability mass.

As a whole, this thesis contributes to the wider goal of advancing integration algorithms to

satisfy the needs imposed by contemporary probabilistic machine learning applications.





Zusammenfassung

Numerische Integration oder Quadratur ist eine wichtige Methode in wissenschaftlichen

computergestützten Modellen und eine essenzielle Operation für die Inferenz in prob-

abilistischen Modellen. Die epistemische Unsicherheit über den wahren Wert eines

analytisch unlösbaren Integrals lässt eine Formulierung der numerischen Integration

als Inferenzproblem zu. Die resultierende probabilistische numerische Methode nennt

sich Bayes’sche Quadratur (bq). bq nutzt strukturelle Annahmen über die zu integrierende

Funktion, die in der A-priori Verteilung berücksichtigt werden, um durch Konditionierung

auf einen Satz aktiv ausgewählter Punkte und Funktionsauswertungen eine A-posteriori

Verteilung über den unbekannten Integralwert zu konstruieren. Mittels einer iterativen

Anpassung des Bayes’schen Modells ist bq eine adaptive Quadraturmethode, die eine

Quantifizierung ihrer Unsicherheit bezüglich der Lösung des Integrals ermöglicht.

In dieser Dissertation werden die Stärken probabilistischer Integrationsmethoden aufge-

zeigt und spezifische Anwendungen hervorgehoben, für die bq besonders geeignet ist.

Zu derartigen Anwendungen gehören Integrale moderater Dimensionalität, die mittels

begrenzter Ressourcen geschätzt werden müssen und über die kodierbares Vorwissen

vorhanden ist.

Der erste Beitrag befasst sich mit dem Transferlernen mittels bq. Darin wird das aktive

Lernen auf Situationen mit limitiertem Budget übertragen, in denen Auswertungen

des Integranden teuer sind, aber günstigere Approximationen als Informationsquelle

zur Verfügung stehen. Zur Verallgemeinerung der typischen Akquisitionsfunktionen

auf kostenabhängige Raten, die mehrere Funktionen berücksichtigen, bedarf es auf-

grund pathologischer Fälle besonderer Vorsicht. Dies motiviert die Formulierung wün-

schenswerter Eigenschaften einer bq-Akquisitionsfunktion.

In einer weiteren Anwendung werden Integrationsaufgaben untersucht, die bei statistis-

chen Berechnungen auf dateninduzierten riemannschen Mannigfaltigkeiten auftreten.

Unüberwachte Lernalgorithmen, die die intrinsische Geometrie der Daten berücksichti-

gen, sind auf die wiederholte Berechnung teurer und strukturierter Integrale angewiesen.

Unser maßgeschneiderter aktiver bq-Algorithmus übertrifft herkömmliche Integrations-

methoden im Bereich riemannscher Statistik.

Trotz einiger unbestreitbarer Vorteile limitiert die eingeschränkte Flexibilität bei der Kon-

struktion geeigneter A-priori Wahrscheinlichkeiten unter Beibehaltung der geschlossenen

Form des Integrationsschritts den Anwendungsrahmen von bq. Die Berechnung von

Integralen linear begrenzter multivariater Normalverteilungen ist ein allgegenwärtiges

Integrationsproblem, welches eine ungünstige Struktur für bq aufweist. Die alternativ

vorgeschlagene Methode ist ein eleganter Algorithmus, der auf einem Markov-Chain-

Monte-Carlo-Verfahren basiert und sowohl die Stichprobenziehung als auch die Schätzung

der Masse von linear beschränkten Gauß-Integralen ermöglicht.

Im weitesten Sinne leistet diese Arbeit einen Beitrag zur Weiterentwicklung pratikabler

Integrationsalgorithmen für Anwendungen des maschinellen Lernens.
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Notation

General Notation and Preliminaries
a, b, c, . . . A vector

A, B, C, . . . A matrix

a, b, c, . . . A scalar

α An acquisition function α : X → R

C[·, ·] Covariance

D Data, usually {xn, yn}N
n=1 = {X, y} the default dataset

D? Prospective, yet unobserved data {X?, y?}
D Input dimension

D
KL

(p | | q) The Kullback-Leibler divergence between p and q
e Euler’s constant

εn Noise variable of the nth
data point

erf The error function

E[·] Expectation

f short form of fX



fX N stacked function evaluations of f , f X = [ f (x1), . . . , f (xN)]
>

f f : RD → R, x 7→ f(x) a random process

f The random process restricted to nodes X, short for fX

f f : RD → R, x 7→ f (x) a real function

Γ The Gamma function

GP A Gaussian process

G K + σ2 I Kernel Gram matrix with additive noise (N × N)

G? K? + σ2 I Kernel Gram matrix with additive noise (N? × N?) at new nodes

H Entropy

I An identity matrix (when the size is clear from the context)

ID A D× D identity matrix

1[·] Indicator function 1[X] = 1 if X is true, otherwise 1[X] = 0
1 A vector [1, . . . , 1]>

I Mutual information

K k(X, X) Kernel Gram matrix—no index defaults to evaluation at X
K? k(X?, X?) Kernel Gram matrix at prospective points X?

k A positive semi-definite kernel k : RD ×RD → R, x, x′ 7→ k(x, x′)
k(X, X ′) The kernel evaluated at given pairs (xi, x′j), k : RD×N ×RD×N′ → RN×N′

kD The posterior variance of a gp

κ κ : RD → R, x 7→ κ(x) =
∫
X k(x, x′)ν(x′) dx′ Kernel mean

κ κ(X) ∈ RN
Kernel mean at locations X

κ? κ(X?) ∈ RN
Kernel mean at prospective locations X?

λ A scalar lengthscale λ ∈ R+

L A lower triangular matrix (Cholesky factor)

Λ A lengthscale matrix Λ ∈ RD×D
+

m = mX , the prior mean function at locations X
µ A mean vector

m A prior mean function m : X → R

mD The posterior gp mean function mD : X → R

m The prior bq mean, m =
∫
X m(x)dν(x)

mD The posterior bq mean m =
∫
X mD(x)dν(x)

N (x; µ, Σ) A Gaussian distribution with mean µ and covariance Σ

ν(x) An integration measure on X
N Number of observations

N? Number of prospective observations

p, q Probability density functions

Q( f ; X, w) A quadrature rule with nodes X and weights w ∈ RN

Qk( f ; X) A kernel quadrature rule

R The real numbers

rΛ The Mahalanobis distance w.r.t. the matrix Λ

σ2
A (noise) variance

Σ A covariance matrix

Θ A parameter space



θ A random variable for unknown parameters

θ A parameter realization θ ∈ Θ
θ A kernel output scale

T Some transformation operator

ϑ An angle ϑ ∈ [0, 2π]

V[·] Variance

v The prior bq variance

vD The posterior bq variance

w Weights, w = [w1, . . . , wN ]
> ∈ RN

Φ(·) The cumulative Gaussian

X N input locations X = [x1, . . . , xN ], X ⊂ X
X? N? new input locations [x1, . . . , xN? ]

X Input domain X ⊆ RD

x Input location, x ∈ X
x? A single new input location x? ∈ X
xn The nth

input location

x1:N N input locations, synonymous for X
x Input location when D = 1, i. e., X ⊆ R

y A random variable representing yet unobserved evaluations y
y Function evaluations y = [y1, . . . , yN ]

>

yn A single function evaluations yn = f (xn) + εn

y1:N Synonymous for y
Z A random variable representing the unknown integral Z
Z An integral Z =

∫
X f (x)dν(x)

Chapter 5 (Active Multi-Information Source Bayesian Quadrature)
α`?(X?) A non-myopic acquisition function, αl?(x?) in the myopic case

B A coregionalization matrix (L× L)

cl The cost of source l, in general c : L×X → [δ, 1]
δ 0 < δ ≤ 1, the lower bound on the cost

εl Noise of source l
f (x) f : RD → RL, x 7→ f (x) a vector-valued function

f(x) A vector-valued random process

fl(x) The lth information source

G` = K``(X, X) + Σ` ∈ RN×N
the noise-corrected Gram matrix

K The L× L matrix-valued covariance function with entries kll′(x, x′)
K``(X, X) The Gram matrix, K``(X, X) ∈ RN×N

L The set of information sources L = {1, . . . , L}
` The sources that have been evaluated, ` = {ln}N

n=1

`? The sources that are to be evaluated, ` = {ln}N?
n=1

L Number of information sources, indexed by l
l The index of one information source l ∈ L, l = 1 is the primary source

m Prior mean function m ∈ RL



X? Locations of prospective observation triplets

N? Number of prospective observation triplets

Σ` = diag(σ2
l1
), . . . , σ2

lN

y`?
Prospective noisy function evaluations at sources `?

y` Noisy function evaluations y` = [ fl1(x1) + εl1 , . . . , flN (xN) + εlN ]
>

Z1 The random variable representing Z1

Z1 The integral over the primary source, Z1 =
∫
X f1(x)dν(x)

Chapter 6 (Bayesian Quadrature on Riemannian Data Manifolds)
α Acquisition function (here: us)

ᾱ dcv acquisition function

β Scaling factor of a unit tangent vector

C The normalization constant of the Gaussian on the manifold

D Data collected by bq, D = {vn, fµ(vn)}Nbq

n=1

δ A small positive offset

Expµ(·) Exponential map Expµ(·) : TµM→M
η A stochastic function for construction of the metric tensor M
E(γ) The energy functional

f The random process associated with fµ

fµ The integrand, fµ : TµM→ R+

g An auxiliary gp s.t. f = 1/2g2 + δ

γ A curve γ : [0, 1]→M

g Auxiliary function g =
√

2( fµ − δ)

Jη The Jacobian of η

K The number of components in a land mixture

Logµ(·) Logarithmic map Logµ(·) :M→ TµM
L The Lagrangian

L(γ) The length of a curve γ

µ The land mean and reference point for computations on the tangent space

µk The mean of the kth
land component

M A Riemannian manifold

µ2
{φ,θ} Mean of the vae encoder (φ) and decoder (θ)

M A metric tensor

N Size of the dataset

Nbq Number of bq nodes

πk Weight of the kth
land component

pθ A decoder of a vae with parameters θ

qφ An encoder of a vae with parameters φ

ρ A parameter that determines the asymptotic value of the metric

rnk The responsibility of the kth
land component for the nth

datum

σ2
The lengthscale of the kernel metric

Σ Euclidean covariance of the land model

σ2
{φ,θ} Variance vector of the vae encoder (φ) and vae decoder θ



Σk The covariance of the kth
land component

S Number of mc samples

TµM The tangent space toM at µ

v̂ A tangent vector with unit norm

v A tangent vector v ∈ TµM
wn The weight of the nth

point in a kernel metric

x A location on the manifold x ∈M
xn The nth

datapoint

xd dth
component of a location x ∈M

xnd dth
component of the nth

datapoint xn

Chapter 7 (Inference With Gaussians Under Linear Domain Constraints)
A Matrix containing the linear constraints, A ∈ RD×M

am The mth
linear constraint

b The shift vector of the linear constraints

bm The mth
shift of the linear constraints, γT = 0

γt Shift of the tth
subset

L The integration domain where ∏M
m=1 a>mx + bm > 0

Lt The tth
subset defined through γt

λ An arbitrary parameter

M Number of linear constraints

N Number of samples per subset

ρ̂t The estimated tth
conditional probability for hdr

ρ ρ ∈ [0, 1] conditional probability for subset simulation

ρt tth
conditional probability for hdr

T Number of subsets

Ẑ The mc estimator for the integral

Z The integral

∫
L dN (0, I)

Acronyms

amsbq active multi-information source Bayesian quadrature

bo Bayesian optimization

bq Bayesian quadrature

dpp determinantal point process

ep expectation propagation

ess elliptical slice sampling

gp Gaussian process

hdr Holmes-Diaconis-Ross algorithm

hmc Hamiltonian Monte Carlo

icm intrinsic coregionalization model



i.i.d. independent and identically distributed

ip integral precision

ipi integral precision increase

ivr integral variance reduction

krr kernel ridge regression

land locally adaptive normal distribution

lin-ess elliptical slice sampling with linear constraints

mc Monte Carlo

mcmc Markov chain Monte Carlo

mi mutual information

niv negative integral variance

ode ordinary differential equation

pdf probability density function

pnm probabilistic numerical method

qmc quasi-Monte Carlo

rkhs reproducing kernel Hilbert space

smc sequential Monte Carlo

adk adenylate kinase

bvp boundary value problem

cdf cumulative distribution function

cpu central processing unit

dcv directional cumulative variance

gmm Gaussian mixture model

ivp initial value problem

lmc linear model of coregionalization

mmd maximum mean discrepancy

nuts no-U-turn sampler

pca principal component analysis

pe percentile estimator

rbf radial basis function

rl reinforcement learning

sbq sequential Bayesian quadrature

seir susceptible, exposed, infected, recovered

sir susceptible, infected, recovered

vbmc variational Bayesian Monte Carlo

vae variational autoencoder

vbq vanilla Bayesian quadrature

wce worst-case error

wsabi warped sequential active Bayesian integration

wsabi-l wsabi with linearization

wsabi-m wsabi with moment matching





Prologue





2: Terminology is somewhat inconsistent.

Some researchers use quadrature to mean

numerical integration of univariate func-

tions, and cubature originally for two-, later

in general for multi-dimensional integra-

tion. Here we take a dimension-agnostic

view and use numerical integration and

quadrature synonymously, but refrain from

usage of the term cubature.

Introduction 1
The fundamental theorem of calculus

1
1: First proved by Isaac Barrow [48, Lec-

ture 10] and the origin of a life-long rivalry

between his student Isaac Newton and

the German mathematician Gottfried Wil-

helm Leibniz.

establishes the connection between

integration—the computation of sums of infinitesimal quantities—to dif-

ferentiation, i. e., rates of change. It states that if the integral of continuous

real-valued function f on a closed interval [a, b] is F(x) =
∫ x

a f (x)dx,

then F is differentiable and its derivative is F′(x) = f (x). Derivative

calculus follows mechanical rules so simple that computers can auto-

matically and with little overhead differentiate through any computer

program that executes an arbitrarily nested sequence of elementary

operations on a set of basic functions with known derivatives [101]

[101]: Griewank (2014), Automatic differenti-

ation

. In-

tegration, alas, is more intricate and lacks a tool that is even remotely

akin to automatic differentiation. Even for univariate integrals, the list of

recipes for closed-form integration is limited [99]

[99]: Gradshteyn and Ryzhik (2014), Table

of integrals, series, and products

, and an enormous body

of literature is concerned with numerical methods for quadrature
2

of

intractable integrals—integrals that have no analytic form [60]

[60]: Davis and Rabinowitz (1983),

Methods of numerical integration

. Numer-

ical schemes are concerned with the approximation of tasks that lack

a closed-form solution by a sequence of atomic arithmetic operations

on floating-point numbers that computers excel at. The difficulty of

integration grounds on the fact that it is a global operation. In order to

determine an overall mass, the density
3

3: i. e., the mass contained in an infinitesi-

mal volume element

must in principle be known at

every location. In contrast, differentiation operates locally—it asks for the

rate of change of a quantity at a single, given location. To make matters

worse, classic numerical recipes that have proven successful in solving

univariate integration problems suffer from the curse of dimensionality, the

exponential explosion of computational cost with increasing dimension,

when applied to multivariate problems [26] [26]: Bellman et al. (1957), Dynamic

programming

. The conception of adequate

integration algorithms for contemporary applications is thus a matter of

ongoing research, to which this thesis is merely a small contribution.

Numerical integration is only one of the workhorses of computational

methods that have become indispensable for modern scientific discovery.

They form the cornerstone for solving complex mathematical models in

virtually all disciplines of science and engineering.

Consider the example of Earth system models. These are large-scale global

climate models that simulate the dynamics of the physical components

of the climate system (atmosphere, ocean, land, and sea ice) including

biogeochemical cycles to predict its response to external forcing [73]

[73]: Flato et al. (2013), ‘Evaluation of

climate models’
.

Finite computational resources set a limit on the complexity of such

models and mandate approximations. Simplifications are also needed

to handle the lack of understanding of some processes such as cloud

formation. Uncertainty is thus inherent to these models. The notion of

uncertainty is categorized in two classes:

I Epistemic uncertainty refers to uncertainty caused by ignorance

about things that could be known in principle, such as the above

examples. We can be uncertain about deterministic quantities by

simply not knowing them.

I Aleatoric uncertainty refers to inevitable unpredictability due to

randomness that corrupts the outcome of an experiment by an
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4: Chaos is the reason why it is so dif-

ficult to predict the intensity of extreme

weather events such as storms, or even just

medium-term weather variability. We will

touch on problems related to the predic-

tion of rare events on a more abstract level

in Chapter 7.

However, one might argue whether ran-

domness exists in nature at all. Wouldn’t

tossing a die—from Latin alea—be per-

fectly predictable if we exactly knew the

initial conditions of the toss, and every

little detail about the friction on the sur-

face? This would transfer said problem

into the previous category of uncertainty.

The same is true if the exact conditions of

the Earth system were known could be

reproduced.

5: Physics-informed machine learning

models are on the rise.

irreducible stochastic component. Stochasticity is sometimes at-

tributed to chaotic systems such as the atmosphere in which tiny

disturbances can lead to massive discrepancies in the outcomes of

repeated experiments.
4

Information is key to mitigating uncertainty. Data collection and stor-

age has grown at a tremendous rate in recent years that is constantly

challenging the ever-increasing limits of resources in compute and phys-

ical memory. The over-abundance of data has led to the emergence of

powerful data-processing tools under the umbrella of machine learning.

Machine learning models are predictive models that establish a statistical

relationship between inputs and outputs purely from data without any

physical assumption on the data generating process.
5

Models—whether mechanistic or statistical—have in common that they

make predictions about unknown quantities, i. e., they perform infer-

ence on latent quantities. Inference refers to the procedure of drawing

new conclusions based on given premises either through deductive rea-

soning—when logical conclusions can be drawn—or through inductive

reasoning, the process of reducing uncertainty about unknown quantities

on the grounds of incomplete information [125] [125]: Jaynes (2003), Probability theory: The

logic of science

. We focus on inference

as a principled way for decision-making in the face of uncertainty.

In that sense, deterministic models of dynamical systems deduce future

states of the system from the current state and knowledge about the gov-

erning dynamics. Machine learning models infer functional relationships

between data and labels. Latent parameters of mechanistic models can

be inferred from observations of the physical world; this type of problem

is known as inverse problem.

Taking a rather unconventional position, numerical algorithms also per-

form inference: they infer solutions to intractable equations through

computation. This perspective is taken by the young field of probabilistic

numerics, which sees numerical algorithms as learning agents [108] [108]: Hennig et al. (2015), ‘Probabilistic

numerics and uncertainty in computa-

tions’

. Un-

certainty guides them in taking decisions about actions to query certain

information. In probabilistic numerics, data are results of computation on

a cpu. This thesis primarily focuses on a Bayesian view on numerical inte-

gration, but remains open towards the wider scope of efficient inference

algorithms that enhance scientific computing.

1.1 Numerics for inference

Bayesian statistics is concerned with finding a posterior belief about vari-

ables of interest θ ∈ Θ ⊆ RD
conditioned on observed dataD. Inference

requires a model about the data generating process and assumptions

on values θ that the parameters θ could take a priori.
6

6: θ denotes the random variable, θ a

realization of θ, i. e., one fixed set of

parameters. We use the short notation

p(θ) = p(θ = θ) to denote the proba-

bility that θ takes the value θ; or in the

continuous case that the observation falls

within an infinitesimal interval around θ.

These span an

overall hypothesis space H that contains all possible explanations of the

data that we wish to admit.
7

7: H becomes important in testing differ-

ent hypothesis against each other and is

usually omitted if only one is dealt with

(which we will do most of the time).

The model connects parameter realizations

θ and observations D via the likelihood p(D | θ,H). It is a function of

the parameters and represents how likely it is to see the data D if the

parameter were fixed to θ under the hypothesis H. Assumptions about θ

are encoded via the prior p(θ |H). Bayes’ theorem specifies how to update
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p(D |H1)

p(D |H2)

D

ev
id

en
ce

Figure 1.1: Bayesian inference penalizes

complex models and thus implicitly en-

codes Occam’s razor that states that the

simplest model that is able to explain the

data should be preferred. A simple model

(here H1) can accommodate only a limited

range of predictions but assigns a larger

probability—the evidence—to such data.

A complex model H2 can cover more data,

but needs to spread the probability mass

over this wider range of possible predic-

tions. If D falls into the shaded area, H1
is preferred over H2 on the grounds of a

larger evidence. This illustration is repro-

duced from Fig. 2 in MacKay [167].

to an a posteriori belief about the parameters given the data
8

8: Named after Reverend Thomas Bayes

[23], although the development of what

we now call Bayesian statistics in fact largely

goes back to Laplace [153].

p(θ |D,H)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(D | θ,H)

prior︷ ︸︸ ︷
p(θ |H)

p(D |H)︸ ︷︷ ︸
evidence

. (1.1)

It is a straightforward corollary of the sum and product rule of probability

that in turn directly follow from the axiomatic grounds that probability

theory is built on.
9

9: Two different sets of axioms by Cox [54]

and Kolmogorov [145] §1 have been used

to arrive at the same rules for probability

calculus that the reader is assumed to

be familiar with. If not so, they may be

referred to the excellent textbook by Jaynes

[125] or MacKay [168].

The denominator of (1.1) ensures that the posterior density is normal-

ized. It is an integral
10

10: Ifθ is continuous—ifθ is discrete, it is

a sum. We assume that all densities exist.

over the joint probability density p(D, θ) =
p(D | θ)p(θ), dropping H for readability,

p(D) =
∫

Θ
p(D | θ)p(θ)dθ. (1.2)

The integration over θ is termed marginalization and can be understood

as averaging over all possible states of a random variable, weighted

by the probability of that particular state. p(D) is called evidence or

marginal likelihood. The term evidence originates from its significance

for evaluating hypotheses against each other: p(D |H) is the probability

of the observed data D under a given hypothesis. If the probability to

observe data D is higher under hypothesis H1 than under H2, we can

conclude that hypothesis H1 is superior over H2 to explain the given data

(cf. Figure 1.1).

Once the posterior is known, the key tasks are to compute expectations

of functions of interest w.r.t. the posterior

Eθ |D[ f (θ)] =
∫

Θ
f (θ)p(θ |D)dθ (1.3)

and predictions of new data D?, which can be seen as posterior expecta-

tions of the likelihood

p(D? |D) =
∫

p(D? | θ)p(θ |D)dθ.

Unless likelihood and prior are conjugate, the posterior is rarely available

in closed form. The immediate culprit is the evidence (1.2), and further

down the line integrals of type (1.3). Boldly said, Bayesian inference

problems are covered in their entirety by these two types of integrals.

If integration was easy, so would be Bayesian inference.

This statement is of course a bit of an oversimplification in the sense that

inference on large datasets would still be prohibitively expensive even if

the true posterior were available. Just evaluating the likelihood of a large

amount of independent and identically distributed (i.i.d.) data can be a

computational burden that outweighs the cost of the integration problem.

Worse even, we will encounter cases in this thesis where integrals are

tractable, but their evaluation requires combinatorial iteration over the

dataset, which renders numerical integration superior over evaluation of

the closed-form expression.
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Nevertheless, efforts in approximate inference in one way or the other

revolve around approximating or circumventing the integrals (1.2) and

(1.3) and have brought forth a zoo of algorithms (see e.g., [30]). These can

be categorized into Monte Carlo techniques for sampling [150], or approxi-

mation of the posterior by a tractable distribution, e.g., variational inference

[31], Laplace approximation or expectation propagation [176]. Sampling uses

random numbers to approximate expectations as a sum

[30]: Bishop (2006), ‘Pattern recognition

and machine learning’

[150]: Kroese et al. (2013), Handbook of

Monte Carlo methods

[31]: Blei et al. (2017), ‘Variational

inference: A review for statisticians’

[176]: Minka (2013), ‘Expectation propa-

gation for approximate Bayesian inference’

Eθ |D[ f (θ)] ' Ê[ f (θ)] =
1
S

S

∑
s=1

f (θs) θs ∼ p(θ |D).

Samples from the posterior usually rely on Markov chain Monte Carlo

(mcmc) techniques that only asymptotically sample from the true posterior

and have all sorts of pleasant theoretical guarantees, but are often slow

in practice. Conveniently, they do not require to compute the evidence in

order to estimate expectations. Inconveniently, the evidence cannot be

estimated from the samples, but either require a separate procedure or

one of the rare targeted algorithms that can solve both tasks, e.g., through

tempering Graham and Storkey [100] or nested sampling Skilling [232]. [100]: Graham and Storkey (2017),

‘Continuously tempered Hamiltonian

Monte Carlo’

[232]: Skilling (2004), ‘Nested sampling’

The alternative are strategies for finding distributions that are in some

sense representative of the true, intractable posterior. There are multiple

rationalia to construct such an approximation, and usually optimized

towards predictive performance. A rough estimate of the evidence is

merely a side product and can be of low quality [151] [151]: Kuss et al. (2005), ‘Assessing ap-

proximate inference for binary Gaussian

process classification.’

.

The unconventional, third option that we will focus on for solving

inference problems is by viewing the computation of the evidence as

an inference problem itself. Through appropriate choices of model,

this procedure is analytically tractable and even provides a measure of

uncertainty on the estimated evidence.

1.2 Inference for numerics

[205]: Poincaré (1912), Calcul des probabilités

[154]: Larkin (1972), ‘Gaussian measure

in Hilbert space and applications in

numerical analysis’

[4]: Ajna and Dalenius (1960), ‘Några

tillämpningar av statistiska idéer på

numerisk integration’

[142]: Kimeldorf and Wahba (1970),

‘A correspondence between Bayesian

estimation on stochastic processes and

smoothing by splines’

[66]: Diaconis (1988), ‘Bayesian numerical

analysis’

[191]: O’Hagan (1992), ‘Some Bayesian

numerical analysis’

[190]: O’Hagan (1991), ‘Bayes-Hermite

quadrature’

[231]: Skilling (1993), ‘Bayesian numerical

analysis’

The loop closes when regarding numerical algorithms through the lens

of probabilistic inference. A numerical method estimates a deterministic

quantity that is inherently unknown on the grounds of finite computa-

tion. This process bears structural resemblance to inference: a numerical

method infers a latent quantity that we are epistemically uncertain about—

the intractable solution to a numerical problem—by collecting data, that is,

outcomes of feasible auxiliary computations that bear information about

the quantity of interest. The procedure of numerical computation is hence

amenable to a probabilistic treatment. As opposed to classic methods

that output point estimates about the numerical solution to a problem,

probabilistic numerical algorithms output probability distributions.

The conceptual origin of probabilistic numerics dates back to the 1890s,

when Henri Poincaré lectured on probability calculus at Sorbonne uni-

versity in Paris. He explicitly associates numerical problems such as the

computation of definite integrals, initial value problems, and inverse

problems with epistemic uncertainty and recommends treating them

probabilistically [205]. The second half of the following century saw scat-

tered works
11

11: see Cockayne et al. [51] and Hennig

et al. [112] for a more complete historical

context.

that largely explore theoretical relations between statistics

and computational tasks, e.g., [154, 4, 142]. The road towards practicable

algorithms was paved by Diaconis [66], O’Hagan [191, 190] and Skilling

[231] who attacked integration and differential equations from a Bayesian
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viewpoint, and Močkus who laid the foundations for Bayesian optimiza-

tion [178, 179].

[178]: Močkus (1975), ‘On Bayesian

methods for seeking the extremum’

[179]: Močkus (1994), ‘Application of

Bayesian approach to numerical methods

of global and stochastic optimization’

[108]: Hennig et al. (2015), ‘Probabilistic

numerics and uncertainty in computa-

tions’

[51]: Cockayne et al. (2019), ‘Bayesian

probabilistic numerical methods’

[112]: Hennig et al. (2022), Probabilistic

Numerics: Computation as Machine Learning

The field has taken off in the second decade of the 2000s

under the banner of Hennig et al. [108] and Cockayne et al. [51]. By 2021,

probabilistic numerical methods (pnms) have left the stage of merely

demonstrating their validity and have produced innovative algorithms

that have found compelling use cases in practical and industrial appli-

cations. With a brand-new textbook [112] and probnum12

12: probnum.readthedocs.io

, a designated

toolbox purely for probabilistic numerical methods
13

13: Individual pnm have appeared in a

number of toolboxes, such as emukit [196],

botorch [20], and others.

the community

is settling down as an established field at the intersection of numerical

methods, probability theory, statistics, and machine learning.

[190]: O’Hagan (1991), ‘Bayes-Hermite

quadrature’

[37]: Briol et al. (2019), ‘Probabilistic inte-

gration: A role in statistical computation?’

[22]: Bartels et al. (2019), ‘Probabilistic

linear solvers: A unifying view’

[109]: Hennig (2015), ‘Probabilistic

interpretation of linear solvers’

[260]: Wenger and Hennig (2020),

‘Probabilistic linear solvers for machine

learning’

[49]: Chkrebtii et al. (2016), ‘Bayesian

solution uncertainty quantification for

differential equations’

[223]: Schober et al. (2019), ‘A probabilistic

model for the numerical solution of initial

value problems’

[141]: Kersting et al. (2020), ‘Convergence

rates of Gaussian ODE filters’

[147]: Krämer and Hennig (2021), ‘Linear-

time probabilistic solution of boundary

value problems’

[140]: Kersting et al. (2020), ‘Differentiable

likelihoods for fast inversion of likelihood-

free dynamical systems’

[52]: Cockayne et al. (2017), ‘Probabilistic

numerical methods for PDE-constrained

Bayesian inverse problems’

[255]: Wang et al. (2021), ‘Bayesian

numerical methods for nonlinear partial

differential equations’

[229]: Shahriari et al. (2016), ‘Taking

the human out of the loop: a review of

Bayesian optimization’

[78]: Garnett (2022), Bayesian optimization

[169]: Mahsereci and Hennig (2015),

‘Probabilistic line searches for stochastic

optimization’

[102]: Gunter et al. (2014), ‘Sampling for

inference in probabilistic models with fast

Bayesian quadrature’

[33]: Bosch et al. (2021), ‘Calibrated

adaptive probabilistic ODE solvers’

[62]: de Roos and Hennig (2019), ‘Active

probabilistic inference on matrices for pre-

conditioning in stochastic optimization’

Probabilistic numerics is still a young field that has been sparked by the

emergence of increasingly challenging computational problems that arise

with big data and ever more complex models in science and machine

learning. Up until today, the probabilistic numerics armory has seen

tremendous progress in most areas of numerical analysis. This non-

exhaustive list does not do justice to the amount of recent advances that

make the field evolve at unprecedented speed:

I Bayesian quadrature (bq) constructs posterior measures over the value

of an intractable integral Z =
∫
X f (x)dν(x) from evaluations of

the integrand fX = [ f (x1), . . . , f (xN)]
>

[190, 37].

I Probabilistic linear solvers infer the solution x ∈ RN
to a linear system

Ax = b with A ∈ RN×N , b ∈ RN
by assigning a prior probability

to A or the unknown solution x and observing projections of A
[22, 109, 260].

I Initial value problems (ivps) are ordinary differential equations (ode

s) ẋ = f (x, t) with t ∈ [t0, T] subject to an initial condition

x[t0] = x(0). They are structurally similar to time series and a

probabilistic solution can be obtained by Gaussian filtering [49,

223, 141]. Probabilistic approaches have also been proposed for the

solution of boundary value problems [147], inverse problems [140],

and partial differential equations [52, 255].

I Bayesian optimization (bo) has been widely adopted to find the global

extremum of an expensive black-box functions x∗ = arg minx∈X f (x)
[229, 78]. Stochastic optimization methods benefit from probabilis-

tic subroutines to select hyperparameters, e.g., step sizes via line

searches [169].

The probabilistic perspective on numerical methods comes with multiple

advantages. First and foremost, many numerical problems are highly

structured and have known properties. Knowledge such as positivity

of the integrand in Bayesian quadrature [102] or symmetry of a matrix

in a linear system [109, 260] can be encoded as inductive bias for the

probabilistic numerical method via the prior.

Moreover, the explicit treatment of uncertainty puts a measure on the

inaccuracy due to discretization and a finite amount of computational

resources. The uncertainty can be used to precociously stop an algorithm

once a desired accuracy is reached or to adapt parameters of the algorithm

to remain within a specified confidence interval with high probability, e.g.,

to adapt step sizes in probabilistic ode solvers [33]. pnm further come with

a sound way of incorporating noise, when exact evaluations are unavail-

able, e.g. because they originate from noisy measurements, or require a

massive amount of data that can not be loaded in memory (e.g., [62]).

probnum.readthedocs.io
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As a direct consequence of expressing uncertainty, the probabilistic

approach unlocks Bayesian decision theory to reason about optimal

actions to be taken by the algorithm based on previous data and the

model. Active decision-making turns algorithms into autonomous agents

that interact with their environment and adaptively choose actions to

optimize the information gained from new observations under the current

belief about the computational objective.

At the same time, pnm are becoming increasingly competitive to stan-

dard numerical algorithms and come with implementations that permit

benchmarking against established classical methods, e.g., [34] [34]: Bosch et al. (2021), ‘Pick-and-mix

information operators for probabilistic

ODE solvers’

for odes.

By now, there are applications in which pnm are a natural, if not the only

choice. As a rule of thumb, pnm are preferred whenever information is

too scarce to run a classical method up to convergence. In cases where

the numerical agent interacts with an expensive source of information,

there might not even be a viable alternative to pnm. This is the uncon-

tested territory in particular for Bayesian optimization and quadrature.

In brief, pnm are successful whenever (i) inference comes at low compu-

tational overhead, as is the case for probabilistic ode solvers that permit

linear-time solutions; or (ii) when uncertainty is sufficiently important to

justify the computational overhead of inference. In the age of big data,

algorithms play an unprecedented rôle in all facets of our everyday lives

and take consequential decisions that impact humans. We better want

methods that communicate their confidence and base their decisions on

a principled treatment of the uncertainty that they face.

1.3 Contributions

The overarching theme of this thesis is to enhance numerical integration

methods for probabilistic inference, where intractable integrals are ubiq-

uitous. The first and primary part deals with Bayesian quadrature with a

focus on practical aspects and use cases. It highlights practical benefits

of the uncertainty quantification in bq that enable algorithms that lack

their like amongst classical numerical integration schemes. The thesis

elucidates the scope of the probabilistic formulation of quadrature and

aims to enhance the accessibility of the yet underemployed numerical

integration scheme that bq continues to be. This motives an intuitive

introduction aimed at potential practitioners in Chapter 2 (Bayesian

Quadrature).

Previous research has largely concentrated on the theoretical well-

groundedness of bq, with valuable results on consistency and con-

vergence. Those are prerequisites to guarantee that newly conceived

Bayesian numerical integration schemes produce correct outcomes. In

real-world use-cases, however, bq does not operate in the limit regime

that underlies assumptions made for theoretical analysis. The theoretical

grounds of bq therefore play a minor role in this work, but the key results

and connections to the well-studied theory of reproducing kernel Hilbert

spaces (rkhss) are reviewed in Section 2.3.

Large sample sizes fundamentally pose a challenge to bq by construc-

tion due to the cubic cost of inference in the general case. It is a strong

inductive bias and a careful choice of locations for evaluation that make
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bq excel when there is limited computational budget. By assigning prob-

abilities to its action space, a pnm can quantify the expected reward of

action choices and select them accordingly. Chapter 3 (Active Design for

Bayesian Quadrature) studies bq as a self-adapting agent that actively

explores its search space.

Chapter 5 (Active Multi-Information Source Bayesian Quadrature) takes

the decision-theoretic capabilities of bq a step further and develops an

algorithm for information transfer from secondary sources that approxi-

mate the assumed-expensive integration task of interest. This procedure

requires balancing the information gained from querying less accurate

approximations and the invested computational budget. It fundamen-

tally relies on the probabilistic treatment of the numerical integration

to enable information-theoretic reasoning about the utility of future

observations.

Challenging integration tasks also arise in machine learning when ac-

counting for the intrinsic geometry induced by data. Chapter 6 (Bayesian

Quadrature on Riemannian Data Manifolds) ports bq onto geometry-

aware territory and exploits its core strengths—the sample efficiency of

the active bq agent equipped with a strong prior—to speed up computa-

tions for inference tasks on Riemannian manifolds.

Despite the unarguable strengths of bq on specific integration problems,

there exist settings that are notoriously hard for bq. The computation

of multivariate Gaussian probabilities is a ubiquitous integration task

that epitomizes limitations of the standard bq approach via Gaussian

processes and forms the second part of this thesis. Instead of pushing

bq into the limelight purely on dogmatic grounds, certain integration

tasks have properties that motivate leaving the stage to established

stochastic integration methods based on (Markov Chain) Monte Carlo

(mc)mc, with a concise overview in Chapter 4. Chapter 7 (Inference With

Gaussians Under Linear Domain Constraints) takes a deep dive into the

integration of multivariate normal distributions subject to linear domain

constraints. These are ubiquitous integration problems that by design

are not amenable to the standard bq approach via Gaussian processes.

We pragmatically develop a sampling and estimation scheme that relies

on the interplay of tailored mcmc algorithms. This method is able to

reliably estimate even tiny probabilities and to provide samples from the

constrained domain needed to compute expectations.

Overall, this thesis develops conceptual guidelines for the use of bq and

traces out its scope by studying some settings that undisputably reside

within and others that exceed the realms of bq.



1 Introduction 10

HAS IT
CONVERGED?
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Figure 1.2: Top: Randall Munroe’s accu-

rate (albeit incomplete) view on integra-

tion (Differentiation and Integration by Ran-

dall Munroe, licensed under CC BY-NC

2.5). Bottom: A sparse, still incomplete

(and biased) extension of the integration

flowchart.
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Publications

The research conducted as a part of my PhD studies has been published in

the following peer-reviewed articles, of which the first three are relevant

to this dissertation.

(I) A. Gessner, J. Gonzalez, and M. Mahsereci. ‘Active multi-information

source Bayesian quadrature’. In: Proceedings of the Thirty-Fifth Con-

ference on Uncertainty in Artificial Intelligence, UAI 2019, Tel Aviv,

Israel, July 22-25, 2019. Ed. by A. Globerson and R. Silva. Vol. 115.

Proceedings of Machine Learning Research. AUAI Press, 2019 for

Chapter 5.

(II) A. Gessner, O. Kanjilal, and P. Hennig. ‘Integrals over Gaussians

under linear domain constraints’. In: Proceedings of the Twenty Third

International Conference on Artificial Intelligence and Statistics. Ed. by

S. Chiappa and R. Calandra. Vol. 108. Proceedings of Machine

Learning Research. PMLR, Aug. 2020 for Chapter 7.

(III) C. Fröhlich, A. Gessner, P. Hennig, B. Schölkopf, and G. Arvanitidis.

‘Bayesian quadrature on Riemannian data manifolds’. In: Proceedings

of the 38th International Conference on Machine Learning. Ed. by M.

Meila and T. Zhang. Vol. 139. Proceedings of Machine Learning

Research. PMLR, July 2021 for Chapter 6.

(IV) F. de Roos, A. Gessner, and P. Hennig. ‘High-dimensional Gaussian

process inference with derivatives’. In: Proceedings of the 38th Interna-

tional Conference on Machine Learning. Ed. by M. Meila and T. Zhang.

Vol. 139. Proceedings of Machine Learning Research. PMLR, July

2021 is not covered.

The success of these projects heavily relied on the joint work with

collaborators.

(I) Gessner et al. [89] was initiated by Maren Mahsereci and Javier

Gonzalez and carried out by me as part of an internship at Amazon

Research, Cambridge, UK. The original direction was proposed by Javier

Gonzalez, while the project was pinned down by Maren Mahsereci,

who also provided continual guidance and structure throughout the

project. Derivations are due to both Maren Mahsereci and me. The

implementation of the method and the bulk of the experiment have been

executed by me, except for the bivariate experiment that is due to Maren

Mahsereci. Chapter 3 and 5 are based on this publication.

The initial idea for (II) Gessner et al. [90] was due to Philipp Hennig, and

was further developed by him and me jointly. Oindrila Kanjilal provided

expertise in reliability analysis and multilevel splitting techniques, espe-

cially about the Holmes-Diaconis-Ross algorithm (hdr). I performed the

majority of the work on derivations, implementation, experiments, and

writing. This work is the basis of Chapter 7.

(III) Fröhlich et al. [77] was a collaborative project initiated by Georgios

Arvanitidis and me. The methodological part was split thematically:

Georgios Arvanitidis was responsible for everything relating to geom-

etry; the conceptional background related to Bayesian quadrature was

provided by me. Christian Fröhlich carried out the project as a part of

his Master thesis, with joint supervision by Georgios and me. Much of

the development of the project has happened collaboratively. Chapter

6 is in parts very close to the initial submission of this work. That said,
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there might be text passages that have been primarily written by my

co-authors—especially the parts on differential geometry, the locally

adaptive normal distribution (land) model, and details on experiments—

and this text might have some overlap also with the M.Sc. thesis by

Christian Fröhlich. The visualizations have exclusively been prepared by

Christian Fröhlich and only slightly adapted by me for this thesis.

(IV) de Roos et al. [61] will not be covered, as it is fairly unrelated to the

main thread of this dissertation. The scientific idea of this work is entirely

due to Filip de Roos, but has been refined in extensive discussion between

us. Derivations have been carried out by him, and have been checked,

complemented, and notationally aligned by me. He also took care of

the implementation. My contribution was an experiment employing the

methods devised by Filip de Roos, and a significant part of the paper

writing.



Preliminaries





0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Z

x

f(
x)

Figure 2.1: The univariate function (2.3)

X = [0, 1]. The gray area under the curve

is our object of interest.

1: The motivating example heavily leans

on Diaconis [66] and Hennig et al. [108].

Bayesian Quadrature 2
Consider the problem of computing the integral over a function f : X →
R over a domain X ⊆ RD

against a measure ν(x) on X ,

Z =
∫
X

f (x)dν(x). (2.1)

When no closed-form solution to this integral is available, numerical

methods are needed. Numerical integration schemes seek to approximate

the integral (2.1) by weighted sum of function evaluations—a quadrature

rule

Q( f ; X, w) = w> fX =
N

∑
n=1

wn f (xn), (2.2)

with real weights w = [w1 . . . wN ]
> ∈ RN

and function evaluations

fX := [ f (x1) . . . f (xN)]
> ∈ RN

at design points X = {x1, . . . , xN} ⊂ X .

Roughly put, numerical integration is concerned with finding good

weights, good design points, or both, in order to approximate (2.1).

Unfortunately, no one-size-fits-all solution exists that works reliably and

efficiently on any problem of the type (2.1).

There are broadly two popular classes of algorithms for numerical

integration, (i) classical quadrature schemes (Section 2.4) that work well

on univariate or very low-dimensional integral problems; and (ii) Monte

Carlo methods (Chapter 4), that use random samples xn ∼ ν with uniform

weights wn = 1
N to obtain an estimate of the integral. This chapter deals

with probabilistic numerical integration, a less prominent but even more

promising class of numerical integration algorithms.

Probabilistic integration Bayesian quadrature (bq) [190, 175, 37]

[190]: O’Hagan (1991), ‘Bayes-Hermite

quadrature’

[175]: Minka (2000), Deriving quadrature

rules from Gaussian processes

[37]: Briol et al. (2019), ‘Probabilistic inte-

gration: A role in statistical computation?’

takes a

different perspective on (2.1): The intractability of the integral causes Z
to be unknown, even if the integrand f is ‘known’ in the sense that it can

be evaluated anywhere by using elementary arithmetic operations.

Take the example of a univariate function
1 f : [0, 1]→ R+ and its integral

over the domainX = [0, 1] against the Lebesgue measure dν(x) = dx,

f (x) =
√

x e− sin2(10x−2)

cosh(4x− 3)
and Z =

∫ 1

0
f (x)dx, (2.3)

depicted in Figure 2.1. The integrand can be evaluated on a computer

to machine precision at any desired location x ∈ [0, 1] by executing the

computational recipe given by the function (2.3). Doing so requires arith-

metic operations on the functions e, sin, cosh,
√
·, which are sufficiently

low-level to consider them elementary.
2

2: The boundary between elementary op-

erations and an algorithm is debatable.

Hennig et al. [112, Chapter 3] suggest

pragmatism in fixing atomic operations

to those routines available in the gnu C

library.

The presence of the integral sign

changes the situation. The integral of said function is absent in extensive

tables of closed-form integrals such as [99]

[99]: Gradshteyn and Ryzhik (2014), Table

of integrals, series, and products

. Symbolic integration libraries

such as sympy [174]

[174]: Meurer et al. (2017), ‘SymPy:

Symbolic computing in Python’

also capitulate. The integral Z is a deterministic

quantity, but with the algebraic tools we are equipped with, we have

no means of determining its value. The epistemic uncertainty about Z
motivates thinking about the integration as an inference problem. There
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3: One could conceive other forms of ob-

servations, but in quadrature it is common

to deal with point evaluations of the inte-

grand.

Figure 2.2: Left to right: Realizations of two

uncorrelated (Σ12 = 0), positively (Σ12 >
0), and negatively (Σ12 < 0) correlated

Gaussian random variables.

is nothing random about Z, but the lack of knowledge about its value

lets us replace Z by a random variable Z.

Some knowledge about Z can be extracted from the functional form of

the integrand and its plot in Figure 2.1. There we can see that f is positive

and upper-bounded by 1. Given that the integration domain is [0, 1]
we know a priori that 0 < Z < 1. Such knowledge should go into the

construction of a prior over Z. A likelihood connects ‘observations’, which

in quadrature usually are function evaluations
3 fX to Z. All that is left is

to find the posterior Z | fX . As Section 2.2 will show, the expected value

of this posterior takes the form of a quadrature rule (2.2) for a certain

choice of prior. It further comes with a sound measure of uncertainty

about the outcome of the computation. The technical details on how this

is achieved is the topic of this chapter.

Overview This chapter is meant to introduce the reader to numerical

integration from the viewpoint of Bayesian inference. We first equip

the reader with the toolset to consider basic probabilistic integration

algorithms and subsequently place them in a theoretical context. The

remainder of the chapter is concerned with establishing links to other

numerical integration schemes, providing a literature overview, and

touching on more elaborate models used to encode prior knowledge

about the integral in a bq method. At this stage, we assume a fixed

set of design points X given. The following chapter, Chapter 3, will

be concerned with optimal and practical schemes to decide where the

integrand f should be evaluated.

2.1 Gaussian inference

2.1.1 The Gaussian distribution

Of central importance in probability theory and statistics is the normal

or Gaussian distribution. The probability density function (pdf) of a

univariate Gaussian random variable z ∈ R with realizations z ∈ R is

N (z; µ, σ2) =
1√

2πσ2
exp

(
− (z− µ)2

2σ2

)
and is fully characterized by its mean E[z] = µ ∈ R and variance

V[z] = E[z2]−E[z]2 = σ2 ∈ R+.

The univariate Gaussian distribution is easily generalized to N random

variables {zi}N
i=1, stacked into the vector z ∈ RN

, that are said to be

jointly Gaussian distributed with pdf

N (z; µ, Σ) = (2π)−N/2 det(Σ)−1/2 exp
(
−1

2
(z− µ)>Σ−1(z− µ)

)
with now a mean vector µ ∈ RN

with elements E[zi] = µi and a

symmetric, positive semidefinite covariance matrix Σ ∈ RN×N
. The

diagonal entries Σii = σ2
i = V[zi] are the variances of variables zi, and

the off-diagonal entries Σij = Σji = C[zi, zj], i 6= j measure how zi
and zj relate to each other. Σij > 0 indicates that they follow the same

trend, while for Σij < 0 they are negatively correlated such that larger

values of zi tend to entail smaller values of zj. Σij = 0 means they are
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4: Any positive semidefinite matrix Σ can

be decomposed as Σ = LL> where L is a

lower triangular matrix. This ubiquitous

computational trick has been found by

André-Louis Cholesky.

uncorrelated and observing zi carries no information about zj and vice

versa (cf. Section 3.1.1). The effect of the covariance matrix on samples in

a bivariate setting is depicted in Figure 2.2.

Linear operations The distribution is called standard normal when µ = 0
and the covariance is the identity matrix Σ = I. Any Gaussian random

variable z ∼ N (µ, Σ) can be written as a linear transformation of a

standard normal random variable ξ ∼ N (0, I)

z = Lξ+ µ

where L is a suitable decomposition of Σ such that LL> = Σ, e.g., the

Cholesky factorization.
4

In other words, any linear transformation of a

Gaussian random variable z ∼ N (µ, Σ), z1 ∈ RN
is again a Gaussian

random variable z2 ∈ RM
,

z2 = Az1 + b ∼ N (Aµ + b, AΣA>) (2.4)

for A ∈ RM×N
and b ∈ RM

.

Marginalization and conditioning Gaussians are closed under condition-

ing and marginalization. That is, given the joint distribution over z1 ∈ RN

and z2 ∈ RM
as

p(z1, z2) = N
([

z1
z2

]
;
[

µ1
µ2

]
,
[

Σ11 Σ12
Σ21 Σ22

])
both the marginals p(z1), p(z2) and the conditionals p(z1 | z2), p(z2 | z1)
take a Gaussian form as

p(z1) =
∫
X

p(z1, z2)dz2 = N (z1; µ1, Σ11) and

p(z1 | z2) = N
(
z1; µ1 + Σ12Σ−1

22 z2, Σ11 − Σ12Σ−1
22 Σ21

) (2.5)

and vice versa for z2. Since p(z1, z2) = p(z1 | z2)p(z2) is Gaussian, we

can conclude that products of Gaussian densities also take Gaussian

form. As all of Bayesian inference relies on the sum and the product rule of

probabilities, inference with Gaussians boil down to linear algebra. The

popularity of Gaussian distributions is to a large extent based on this

computational convenience.

2.1.2 Gaussian process regression

The marginalization property of Gaussians states that a subset of nor-

mal random variables also follow a normal distribution. In particular,

the marginalized Gaussian does not depend on the parameters of the

variables that have been marginalized over. It is thus possible to consider

continuous index sets X such that the variables indexed at any finite

subset thereof follow a multivariate normal distribution. The generaliza-

tion of the normal distribution from a finite to an infinite collection of

Gaussian random variables is termed a Gaussian process (gp) [212] [212]: Rasmussen and Williams (2006),

Gaussian Processes for machine learning

. A gp is

thus suitable to represent a random function that we denote as f : X → R.
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Figure 2.3: Top: Draws from a gp prior with

Matérn-5/2 kernel (cf. Section 2.1.3), with

zero prior mean. The shaded area indicate

two standard deviations. Center: Three ob-

servations with Gaussian noise (errorbars

again show two std. dev.); bottom: gp poste-

rior conditioned on the data, with draws,

mean and uncertainty as above.

Realizations of the gp are real-valued functions f : X → R and we refer

to x ∈ X as arguments of f rather than indices.

Definition 2.1.1 Let X ⊆ RD
be a non-empty set. A random process f : X →

R is said to be distributed according to a Gaussian process f ∼ GP(m, k) with

mean function m : X → R and covariance function k : X ×X → R, if for

any finite set of arguments X = {x1, . . . , xN} ⊂ X and any N ∈ N, the

vector fX := [f(x1), . . . , f(xN)]
> ∈ RN

is a multivariate normal random

variable that follows the distribution

fX ∼ N (mX , KXX)

with mean vector [mX ]n = m(xn) and covariance matrix [KXX ]nn′ =
k(xn, xn′) for n, n′ = 1, . . . , N.

The mean function is thus the expected value of f under the gp, m(x) =
Ef [f(x)] and similarly, the covariance function denotes the covariance

of function values at inputs x, x′ ∈ X as k(x, x′) = Cf [f(x), f(x′)] =
Ef [(f(x)−m(x)) (f(x′)−m(x′))].

Gaussian process regression gps are a convenient choice of prior over

functions in Bayesian inference tasks such as regression or classification.

Bayesian linear regression deals with inferring the latent (but deterministic)

function f from observations

yn = f (xn) + εn where εn ∼ N (0, σ2)

that are corrupted by i.i.d. Gaussian noise. The likelihood for one datum

is p(yn | xn) = N (yn; f (xn), σ2). Assume we get to see N data points

y := y1:N at input locations X := x1:N summarized as dataD = {X, y}.

The random process f plays the rôle of a surrogate for the latent function f .

Assuming f ∼ GP(m, k), our prior belief—before seeing the data—about

the values that f may take at these locations is
5

5: Textbook linear regression departs

from f(x) = w>ϕ(x), a linear combina-

tion of basis functions ϕ : RD → RM

with Gaussian random weights w ∈ RM

that are to be inferred as p(w | y) ∝
p(y |w)p(w). gps are therefore known

as non-parametric models, because the pa-

rameters w get absorbed in the covariance

function [212, Chapter 2].

f :=

 f(x1)
.
.
.

f(xN)

 ∼ N

m(x1)

.

.

.

m(xN)

 ,

 k(x1, x1) . . . k(x1, xN)
.
.
.

.
.
.

.

.

.

k(xN , x1) . . . k(xN , xN)




which, in short, we write as f ∼ N (m, K)with the prior mean m := mX ∈
RN

and the kernel Gram matrix K s.t. [K]nn′ = k(xn, xn′) as in Definition

2.1.1.
6

6: Note that we have dropped the in-

dices X that identify the input, i. e., f :=
fX , m := mX and K := KXX to reduce

notational clutter. The indices will be used

if the evaluation set deviates from the ‘de-

fault’ dataset D = {X, y}.

The regression task is to infer f after having seen the data D, i. e., to

compute the posterior p(f |D), and to make predictions about function val-

ues at a new input location x?. A rigorous derivation of the posterior using

Bayes’ rule is non-trivial in the infinite-dimensional setting (cf. e.g., [129]

[129]: Kanagawa et al. (2018), ‘Gaussian

processes and kernel methods: A

review on connections and equivalences’

Theorem 3.1

). Nevertheless, the posterior can be obtained through the conditioning

rules for Gaussians. This requires the joint distribution of function values

f? := f(x?) at a new location x? ∈ X and observations y,[
y
f?

]
∼ GP

([
m

m(x?)

]
,
[

K + σ2 I k(x?)
k(x?)> k(x?, x?)

])
,

where we have introduced the shorthand notation [k(x?)]n = k(xn, x?)
for the column vector of kernel evaluations at X. The conditional f? | y
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Figure 2.4: Covariance functions k0(x) :=
k(x, 0) for the following kernels:
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Matérn-3/2

Ornstein-Uhlenbeck (Matérn-1/2)

Brownian motion

is found by applying the familiar rules of Gaussian algebra (2.5). Since

this is applicable to any new location x ∈ X , we can find the predictive

distribution f |D ∼ GP(mD, kD) with posterior mean and covariance

mD(x) := Ef |D[f(x)] = m(x) + k(x)>
(
K + σ2 I

)−1
(y−m) (2.6)

kD(x, x′) := Cf |D[f(x), f(x′)] = k(x, x′)− k(x)>
(
K + σ2 I

)−1k(x). (2.7)

A gp prior and the posterior after conditioning on three observations

is shown in Figure 2.3. When exact observations of f are available, i. e.,

σ→ 0, the expressions for the posterior mean and covariance require K
to be invertible to be well-defined. In practice, a small noise, called jitter,

is often added to the diagonal of K to overcome numerical instabilities.

The computational bottleneck for inference with gps is the inversion

of the kernel Gram matrix K that comes at a cost of O(N3). The cubic

complexity on the one hand hinders the use of gps on large regression

datasets, but on the other hand has sparked an entire sub-field of research

that is concerned with gp approximations to lower the computational

demand. Broadly speaking, they rely either on summarizing data in

so-called inducing points [243]

[243]: Titsias (2009), ‘Variational learning

of inducing variables in sparse Gaussian

processes’

, or on leveraging kernel approximations to

efficiently perform the matrix inversion [136] [136]: Katzfuss and Guinness (2021), ‘A

general framework for Vecchia approxi-

mations of Gaussian processes’

.

Historically, gp regression emerged from spatial modeling tasks in geo-

statistics, where it is known as ‘kriging’. In machine learning, gps have

gained popularity in the early 2000s, following the textbook by Ras-

mussen and Williams [212].

Linear operations Another useful property of gps is their closure under

linear operations. This is the generalization of (2.4) for the multivariate

normal distribution to gps. Let L,M denote linear operators and f ∼
GP(m, k). Then the joint distribution of Lf andMf is also a gp,[

Lf
Mf

]
∼ GP

([
Lm
Mm

]
,
[
LkL′ LkM′
MkL′ MkM′

])
, (2.8)

where L′ and M′ act from the right on the second argument of the

covariance function. Linear functionals of f can thus be inferred from

a finite set of linear observations of f . Examples of linear maps are

projections, translations, differentiation, and integration, the latter being

of significance in this thesis.

2.1.3 Covariance functions

Assumptions about properties such as smoothness of the latent function

are encoded via the covariance function or (positive definite) kernel.
7

7: Whenever referring to kernels, we will

mean positive definite kernels throughout

the thesis.

Definition 2.1.2 (Positive definite kernels) A symmetric bivariate real function

k : X × X → R is called a positive definite kernel if for any finite set

X = {x1, . . . , xN} ⊂ X ; N ∈ N, the matrix K ∈ RN×N
with elements

[K]nn′ = k(xn, xn′) is positive definite, i. e., for all vectors v ∈ RN , v 6= 0

N

∑
n=1

N

∑
n′=1

vnvn′ k(xn, xn′) ≥ 0.
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Figure 2.5: Samples from a zero-mean

gp prior defined through the kernels in

Figure 2.4, with the shaded area indicat-

ing the 2σ confidence interval.

8: The Gaussian kernel also goes under

the names rbf (radial basis function) ker-

nel, squared exponential, or exponentiated

quadratic kernel.

A stationary kernel can be written as k(x, x′) = k(x− x′) and if k(x, x′) =
k(‖x− x′‖), the kernel is said to be isotropic. Kernels can be scaled by a

parameter that changes the output variance of the process, k(x, x′) →
θ2k(x, x′). A process g(x) = a(x)f(x) with a deterministic function a(x) :
X → R and f ∼ GP(m, k) has covariance k̃(x, x′) = a(x)k(x, x′)a(x′).
Also, a deterministic rescaling of the inputs k(x, x′) → k(a(x), a(x′))
results in a valid kernel. Sums and products of kernels are also kernels

[212] [212]: Rasmussen and Williams (2006),

Gaussian Processes for machine learning

Chapter 4.2.4

. A few kernels that are relevant for bq are introduced here and

illustrated in Figure 2.4. Samples from a gp prior with these covariance

functions are illustrated in Figure 2.5.

Gaussian kernel The Gaussian kernel
8

is a stationary covariance function

kΛ(x, x′) = exp
(
− 1

2
(x− x′)>Λ−1(x− x′)

)
(2.9)

with positive definite matrix Λ ∈ RD×D
that defines the length-

scales on which the process varies. A diagonal Λ = diag(λ2
1, . . . , λ2

D)
implies different characteristic lengthscales per dimension; a scalar

lengthscale λ > 0 s.t. Λ = λ2 I implies isotropy. As λ increases, the

correlation between two spatially separate points rises, and typical

functions from the gp vary less rapidly as a function of their input.

Matérn kernels Matérn kernels, due to [171]

[171]: Matérn (1960), ‘Spatial variation’

, are also stationary and

parameterized by a smoothness parameter γ > 0 and a lengthscale

matrix Λ as in the Gaussian kernel. With the shorthand notation for

the Mahalanobis distance rΛ =
(
(x− x′)>Λ−1(x− x′)

)1/2
, their

general form is

kγ,Λ(x, x′) =
21−γ

Γ(γ)

(√
2γrΛ

)γ
Kγ

(√
2γrΛ

)
where Γ is the gamma function and Kγ the modified Bessel function

of second kind of order γ. In the isotropic case, rΛ = ‖x−x′‖/λ. A

kernel of order γ possesses bγc derivatives; hence, γ encodes the

smoothness of the kernel. The larger γ the smoother are the func-

tions modeled and for γ → ∞, the Gaussian kernel is recovered

[236]

[236]: Stein (2012), Interpolation of spatial

data: some theory for kriging

. For half-integer smoothness parameter that can be written as

γ = m + 1/2 in terms of m ∈N0, the expression for the Matérn ker-

nels reduces to the product of an exponential and a polynomial in r,

kγ,Λ(x, x′) = e−
√

2γrΛ
Γ(m + 1)

Γ(2m + 1)

m

∑
i=1

(m + i)!
i!(m− i)!

(√
8γrΛ

)m−i
.

The case γ = 1/2 is known as exponential or Laplace kernel and

is the covariance function of the Ornstein-Uhlenbeck process.

Brownian motion kernel The covariance function of a Wiener process is

known as Brownian motion kernel and defined for D = 1 on

X = [0, 1] as

k0(x, x′) = min(x, x′). (2.10)

Draws from a gp with this kernel are one-dimensional paths of

Brownian motion, therefore its name (see lowest frame of Fig-
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ure 2.5). The M times integrated Brownian motion kernel can be

obtained through the recurrence relation

kM(x, x′) =
∫ x

0

∫ x′

0
kM−1(ξ, ξ ′)dξdξ ′ = (M!)−2

∫ 1

0
(x− t)M

+ (x′ − t)M
+ dt, (2.11)

with M > 0 and is M times continuously differentiable [253, 222] [253]: Wahba (1990), Spline models for

observational data

[222]: Schober et al. (2014), ‘Probabilistic

ODE solvers with Runge-Kutta means’

.

Wendland kernels Let rλ = ‖x−x′‖
λ and λ > 0. Wendland [258]

[258]: Wendland (2004), Scattered data

approximation

introduced

stationary kernels given by polynomials

kD,m(rλ) = (1− rλ)
`+m
+ pD,m(rλ),

where (a)+ := max(0, a), ` = bD/2c+ m + 1 determines differen-

tiability, and pD,m(rλ) is a polynomial of degree m. The sharp cutoff

at rλ ≥ 1 means that Wendland kernels can give rise to sparse Gram

matrices. However, there seems little benefit in exploiting the spar-

sity for the inversion of the Gram matrix in gp inference and bq [118] [118]: Hummel (2020), Sparse inference for

Bayesian quadrature

.

Integrability constraints on the kernel required by bq (see Section 2.2 and

Table 2.1) motivates the construction of multivariate kernels from tensor

products of one-dimensional kernels,

k(x, x′) =
D

∏
d=1

k(xd, x′d).

This is relevant e.g., for the Matérn and Wendland kernels that can be

integrated when their arguments are univariate, but not when they are

multivariate.

2.1.4 On kernel parameters

In gp models, the kernel parameters are known as hyperparameters, as

they are not direct parameters of the regression model. In the Bayesian

paradigm, the hyperparameters θ ∈ Θ would be assigned a prior and

marginalized over

p( f ) =
∫

Θ
p( f | θ)p(θ)dθ.

This integral is generally intractable. In practice, the hyperparameters are

therefore usually chosen s.t. they maximize the log marginal likelihood

of the parameters,

θ? = arg max
θ∈Θ

log p(D | θ).

The log marginal likelihood for gp regression is

log p(D | θ) = −1
2

y>(Kθ + σ2 I)−1y− 1
2

log |Kθ + σ2 I| − N
2

log(2π),

and the hyperparameters are contained in the kernel Gram matrix, here

denoted as Kθ.

Instead of considering the kernel hyperparameters, a hyperprior can be

placed directly on the kernel Gram matrix. An inverse Wishart process

placed on K results in a Student-t process on f . Student-t processes retain
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the desirable closure properties of gps, but exhibit a heavier tail than gps

do and are thus more robust to outliers [228] [228]: Shah et al. (2014), ‘Student-t

processes as alternatives to Gaussian

processes’

. A Student-t distribution is

also found when placing a Gamma prior on the inverse output variance

θ2
and then marginalizing over θ.

2.2 Vanilla Bayesian quadrature

With a conceptual idea of probabilistic numerics in mind and the Gaussian

inference machinery at hand, let us return to the intractable integral (2.1).

The philosophy of bq is to treat numerical integration as an inference

task. The deterministic integral Z (2.1) is replaced by the random variable

Z in order to express the epistemic uncertainty about its value. Its goal is

to construct a posterior measure over the integral Z given evaluations

of f at locations X = x1:N . It is natural to think about a prior on the

integrand rather than on the integral, as quadrature rules (2.2) rely on

point evaluations of the integrand. As in the regression task (Section

2.1.2), the deterministic integrand f is thus modeled using a stochastic

process f. The substitute integral for (2.1) is thus a random variable

Z =
∫
X
f(x)dν(x). (2.12)

The closure of gps under linear operations plays in our favor for choosing

a suitable prior: The integration is a linear functional; hence the integral of

a gp takes a Gaussian form as well. The choice of a gp prior f ∼ GP(m, k)
induces a univariate Gaussian prior on Z

Z ∼ N (m, v)

with moments obtained by applying Fubini’s theorem to exchange the

expectation over f and the integral over the input space X ,

m := Ef [Z] =
∫
X

m(x)dν(x)

v := Vf [Z] =
∫∫

X
k(x, x′)dν(x)dν(x′).

The choice of a gp as surrogate for the integrand is the default choice in

bq, and we refer to this setup as vanilla Bayesian quadrature (vbq).

Once nodes and function evaluations D = {X, y} are available, the

inference step in its essence is just gp regression, with the integral operator∫
X ·dν applied to the posterior f |D. Bayesian quadrature hence offers

a natural way to incorporate noisy observations y = f (x) + ε where

ε ∼ N (0, σ2). In practice, exact evaluations are often available, and the

likelihood reduces to a Dirac measure p(yi | f (xi)) = δ(yi − f (xi)) in

the limit σ2 → 0. Linearity allows us to write down the joint distribution

of noisy function evaluations—that, prior to observation, are treated as

random variables y—and the integral Z from (2.8)[
y
Z

]
∼ N

([
m
m

]
,
[

K + σ2 I
∫
X k(x)dν(x)∫

X k(x)> dν(x)
∫∫

X k(x, x′)dν(x)dν(x′)

])
,

Conditioning on the observations y yields the posterior distribution

Z | y ∼ N (mD, vD)
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Figure 2.6: Illustration of Bayesian quadra-

ture on our integrand (2.3). Left column:

The gp f on the integrand with N = 0, 3,

and 8 exact observations of f ( ). Thick

colored lines show the gp mean, with the

shaded area marking the 95% confidence

interval. Right: the resulting Gaussian be-

lief over Z. With a zero prior mean func-

tion, the initial integral belief (N = 0) is

centered around zero. With more data,

the posterior contracts around the true

solution ( ). Note that in this simple

vbq setting, the known boundedness of

the integral has not been encoded in the

prior.

with posterior mean mD ∈ R the integral of (2.6)

mD := Ef |D[Z] =
∫
X

m(x) + k(x)>(K + σ2 I)−1(y−m)dν(x)

=
∫
X

m(x)dν(x) +
N

∑
n=1

∫
X

k(x, xn)dν(x)
[
(K + σ2 I)−1(y−m)

]
n

(2.13)

and variance vD ∈ R+ as the integral of (2.7) over both arguments

vD := Vf |D[Z] =
∫∫

X
k(x, x′)− k(x)>(K + σ2 I)−1k(x)dν(x)dν(x′).

=
∫∫

X
k(x, x′)dν(x)−∑

nn′

[
(K + σ2 I)−1

]
nn′

∫
X

k(x, xn)dν(x)
∫
X

k(xn′ , x′)dν(x′). (2.14)

The second line for mean and variance single out the x-dependencies. It

therefore becomes clear that besides the integral over the gp prior mean—

which is often assumed zero—there are two integrals to be solved, the

kernel mean, and the initial variance

κ(x) :=
∫
X

k(x, x′)dν(x′), (2.15)

k :=
∫∫

X
k(x, x′)dν(x)dν(x′). (2.16)

The integral over both arguments of the kernel (2.16) quantifies the prior

variance, i. e., v = k, and is the squared initial error estimate of the integral.

Denoting the column vector κ := κ(X) as the kernel mean evaluated at

nodes X, we can rewrite (2.13) and (2.14) in the shorthand notation that

will reappear throughout the thesis,

mD = m+ κ>(K + σ2 I)−1(y−m), (2.17)

vD = k− κ>(K + σ2 I)−1κ. (2.18)

For a zero prior mean
9

9: Unless otherwise stated, we will as-

sume w.l.o.g. the prior gp mean to be zero.

and noise-free observations, the expected value

of Z is

mD = κ>K−1 f =
N

∑
n=1

wn f (xn)
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k ν X

Gaussian

Unif(X ) [a, b]
Gaussian RD

Matérn
tp

Unif(X ) [a, b]
Wendland

tp
Unif(X ) [a, b]

Table 2.1: Kernel, measure, and domain

combinations for kernels from Section

2.1.3 that admit closed-form expressions

for κ and k. Bounds a, b need to be finite

and ad < bd for d = 1, . . . , D. tp denotes

‘tensor product’, where only the integrals

of kernels with univariate arguments are

available. More integrable kernels and ref-

erences for derivations are listed in [37].

Integrals for the Wendland kernel can also

be found in [118].

10: A subtlety is that samples of a gp do

not lie in the rkhs almost surely, but in a

‘slightly expanded’ rkhs (see Kanagawa

et al. [129], Section 4)

with weights w = K−1κ. This is the classic form of a quadrature rule (2.2)

that represents the integral as a weighted sum of function evaluations.

Figure 2.6 shows the gp prior and the resulting Gaussian distribution

over the integral, as well as the updated posteriors on f and Z given three

and eight exact evaluations of the integrand, respectively. Pseudocode

for this procedure is given in Algorithm 2.1 further below.

bq replaces the intractable integral (2.1) by integrals over the kernel. To

gain a computational advantage, the kernel used for bq is typically chosen

such that the kernel mean and initial variance are available in closed form

for the given integration measure ν. Otherwise, the substitute integral for

(2.1) is yet another intractable integral. This can nevertheless be beneficial

if the integrals over the kernel are numerically much easier to compute

than the original integral, e.g., when f is expensive to evaluate.

A selection of kernels that admit closed-form kernel embeddings against

some integration measure is listed in Table 2.1 (adapted from [37]

[37]: Briol et al. (2019), ‘Probabilistic inte-

gration: A role in statistical computation?’

Table 1

). A

derivation for the case of a Gaussian kernel and a Gaussian integration

measure is included in Section B.1.1. Few kernels can be integrated

when D > 1, but if the univariate integral is available, the kernel

can be constructed as a tensor product over dimensions as k(x, x′) =

∏D
d=1 kd(xd, x′d). This is necessary for the Matérn kernels for example,

to retain a closed-form integral. Tronarp et al. [247]

[247]: Tronarp et al. (2018), ‘Mixture

representation of the Matérn class with

applications in state space approximations

and Bayesian quadrature’

established the

connection between scale mixtures of the Gaussian kernel and the

Matérn kernel. A finite scale mixture is an approximation to the Matérn

kernel that permits closed-form kernel embeddings without imposing

an independence assumption over dimensions.

Algorithm 2.1 Bayesian quadrature

1 procedure BayesQuad( f (·), f ∼ GP(m, k), ν(·), D = {X, y}, σ2
)

2 κ ^
∫
X k(X, x)dν(x) � Compute kernel mean

3 k^
∫∫

X k(x, x′)dν(x)dν(x′) � Compute kernel variance

4 m^
∫
X m(x)dν(x) � Integrate prior mean

5 m ^ m(X)
6 w ^(K + σ2 I)−1κ � Compute quadrature weights

7 mD ^m+ w>(y−m) � Compute bq mean

8 vD ^ k−w>κ � Compute bq variance

9 p(Z | y)^N (mD, vD)
10 return p(Z | y)
11 end procedure

2.3 Connections to kernel quadrature

The notion of Gaussian processes is closely tied to frequentist kernel

methods. As suggested by Figure 2.5, properties of samples from the

Gaussian process depend on the choice of covariance function. In fact,

each kernel uniquely identifies a function space that is called a reproducing

kernel Hilbert space (rkhs) and defines the hypothesis space of functions

that can be represented in terms of the chosen kernel.
10

Kernel methods are—just as gps—concerned with modeling non-linear

functional relationships. In contrast to the Bayesian inference approach

taken with gps, the task of interest is phrased as an empirical risk mini-

mization problem in statistical machine learning. The task is defined via a

loss function that penalizes deviations of predictions from the true output.
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The prediction or estimator arises as the minimizer of the expected loss

on the available data set within a hypothesis space over functions—an

rkhs.

rkhss unite gps and kernel methods, despite disparate modeling ap-

proaches. The equivalences and differences between the probabilistic

and the frequentist view on kernels are discussed in a recent review by

Kanagawa et al. [129] [129]: Kanagawa et al. (2018), ‘Gaussian

processes and kernel methods: A review

on connections and equivalences’

in a manner accessible to both communities. Here

we provide a superficial overview of the rich theory behind reproducing

kernel Hilbert spaces and state the main connections between kernel and

Bayesian quadrature, largely following [129].

2.3.1 Reproducing kernel Hilbert spaces

Definition 2.3.1 Let Hk be a Hilbert space with inner product 〈·, ·〉Hk and

norm ‖ · ‖Hk .Hk is said to be a reproducing kernel Hilbert space (rkhs) if there

exists a symmetric, positive definite kernel that satisfies

(i) k(·, x) ∈ Hk and

(ii) f (x) = 〈 f , k(·, x)〉Hk ∀x ∈ X and f ∈ Hk (reproducing property).

The Moore-Aronszajn theorem states that any symmetric positive definite

kernel k uniquely defines an rkhs, and vice versa, every rkhs has an

associated reproducing kernel [9] [9]: Aronszajn (1950), ‘Theory of repro-

ducing kernels’

. The map k(·, x) is called canonical

feature map of x, as the reproducing property allows it to be written as

k(x, x′) = 〈k(·, x), k(·, x′)〉Hk .

It is useful to gain an understanding about the functions that are contained

in a particular rkhs. Functions that live in the rkhs induced by the kernel

k are expandable as a series w.r.t. k, which in turn allows the rkhs to be

written as the collection of all such functions,
11

11: In fact, Hk is the closure of a pre-

Hilbert space that is defined as the lin-

ear span of feature vectors, H0 :=
span (k(·, x) : x ∈ X ), which allows mem-

ber functions to be represented as finite

feature expansions, see [129] p. 11.

Hk =

{
f =

∞

∑
i=1

aik(·, xi) : (a1, . . . )⊂R, (x1, . . . )⊂X , s.t. ‖ f ‖2
Hk

< ∞

}
.

From this definition, it can be seen that functions in the rkhs inherit their

properties from the associated reproducing kernels. If the kernel k is

bounded, every f ∈ Hk is also bounded, and if k is continuous at every

x ∈ X , so is every f ∈ Hk. Furthermore, if k is m times continuously

differentiable, so is every f ∈ Hk [237] [237]: Steinwart and Christmann (2008),

Support vector machines Corollary 4.36

. The rkhs norm is an indicator

for the smoothness of functions: As ‖ f ‖Hk decreases, the variability of f
decreases and it is smoother.

2.3.2 Kernel ridge regression

A regularized empirical risk minimization problem takes the form

f̂ = arg min
f∈Hk

1
N

N

∑
n=1

L(xn, yn, f (xn)) + ξ‖ f ‖2
Hk

(2.19)

with the loss function L : X ×R×R→ R+ and regularization constant

ξ ∈ R+ that prevents overfitting by penalizing functions that have a large
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12: With the established equality to the

gp posterior mean we have denoted the

krr estimator f̂ as mD .

rkhs norm. The estimator in kernel ridge regression (krr) arises as unique

solution to (2.19) under the square loss, L(x, y, f (x)) = ( f (x)− y)2
,

f̂ = k(x)>(K + Nξ I)−1y, (2.20)

imposing that K + Nξ I be invertible. The estimator (2.20) is obtained

via the representer theorem [226] [226]: Schölkopf et al. (2001), ‘A general-

ized representer theorem’

that implies that the solution to (2.19)

can be written as a weighted sum of feature vectors f̂ = ∑N
n=1 wnk(·, xn)

with wn ∈ R, i = n, . . . , N. Substituting N ξ = σ2
, the estimator in

kernel ridge regression is equivalent to the gp posterior mean (2.6) [129,

Proposition 3.6]. Furthermore, from the representation of the posterior

mean as a linear combination of feature vectors k(·, xi), it can be seen

that mD ∈ Hk. The equivalence of the kernel ridge regressor and the

gp posterior mean also holds in the noise-free (or unregularized) case,

called kernel interpolation, although a small regularization constant is

often used in practice to ensure numerical stability [259] [259]: Wendland and Rieger (2005),

‘Approximate interpolation with appli-

cations to selecting smoothing parameters’

—the equivalent

to the jitter introduced in Section 2.1.2.

Gaussian processes come with a notion of uncertainty: the marginal

posterior variance quantifies the expected squared deviation of the

function from the mean under the posterior, Vf |D[f] = Ef |D[(f(x)−
mD(x))2]. The standard deviation can thus be interpreted as an average-

case error as a function of location x. In absence of a notion of uncertainty,

kernel methods come with alternative measures for error. The worst-case

error (wce) is a prevalent error estimate and defined as

εwce(x) = sup
f∈Hk :‖ f ‖Hk

≤1
( f (x)−mD(x)) .

It quantifies the largest possible error as the difference of the worst

adversary function with at most unit norm in the rkhs and the krr es-

timator.
12

Kanagawa et al. [129]

[129]: Kanagawa et al. (2018), ‘Gaussian

processes and kernel methods: A

review on connections and equivalences’

Proposition 3.8

showed that the worst-case error in

the rkhs is equal to the noise-corrected standard deviation of the gp,

εwce(x) =
√

kD(x, x) + σ2
, where equality is reached for the noise-free

case, and thus in general εwce ≥
√

kD(x, x).

2.3.3 Quadrature rules in the rkhs

Consider again the intractable integral (2.1). The equivalent of Bayesian

quadrature in the rkhs language is kernel quadrature. Kernel quadrature

is concerned with finding quadrature rules where the hypothesis space

for the integrand f is an rkhs. The restriction of the hypothesis space to

a certain rkhs is a way to impose regularity assumptions on f . We first

discuss the evaluation of performance of a given quadrature rule with the

underlying assumption that f ∈ Hk with reproducing kernel k. Having

established a notion of error, we can set out to find an optimal rule that

determines the estimator in kernel quadrature.

Worst-case error and maximum mean discrepancy Formally, we assume

(X ,B) to be a measurable space with Borel σ-algebra B and ν a proba-

bility measure on X . Let further k be a bounded, measurable kernel on

X that induces the rkhs Hk and satisfies

∫
X
√

k(x, x)dν(x) < ∞. The
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worst-case error possibly achieved by a quadrature rule Q( f ; X, w) (2.2)

with weights wn = [w]n ∈ R, n = 1, . . . , N, can be written as

εwce( f ; X, w) = sup
f∈Hk :‖ f ‖Hk

≤1

∣∣∣∣∫X f (x)dν(x)−Q( f ; X, w)

∣∣∣∣ . (2.21)

Fortunately, (2.21) can be brought into a tractable form using properties

of the rkhs. To this end, we revisit the kernel mean or mean embedding,

(2.15),

κν :=
∫
X

k(·, x)dν(x) ∈ Hk

and refine the notation of the kernel mean by specifying the previously

omitted integration measure ν. Using the reproducing property, the

target integral (2.1) can be rewritten as the inner product of f with κν,

∫
X

f dν =
∫
X
〈 f , k(·, x)〉Hk dν(x) =

〈
f ,
∫
X

k(·, x)dν(x)
〉

Hk

= 〈 f , κν〉Hk (2.22)

for any f ∈ Hk.
13

13: The inner product and the integral

commute when κ is a Bochner integral

(see [37]

[37]: Briol et al. (2019), ‘Probabilistic inte-

gration: A role in statistical computation?’

2.2, [237]

[237]: Steinwart and Christmann (2008),

Support vector machines

A.5.20).

Any quadrature rule Q( f ; X, w) (2.2) can be con-

sidered an integral w.r.t. the empirical measure ν̃ = ∑i wiδxi where δxi

denotes the Dirac distribution. Therefore, we can also define an empir-

ical kernel mean w.r.t. the approximate measure ν̃ that we denote κν̃.

Proceeding as in (2.22), the quadrature rule takes the form

Q( f ; X, w) = 〈 f , κν̃〉Hk

and, consequentially,∫
X

f (x)dν(x)−Q( f ; X, w) = 〈 f , κν − κν̃〉Hk .

Applying the Cauchy-Schwartz inequality leaves us with the following

expression for the worst-case error (2.21):

εwce( f ; X, w) = ‖κν − κν̃‖Hk
.

The worst achievable discrepancy between the integral and the quadra-

ture rule is thus equivalent to the distance between the associated kernel

means. This quantity is also known as maximum mean discrepancy (mmd)

mmd(ν, ν̃;Hk). For characteristic kernels—kernels where the mapping

ν 7→ κν is injective for any ν on X—the mmd becomes a metric on

probability spaces and allows quantification of the deviation of an ap-

proximating measure ν̃ (not restricted to empirical measures as for

quadrature rules) from the target measure ν.

Optimal weights recover bq The optimal quadrature rule is the one that

minimizes the worst-case error. From the perspective of mmd, we try

to find the optimal empirical measure ν̃ to approximate the integration

measure ν. Assume N function evaluations f = [ f (x1) . . . f (xN)]
>

to be

given at fixed design points X = [x1, . . . , xN ]. The remaining degree of

freedom are the quadrature weights w, which are found by minimizing

the wce—or, because the wce is positive, we can conveniently minimize
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its square

ε2
wce

= 〈κν − κν̃, κν − κν̃〉Hk

= 〈κν, κν〉Hk − 2〈κν̃, κν〉Hk + 〈κν̃, κν̃〉Hk

= ‖κν‖Hk − 2w>〈k(·, X), κν〉Hk + w>〈k(·, X), k(·, X)〉Hk w

= kν − 2w>κν + w>Kw

where κν = [κν(x1), . . . , κν(xN)]
>

and kν the twice integrated kernel

(2.16). It is easily seen that this simple quadratic form in w is uniquely

minimized by the weights

wk = K−1κν

provided K is invertible. The kernel quadrature rule is therefore

Qk( f ; X) = κ>ν K−1 f .

Plugging the optimal weights back into the definition of the worst-case

error leaves us with

e2 = kν − κ>ν K−1κν.

Comparing these expressions to the ones obtained via the Bayesian

inference approach taken by bq, (2.17) and (2.18), we conclude that the

kernel quadrature estimator equals the expected value for the integral

found by bq in the noise-free setting when the prior mean function of the

gp is set to zero. The wce is the standard deviation found by bq as σ2 → 0.

Let us halt for a moment to appreciate this remarkable equivalence. On

the one hand, it implies that bq is the unique optimal quadrature rule

for a given set of design points [37] [37]: Briol et al. (2019), ‘Probabilistic inte-

gration: A role in statistical computation?’

§2.3

. Any other quadrature rule delivers

a point estimate that is inferior over the bq rule as it causes a larger

error. On the other hand, the bq variance, which quantifies uncertainty

arising from finite computations, actually provides a meaningful notion

of discretization error in the ‘classical’ sense. The equivalence further

leverages the transfer of results from the rich rkhs literature to establish

theoretical guarantees about bq.

2.3.4 Convergence of kernel quadrature rules

In order to assess the performance of kernel (or Bayesian) quadrature

rules, it is instructive to derive their convergence rate. The convergence rate

quantifies how the integration error decays as more nodes are included.

We only provide a superficial overview of the key results found in

the literature and refer the reader to excellent summaries in [132, 38] [132]: Karvonen (2019), Kernel-based and

Bayesian methods for numerical integration;

Ydinperusteiset ja bayesilaiset menetelmät

numeerisessa integroinnissa

[38]: Briol (2018), ‘Statistical computation

with kernels’

,

which we roughly follow. A statement about the convergence rate of a

quadrature rule requires assumptions on properties of the kernel as well

as the nodes. The latter should be ‘spread out’ to cover the integration

domain. Quantitatively speaking, the nodes should have a small fill

distance

hX = sup
x∈X

min
n=1,...,N

‖x− xn‖.

The fill distance finds the largest possible ball within the domain X in

which no node is contained, and hX → 0 as N → ∞. In a quasi-uniform

grid hX decays at the dimension-dependent rate of O(N−1/D).
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14: Sobolev kernels are stationary ker-

nels with smoothness γ, when their cor-

responding rkhs is norm-equivalent to a

Sobolev space Hγ
(see, e. g., [38, §A.1] for a

definition). For example, the rkhs induced

by Matérn kernels with smoothness γ fall

into this category.

15: Bivariate and trivariate extensions ex-

ist and are mostly considered separately in

the classical literature of numerical analy-

sis. Higher dimensional problems (mostly)

fall victim to the curse of dimensionality.

Convergence rates can be derived in terms of the fill distance. Choosing

integration nodes in a way that the fill distance reduces quickly is therefore

essential to obtaining good convergence rates. A key assumption for the

derivation of upper bounds on the posterior variance is that the integrand

lives in the rkhs represented by the kernel that specifies the gp prior.

Not every kernel achieves the same rate on members of its rkhs: the

smoothness γ affects the convergence behavior, with larger smoothness

leading to better convergence rates. This motivates the consideration of

Sobolev kernels, which carry an associated smoothness parameter.
14

For Sobolev kernels of smoothness γ, quasi-uniform nodes, and further

assumptions on the domain X and measure ν (see [132, Theorem 2.18,

2.19]), the integration error contracts as

|Z−Qk( f ; X)| ∝ O(N−γ/D)

for sufficiently large N. Kanagawa et al. [130] [130]: Kanagawa et al. (2016), ‘Con-

vergence guarantees for kernel-based

quadrature rules in misspecified settings’

studied the effect of using a

quadrature rule with kernel of smoothness γ on an integrand that comes

from a Sobolev space of smoothness γ′ ≤ γ and found the convergence

rate to be O(N−γ′/D). Hence, the convergence rate depends on the

smoothness of the integrand, not on the model hypothesis. Under the

assumptions needed for convergence analysis, it is also possible to show

that the bq posterior contracts around the true solution as N → ∞, which

tells us that the bq estimator is consistent [38, §3.3].

Contraction rates depend on how the point set was acquired, which is

the subject matter of Chapter 3, where convergence results are further

discussed, as well as the implication for practical bq algorithms.

Discussion Any skepticism whether a Bayesian way to think about

numerical integration produces a meaningful quadrature rules should be

dispersed with the established connection to kernel quadrature and its

well-founded theory. At first glance, the unique link between a kernel and

its rkhs makes the distinction between thinking in terms of a hypothesis

class or about a prior (ergo a kernel) obsolete.

There is indeed no distinction for vbq quadrature rules. The different

computational approaches to finding the weights, optimization in kernel

quadrature and conditioning in bq has consequences when constructing

specialized quadrature rules. In kernel quadrature, it is easy to impose

constraints on the quadrature weights by including the desired constraints

such as non-negativity in the optimization procedure. Such constraints

on the weights cannot be imposed in bq. The sign and magnitude of

bq weights depend on properties of the kernel as well as the locations of

the quadrature nodes. At best, purely positive weights can be constructed

by a careful selection of a kernel and appropriate nodes [133] [133]: Karvonen et al. (2019), ‘On the

positivity and magnitudes of Bayesian

quadrature weights’

.

Conversely, Bayesian quadrature admits the choice of priors that deviate

from the Gaussian assumption on the integrand and can therefore not

easily be transferred to a kernel quadrature equivalent (see Section 2.5).

2.4 Connections to classical numerical integration

Classical numerical analysis has brought forth a wealth of algorithms

for numerical integration of primarily univariate functions [60]

[60]: Davis and Rabinowitz (1983),

Methods of numerical integration

.
15

Most

commonly used integration schemes fall under two broad classes of

univariate numerical integration schemes: interpolating splines and



2 Bayesian Quadrature 30

Gaussian quadratures based on polynomials. These methods have been

studied extensively and efficient implementations are available in tool-

boxes such as the Fortran library quadpack [204] [204]: Piessens et al. (2012), QUADPACK:

A subroutine package for automatic integration

. A natural question

arises when viewing numerical integration from the probabilistic angle:

Is there any correspondence between classical and probabilistic

quadrature schemes?

Both methods can be considered equivalent if the posterior mean found

by bq matches the point estimate given by the classical quadrature rule.

Individual correspondences have been discovered in the early days of

probabilistic numerics, e.g. the probabilistic trapezoidal rule [66]. A later

overview by Minka [175] contains a probabilistic perspective on both

spline and polynomial-based quadrature rules. Further research into

such connections has been conducted by Karvonen, who provides an

excellent review [132].

[66]: Diaconis (1988), ‘Bayesian numerical

analysis’

[175]: Minka (2000), Deriving quadrature

rules from Gaussian processes

[132]: Karvonen (2019), Kernel-based and

Bayesian methods for numerical integration;

Ydinperusteiset ja bayesilaiset menetelmät

numeerisessa integroinnissa

[224]: Schoenberg (1946), ‘Contributions

to the problem of approximation of

equidistant data by analytic functions:

Part A. On the problem of smoothing

or graduation. A first class of analytic

approximation formulae’

[225]: Schoenberg (1946), ‘Contributions

to the problem of approximation of

equidistant data by analytic functions.

Part B. On the problem of osculatory

interpolation. A second class of analytic

approximation formulae’

[253]: Wahba (1990), Spline models for

observational data

2.4.1 Spline interpolation

Many popular classical integration schemes build on interpolating the

integrand by piecewise polynomials that can be integrated in closed

form. Let PM denote all polynomials with degree up to M ∈ N and

consider the domain X = [0, 1]. A univariate, natural polynomial spline

sM
N (x) : [a, b] → R on N knots a < x1 < x2 < · · · < xN < b has the

properties (i) sM
N ∈ PM−1 if x ∈ [a, x1] or x ∈ [xN , b], (ii) sM

N ∈ P2M−1 on

the intervals x ∈ [xn, xn+1], n = 1, . . . , N − 1, and (iii) sM
N ∈ C2M−2

for

x ∈ R, i. e., the class of functions with 2M− 2 continuous derivatives. Its

2MN parameters are uniquely determined by the continuity condition

(iii) and the interpolation condition sM
N (X) = f . Spline interpolation

was first introduced by Schoenberg [224, 225]. The relations to kernel

methods are extensively treated by Wahba [253]. In particular, odd

spline interpolants of degree 2M + 1 are recovered—up to technicalities

(see e.g., Karvonen [132, §5.5])—by the kernel interpolant using the M
times integrated Brownian motion kernel (2.11) [253, §1.3]. Knowing that

the kernel interpolant and ergo the gp posterior mean equal a spline

interpolator, it is not surprising that spline-based quadrature rules of

odd order are recovered by bq rules with said kernels.
16

16: Even-order splines, however, lack a

natural equivalent in the kernel world.

Simpson’s rule, relying on quadratic

splines, does therefore not have a prob-

abilistic counterpart [66].

Let us consider

the (0th
order) Brownian motion kernel (2.10) as simplest and instructive

example [66, 51, 108, 112].

[66]: Diaconis (1988), ‘Bayesian numerical

analysis’

[51]: Cockayne et al. (2019), ‘Bayesian

probabilistic numerical methods’

[108]: Hennig et al. (2015), ‘Probabilistic

numerics and uncertainty in computa-

tions’

[112]: Hennig et al. (2022), Probabilistic

Numerics: Computation as Machine Learning

Example 2.4.1 The probabilistic trapezoidal rule Let f ∼ GP(0, k) with

k(x, x′) = min(x, x′) and x, x′ ∈ [0, 1].17

17: Generalization to other integration

domains [a, b] is possible by adding a shift

to the kernel. See [112] for a detailed treat-

ment.

, Using that 0 ≤ x ≤ 1 and∫ 1
0 min(x, x′)dx′ =

∫ x
0 x′ dx′ +

∫ 1
x x dx′, the kernel embeddings are

κ(x) =
∫ 1

0
k(x, x′)dx′ = x− 1

2
x2

and k =
1
3

.

Conditioning on f at N knots where x1 = 0 and xN = 1, the posterior

mean is a linear function between the knots. To see this, assume that
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Figure 2.7: The interpolant of a Wiener

process is piecewise linear and its integral

is equivalent to the trapezoidal rule.

x ∈ [xj, xj+1] and define kernel weights w = K−1 f . Then (2.6) is

mD(x) =
j

∑
i=1

wix +
N

∑
i=j+1

wixi = f (xj) +
x− xj

xj+1 − xj

(
f (xj+1)− f (xj)

)
,

which is the unique linear spline interpolator. Integration of the posterior

mean yields

mD =
N−1

∑
i=1

1
2
(xj+1 − xj)

(
f (xj+1)− f (xj)

)
.

This is the trapezoidal rule [60] [60]: Davis and Rabinowitz (1983),

Methods of numerical integration

, illustrated in Figure 2.7. The posterior

variance of the integral is vD = ∑N−1
i=1

(xi+1−xi)
3

12 . Placing the nodes

such that the variance is minimized results in an equidistant grid with

xi =
2i

2N+1 . The standard deviation

√
vD contracts as the classical rate in

O(N−1).

gp models with Brownian motion kernels are Gauss-Markov processes and

can be phrased as solutions of linear stochastic differential equations

with Gaussian initial conditions. Inference in this representation is linear

(instead of cubic) in time and relies on Kalman filtering [219] [219]: Särkkä (2013), Bayesian filtering and

smoothing

. Bayesian

spline quadrature rules are thus available at the same computational

complexity as their classic counterparts.

2.4.2 Polynomial and Gaussian quadrature

Polynomial interpolation models a function f that has been evaluated at N
distinct, but arbitrary locations X by a single polynomial of degree N− 1
ϕN−1(x) = ∑N

n=1 anxn
. The unique interpolating polynomial is found by

solving the linear system ϕN−1(xn) = f (xn) for each n = 1, . . . , N. Such

polynomial can be integrated in closed form and thus forms the basis for a

polynomial quadrature rule. When an equidistant grid is given, Newton-Cotes

rules apply. They employ Lagrange polynomials as basis functions, but are

susceptible to catastrophic oscillations as the number of equally spaced

points increase, known as Runge’s phenomenon [217] [217]: Runge (1901), ‘Über empirische

Funktionen und die Interpolation

zwischen äquidistanten Ordinaten’

. An example for a

popular polynomial quadrature rule is Clenshaw-Curtis quadrature, which

integrates functions on X = [−1, 1] against the Lebesgue measure using

Chebyshev polynomials [50] [50]: Clenshaw and Curtis (1960), ‘A

method for numerical integration on an

automatic computer’

.

Definition 2.4.1 A quadrature rule Q( f ; X, w) is said to be of degree M if it

exactly integrates every polynomial ϕM of degree M, but is inexact on some

polynomial of degree M + 1.

The Clenshaw-Curtis rule is of degree N− 1. A wise choice of these nodes,

however, can improve a polynomial quadrature rule to achieve degree

2N− 1 on these N evaluations. Such rules are termed Gaussian quadrature

rules and are unique for a given integration measure ν. The nodes are

given as the roots of the Nth
polynomial ψN that is orthogonal under

ν, i. e.,

∫
X ψi(x)ψj(x)dν(x) = δij. Its weights are positive. Examples for

Gaussian quadrature rules are listed in Table 2.2.

Bayes-Hermite quadrature, coined by O’Hagan [190] [190]: O’Hagan (1991), ‘Bayes-Hermite

quadrature’

, is not in fact the

probabilistic twin of Gauss-Hermite quadrature, despite its suggestive

name. A Bayesian interpretation of Gaussian quadrature rules is available
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Quadrature rule X ν {ψi}
Gauss-Legendre [−1, 1] − Legendre

Chebyshev-Gauss (−1, 1) 1/
√

1−x2
Chebyshev

Gauss-Laguerre [0, ∞) e−x
Laguerre

Gauss-Hermite R e−x2
Hermite

Table 2.2: A selection of classical Gaussian

quadrature rules.

through polynomial kernels [135] [135]: Karvonen and Särkkä (2017),

‘Classical quadrature rules via Gaussian

processes’

. The polynomial kernel of degree Q
is k(x, x′) = ∑Q−1

q=0 ϕq(x)ϕq(x′) with polynomials ϕq defined as above.

The Bayesian quadrature rule with this kernel coincides with a classical

quadrature rule of degree M− 1 if and only if N ≤ Q ≤ M [135, Theorem

4]. However, because of the orthogonality property of the polynomials,

the posterior variance of the Bayesian quadrature rule vanishes, and with

it the added value provided by bq.

Another novel interpretation of a classical polynomial quadrature rule

is Bayes-Sard cubature [134]

[134]: Karvonen et al. (2018), ‘A Bayes-Sard

cubature method’
. It is a Bayesian replication of a classical

method by Sard [218] [218]: Sard (1949), ‘Best approximate

integration formulas; best approximation

formulas’

and relies on a parametric polynomial prior mean

function.

2.4.3 Locally adaptive quadrature

Off-the-shelf univariate numerical integration algorithms rely on adaptive

quadrature. For example, the go-to method for univariate integration in

Python, scipy.integrate.quad defaults to quadpack’s adaptive meth-

ods [204, 251] [204]: Piessens et al. (2012), QUADPACK:

A subroutine package for automatic integra-

tion

[251]: Virtanen et al. (2020), ‘SciPy 1.0:

Fundamental algorithms for scientific

computing in Python’

. Classical adaptive quadrature rules recursively refine the

grid into sub-intervals on which the quadrature rule is applied while the

error exceeds a user-defined threshold. In this way, the integration rule

adapts to the integrand by affording more evaluations where the inte-

grand is more variable. Adaptive quadrature requires two ingredients,

(i) a quadrature rule and (ii) a strategy to quantify the error.

Algorithm 2.2 Locally adaptive quadrature.

1 procedure AdapQuad( f , a, b, τ)

2 Q ^ w> f � quadrature rule

3 ε ^
∣∣∣Q− ∫ b

a f (x)dx
∣∣∣ � error estimate

4 while ε > τ do
5 Q ^ AdapQuad( f , a, a+b

2 , τ/2) + AdapQuad( f , a+b
2 , b, τ/2)

6 end while
7 end procedure

A Bayesian version of such an algorithm has been introduced by Fisher

et al. [71] [71]: Fisher et al. (2020), ‘A locally adaptive

Bayesian cubature method’

. They use a non-stationary model with a location-dependent

lengthscale and recursively add evaluations to the dataset by minimizing

the expected posterior variance of the integral and then updating the

model’s hyperparameters until the variance has shrunk to the desired tol-

erance. A class of globally adaptive Bayesian algorithms will be discussed

in Chapter 3.

2.5 Warped Bayesian quadrature

The Bayesian approach to numerical integration allows prior knowledge

to be encoded through the choice of prior. We have seen that some char-
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acteristics of the target function are captured by the choice of covariance

function in Section 2.1.3. Yet, the Gaussian distribution is defined on the

real axis and hence the tacit assumption when using a Gaussian process

prior is that f maps to R.

If we pursue the goal of computing a normalization constant of an un-

normalized density, we know a priori that we are dealing with a strictly

positive function and clearly, this is prior knowledge that we want to

include. Stochastic processes other than gps are not a viable solution,

due to the lack of favorable properties such as closed-form conditioning,

marginalization, and integration.

A workaround to encode such constraints on functions is to employ

warped Gaussian processes [234] [234]: Snelson et al. (2004), ‘Warped

Gaussian processes’

. The task is still the integration of a

function f : X → Y ⊂ R as in (2.1), but now we consider the range of

f to be constrained. Instead of modeling f directly with a gp, we take a

detour by defining the random function g ∼ GP(mg, kg) and a surjective

(but not necessarily injective) warping T : R→ Y and let

f = T [g],

which will serve as a surrogate for f . f is also a random process, but

not a gp if T is non-linear. In particular, for any non-trivial warping, the

distribution over the integral Z (2.12) cannot be computed analytically,

but needs to be approximated. Gunter et al. [102] [102]: Gunter et al. (2014), ‘Sampling for

inference in probabilistic models with fast

Bayesian quadrature’

worked out an algorithm

for inference on integrals of non-negative functions with the warping

T : g 7→ g2 + c, c ≥ 0. A workflow on how to do inference on affine

transformations of warped gps Lf has been generalized by Chai and

Garnett [44] [44]: Chai and Garnett (2019), ‘Improv-

ing quadrature for constrained integrands’

for various choices of T .

Function evaluations f (x) translate to pseudo-observations of an un-

constrained function g : X → R as g(x) = T −1[ f ](x). The gp g is then

conditioned on the pseudo-data D = {X, gX} to obtain the Gaussian

posterior p(g |D). The warping induces a posterior belief on f. The

inference step therefore takes the detour over the tractable process g.

Approximation are needed once further operations on f are of interest,

as is the case for integration. Then its density can be approximated by a

gp via moment matching, such that p(f |D) ≈ GP(mf |D, kf |D) with the

first two moments

mf |D(x) = Eg |D [T [g](x)] , (2.23)

kf |D(x, x′) = Cg |D
[
T [g](x), T [g](x′)

]
(2.24)

that are functions of the posterior mean and covariance of g, mg |D and

kg |D. Gunter et al. [102] alternatively suggested to locally linearize the

warping function T by Taylor-expanding around mg |D,

T [g]
∣∣∣
g=mg |D

≈ T [mg |D] + (g−mg |D)T ′[mg |D].

Doing so turns f into an affine transformation of g and thus also a gp with

mean and covariance

mlin

f |D(x) = T [mg |D](x), (2.25)

klin

f |D(x, x′) = T ′[mg |D](x) kg |D(x, x′) T ′[mg |D](x′). (2.26)
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Figure 2.8: Top: The base process g with

samples after conditioning on three obser-

vations of g =
√

f . Bottom: The moment-

matched and linearized gp of the square of

g, yielding a model for f with a mean guar-

anteed to be ≥ 0. The difference between

the approximations stands out where the

mean is close to zero. Then the extra co-

variance term in (2.28) is dominant.

18: In Gunter et al. [102] and Chai and

Garnett [44] the names refer to the inverse

warping, which is more natural when start-

ing from the target function f and search-

ing for a transformationT −1 : Y → R that

maps the given output range to the real

numbers in order to apply a gp. In order

to avoid confusion about mappings and

inverse mappings, we term the warping

according to their ‘forward’ definition.

19: Gunter et al. [102] termed their algo-

rithm warped sequential active Bayesian inte-

gration (wsabi) wsabi-m and wsabi-l specify

the approximation used, moment match-

ing, or linearization, respectively. The ‘ac-

tive’ aspect is discussed in Section 3.3.

Linearization is a viable alternative if the moments of the warping are

intractable or difficult to compute. What is evident from the linearization

approximation is that the covariance of the approximate gp depends

on the mean of the unwarped gp and, hence, the posterior covariance

depends on the data. This dependence on the mean function also arises for

moment-matched warpings. This is remarkable because in gp models, the

covariance only depends on locations where data is observed (i. e., where

the function is evaluated), but not on the function values themselves.

The additional dependence of the covariance on the function evaluations

is intuitively desirable; our degree of certainty about a quantity of

interest should very much depend on all data, not merely on the input

locations. This feature is an additional asset of warped models, besides

the possibility to better encode prior knowledge. Its implications for

Bayesian quadrature will be discussed in Section 3.3.

[102]: Gunter et al. (2014), ‘Sampling for

inference in probabilistic models with fast

Bayesian quadrature’

[122]: Isserlis (1918), ‘On a formula for the

product moment coefficient of any order

of a normal frequency distribution in any

number of variables’

[262]: Withers (1985), ‘The moments of

the multivariate normal’

[193]: Osborne et al. (2012), ‘Active

learning of model evidence using

Bayesian quadrature’

[44]: Chai and Garnett (2019), ‘Improv-

ing quadrature for constrained integrands’

Some examples for warpings and their moments are given below.
18

The square transform T : R→ R+, g 7→ g2 + c with a small constant c ≥
0 has been studied by Gunter et al. [102] for bq. The square transform

encodes positivity of the target function. The true marginal of f(x)
is a non-central χ2

distribution, which does not permit closed-form

integration. This warping is of importance to Chapter 6; hence we

state both moment matching and linearization approximations.

Moment matching results in

mf |D(x) = mg |D(x)2 + kg |D(x, x) + c, (2.27)

kf |D(x, x′) = 2kg |D(x, x′)2

+ 4mg |D(x)kg |D(x, x′)mg |D(x′), (2.28)

and will be referred to as wsabi-m in Chapter 6.
19

Local linearization

for wsabi-l yields slightly simpler moments

mlin

f |D(x) = mg |D(x)2 + c,

klin

f |D(x, x′) = 4mg |D(x)kg |D(x, x′)mg |D(x′). (2.29)

The base gp and the linearized and moment-matched approxima-

tion of its square are shown in Figure 2.8. Notice the increased

variance where the predictive mean is high and the converse when

the mean is close to zero. The corresponding covariance matrices

are shown in Figure 2.9.

Other polynomial warpings T [g] = ∑M
m=0 amg

m
are possible, al-

though odd powers induce an unbounded warping. Moments are

available through Isserlis’ theorem [122] and are related to finding

the appropriate multivariate Hermite polynomial [262].

The exponential transform T : R → R+, g 7→ eg is an alternative option

to encode positivity of f and has moments

mf |D(x) = exp
(

mg |D(x) + 1/2kg |D(x, x)
)

kf |D(x, x′) = mf |D(x) exp
(

kg |D(x, x′)
)

mf |D(x′).

Osborne et al. [193] used the exponential transform to model

likelihoods, and, as Chai and Garnett [44], advocate the exponential

transform to deal with the high dynamic range often encountered in
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kg |D kf |D

Figure 2.9: The covariance of the origi-

nal gp (left) and of the moment-matched

gp (right) for the square transform. The

diagonal represents the variance that is

plotted in Figure 2.8.

20: Vanilla bq refers to the basic form of

bq introduced in Section 2.2. We refer to

vbq if the clear distinction to warped bq or

any other form of modified probabilis-

tic integration procedure is needed. ‘bq’

generally refers to the entity of Bayesian

integration schemes.

21: cf. Section B.1.2 for a derivation of these

integrals for a Gaussian kernel in combina-

tion with a Gaussian integration measure.

likelihood functions. Especially in the presence of a large amount of

i.i.d. data, the likelihood for each datum multiplies and the output

can span large magnitudes.

Sigmoidal transforms T : R→ [0, 1], g 7→ σ(g) where σ(·) is a sigmoidal

function such as the logistic function σ(x) = 1
1+e−x , the cumulative

Gaussian Φ(x), or the hyperbolic tangent σ(x) = 1/2 (tanh(x) + 1).
These warpings are useful if we know that f is constrained from

below and above; they can be scaled and shifted to account for

more general ranges Y = [a, b]. The cumulative Gaussian offers a

closed-form solution for the moments (see [44, Table 1], and [212,

§3.9]). [44]: Chai and Garnett (2019), ‘Improving

quadrature for constrained integrands’

[212]: Rasmussen and Williams (2006),

Gaussian Processes for machine learning

Moment computation for sigmoidal warpings is related

to the problem of Gaussian process classification that relies on

different approximation schemes to overcome intractability of the

posterior [212, §3]. Linearization can offer an alternative approach

to finding an approximate Gaussian process for f.

The bq estimate for the integral over f is obtained by integrating the

approximate Gaussian belief about f as in Section 2.2. bq demands

integration of the approximate mean (2.23) or (2.25) and covariance

(2.24) or (2.26) for moment matching or linearization, respectively. Recall

that vanilla bq
20

relies on two integrated quantities only, the kernel

mean (2.15) and the kernel integrated over both arguments (2.16). A

warping introduces new integrals to be solved. The desideratum that

the posterior over the integral be tractable restricts the choice of kernel

in a warped gp model even further than in vbq. For example, the square

transform additionally requires the following integrals over expressions

of the kernel for tractable bq moments:∫
X

k(x, xi)k(x, xj)dν(x)∫
X

k(x, x)dν(x)∫∫
X

k(x, x′)2 dν(x)dν(x′)∫∫
X

k(x, xi)k(x, x′)k(x′, xj)dν(x)dν(x′). (2.30)

The second term is an integral over a constant in stationary kernels

and, as well as the third integral, only needed for the moment-matching

approximation. These expressions are still manageable for most kernels

that fulfil the integrability requirement for bq, e.g., the Gaussian kernel

(2.9).
21

Worse is the exponential transform that requires integration of

exponentiated expressions of the kernel. Not even product spline kernels

are feasible, because the product moves into the exponential. Chai and

Garnett [44] propose to Taylor-expand the approximate gp moments and

report reasonable empirical results when the warping is dominated by

the linear regime of the exponential function.

Polynomial expressions of mean and covariance, arising in the Taylor

series, give rise to yet another issue: even if the integral is available in

closed form, which is the case for the Gaussian kernel, evaluation of

the term of mth
order will take O(N2m) floating point operations after

N function evaluations have been made. This renders polynomial or

Taylor-expanded warpings unfavorable for m ≥ 2, when the cost exceeds

the cubic complexity of gp inference.

As an alternative to approximating the integrands to obtain tractable kernel
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integrals, (Markov chain) Monte Carlo ((mc)mc) is a viable option for

integrating the approximate gp moments. This is beneficial when queries

of the surrogate are considerably less time-consuming than evaluating

the integrand.

In contrast to vbq, the integral variance of warped bq depends on the

function evaluations. While moment matching is a sensible represen-

tation of the non-Gaussian marginal, the skewness of the distribution

is discarded. The interpretation of the variance as worst-case error in

the rkhs is sacrificed through the approximation. With the dependence

on the data, the variance is not guaranteed to shrink as new data is

added. Also the calibration of the variance is less straight-forward due to

the scaling with a transformation of the auxiliary gp mean. To obtain a

reasonable scaling, hyperparameter optimization should be performed

in f-space, and not with the actual gp [44].

The data dependence of the variance motivates bq algorithms that adap-

tively select nodes and lack a classical interpretation [102, 128]. We will

delve into smart node selection in Chapter 3 and then develop practicable

bq algorithms that rely on warped gps.

[44]: Chai and Garnett (2019), ‘Improving

quadrature for constrained integrands’

[102]: Gunter et al. (2014), ‘Sampling for

inference in probabilistic models with fast

Bayesian quadrature’

[128]: Kanagawa and Hennig (2019),

‘Convergence guarantees for adaptive

Bayesian quadrature methods’

2.6 Related work

[270]: Zhu et al. (2020), ‘Bayesian

probabilistic numerical integration with

tree-based models’

[210]: Prüher et al. (2017), ‘Student-t

process quadratures for filtering of

non-linear systems with heavy-tailed

noise’

[228]: Shah et al. (2014), ‘Student-t

processes as alternatives to Gaussian

processes’

[121]: Huszár and Duvenaud (2012),

‘Optimally-weighted herding is Bayesian

quadrature’

[18]: Bach (2017), ‘On the equivalence

between kernel quadrature rules and

random feature expansions’

[206]: Pronzato (2021), ‘Performance anal-

ysis of greedy algorithms for minimising

a Maximum Mean Discrepancy’

[264]: Wu et al. (2017), ‘Exploiting

gradients and Hessians in Bayesian

optimization and Bayesian quadrature’

[207]: Prüher and Särkkä (2016), ‘On the

use of gradient information in Gaussian

process quadratures’

[194]: Osborne et al. (2012), ‘Bayesian

quadrature for ratios’

[1]: Acerbi (2018), ‘Variational Bayesian

Monte Carlo’

[2]: Acerbi (2020), ‘Variational Bayesian

Monte Carlo with noisy likelihoods’

[187]: Nguyen et al. (2020), ‘Distribu-

tionally robust Bayesian quadrature

optimization’

[123]: Iwazaki et al. (2020), ‘Bayesian

quadrature optimization for probability

threshold robustness measure’

[220]: Särkkä et al. (2016), ‘On the relation

between Gaussian process quadratures

and sigma-point methods’

[63]: Deisenroth et al. (2009), ‘Analytic

moment-based Gaussian process filtering’

[64]: Deisenroth et al. (2011), ‘Robust

filtering and smoothing with Gaussian

processes’

[208]: Prüher and Šimandl (2015),

‘Bayesian quadrature in nonlinear

filtering’

[209]: Prüher and Šimandl (2016),

‘Bayesian quadrature variance in sigma-

point filtering’

[139]: Kersting and Hennig (2016), ‘Active

uncertainty calibration in Bayesian ODE

Solvers’

Besides the works that are explicitly discussed earlier in this chapter, there

has been a considerable amount of work either in developing Bayesian

quadrature methods, or applying them to real-world problems. This is a

brief, by no means exhaustive summary that highlights some directions

that should not go unmentioned.

2.6.1 Specialized bq methods

bq commonly assumes a gp prior on the integrand. Other probabilistic

models for bq have been explored, such as trees [270] and Student-

t processes [210]. The latter are closely related to gps and retain the

favorable closure properties under conditioning and marginalization

[228] (cf. Section 2.1.4).

bq is related to other concepts in machine learning, in particular to kernel

herding [121], random feature expansion [18], and mmd (cf. Section 2.3.3

and e.g., [206]).

Given the closure of gps under linear operations, the inclusion of gradient

and Hessian information about the integrand is possible with bq [264,

207]. Other tailored bq methods have been developed for estimating

ratios of related probabilistic integrals with bq [194]; and for solving

intractable integrals in variational mixture models [1, 2]. Nguyen et al.

[187] and Iwazaki et al. [123] used a combination of Bayesian optimization

and quadrature to optimize expectations of expensive functions to find

the arg maxx∈X
∫

Ω f (x, ω)dν(ω).

bq has also received considerable interest in the signal processing commu-

nity. Quadrature rules applied to integrals arising in nonlinear Kalman

filtering are known as ‘sigma-point rules’, which are related to bq for

certain covariance functions [220]. bq has been extensively applied in the

context of filtering, e.g., [63, 64, 208, 209]. Gaussian filtering is relevant

to probabilistic numerics for the construction of probabilistic ode solvers,

where Kersting and Hennig [139] used bq for uncertainty calibration.
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2.6.2 Applications of bq

[103]: Hamid et al. (2021), ‘Marginalising

over stationary kernels with Bayesian

quadrature’

[45]: Chai et al. (2019), ‘Automated model

selection with Bayesian quadrature’

[198]: Paul et al. (2020), ‘Robust reinforce-

ment learning with Bayesian optimisation

and quadrature’

[5]: Akella et al. (2021), ‘Deep Bayesian

quadrature policy optimization’

[165]: Ma et al. (2014), ‘Active area search

via Bayesian quadrature’

[72]: Fitzsimons et al. (2019), ‘A general

framework for fair regression’

[104]: Hamrick and Griffiths (2013),

‘Mental rotation as Bayesian quadrature’

[269]: Zhou and Peng (2020), ‘Adaptive

Bayesian quadrature based statistical

moments estimation for structural

reliability analysis’

[233]: Smith et al. (2018), ‘Gaussian

process regression for binned data’

[266]: Yousefi et al. (2019), ‘Multi-task

learning for aggregated data using

Gaussian processes’

bq has been employed in various settings that benefit from its sample

efficiency as well as uncertainty quantification. It has been applied to

probabilistic models themselves, e.g., for marginalization over stationary

kernels in gp models [103] or for Bayesian model selection [45].

Another application area is reinforcement learning and control [198, 5],

where the expected return estimated via bq improves the robustness of

policies. [165] used bq to actively identify for extended regions that are of

interest for evaluation in experimental design. bq has further been used

in fairness [72], human cognition [104], and reliability analysis [269].

A related concept in the gp literature is when data is binned, i. e., it is only

possible to observe spatial or temporal averages. These averages manifest

as expectations over the kernel [233, 266].

2.6.3 Toolboxes

Bayesian quadrature implementations have not yet reached the stage of

being usable as off-the-shelf methods. Besides specific implementations

linked to individual publications, there are a few efforts that are worth

highlighting:

I github.com/OxfordML/bayesquad [252]

[252]: Wagstaff et al. (2018), ‘Batch

selection for parallelisation of Bayesian

quadrature’

contains an implemen-

tation of wsabi with various batch selection schemes (cf. Chapter

3). However, it natively only supports the Gaussian kernel with a

Gaussian measure and therefore leaves little freedom to choose a

model.

I A model-agnostic implementation is available at emukit.github.io/

[196]

[196]: Paleyes et al. (2019), ‘Emulation of

physical processes with emukit’

. emukit is designed in a modular way such that functionality

can easily be added for a new probabilistic model. vbq and wsabi are,

however, only available with the Gaussian kernel under a Gaussian

or Lebesgue measure.

I A recent collaborative effort to build a joint library for probabilistic

numerical methods, termed probnum, is available at probabilistic-

numerics.org [261]

[261]: Wenger et al. (2021), ProbNum:

Probabilistic numerics in Python

. probnum has a rudimentary version of bq im-

plemented at the time of writing. The probnum.quad package is

under active development and envisaged to contain a larger variety

of kernel embeddings, bq methods, and point selection schemes

(cf. Chapter 3) than previous libraries.

Outlook

This chapter motivated an inferential approach to numerical integration

and placed Bayesian quadrature into context with established classical

methods for integration. The connection to kernel quadrature validates

the Bayesian approach and permits the transfer of theoretical results from

the rich theoretical work on kernels in statistics and machine learning.

A key desideratum in bq is that the kernel be integrable in closed form,

because the intractable integral (2.1) is replaced by integrals over the

kernel. This requisite is relaxed when the target integral involves an

integrand that is expensive to evaluate and there is a computational

benefit even if the surrogate needs to be integrated numerically.

https://github.com/OxfordML/bayesquad
https://emukit.github.io/
http://www.probabilistic-numerics.org
http://www.probabilistic-numerics.org
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bq comes at the computational cost ofO(N3) in the number of quadrature

nodes N (except for univariate problems with Markovian kernels that

allow inference in linear time). This computational bottleneck limits

the number of nodes and function evaluations to keep the inference

computationally feasible. The nodes should therefore be placed in a

space-filling manner. Optimal and other practical ways to select nodes

for evaluating the integrand is addressed in Chapter 3.

On a different note, bq suffers from the curse of dimensionality and is

suitable for integrations of low to moderate dimensionality. Empirically,

the more regular the integrand and the more prior knowledge can be

accounted for, the larger the dimension in which integration problems

remain feasible (but not necessarily competitive).



1: Expensive refers to resource-

demanding, be it costly in the monetary

sense, time- or energy-consuming.

3: The notion of ’actions’ is a central tenet

in reinforcement learning (rl) [160, 240]. rl

formalizes the interaction of an agent with

its environment in order to maximize cu-

mulative reward. This area is orthogonal

to optimal experimental design in that the

agent alters the state of the environment

it is interacting with.

Active Design
for Bayesian Quadrature 3

A frequent assumption in machine learning is that the data source is

beyond our control and that training data are readily available. Yet there

are scenarios in which this is not true and we can actively choose inputs

to query for data. Data selection strategies might also be desired to select

a subset if there is a massive amount of data [166] [166]: MacKay (1992), ‘Information-based

objective functions for active data

selection’

. Probabilistic numerical

methods fall into the former category: data are the result of computations,

and we can usually choose which computations to carry out. Decision

theory provides the framework to automate the process of taking smart

decisions under uncertainty. Probabilistic numerical methods (pnms) can

be turned into autonomous agents that interact with the data source (here:

the cpu) to perform queries whose results are expected to yield promising

outcomes for inferring the quantity of interest. In Bayesian quadrature

this would correspond to an algorithm that decides on locations for

evaluating the integrand without interference by the user.

The automation of deciding about prospective actions to be taken by

an algorithm in order to achieve a certain learning objective is called

active learning. Much of active learning originates in the experimental

design literature. A finite budget of potentially expensive
1

physical or

computational experiments motivates the care taken in designing them

in a meaningful manner (see e.g., [46]
[46]: Chaloner and Verdinelli (1995),

‘Bayesian experimental design: A review’

).

In active learning, the reward of performing an action a from an action

spaceA is measured through a utility function u(a, θ,D,D?).2

2: The pessimistic perspective is to call

the harm incurred by performing an ex-

periment a loss or regret.

The utility

is a function of previously observed data D = {X, y} and prospective,

yet unobserved data D? = {X?, y?} in a model that has unknown

parameters θ ∈ Θ. Oftentimes, the action space collapses onto the

selection of new inputs, and we can absorb the action into the new design

X?.
3

[160]: Levine (2018), ‘Reinforcement

learning and control as probabilistic

inference: Tutorial and review’

[240]: Sutton and Barto (2018), Reinforce-

ment learning: An introduction

The goal is to identify candidate measurements that are expected

to yield a high utility for the given learning objective. The expected utility

of choosing any design X? is given by the acquisition function
4

4: Terminology depends on the commu-

nity; expected utility being common in ex-

perimental design, and acquisition function

in machine learning, e. g., in Bayesian opti-

mization.

αD(X?) := Ey? |DEθ |D∪D?
[u(θ,D,D?)] .

Optimizing this acquisition function for the design X? induces an acquisi-

tion policy that pins down the action to take next. The selection of a utility

function for a given task is important to finding a suitable design. Even

for a given task, there exist a plethora of criteria to formulate policies

that can lead to different designs.

In practice, an active learning procedure produces a sequence of actions

by iteratively performing the optimal action and updating the model

with the N? new observations in the general multi-step look-ahead (non-

myopic) approach. A myopic approximation is to instead optimize for a

single new observation pair {x?, y?} at a time. Besides feasibility, the

lack of exact model knowledge motivates a loop in which the model is

repeatedly updated with new observations. The iterative procedure of

consecutive automated updates is known as sequential design.
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5: We refer the reader to MacKay [168]

for an excellent introduction to the topic.

Throughout Chapter 2, we have assumed nodes X = x1:N to be given

for Bayesian quadrature (bq). This chapter takes a decision-theoretic

perspective on bq. To this end, we review standard approaches to optimal

design and then apply these concepts to bq. Policies obtained through

optimization of resulting acquisition functions usually depend on the

definition of ’improvement’, but in Gaussian models, many of the standard

concepts collapse onto the same policy. Yet, Chapter 5 deals with a setting

that lifts the degeneracy of the policy, and thus it is instructional to

understand the differences between the active learning schemes. bq has

also seen a considerable amount of non-optimal strategies for the selection

of quadrature nodes which we review at the end of the chapter.

3.1 A brief survey of information-theoretic decision
criteria

Information theory provides a principled framework for decision-making

under uncertainty [168] [168]: MacKay (2003), Information theory,

inference and learning algorithms

. A utility function should therefore represent the

informativeness of actions towards the learning objective. The new data

should be chosen where the expected information gain is maximized. The

design of a utility depends on the task we are trying to solve and the way

in which it is solved. Learning objectives in probabilistic models could be

to find evaluations that (i) are informative about model parameters θ, (ii)

improve the accuracy of predictions in a pre-specified domain X̃ ⊂ X
or on correlated variables, or (iii) that are informative for discerning

between competing models [166] [166]: MacKay (1992), ‘Information-based

objective functions for active data

selection’

. The goal in Bayesian quadrature to

increase the accuracy of the integral estimate is an instance of (ii).

3.1.1 Information and entropy

To define the informativeness of actions in a probabilistic model, we briefly

review the very basics of information theory.
5

Consider a continuous

random variable x with density p. Denote realizations of x as x. Shannon

defined information content as [230] [230]: Shannon (1948), ‘A mathematical

theory of communication’

h(x) = − logb(p(x))

and it is measured in units of bits or nats, depending on whether the

binary (b = 2) or the natural logarithm (b = e) is used. We stick to

the natural logarithm in our setting. Information content measures the

amount of ‘surprise’ when observing an event x. The less probable it is to

observe x, the larger is its information content, i. e., the more surprising

it is to see x.

The differential entropy of an ensemble refers to the expected information

content of the random variable x,

H[x] = −
∫
X

p(x) log p(x) dx.

In the discrete case, the entropy gets largest when all events are equiprob-

able. If the support of p is restricted to a box with finite bounds, the

entropy is maximized by the uniform distribution. As the posterior

contracts when updated with data, the entropy shrinks monotonically.

The entropy of a Gaussian random variable x ∼ N (µ, Σ) where µ ∈ RD



3 Active Design for Bayesian Quadrature 41

H[x, y]

H[x]

H[y]

H[x | y] I[x; y] H[y | x]

Figure 3.1: The connection between joint,

marginal, and conditional entropy in corre-

lated random variables, reproduced from

[168, Figure 8.1].

6: These could be parameters θ, predic-

tions at selected locations X̃, or a projec-

tion such as integration.

and Σ ∈ RD×D
is

H[x] =
D
2

log(2πe) +
1
2

log det Σ. (3.1)

Consider now correlated random variables x and y with joint density

p(x, y). The following identities are useful to quantify the information

they carry about each other [168, §8]:

H[x, y] = −
∫
X

∫
Y

p(x, y) log p(x, y) dx dy joint entropy

H[x | y] = −
∫
X

∫
Y

p(x, y) log p(x | y) dx dy conditional entropy

H[x, y] = H[y] + H[x | y] = H[x] + H[y | x]

where H[x] and H[y] are the marginal entropies of x and y. The conditional

entropy H[x | y] quantifies the information needed to describe x once y is

known and the converse for H[y | x]. If H[x | y] = 0, x is fully determined

through y. We can then define the mutual information as the amount of

information that the observation of y conveys about x and vice versa,

I[x; y] = H[x]− H[x | y]. (3.2)

The relationship between the measures of entropy in joint ensembles is

illustrated in Figure 3.1.

3.1.2 Information measures

Consider a quantity of interest
6 ξ ∈ Ξ, dataD given andD? = {X?, y?}

to be observed. The prospective data consists of N? yet unobserved

data pairs {xn? , yn?}
N?
n?=1. There are two widely accepted ways to define

measures of information gain [166, 46, 162, 149] [166]: MacKay (1992), ‘Information-based

objective functions for active data

selection’

[46]: Chaloner and Verdinelli (1995),

‘Bayesian experimental design: A review’

[162]: Lindley (1956), ‘On a measure of the

information provided by an experiment’

[149]: Krause et al. (2008), ‘Near-optimal

sensor placements in Gaussian processes:

Theory, efficient algorithms and empirical

studies’

:

Expected Shannon information gain The utility that quantifies the expected

gain of Shannon information can be written as [46]

usi(D?;D) = Eξ |D?∪D

[
log

p(ξ |D ∪D?)

p(ξ |D)

]
.

The expectation w.r.t. the posterior ξ |D ∪D? is the negative cross

entropy between two consecutive updates on ξ [166].

Mutual information The mutual information I[ξ;D? |D] (3.2) can be writ-

ten as the reduction of entropy achieved by adding new data D? to

the present dataset D,

umi(D?;D) = I[ξ;D? |D] = H[ξ |D]− H[ξ |D ∪D?].

Marginalization over prospective observations y? yields the acquisition

function

αD(X?) = Ey? |X? ,D [u(X?, y?;D)] . (3.3)
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9: Active design rules for bq have seen a

limited amount of discussion in the litera-

ture. The reason for this is that in Gaussian

models such as vanilla bq, different utili-

ties yield the same active learning policy.

that is to be maximized to find the most informative proposals,

Xnew = arg max
X?∈X N?

αD(X?). (3.4)

Despite a discrepancy of the utility functions, the expected mutual

information between the quantity of interest ξ and the new data D? is

identical to the expected information gain (see [166] §2 for a proof). Since

the initial entropy is an additive constant, it bears no relevance for the

optimal value of X?.

Linear models often admit a closed form representation of the acquisition

function (3.3). This is the case for example when the goal is to infer the

parameters in a linear regression model. Finding a design that maximizes

expected Shannon information is then equivalent to optimizing the deter-

minant of the Fisher information matrix.
7

7: The Fisher information is defined as

Iξ = Eξ

[
∇ξ∇>ξ log p(y | ξ)

]
.

In the frequentist experimental

design literature this is known as D-optimality.
8

8: Classic experimental design has devel-

oped an alphabetic naming scheme to term

optimality according to different criteria.

The letters refer to operations performed

on the information matrix (in linear mod-

els). Bayesian interpretations of these cri-

teria are reviewed in [46].

In particular, the optimal

design is then independent of the previous observations y and can be

computed offline for a given model. In nonlinear models, the expected

utility is intractable; hence they require approximations. A pnm that falls

into this category is Bayesian optimization, where the quantity to be

inferred is the location of the global minimum of a function [113, 229]

[113]: Hennig and Schuler (2012), ‘Entropy

search for information-efficient global

optimization.’

[229]: Shahriari et al. (2016), ‘Taking

the human out of the loop: a review of

Bayesian optimization’

.

Even when the functional form of (3.3) is known, finding its global

maximizer is challenging. Solving the multivariate optimization problem

(3.4) of size DN? for new nodes X? ⊂ X comes at high computational

complexity [144, 149]

[144]: Ko et al. (1995), ‘An exact algorithm

for maximum entropy sampling’

[149]: Krause et al. (2008), ‘Near-optimal

sensor placements in Gaussian processes:

Theory, efficient algorithms and empirical

studies’

. Oftentimes, a greedy approach is hence preferential

to alleviate prohibitive computational cost. This leads to the above-

mentioned myopic approximations in which one location is optimized for

at a time. In linear regression, a myopic selection of the most informative

point is equivalent to selecting the point of largest variance on ξ.

3.2 Optimal design for bq

Combined with an active design rule, bq becomes an autonomous

learning agent. The quantity of interest ξ is now the integral Z and

implies that the action rule should select locations that are informative

about the value of the integral over f . For now, we consider the vanilla

bq setting, in which fX and Z are jointly Gaussian distributed. Before we

set out to explicitly state utility functions that are commonly used in bq,
9

we define the canonical squared correlation for vanilla Bayesian quadrature

(vbq) as

ρ2
D(X?) = v−1

D κ>? |D C−1
? |D κ? |D (3.5)

with the posterior variance of the integral V[Z |D] = vD and the posterior

kernel mean evaluated at the new inputs

κ? |D = κ(X?)− κ(X)(K + σ2 I)−1k(X, X?),

as well as the noise-corrected posterior covariance matrix of the new data

points

C? |D = k(X?, X?)− k(X?, X)
(

K + σ2 IN

)−1
k(X, X?) + σ2 IN? ,

with the N × N identity matrix IN and the N? × N? version IN? .

ρ2(X?) ∈ [0, 1] is a scalar quantity that measures the correlation be-
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10: cf. Section B.2.2 for details
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Figure 3.2: Common bq acquisitions as

a function of the canonical correlation ρ
(3.5) (ignoring arbitrary scaling constants).

They are all monotonic transformations of

each other and give rise to a degenerate

policy. But not all of them are suitable

for trade-off with other criteria that might

play a rôle in the selection (cf. Chapter

5). Solid acquisition functions satisfy the

properties required for extension, dashed

ones do not. The naming convention is

mi Mutual information (3.6)

ivr Integral variance reduction (3.7)

ipi Integral precision increase (3.9)

niv Negative integral variance (3.8)

ip Integral precision (3.10)

See Section 5.4.2 for consequences.

tween the integral Z and new observations y?. In the one-step look-ahead

case, this reduces to the correlation between the value of the integral and

the new observation

ρ2
D(x?) =

|κ? |D|2

(vD(x?) + σ2) vD
.

Here, vD(x?) denotes the Gaussian process (gp) posterior variance eval-

uated at x?. In experimental design, this quantity can be found in [42] [42]: Caselton and Zidek (1984), ‘Optimal

monitoring network designs’

.

3.2.1 Information-based design

Mutual information The mutual information between the Gaussian

integral Z and new observations y? at locations X? in vbq can be derived

using the entropy of Gaussian random variables (3.1). In terms of the

squared correlation (3.5) [42, 149]
10

αmi

D (X?) = I[Z; y? |D] = H[Z |D]−Ey? |D[H[Z | y?,D]]

= −1
2

log
(

1− ρ2
D(X?)

)
≥ 0.

(3.6)

It measures the expected amount of information gained about Z by

observing the yet unseen y?, and vice versa. New locations that are

uncorrelated with the target quantity, i. e., ρ = 0, yield a minimum

(αmi

D = 0) in the acquisition function and thus, such points are never

selected. Conversely, as ρ→ 1, αmi

D → +∞ and perfectly correlated points

will always be selected since they maximize the acquisition function.

3.2.2 Variance-based design

It is widely known that in Gaussian models, information criteria yield

a policy that maximally reduces the variance on the quantity of in-

terest. There are multiple equivalent ways to phrase the reduction of

integral variance that results in different functional forms of the acquisi-

tion function. Their functional dependence on the squared correlation

(3.5) is illustrated in Figure 3.2, alongside with the mutual information

acquisition.

Integral variance reduction The change of variance by evaluating at X?

and observing y? relative to the variance at the current step is

αivr

D (X?) =
V[Z |D]−V[Z |D ∪ {X?, y?}]

V[Z |D]
= ρ2

D(X?), (3.7)

which is independent of upcoming function evaluations y?. The

derivation can be found in Section B.2.1. Interestingly, this utility

takes a different form than αmi

D , but it is a monotonic transformation

of (3.6), so their global maximizer is identical.

Posterior integral variance Since V[Z |D] is independent of the new de-

sign, it is equivalent to select X? such as to minimize the posterior

variance ofZ, or, to phrase it as a maximization problem, to consider
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11: The precision is reciprocal to the vari-

ance and the precision matrix is the inverse

of the covariance matrix.

12: This is the reason why these options

are not greatly discerned in the literature.

the negative integral variance (niv) an acquisition function: The

change of variance by observing y? at X? relative to the variance

at the current step is

αniv

D (X?) = −V[Z |D ∪ {X?, y?}] ∝ ρ2
D(X?)− 1 ≤ 0. (3.8)

Integral precision increase Instead of reducing the variance, it is equivalent

to increase the precision
11

of the Gaussian distribution over the

integral Z,

αipi

D (X?) =
V−1[Z |D ∪ {X?, y?}]−V−1[Z |D]

V−1[Z |D]

=
ρ2
D(X?)

1− ρ2
D(X?)

,
(3.9)

again taken in relative terms to the starting precision V−1[Z |D].

Posterior integral precision As for the variance, the posterior precision

technically does not need to be put in relation to the current

precision that is independent of the new inputs. The corresponding

acquisition function is

αip

D(X?) = V−1[Z |D ∪D?] ∝
1

1− ρ2
D(X?)

(3.10)

Long story short, all of these acquisition functions are monotonic trans-

formations of the canonical correlation (3.5) (cf. Figure 3.2 and Table

B.1) and therefore, of the information criterion based on the mutual

information (3.6). As a result, they all induce the same active learning

policy.
12

A monotonic transformation does not change the location of

a global maximum of a function—hence the acquisition policy remains

unaltered. This is because the policy only depends on the locations, but not

the value of the utility function’s global maximum. As a consequence, any

monotonic transformation of (3.5), whether interpretable or not, gives

rise to the same policy. As for the variance-based acquisitions, the relative

change was stated, hence they are unit-less. The mutual information

technically carries the units of bits or nats and is thus a meaningful

measure of improvement.

Now why is it worth stating them all? Once information gain is not the

only criterion for selecting new inputs, but needs to be traded off against

another criterion, the discrepancy between the acquisition functions

become important. Chapter 5 considers active Bayesian quadrature

when there is a location-dependent cost associated with queries. The

new objective is information gain per cost and lifts the redundancy of

the above acquisition functions. For now, the statement of degenerate

function shall suffice—properties of an acquisition function to be robust

to extension in concurrence with other selection criteria are discussed in

Chapter 5.

Since the variance of a gp is independent of previous function evaluations

y, so is the variance of Z. As a consequence, only the locations of the

future evaluations matter on these criteria and therefore, policies are

fundamentally non-adaptive. Design rules for bq can thus be precomputed,

without interacting with the integrand [175]

[175]: Minka (2000), Deriving quadrature

rules from Gaussian processes
.
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13: Submodularity of a set function s :
2X → R signifies that for all A ⊆ B ⊆ X
and x ∈ X

s(A ∪ {x})− s(A) ≥ s(B ∪ {x})− s(B).

Submodularity thus encodes the property

of diminishing returns: the relative effect

of adding an element is larger when the

present set is smaller. The bq objectives still

retain the property of decreasing mono-

tonically as data is added, yet they do

not exactly satisfy the diminishing returns

property and are thus only approximately

submodular. Approximate submodular-

ity only satisfies this inequality up to a

constant.

It might sound unintuitive that the optimal active learning strategy

should not depend on previous data. Adaptivity does not help when

the hypothesis class is symmetric and convex, which is the case for the

Gaussian (see [128]

[128]: Kanagawa and Hennig (2019),

‘Convergence guarantees for adaptive

Bayesian quadrature methods’

for a discussion in the context of bq).

The above policies acquire point sets that are optimal in the sense that they

maximally reduce the integral variance and thus, the worst-case error

given a fixed number of nodes. Therefore, the convergence rate of optimal

bq for a given kernel k and under the assumption that the integrand

belongs to the associated rkhsHk is at least as fast as the rates found for

non-optimal ‘space-filling’ design, as discussed in Section 2.3.4.

3.2.3 Sequential design

[144]: Ko et al. (1995), ‘An exact algorithm

for maximum entropy sampling’

[149]: Krause et al. (2008), ‘Near-optimal

sensor placements in Gaussian processes:

Theory, efficient algorithms and empirical

studies’

[36]: Briol et al. (2015), ‘Frank-Wolfe

Bayesian quadrature: probabilistic

integration with theoretical guarantees’

[53]: Cook (1993), ‘Sequential Bayesian

quadrature’

[121]: Huszár and Duvenaud (2012),

‘Optimally-weighted herding is Bayesian

quadrature’

Given a model, the joint optimization over N? new nodes X? is in

essence a combinatorial problem that quickly becomes infeasible as

the number of nodes that are jointly optimized increases [144]. A more

practicable procedure is to greedily select individual nodes from the given

acquisition functions in a sequential manner [149]. Bayesian quadrature

with sequential updates has been referred to as sequential Bayesian

quadrature (sbq) in the literature [36]. Early work on sbq goes back to [53].

Pseudocode for sbq is given in Algorithm 3.1. There are weak guarantees

on the goodness of the myopic approximation as compared to the optimal

strategy as the bq objective functions are only approximately submodular.

The greedy strategy on a submodular objective has been shown to deviate

no more than a factor of (1− 1/e) from the optimal one. For bq, the lower

bound on the objective is reduced by a constant [149, 121].
13

Convergence

rates for sbq are discussed in [206]

[206]: Pronzato (2021), ‘Performance anal-

ysis of greedy algorithms for minimising

a Maximum Mean Discrepancy’

. They show that the variance contracts

at least as O(N−1), but argue that this bound is pessimistic for bq.

Algorithm 3.1 Sequential Bayesian quadrature

1 procedure SequentialBQ( f (·), fθ, ν(·), α(·), Nmax)

2 D = { } � initialize data

3 for n = 1 : Nmax do
4 x ^ arg maxx∈X α(x) � optimize acquisition function

5 y ^ f (x) + ε � evaluate integrand

6 D^D ∪ {x, y} � add new data

7 fθ ^ fθ |D � condition gp on data

8 θ^ arg maxθ∈Θ log p(y | θ) � update gp hyperparameters

9 α ^ αD � update acquisition function

10 p(Z | y)^ BayesQuad( f , fθ, ν,D) � call vanilla bq (Algorithm 2.1)

11 end for
12 return p(Z | y)
13 end procedure

The above exposition assumes the model is known and discards uncer-

tainty about model hyperparameters. Instead of marginalizing them,

tractability usually motivates optimizing the marginal likelihood of the

gp w.r.t. hyperparameters. In that sense, the model adapts to the data, and

implicitly, through the kernel hyperparameters, the Gaussian model, and

hence the active learning policy, depends on the data. In practice, both

the cost of batch selection and the lack of model knowledge motivates

placing vanilla bq in a loop and iteratively select new input locations,

while regularly adapting the hyperparameters as new observations come
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in. The empirical nature of this procedure makes it less amenable to a

rigorous theoretical analysis.

Other sequential active selection schemes have been proposed for bq, such

as Frank-Wolfe quadrature [36], where quadrature nodes are selected by

framing quadrature as a Frank-Wolfe optimization problem [19, 75] [19]: Bach et al. (2012), ‘On the equivalence

between herding and conditional gradient

algorithms’

[75]: Frank, Wolfe, et al. (1956), ‘An

algorithm for quadratic programming’

. This

scheme is known to be suboptimal and is empirically outperformed by

the sequential approximation to the optimal strategies discussed above.

A different greedy point selecting scheme for quadrature has been

proposed by J. Oettershagen [124]

[124]: J. Oettershagen (2017), ‘Construc-

tion of optimal cubature algorithms

with applications to econometrics and

uncertainty quantification’

, who suggests to sequentially find the

points that maximize the posterior kernel mean.

While alleviating the issue of a high-dimensional optimization problem,

a myopic strategy fundamentally entails serial computation that is not

amenable to parallelization. Even when the model is learned on the fly,

one might not want to update hyperparameters in every iteration. Batch

selection methods that choose multiple promising nodes simultaneously,

are a viable solution. In vanilla bq, batch methods boil down to solving

(3.4) for a feasible number of new inputs.

Other design rules have been proposed for bq to overcome the intractabil-

ity of the joint optimization of many nodes. Recently, Tanaka [241] [241]: Tanaka (2021), Kernel quadrature

by applying a point-wise gradient descent

method to discrete energies

took a

different perspective on sequential updates to bq: In their paper, they fix

a population of nodes that are initialized at random. The nodes are, one

by one, iteratively updated via gradient descent on an upper bound on

the worst-case error that they derive.

3.3 Adaptive Bayesian quadrature

Adaptive bq refers to active learning strategies that explicitly depend on

previous function observations. Adaptive methods are suboptimal in

vanilla bq, but they may be helpful when additional constraints on the

integrand motivate a model other than a gp. This is the case for warped

bq (cf. Section 2.5), in which the approximate posterior variance of the

warped process depends on function evaluations y.

The posterior variance V[Z |D] is in general intractable for a nonlinear

transformation and hence, the information gain cannot be evaluated in

closed form. A simple remedy is to disregard the objective of maximally

reducing uncertainty about the integral and to instead evaluate the

approximate gp at locations where its marginal variance is maximal. This

sequential strategy is commonly known as uncertainty sampling and has

been widely adopted for active learning in warped bq [102, 44]

[102]: Gunter et al. (2014), ‘Sampling for

inference in probabilistic models with fast

Bayesian quadrature’

[44]: Chai and Garnett (2019), ‘Improv-

ing quadrature for constrained integrands’

. In warped

bq, the objective function for sequential design is the marginal posterior

variance of f scaled with the integration measure ν

αus

D (x?) = kf |D(x?, x?)ν(x?)2. (3.11)

The appearance of the squared integration measure can be understood

from the natural scaling of the covariance with ν for each input. This

corresponds to favoring points with large standard deviation in the sup-

port of the integration measure. With the approximate variance in (3.11)

typically depending on the posterior mean of the auxiliary gp, uncer-

tainty sampling explicitly depends on previous function evaluations. For

example, the square and exponential transforms give rise to acquisition

functions that take larger values at locations where the predictive mean
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Figure 3.3: Rows: Two consecutive steps

of wsabi-l (warped bq with linearized mo-

ments). Top row: The warped gp and the

integrand f conditioned on N = 3 and 4
points; bottom row: The acquisition func-

tion in the given iteration. Since the inte-

gration measure here is uniform over [0, 1],
it is simply the approximated posterior

variance of the warped gp. The next pro-

posal is the maximizer of α and indicated

as . The preference of locations with

a large predictive mean leads to higher

values of the acquisition function towards

the right.

14: The naming scheme is inherited from

[211], but vbmc does not employ Monte

Carlo techniques.

is large. Algorithmically, this can signify that the posterior variance of

the integral does not need to shrink monotonically and might grow if

a region with surprisingly high function values is discovered. Uncer-

tainty sampling in warped bq is illustrated in Figure 3.3. The behavior

of evaluating the integrand where large function values are expected is

intuitively desirable when positivity of the integrand is known. It is not

the optimal strategy in warped bq models—this is intractable—but since

it guarantees minima in the acquisition functions at previously evaluated

locations, it is guaranteed not to ‘get stuck’ and re-evaluate at existing

locations.

Theoretical guarantees on the convergence of adaptive warped bq meth-

ods that obtain their data through uncertainty sampling have been given

by Kanagawa and Hennig [128] [128]: Kanagawa and Hennig (2019),

‘Convergence guarantees for adaptive

Bayesian quadrature methods’

. They establish exponential asymptotic

convergence rates O(e−CN1/D
) with a constant C > 0 for infinitely

smooth kernels (cf. [128, §4.1]). Adaptivity can thus be advantageous

when the hypothesis class is asymmetric, which is achieved through the

gp warping.

Uncertainty sampling—the sequential optimization of (3.11)—is an in-

herently serial procedure. Batch selection techniques that overcome the

serial nature of uncertainty sampling have been transferred to warped

bq by Wagstaff et al. [252]

[252]: Wagstaff et al. (2018), ‘Batch

selection for parallelisation of Bayesian

quadrature’

, which build on an extensive literature on

batch Bayesian optimization (e.g., [94, 97] [94]: Ginsbourger et al. (2010), ‘Kriging is

well-suited to parallelize optimization’

[97]: González et al. (2016), ‘Batch Bayesian

optimization via local penalization’

).

3.3.1 Empirical adaptive schemes

An empirical adaptive strategy has been proposed for bq applied to

variational inference. Variational Bayesian Monte Carlo (vbmc)
14

estimates

the expectation of the log joint of the intractable model, f = p(D | x)p(x)
w.r.t. the variational distribution q = qθ(x) by applying vbq to the

integral Eq[ f ] [1, 2] [1]: Acerbi (2018), ‘Variational Bayesian

Monte Carlo’

[2]: Acerbi (2020), ‘Variational Bayesian

Monte Carlo with noisy likelihoods’

. Alteration of the variational parameters θ motivates

an explorative strategy that takes into account the predictive mean. The

strategy is termed prospective uncertainty sampling, and has been proposed

in the form

αpus

D (x?) = kf |D(x?, x?)qθ(x?) exp(mD(x?)). (3.12)
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The variational distribution q takes the rôle of the integration measure.

The lack of the square as compared to (3.11) reduces the dampening

of α in the tails of the variational distribution and thus encourages

exploration as well. vbmc is a demonstration that empirical strategies

can in practice yield superior performance over theoretically optimal

strategies. Its convergence properties under the use of (3.12) has been

shown by Kanagawa and Hennig [128] [128]: Kanagawa and Hennig (2019),

‘Convergence guarantees for adaptive

Bayesian quadrature methods’

under boundedness conditions

on the variational distribution q.

Furthermore, Acerbi [1] [1]: Acerbi (2018), ‘Variational Bayesian

Monte Carlo’

proposed to regularize acquisition functions by

exponentially dampening their value when the variance drops below a

threshold value. Doing so impedes evaluations in the near vicinity of

previously queried locations. Close input points can cause numerical

instabilities in infinitely smooth models such as the widely used Gaussian

kernel.

3.4 Utility-free design rules

The exposition on design in bq would be incomplete without accounting

for sampling rules that are not phrased in terms of a utility. On the one

hand, these comprise model-free strategies that select new design points

without taking the probabilistic model of Z into account. On the other

hand, there are both random and deterministic rules for node placement

that do account for the model, but without reasoning about informative

locations.

Monte Carlo The simplest conceivable and model-free strategy to obtain

new locations where to evaluate the function to be integrated is by

random sampling
15

15: cf. Chapter 4 for an introduction to

Monte Carlo methods

from the integration measure [211] [211]: Rasmussen and Ghahramani (2003),

‘Bayesian Monte Carlo’

. Rasmussen and

Ghahramani dubbed the approach of conditioning the gp on random

nodes Bayesian Monte Carlo. From the perspective of a quadrature rule

(2.2), bq with Monte Carlo states xn ∼ ν replaces the uniform weights

wmc

n = 1/N by the bq weights wbq

n = [K−1κ]n. This replacement compro-

mises unbiasedness of the integral estimator.
16

16: Unbiasedness is a desirable require-

ment on estimators in statistics that states

that in expectation, they take the value of

the quantity estimated (cf. Chapter 4 for

details). It is therefore a statement about

the distribution of the estimator and mean-

ingless if the corresponding algorithm is

not either run many times, or until con-

vergence. More important for convergence

analysis is consistency, which ensures that

an estimator converges to the true value as

N → ∞. bq is consistent, but not unbiased.

It is to note that duplicate

states can occur in Monte Carlo (mc) methods but have to be discarded

in order to keep the Gram matrix invertible.

[37]: Briol et al. (2019), ‘Probabilistic inte-

gration: A role in statistical computation?’

[192]: Oates et al. (2019), ‘Convergence

rates for a class of estimators based on

Steins method’

[38]: Briol (2018), ‘Statistical computation

with kernels’

[65]: Del Moral et al. (2006), ‘Sequential

Monte Carlo samplers’

[39]: Briol et al. (2017), ‘On the sampling

problem for kernel quadrature’

[68]: Dick et al. (2013), ‘High-dimensional

integration: the quasi-Monte Carlo way’

When the integration measure is unnormalized, importance sampling or

Markov chain Monte Carlo (mcmc) may be considered [37, 192]. bq with

nodes acquired via Monte Carlo sampling, mcmc, or importance sampling

is consistent and converges at a rate that improves with the smoothness of

the kernel k, again under the assumption that f ∈ Hk. At the same time,

the rate deteriorates with increasing dimension [38, §3.3.2]. Sequential

Monte Carlo [65] has also been used for obtaining quadrature nodes [39].

However, an intractable integration measure adds further complication

to bq, as it inhibits tractability of the kernel integrals. Therefore, these

well-analyzed methods are short of practical use-cases.

Quasi Monte Carlo Quasi-Monte Carlo (qmc) methods construct space

filling points sets in a deterministic manner. As (mc)mc, qmc methods

are used for numerical integration with uniform weights 1/N [68]. The

grid-like point sets are then usually chosen in order to reduce the

worst-case error in the rkhs that forms the hypothesis space of the
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17: see [37, Theorem 2]; and [38, §3.3.3]

18: The kernel k has to have a rank ≥ N.

integrand. The design can thus be seen as aware of the prior, but not of

the probabilistic model. qmc-based quadrature rules usually converge

faster than mc methods due to the space-filling property of the design

points. They are, however, restricted to integration problems on the unit

cube [0, 1]D and against a uniform integration measure.

bq can be conditioned on the point set found by qmc. This corresponds

to a quadrature rule that uses qmc point sets in concurrence with the

bq—instead of uniform—weights [37]. Under restrictive smoothness

assumptions, the contraction of the bq posterior attains a higher rate

when using specific qmc point sets rather than randomly sampled points.

In particular, the rates achieved with qmc are independent of the input

dimension.
17

When constructing qmc point sets, the kernel needs to be

stated upfront. Conversely, in mc one could choose a model after having

evaluated the integrand.

Determinantal point processes Closer in spirit to uncertainty sampling is

the use of draws from a determinantal point process (dpp) as quadrature

nodes. A N-dpp is a point process associated with a kernel k, such that

the joint probability of observing a point set x1:N is proportional to the

determinant of the associated kernel Gram matrix
18

p(x1:N) ∝ det (k(xn, xn′))1≤n,n′≤N .

The determinant becomes small as points move closer to each other and

zero if points overlap. As the nodes move away from each other, the

volume of their covariance increases. dpps hence encode repulsiveness

and have been used in physics to describe non-interacting fermions

[117] [117]: Hough et al. (2006), ‘Determinantal

processes and independence’

.

dpps are closely connected to gps: Samples from a dpp can be drawn in an

iterative manner by decomposing the joint probability density over the

point set X into the product of their conditional probabilities [21] [21]: Bardenet, Hardy, et al. (2020), ‘Monte

Carlo with determinantal point processes’

p(x1:N) =
N

∏
n=1

p(xn | x1:n−1) ∝
N

∏
n=1

v1:n(xn).

Proportionality constants take care of normalization and the exchange-

ability of the ‘particles’. In other words, the order of the nodes is irrelevant.

The quantity v1:n(xn) can be obtained via repeated application of the

matrix inversion lemma (A.2) s.t.

v1:n(x) =

{
k(x, x) if n = 1,

k(x, x)− k>1:n(x)K−1
1:nk1:n(x) for n > 1.

We use the notation K1:n = k(x1:n, x1:n) here to denote the kernel Gram

matrix of all points up to n. v1:n(x) is the posterior predictive variance of

a gp in the noise-free setting. dpps are therefore a model-aware sampling

scheme.

Under a few technical assumptions, samples from a dpp arise when

viewing the posterior variance of a gp as an unnormalized probability

density and iteratively drawing one sample thereof, with which the gp is

updated. The rank-1 update ensures that the kernel Gram matrix does not

need to be inverted from scratch in every iteration (cf. (A.1)). The similarity
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19: except for Kanagawa et al. [130]

to uncertainty sampling—as well as the misnomer—is apparent: Instead

of optimizing the posterior variance iteratively to select new nodes, a

dpp provides random samples from it. Combined with warped bq, it

constitutes a randomized adaptive strategy that preferentially selects

points of large variance and is guaranteed to avoid resampling identical

points [110] [110]: Hennig and Garnett (2016), ‘Exact

sampling from determinantal point

processes’

. Bayesian quadrature with point sets obtained from a dpp has

been analyzed by Belhadji et al. [25]

[25]: Belhadji et al. (2019), ‘Kernel

quadrature with DPPs’

.

3.5 Summary and bq in practice

Bayesian quadrature not only enables encoding prior knowledge about

the integrand into the quadrature model (cf. Chapter 2). The probabilistic

approach also comes with a principled way of selecting new nodes

for evaluating the integrand. In essence, the optimal bq nodes are the

ones that minimize the integral variance given the probabilistic model.

Despite defining an active learning rule, the reduction of the integral

variance is inherently independent of previous function evaluations. This

renders such a rule non-adaptive and nodes pre-computable, although

sequential schemes are usually preferred to overcome the prohibitive cost

of jointly optimizing the nodes. Implicit dependence on data is achieved

by repeatedly adjusting the model hyperparameters during alternating

updates of the node set and the integral estimate. Adaptation of the

hyperparameters also serves to calibrate the uncertainty of the integral

estimate, which would otherwise merely depend on the choice of prior.

We therefore propose a pragmatic classification of adaptivity in bq: (i)

implicitly adaptive bq, where the active learning scheme respects scales of

the model that are iteratively improved; (ii) explicitly adaptive bq, where

the objective depends explicitly on function evaluations (which does

not exclude an adaptation of the model over iterations), and (iii) funda-

mentally non-adaptive schemes in which the sampling or optimization

objective is independent of the model.

Model updates during the procedure of node acquisition disrupt assump-

tions that underlie the theoretical guarantees given for various forms of

bq. These require the rkhs to be fixed, and the integrand to be a member

thereof.
19

From a practitioner’s perspective, it is rarely known if the

integrand is a member of a particular rkhs. Integrability constraints on

the kernel further usually limit the choices of a prior for bq and make the

model a convenience choice to some extent. Practical implementations

of bq algorithms resembling Algorithm 3.1 thus still rely on empirical

performance evaluation.
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[41]: Carpenter et al. (2017), ‘Stan: A

probabilistic programming language’

[80]: Ge et al. (2018), ‘Turing: A language

for flexible probabilistic inference’

[168]: MacKay (2003), Information theory,

inference and learning algorithms

[150]: Kroese et al. (2013), Handbook of

Monte Carlo methods

[211]: Rasmussen and Ghahramani (2003),

‘Bayesian Monte Carlo’

Monte Carlo (mc) methods are a tool for approximate inference and play

a central rôle in the automatization of inference, e.g., in probabilistic

programming [41, 80]. Monte Carlo methods address two problems,

1. to generate samples from a target density p and

2. to use these samples to compute integrals w.r.t. this density.

This chapter is by no means a complete introduction to Monte Carlo

methods, and the reader is referred to a number of excellent books and

reviews on this topic. A comprehensive and intuitive introduction can be

found in [168, §29 & 30]; the textbook by Kroese et al. [150] is an excellent

reference for advanced mc methods.

In the context of Bayesian quadrature, mc methods may be used to

generate design points, commonly referred to as Bayesian Monte Carlo

(cf. [211] and Section 3.4). Above all, mc methods are a competitor to

bq for computing integrals and, despite suffering from slow convergence,

they serve a large palette of integration problems and are relevant to the

setting that is considered in Chapter 7.

4.1 Simple Monte Carlo

Monte Carlo methods use random draws xs from a probability density p
to estimate expected values of functions w.r.t. to p. The quadrature rule

for such an integral has uniform weights w = 1
S for a sample size of S

and approximates integrals of type (2.1) as

Z =
∫
X

f (x)p(x)dx

' Ẑ = Qmc( f ; X) =
1
S

S

∑
s=1

f (xs) where xs ∼ p.

The expected value of Ẑ is

Ep[Ẑ] =
1
S

S

∑
s=1

Ep [ f (xs)] = Z.

The correctness in expectation is known as unbiasedness and widely

celebrated in statistics. The variance of the Monte Carlo estimator is

Vp[Ẑ] =
Vp[ f ]

S
.

Hence, the error (i. e., the standard deviation) of the estimator drops

as O(S−1/2). Crucially, this rate is independent of the dimensionality

of the integration problem, making Monte Carlo virtually immune

against the curse of dimensionality. Nevertheless, high-dimensional

spaces exhibit issues that also cause challenges for Monte Carlo methods

[168]. Furthermore, since the variance of the integrand itself is usually

unknown, it is typically difficult to estimate this error in practice.
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Figure 4.1: Three Markov chains starting

out from with a Gaussian transition ker-

nel centered around the current state.

Monte Carlo methods require independent samples {xs}S
s=1 from the

target density p. These are not easy to obtain in the general case. However,

there are satisfactory pseudo-random number generators that enable

drawing samples from a uniform distribution on [0, 1] Kroese et al. [150,

Chapter 1] [150]: Kroese et al. (2013), Handbook of

Monte Carlo methods

. Uniform samples can be transformed to samples from other

densities using the transformation rule for probability densities. When

such a transformation is unavailable, other tricks have to be used to

generate samples from the target density.

Rejection sampling Rejection sampling introduces a density q that we

know how to sample from and scales it by a constant c such that cq(x) >
p(x) ∀x ∈ X . For each sample xs ∼ q, draw a random uniform number

u ∼ Uniform(0, 1) and accept the sample if ucq(xs) < p(xs), otherwise

reject the proposal. The larger the constant c (assuming both q and p are

normalized), the more samples will be rejected. This renders rejection

sampling unfeasible in most practical applications.

Importance sampling A more widely employed alternative is importance

sampling: Again, introduce a density q that can be sampled from and

rewrite the integral (2.1) as

Z =
∫
X

f (x)
p(x)
q(x)

q(x)dx

≈ 1
S

S

∑
s=1

wq(xs) f (xs) where xs ∼ q

with importance weights wq(xs) =
p(x)
q(x) . To avoid a large variance caused

by astronomical importance weights, the proposal distribution q should

be heavy-tailed.

In order to be effective, both rejection and importance sampling hinge

on finding proposal densities that are similar to the target density. This

gets increasingly difficult as dimensions grow and other methods are

needed.

4.2 Markov chain Monte Carlo

Instead of trying to sample directly from the target density, Markov

chain Monte Carlo (mcmc) methods propose a new state x′ based on the

current state x [214, 150]

[214]: Robert et al. (2004), Monte Carlo

statistical methods

[150]: Kroese et al. (2013), Handbook of

Monte Carlo methods

. To quantify the probability for transitioning

into the new state x′ a Markov transition probability density is defined

as τ : X × X → R+ : (x, x′) 7→ τ(x′ | x), also sometimes called the

transition kernel. The transition density is chosen such that it can be

sampled from, and the new state is determined as a random draw thereof,

given the current state. Sequentially applying Markov transitions to an

initial state x0

x1 ∼ τ(x1 | x0)

x2 ∼ τ(x2 | x1)

.

.

.

xS ∼ τ(xS | xS−1)
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0

1

x0

x

p?

Figure 4.2: The Metropolis-Hastings al-

gorithm: A proposal is drawn from

q(x, x0) ( ) and accepted with probabil-

ity u(x; x0) ( ). The target density ( )

need not be normalized, indicated by the

? superscript. A symmetric proposal den-

sity reduces the acceptance criterion to the

density ratio; this special setting is the one

originally proposed by Metropolis et al.

yields a Markov chain in which each state only depends on its predecessor

and not on earlier states, thus fulfilling the Markov property. If the starting

point is a sample from a density p(0), then the probability for the sth

element in the chain is p(s)(xs) =
∫

p(s−1)(xs−1)τ(xs | xs−1)dxs−1. Due

to this dependence, a Markov chain does not create independent samples,

but returns a correlated ensemble of draws, as illustrated in Figure 4.1.

4.2.1 Validity of mcmc methods

We wish to construct Markov transition processes in such a way that we

create samples from the target density p. To achieve this, a mcmc method

needs to fulfil two requirements:

Invariance The target distribution p needs to be an invariant or stationary

distribution under the transition operator, i. e.,

p(x) =
∫

p(x′)τ(x′ | x)dx′.

In other words, p must be an eigenfunction of the transition kernel

with eigenvalue 1.

Ergodicity The Markov chain is ergodic if for any p(0) and x0 ∼ p(0), it

converges to the target density

lim
s→∞

p(s)(x) = p(x).

Ergodicity ensures that Markov chains do not get trapped in a

corner of the state space X .

The Markov chain is further termed reversible if the probability to transition

from x→ x′ is the same as the reverse way

p(x)τ(x′ | x) = p(x′)τ(x | x′).

This property is known as detailed balance and entails invariance of p
under τ.

4.2.2 The Metropolis-Hastings method

The most widely known mcmc method is the Metropolis-Hastings algo-

rithm [173, 105]

[173]: Metropolis et al. (1953), ‘Equation

of state calculations by fast computing

machines’

[105]: Hastings (1970), ‘Monte Carlo

sampling methods using Markov chains

and their applications’

, sketched in Figure 4.2. It proposes a new state x′ from a

proposal density q(x′; x) which is accepted with a probability of

u(x′; x) = min
(

p(x′)q(x; x′)
p(x)q(x′; x)

, 1
)

.

This corresponds to a transition kernel τ(x′ | x) = q(x′; x)u(x′; x) +
δ(x′− x)

∫
q(x′′ | x)(1− u(x′′ | x))dx′′, which meets the detailed balance

condition. The acceptance criterion ensures that p is invariant under

this transition. The choice of proposal density q greatly impacts the

performance of the sampler. The random walk that is characteristic for

the Metropolis-Hastings method is a slow way to explore the state space

especially in high dimensions.
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Figure 4.3: A few steps taken by a Gibbs

sampler starting from . A new sample

is accepted ( ) once all dimensions of the

state vector have been updated by drawing

from conditionals.

Figure 4.4: One trajectory simulated with

Hamiltonian Monte Carlo starting from .

1: The leapfrog method is a symplectic

integrator designed for systems with a

conserved quantity, in this case energy.

4.2.3 Gibbs sampling

[83]: Geman and Geman (1984), ‘Stochastic

relaxation, Gibbs distributions, and the

Bayesian restoration of images’

[81]: Gelfand and Smith (1990), ‘Sampling-

based approaches to calculating marginal

densities’

Gibbs sampling grounds on the idea that sampling from a univariate

distribution is easier than from a multivariate one. It has been initially

devised by Geman and Geman [83], but popularized by Gelfand and

Smith [81]. In Gibbs sampling, the target density is written as a product

of conditional probabilities for each variable,

p(x) = p(x1)p(x2 | x1) . . . p(xD | x1:D−1).

A new state xs+1 is found by iteratively sampling the xd, d = 1 . . . D
conditioned on the already drawn variables that are part of the new state

[xs+1]1:d−1 and the remaining ones from the previous state [xs]d+1:D.

Figure 4.3 illustrates this procedure. Gibbs sampling is parameter-free

and therefore easy to get running; however it can get very inefficient if

variables are strongly correlated.

4.2.4 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (hmc) was introduced as hybrid Monte Carlo

[69] [69]: Duane et al. (1987), ‘Hybrid Monte

Carlo’

but has been renamed to do justice to its origin in Hamiltonian

dynamics from physics. hmc uses gradients of the target density to

overcome random walk behavior and ensure an improved exploration

behavior [186, 28] [186]: Neal (2012), ‘MCMC using Hamilto-

nian dynamics’

[28]: Betancourt (2017), ‘A conceptual

introduction to Hamiltonian Monte Carlo’

. The key concept is to simulate the dynamics of a

fictitious particle of mass m in a potential well U(x) = − log p(x). To

this end, the state space is augmented with a momentum variable p. The

total energy of the particle is the sum of potential and kinetic energy and

given through the Hamiltonian

H(x, p) = U(x) +
p>p
2m

.

It is a conserved quanity. Hamiltonian dynamics are the solution to the

Hamiltonian equations of motion

dx
dt

= ∇p H =
p
m

and

dp
dt

= −∇x H = −∇xU. (4.1)

The joint probability density of a state (x, p) is ∝ e−H(x,p)
. The momenta

are normally distributed and independent of x. New states are proposed

by simulating trajectories of the particle according to (4.1) with a randomly

drawn momentum p ∼ N (0, mI). This is done numerically by a leapfrog

integrator
1

that alternates updates on p and x. The algorithm requires

two parameters for the solver, the step-size ε and the number of steps

T. Its performance is quite sensitive to the choice of these values. An

exemplary trajectory is shown in Figure 4.4. The no-U-turn sampler

(nuts) [116] [116]: Hoffman and Gelman (2011), ‘The

no-U-turn sampler: Adaptively setting

path lengths in Hamiltonian Monte Carlo’

is a modification of hmc that overcomes the need for manual

tuning. nuts auto-tunes on the given problem by simulating trajectories

both forward and reverse in time and terminates the chains once the

momenta projected onto the connecting line are anti-aligned. This is

expected to happen when further simulation would reduce the distance

between the states and likely bring them into already explored realms.

nuts is nowadays the default mcmc method in a number of probabilistic

programming languages such as Stan and Turing.jl [41, 80]

[41]: Carpenter et al. (2017), ‘Stan: A

probabilistic programming language’

[80]: Ge et al. (2018), ‘Turing: A language

for flexible probabilistic inference’

.
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2: Note that no matter the dimension of

x the ellipse remains a one-dimensional

object to sample from, and the new state is

fully defined through the angle ϑ∗ . In high

dimensions, the eccentricity of the ellipse

is likely to be small and ellipses tend to be

almost circular.

xs

ξ

xs

ξ

xs+1

Figure 4.5: Sketch of ess. The ellipse is fully

defined by the current state xs and the aux-

iliary vector ξ drawn from the Gaussian

prior. The slice on the ellipse where the

likelihood ` (x(ϑ)) exceeds the threshold

level u is indicated by thick lines ( ).

The initial proposal ( ), which lies off the

slice here, determines the initial bounds of

the bracket [ϑmin, ϑmax] (top). The second

draw (center) also comes from the entire el-

lipse, and, because it is not on the slice, the

two draws define the new bracket s.t. xs
lies within the bracket ( ). The prohib-

ited part of the ellipse is grayed out. This

procedure is repeated until a sample falls

onto the slice and is accepted as new state

xs+1 (bottom).

4.2.5 Elliptical slice sampling

The previous mcmc algorithms are in principle suitable for sampling

from any density p. Elliptical slice sampling (ess) by Murray et al. [182]

[182]: Murray et al. (2010), ‘Elliptical slice

sampling’
is

a specialized mcmc method to draw samples from a posterior distribution

with likelihood `(x) when the prior is multivariate normal N (µ, Σ).
Conceptually, ess reduces the space for transitions to a one-dimensional

ellipse at each iteration of the Markov chain. Given an initial location

xs ∈ RD
, ess draws an auxiliary vector from the Gaussian prior ξ ∼

N (µ, Σ) to construct an ellipse

x(ϑ) = xs cos ϑ + ξ sin ϑ. (4.2)

parameterized by an angle ϑ ∈ [0, 2π].2 The new proposal xs+1(ϑ) is

found by applying slice sampling [185] to the angular domain: Given

the current state xs with likelihood value `(xs), a likelihood threshold

is drawn uniformly, u ∼ Uniform(0, `(xs)). This threshold determines

the stretches—or slice—on the ellipse that produce admissible proposals

(top panel of Figure 4.5). Technically, the next location xs+1 is a uniform

sample from these admissible sections. However, for general likelihoods

it is infeasible to directly produce a draw from the slice. The workaround

taken by ess is to iteratively adjust a bracket [ϑmin, ϑmax]. Initially, the

bracket is [0, 2π], from which a proposal is drawn uniformly, which is

rejected if not on the slice. The limits of the bracket are shrunk to rejected

angles such that xs is always contained (center panel of Figure 4.5), until

an angle satisfying `(x(ϑ)) ≥ u is found and accepted (bottom panel of

Figure 4.5). The new state xs+1 is constructed with this angle θ from (4.2).

The angle-finding procedure is detailed in Algorithm 4.1 and illustrated

in Figure 4.5.

The key asset of the ess algorithm is its simplicity and that it does not re-

quire parameter tuning. Since proposals are made in a univariate domain,

they are cheap to generate. Yet, for complicated likelihood functions, the

acceptance rate may become very low and other mcmc schemes might be

more appropriate.

4.2.6 Practical notes on mcmc

Bayesian inference with mcmc mcmc methods usually do not require the

target density to be normalized. For this reason, they are a popular tool

for posterior inference since they can be used to generate samples from

the posterior without needing to compute the evidence. The posterior

samples are used to compute expectations as (2.1), where ν takes the rôle

of the unnormalized posterior density, and for predictions, which are

expectations of the likelihood under the posterior.

The marginal likelihood While posterior inference with mcmc is possible

without knowing the evidence, it is generally impossible to estimate the

normalization constant from posterior samples. The marginal likelihood

is a desired quantity in Bayesian model comparison. There exist hence

mcmc methods targeted purely at estimating the evidence, e.g., annealed

importance sampling, which used a sequential tempering scheme to

estimate ratios of intermediary normalization constants of which the
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Algorithm 4.1 One iteration of elliptical slice sampling

procedure EllipticalSliceSampling(Ellipse base vectors xs and ξ ∼ N (µ, Σ), likelihood function `(·))
u ∼ Uniform(0, `(xs)) � draw likelihood threshold

ϑ ∼ Uniform(0, 2π) � draw initial angle

[ϑmin, ϑmax]← [ϑ− 2π, ϑ] � set bounds for angle bracket

while `(xs cos ϑ + ξ sin ϑ) < u do � accept sample that exceeds the likelihood threshold

ϑ ∼ Uniform(ϑmin, ϑmax) � draw uniform sample from angle bracket

if ϑ < 0 then ϑmin ← ϑ else ϑmax ← ϑ � shrink bracket

end while
return ϑ � return sample

end procedure

evidence can be derived [184] [184]: Neal (2001), ‘Annealed importance

sampling’

. A few methods have been devised to

estimate the evidence concurrently with producing posterior samples,

such as nested sampling [232] [232]: Skilling (2004), ‘Nested sampling’.

Diagnostics In order to achieve reliable estimates from samples that have

been obtained with mcmc, the Markov chain should have converged to

the underlying target distribution. If not simulated for long enough, the

samples produced by mcmc may be unrepresentative of the true target.

This is especially true for multimodal models, in which it can take a

long time for a chain to discover spatially separated modes. Assessing

convergence of mcmc methods is a difficult problem in its own right and

there is no way to prove whether the sampler has reached equilibrium

[82] [82]: Gelman et al. (1995), Bayesian data

analysis

. Another issue is that samples in the chain are auto-correlated and

thus violate the i.i.d. assumption of the Monte Carlo estimator. This

is not an issue at convergence, but very much within finite runtime.

Correlations between samples deteriorate estimates computed from the

samples.

When employing mcmc, there are a few practical steps that can be taken

to inspect and monitor the performance of the sampler. As a measure

to counteract bias from initialization that might confine chains in a low-

probability corner of the state space, the first part of the Markov chain is

typically discarded. This procedure is called burn-in.

The dependence of samples within the chain is addressed by estimating

an effective sample size from auto-correlations of samples or by thinning

the chain by only recording every say 10th
sample in the chain. It is

further common practice to simulate multiple sequences that have been

initialized at a diverse set of points. Doing so comes with the advantage

that sampling can be parallelized. Elaborate algorithms have been devised

for diverse initialization, e.g., [267] [267]: Zhang et al. (2021), ‘Pathfinder:

Parallel quasi-Newton variational

inference’

. Multiple chains further allow tracking

convergence by inter-chain comparison. The R̂ statistics is another widely

used diagnostic tool that uses variances across multiple chains as well as

intra-chain variances to assess convergence of the ensemble of Markov

chains over simulation time [249] [249]: Vehtari et al. (2021), ‘Rank-

normalization, folding, and localization:

An improved R̂ for assessing convergence

of MCMC (with discussion)’

. It is thus to be said that while being an

essential component of automated inference, mcmc methods do require

expert knowledge and critical assessment of predictions made.
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Due to its data efficiency, Bayesian quadrature (bq) is suitable to solve

integrals of expensive-to-evaluate black-box functions. Previous active

bq learning schemes have focused merely on the integrand itself as

information source (cf. Chapter 3), and do not consider information

transfer from cheaper, related functions. Approximations to the costly

integrand are, however, frequently available in practice, for example

when evaluating the integrand requires a complex simulation to be run

that can be approximated by simulating at lower levels of sophistication

and at lesser expense.

This chapter introduces a version of bq that enables transferring informa-

tion from related information sources to the main integration problem.

In particular, it develops an active learning scheme that decides which

source the information should be retrieved from, based on potentially

variable cost of the sources. To this end, we construct meaningful cost-

sensitive multi-source acquisition rates as an extension to common utility

functions from vanilla Bayesian quadrature (vbq), and discuss pitfalls

that arise from blindly generalizing. In proof-of-concept experiments

we scrutinize the behavior of our generalized acquisition functions and

demonstrate that active multi-information source Bayesian quadrature

(amsbq) allocates budget more efficiently than vbq for learning the inte-

gral to a good accuracy. The content of this chapter has been published

as

A. Gessner, J. Gonzalez, and M. Mahsereci. ‘Active multi-information

source Bayesian quadrature’. In: Proceedings of the Thirty-Fifth Conference

on Uncertainty in Artificial Intelligence, UAI 2019, Tel Aviv, Israel, July

22-25, 2019. Ed. by A. Globerson and R. Silva. Vol. 115. Proceedings of

Machine Learning Research. AUAI Press, 2019.

5.1 Setting

The goal is to estimate the integral over the information source of interest

(the primary source), w.l.o.g. indexed by 1, f1 : X 7→ R, x 7→ f1(x) and

integrated against the probability measure ν on X ⊆ RD
,

Z1 =:
∫
X

f1(x)dν(x) (5.1)

in presence of L − 1 not necessarily ordered or orderable secondary

information sources f2, . . . , fL, with fl : X 7→ R. Each source l ∈
L = {1, . . . , L} comes with an input-dependent cost cl(x) which must be

invested to query fl at location x. For ease of interpretation and numerical

stability we set c : L×X 7→ [δ, 1] and 0 < δ ≤ 1. This is equivalent to

assuming there exists a cmin > 0 and a cmax < ∞ s.t. cmin ≤ cl(x) ≤ cmax

and then normalizing w.r.t. cmax, i. e., δ = cmin

cmax

. In other words, no query

takes an infinite amount of resources, nor does any evaluation come for

free. Normalization is not required and in practice, neither cmax nor cmin

need to be known.
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5.2 Motivation

Integrals of expensive-to-evaluate functions arise in many scientific and

industrial applications, for example when expected values need to be

computed and each evaluation of the integrand requires the run of

a complex computer simulation where an input is only known by its

distribution e.g., in meteorology, astrophysics, fluid dynamics, biology,

operations research, et cetera. The complex simulation could be a Monte

Carlo simulation, a finite-element or finite-volume simulation, or a

stochastic model. Complex models can often be studied at various levels

of sophistication. We denote models that are meant to solve the same task

information sources, and term the primary source the highest-quality source.

A primary source could be an elaborate Earth system model to simulate

anthropogenic climate change. Secondary sources might parameterize

important effects like albedo or neglect detailed land surface processes

or ocean biogeochemistry [73] [73]: Flato et al. (2013), ‘Evaluation of

climate models’

. These approximations come at a reduced

cost at the expense of quality. They could be numerical models that

are run at a lower resolution (e.g., a coarser grid in a fluid dynamics

application), model simplifications by neglecting details or by using an

approximate model that is easier to solve numerically, but also analytic

approximations. The task of finding approximations to computationally

demanding numerical models is an area of active research all on its own

(see e.g., [27] [27]: Benner et al. (2017), Model reduc-

tion and approximation: theory and algorithms

).

Depending on the computational budget and requirements for accuracy,

it may be sufficient to employ only the secondary sources for certain

tasks. This is not the case for integration: errors introduced by down-

scaling the original problem add up and introduce an arbitrary bias.

Nevertheless, it would be desirable to include information from these

cheaper approximations to shrink the variance of the integral over the

primary source.

[137]: Kennedy and O’Hagan (2000),

‘Predicting the output from a complex

computer code when fast approximations

are available’

[199]: Peherstorfer et al. (2018), ‘Survey

of multifidelity methods in uncertainty

propagation, inference, and optimization’

[74]: Forrester et al. (2007), ‘Multi-fidelity

optimization via surrogate modelling’

[156]: Le Gratiet and Garnier (2014),

‘Recursive co-kriging model for design

of computer experiments with multiple

levels of fidelity’

[148]: Krause et al. (2006), ‘Near-optimal

sensor placements: Maximizing informa-

tion while minimizing communication

cost’

[6]: Alvarez et al. (2012), ‘Kernels for

vector-valued functions: A review’

[265]: Xi et al. (2018), ‘Bayesian quadrature

for multiple related integrals’

This is what multi-source models do. Multi-source modeling is a sta-

tistical technique for harvesting information from related functions by

constructing correlated surrogates over multiple sources. When the in-

formation sources are hierarchical in that they are ordered from most to

least informative, this concept is known as multi-fidelity modeling [137,

199, 74, 156]. The notion of multi-source models is more overarching and

includes settings in which sources do not exhibit an easily identifiable

order, if any. Each of the sources has its own cost function that quantifies

the cost of evaluating the source at a certain input, similar to the setup

considered by Krause et al. [148]. An input-dependent cost might arise

when the simulation run to query the integrand needs to be refined for

certain values of the input to ensure numerical stability. A linear instance

of a multi-source model is a multi-output Gaussian process (gp) aka.

co-kriging [6]. bq with multi-output gps to integrate several related

functions has been studied by Xi et al. [265], who impose properties on

data—which they assume given—to prove theoretical guarantees and

consistency of the Bayes estimator.

Yet when practically faced with integrating a function with the help of

secondary sources, active learning comes in handy. We wish the algorithm

to take care of the choice where and from which source to gather

information to improve most on the learning target while keeping costs

manageable.
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This chapter lays the foundations for active multi-source Bayesian quadrature

(amsbq) for the task of integrating an expensive function that comes with

cheaper approximations. We generalize the bq acquisition functions

discussed in Chapter 3 to acquisition rates that trade off improvement

on the integral against cost. We find that some rates induce sane, others

pathological acquisition policies. Pathologies were not present in the

common vbq acquisition schemes that all give rise to the same degenerate

policy, regardless of the acquisition’s value. Cost-adapted rate policies do

depend on these values and are thus intricately tied to the meaning of

the acquisition function that encodes progress on the quadrature task.

Simply put, all considered (even pathological) multi-source acquisition

policies collapse onto a single policy for vbq, as a corner case of amsbq.

5.3 A linear multi-source model for Bayesian quadrature

For now, we disregard the cost and first establish the required ingredients

for jointly modeling and integrating multiple related functions.

[6]: Alvarez et al. (2012), ‘Kernels for

vector-valued functions: A review’

[201]: Perdikaris et al. (2017), ‘Nonlinear

information fusion algorithms for

data-efficient multi-fidelity modelling’

Linear multi-source models can be phrased as multi-output Gaussian

processes [6] over a vector-valued function f = [ f1, . . . , fL], f : X 7→ RL
.

Non-linear models for multi-source modeling exist as well [201]. They

do however come with the additional technical difficulty that the model

may not be integrable analytically—a sensible prerequisite for bq—and

are thus another beast altogether.

5.3.1 Multi-source models via multi-output Gaussian processes

The notation of multi-output gps mimics the single-output case, that is,

f ∼ GP(m, K)

where K is an L× L matrix-valued covariance function. More precisely,

the covariance between two sources fl and fl′ at inputs x and x′ is

C[fl(x), fl′(x′)] = kll′(x, x′). The kernel kll′(x, x′) encodes not only char-

acteristics of the individual sources (e.g., smoothness), but also the

correlation between them.

Element-wise observations In the multi-source setting, observations come

in source-location-evaluation triplets (l, x, yl) with yl = fl(x) + εl and

source-dependent observation noise εl ∼ N (0, σ2
l ) as usually only one

element of f is being observed at a time. This corresponds to observing

elements of full vectorial observations y = f (x) + ε, where y ∈ RL
and

can be written as projections thereof

yl = h>l y

where hl denotes a vector with a 1 in the lth
coordinate and zero elsewhere.

Let Y ∈ RNL
denote the vector of N stacked vector-valued noisy observa-

tions [y1, . . . , yN ]. The elements (or sources) that have been observed at

any of the N observations is written as ` = [l1 . . . lN ]
>

. The observations
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1: Let A be a N × M and B a P × Q
matrix. Then A⊗ B is a NP×MQ matrix

in which the n, mth
block is anmB, with

n = 1, . . . , N and m = 1, . . . , M. See [248]

for details.

at only these sources are projections of Y ,

y` =


h>l1 · · · 0
.
.
.

.
.
.

.

.

.

0 · · · h>lN

Y =: H>Y ,

where H is a sparse NL×N matrix. Note the delicate notational difference

between the N observations of single elements of f , y` ∈ RN
, and a

single evaluation of the vector-valued function y ∈ RL
.

The covariance matrix between all the observations is

C[y`, y`] = H>


K(x1, x1) · · · K(x1, xN)

.

.

.

.
.
.

.

.

.

K(xN , x1) · · · K(xN , xN)


︸ ︷︷ ︸

K(X,X)

+Σ⊗ IN


H

where Σ = diag(σ2
1 , . . . , σ2

L) ∈ RL×L
, IN is an N × N identity matrix,

and ⊗ is the Kronecker product.
1

[248]: Van Loan (2000), ‘The ubiquitous

Kronecker product’

Also, K(X, X) ∈ RNL×NL
. We intro-

duce the following shorthand notation for element-wise observations

K``(X, X) = H>KXX H,

Σ` = H>(Σ⊗ IN)H.

y` = HY .

Evaluations of individual sources can be incorporated easily in the

multi-source model without needing to relate them to the vector-valued

observations Y .

gp posterior The dataset D = {`, X, y`} contains the N data triplets

from evaluating elements ` of f at locations X,

X = [x1 . . . xN ]
>,

` = [l1 . . . lN ]
>,

y` = [ fl1(x1) + εl1 . . . flN (xN) + εlN ]
>.

The lth component of the posterior mean and covariance are

ml|D(x) = ml(x) + kl`(x, X)G`(X)−1(y` −m`(X)),

kll′ |D(x, x′) = kll′(x, x′)− kl`(x, X)G`(X)−1k`l(X, x′),

where kl`(x, X) = kl`(X, x)> is a row vector with elements kllN (x, xn),
i. e., the covariance between the source fl at location x and fln at xn. We also

introduce a short-hand notation of the noise-corrected kernel Gram matrix

G`(X) = K``(X, X) + Σ` ∈ RN×N
and Σ` = diag(σ2

l1
, . . . , σ2

lN
).

5.3.2 Multi-source Bayesian quadrature

The multi-output gp can be integrated and gives rise to a quadrature

rule similar to vbq (cf. Section 2.2). Let Z1 denote the random variable
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representing the integral of interest Z1 of (5.1). The integral over the

lth source is a priori—just as in the single-source case—Zl ∼ N (ml , vl)
with

ml =
∫
X

ml(x)dν(x),

vl = kl =
∫∫

X
kll(x, x′)dν(x)dν(x′),

although we only care about Z1.

The posterior over Z1 given the data triplets D is a univariate Gaussian

with mean and variance

m1 |D := E[Z1 |D] = m1 + κ1`(X)>G`(X)−1(y` −m`(X)),

v1 |D := V[Z1 |D] = k11 − κ1`(X)>G`(X)−1κ`1(X),

where the kernel mean of source 1 follows the notation scheme from

Section 2.2,

κ`1(X) =
∫
X

k1`(x, X)dν(x).

Just as in vbq, it is desired that the kernel be integrable, although

numerical integration of the kernel can be advantageous over directly

solving the costly integral in some cases.

We choose an intrinsic coregionalization model (icm) [6, § 4.2.2] [6]: Alvarez et al. (2012), ‘Kernels for

vector-valued functions: A review’

with

kernel

kll′(x, x′) = Bll′ k̂(x, x′), (5.2)

where B ∈ RL×L
is a positive definite matrix. (5.2) is the simplest

extension of a single-source kernel k̂(x, x′) to the multi-source case which

the correlation between the sources and input locations are assumed to

factorize. In other words, the assumption in the icm is that the sources

can be written as a linear combination of Q basis functions uq that are

each distributed according to a zero-mean gp but that all share the same

kernel k̂,

fl(x) =
Q

∑
r=1

al,quq(x).

R determines the rank of B. This model is a special case of the linear

model of coregionalization (lmc) that considers the more general case

that each uq has its own kernel k̂q, which allows to incorporate different

lengthscales of the sources.

If k̂(x, x′) is integrable analytically, kll′(x, x′) will be, too, and thus

retains the favorable property of a bq-kernel. A typical choice for k̂ is the

squared-exponential, aka. rbf kernel k̂(x, x′) = exp(−‖x−x′‖2
2/2λ2) with

no dependence on the sources l and l′. While considering the icm here for

proof-of-concept, this model can easily be extended e.g., to a lmc without

challenging integrability of k. Doing so would untie the lengthscales

between sources, but would also introduce L− 1 additional generally

unknown kernel parameters. The simpler icm is also used by Xi et al. [265] [265]: Xi et al. (2018), ‘Bayesian quadrature

for multiple related integrals’
to establish convergence rates for a multi-output bq rule. In particular, they

find the convergence rate of multi-output bq to be the same as for vbq.
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5.4 Active design for multi-source bq

Chapter 3 established multiple approaches to active learning in bq. Due

to linearity of the integral operator, the optimal utility functions are

analytically tractable. This result is not compromised in multi-source bq.

However, if the goal was to learn multiple integrals simultaneously, it

would be challenging to define an objective that quantifies the overall

improvement without sacrificing the accuracy of individual sources. In

our setting, the design of an active learning scheme is unambiguous,

where information or variance criteria can be formulated w.r.t. the primary

source.

The goal here is to obtain a sequence of actions to select new source-

location-evaluation triplets that are informative about the primary source.

We adopt a sequential approach to acquiring new data in order to over-

come the combinatorial explosion of the joint optimization over N nodes

(cf. Section 3.2.3). Besides feasibility, the lack of exact model knowledge

motivates a loop in which the model is repeatedly updated with new ob-

servations, leading to an implicit adaptivity of the active learning policy.

To this end, bq is placed in a loop where it is iteratively fed with N? new

observation triplets (`?, X?, y`?
) in the general multi-step look-ahead

(non-myopic) approach. In practice we resort to a myopic approximation

and optimize for a single new observation triplet (l?, x?, yl?) at a time.

Section 5.4.1 treats the generalization of the standard vbq acquisitions

introduced in Section 3.2.1 and 3.2.2 to the multi-source setting. All these

utilities give rise to the same acquisition policy in the absence of cost and

are thus not greatly differentiated between in the literature. Intriguingly,

the policies do not coincide for amsbq if cost is accounted for in the

acquisition functions, as will be shown and discussed in Section 5.4.2.

5.4.1 Policies for multi-source Bayesian quadrature

In the absence of any notion of evaluation cost (or if all sources come at

the same cost), the utility functions from vbq generalize straightforwardly

to the multi-source case. The vbq case can be recovered by setting the

number of sources to one.

Mutual Information From an information theoretic perspective, new

source-location pairs (`?, X?) can be chosen such that they jointly maxi-

mize the mutual information (mi) I[Z1; y`? ] between the integral of the

primary source Z1 and a set of new but yet unobserved evaluations y`? .

In terms of the individual and joint differential entropies over Z1 and y`? ,

I[Z1; y`? ] = H[Z1] + H[y`? ]− H[Z1, y`? ]. Section 5.3 and Section 5.3.2

imply that both Z1 and y`? are normally distributed and so is their joint.

Thus, the mutual information criterion straightforwardly generalizes

from (3.6). Since there is no explicit dependence on the value taken by

y`? , we (sloppily) express the mutual information as a function of the

new source-location pairs (`?, X?),

I[Z1; `?, X?] = −
1
2

log
(

1− ρ2
1`? |D(X?)

)
(5.3)
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with the scalar correlation (3.5) adapted to the multi-source setting

ρ2
1`? |D(X?) =

κ1`? |D(X?)> C−1
`? |D(X?) κ`?1|D(X?)

V[Z1 |D]
∈ [0, 1]. (5.4)

C`? |D(X?) = K`?`? |D(X?, X?) + Σ`? ∈ RN?×N?
denotes the noise-

corrected posterior covariance matrix. The derivation is identical to

the single-source case (cf. Section 3.2) and expanded on in Section B.2. In

the one-step look-ahead case (N? = 1),

ρ2
1l? |D(x?) =

κ2
1l? |D(x?)

vl? |D(x?)V[Z1 |D]

is the bivariate squared correlation between Z1 and yl? , where vl? |D is

the scalar version of C`? |D.

Variance-Based Acquisitions The generalized form of variance reduction

on the integral also accounts for variance reduction achieved by evaluating

other information sources than the primary. The policy selects (`?, X?)
such that the variance on Z1 shrinks maximally. As mi, the integral

variance reduction (ivr) normalized by the current integral variance

V[Z1 |D] generalizes from the vbq expression (3.7)

∆V[Z1; `?, X?]

V[Z1 |D]
=

V[Z1 |D]−V[Z1 |D ∪ (`?, X?, y`?
)]

V[Z1 |D]
= ρ2

`? |D(X?) (5.5)

Other acquisition functions introduced in Section 3.2.2 can be extended

to the multi-source setting in an analogous manner. The variance-based

acquisitions are monotonic transformations of (5.3) and therefore, they

share the same global maximizer X? also in the case of multiple informa-

tion sources. The same is true for other monotonic transformations of the

squared correlation, and acquisitions like the maximization of integral

precision (ip) can be considered equivalently.

5.4.2 Cost-sensitive acquisition functions

When there is a location and/or source-dependent cost associated to

evaluating the information sources (cf. Section 5.1), the utility function

should trade off the improvement made on the integral against the overall

budget spent for prospective function evaluations,

c`?(X?) =
N?

∑
i=1

cli (xi). (5.6)

This is achieved by considering the ratio of a cost-agnostic bq utility and

the corresponding cost function.

Definition 5.4.1 (Acquisition rate) In presence of cost (5.6), a bq acquisition

rate is the ratio between a cost-agnostic bq acquisition function and the cost

function,

α̂`?(X?) =
α`?(X?)

c`?(X?)
.
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3: To avoid notational clutter, we refer

to ρ2
1`? |D(X?) as ρ2

in the following dis-

cussion, but still mean the multi-source

posterior scalar correlation. Similarly, we

sloppily denote multi-source acquisitions

as α and their cost-adjusted counterparts

as α̂.

α`? is any of the above multi-source acquisition functions.
2

2: The reference to the primary source is

not explicitly taken care of in this notation.

All acquisitions are still defined w.r.t. the

integral Z1.

This ratio can

be interpreted as a rate as it bears the units of the utility function divided

by units of cost. The notion of a rate becomes clearer when considering

for example the mutual information utility (5.3) with cost measured in

terms of evaluation time: the unit is
bits

second
, i. e., a rate of information gain.

This construction has an important consequence: Modification of the

vbq utility function (i. e., the numerator), even by a monotonic transfor-

mation, changes the maximizer of the cost-adapted acquisition rate and

hence, also the acquisition policy. In other words, the degeneracy of bq ac-

quisition functions in terms of the policy they induce in the absence of

cost is lifted when evaluation cost is included, firstly, because the argmax

of each acquisition is shifted differently with cost, and, secondly, because

acquisition values from different sources are discriminated against each

other now. As will be discussed below, not all monotonic transformations

yield a sensible acquisition policy; indeed, some display pathological

behavior.

The adapted non-myopic acquisition rates for the bq utilities mutual

information (mi) (5.3) and integral variance reduction (ivr) (5.5) are

α̂mi

`?
(X?) :=

− log
(

1− ρ2
1`? |D(X?)

)
c`?(X?)

α̂ivr

`?
(X?) :=

ρ2
1`? |D(X?)

c`?(X?)
,

where we have dropped the factor 1/2 in mi as an arbitrary scaling factor. It

is evident that these acquisition rates do no longer share their maximizer;

yet they still induce a meaningful acquisition scheme.

To gain an intuition about the behavior of the acquisition functions, it

is instructive to consider their functional dependence on the squared

correlation
3

i. e., α(ρ) prior to cost-adjustment. Both mi and ivr have the

property to be zero at ρ2 = 0 and thus never select points X? that are

uncorrelated with the integral Z, no matter the cost, e.g., locations that

have already been observed exactly (with σ2 = 0). Such points do not

update the posterior of the integral Z when conditioned on. In vbq these

locations are the minimizers of all acquisition functions and thus excluded

no matter their value. This is not ensured for the cost-adapted acquisition

rates and therefore, they additionally require the numerator to be zero

at ρ2 = 0. Hence, not every monotonic transformation of the bq utility

produces a sane acquisition policy in the presence of cost.

Consider for example the valid transformation ρ2 7→ ρ2 − 1, which is−1
at ρ = 0. Maximizing this utility function corresponds to maximizing

the negative integral variance (3.8), i. e., minimizing the integral variance,

which is very commonly done in vbq. Since ρ2 ∈ [0, 1], ρ2 − 1 is negative

everywhere and gets larger (takes a smaller negative value) with larger

cost. Hence, when maximized, this acquisition would favor expensive

evaluations.

More subtle is the misbehavior of the integral precision (ip) which is

another valid way to rephrase the reduction of variance by saying that

we want to maximize the precision (the inverse variance) of the integral,

V[Z1 |D ∪ (`?, X?, y`?
)]−1 ∝ (1− ρ2)−1 =: αip

`?
(X?).
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mi ivr ip

I[Z1; `? ,X? ]
c`? (X?)

∆V[Z1; `? ,X? ]
c`? (X?)

V−1[Z1; `? ,X? ]
c`? (X?)

I[Z1; X? ]
c(X?)

∆V[Z1; X? ]
c(X?)

V−1[Z1; X? ]
c(X?)

I[Z1; `? ,X? ]
c`?

∆V[Z1; `? ,X? ]
c`?
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Figure 5.1: The multi-source acquisition cube for a few of the possible acquisition functions. mi, ivr, and ip stand for ‘mutual information’,

‘integral variance reduction’, and ‘integral precision’, respectively. The forward arrows (

�

) denote the special case of one source only

(L = 1) as in the case of vbq. The downward facing arrows (↓) denote the special case where the cost c is not dependent on the locations X? .

The double-lines (==) between nodes denote that these acquisition functions are equivalent in the sense that they yield the same optimal

X?. The two grayed-out acquisitions for ip highlight that they exhibit non-favorable behavior (Proposition 5.4.1). The bottom front row in

the cube denotes the special case of vbq (L = 1 and c(X?) = const.) where all three acquisition policies (mi, ivr, ip) coincide.

α
vb
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α
vb
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/

c
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c

Figure 5.2: A selection of vbq acquisitions

αvbq
as a function of univariate x? and

myopic step (N? = 1) for a synthetic

ρ2(x?). Without cost, their maximizers co-

incide (top), but when divided by an input-

dependent cost c(x?) (bottom), the maxi-

mizers disperse (indicated by the dashed

vertical lines) (middle). For implications, cf.

Section 5.4.2.

This function is positive everywhere and its cost-adjusted version α̂ip

has the desired behavior of favoring low-cost evaluations. However, αip

is non-zero at ρ2 = 0 and therefore, it does not exclude points of zero

correlation when they come at sufficiently low cost, and in experiments

we observe it getting stuck re-evaluating at the location of minimum cost

over and over again. We conjecture that this is because ip only encodes

an absolute scale of the integral variance but does not quantify any

‘improvement’ on the integral value.

Improvement can be encoded by maximizing the difference between the

prospective and the current integral precision,

V[Z1 |D ∪ (`?, X?, y`?
)]−1 − V[Z1 |D]−1 ∝

ρ2

1− ρ2 =: αipi

`?
(X?),

labeled as integral precision increase (ipi). The relative way to phrase the

change of integral precision again retains the favorable properties of a cost-

adjustable acquisition function. We summarize the necessary conditions

of a bq acquisition function to be amenable to usage in the cost-aware

setting.

Proposition 5.4.1 (Cost-adjustable bq acquisition function) An acquisition

function α in Bayesian quadrature is called cost-adjustable if it satisfies the

following requirements as a function of scalar correlation ρ (5.4),

(i) α(ρ) > 0 for all ρ ∈ [0, 1], (positivity)

(ii) α(ρ = 0) = 0, (zero point)

(iii) α(ρ2) > α(ρ1) ⇔ ρ2 > ρ1. (monotonicity)

An acquisition function that fulfills these properties gives rise to a desirable

policy when divided by a cost function.

Figure 5.1 illustrates the augmentation of utility functions from vbq with

multiple information sources and cost. The dependence of these acqui-

sition functions on the squared correlation ρ2 ∈ [0, 1] in the absence of

cost is shown in Figure 3.2. All acquisitions are strictly monotonically

increasing functions of ρ2
. Among the sane acquisition rates that are
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zero at ρ2 = 0, the differences in the corresponding policy can also be

understood from the functional dependence on ρ. mi diverges at perfect

correlation ρ2 → 1. Therefore, and since the cost c lies in [δ, 1], mi will

always take a ‘perfect step’ to learn the integral exactly, i. e., it will always

select the points X? with correlation ρ2(X?) = 1, if the step is available

and no matter the cost. ivr, however, is finite at ρ2 = 1 and trades off

cost against correlation even if the perfect X? with ρ2(X?) = 1 exists.

In Figure 5.2 we plot mi, ivr, and ip versus a univariate x? for the syn-

thetic choice ρ2(x?) = 0.95 sin2(10x?), x? ∈ [0, 0.2] and a myopic step

(N? = 1). In the pure vbq situation, the locations of all their maxima

coincide, but as soon as a non-constant cost c(x?) is applied, the shapes

of the acquisition functions become relevant which discriminates their

X? and lifts the degeneracy in policies. mi tends more towards higher

correlation than ivr, the maximizer of which moves further towards

locations of lower cost. While mi and ivr act differently, they are both

sensible choices for acquisition functions in amsbq. In fact for low to

mid-ranged values of ρ2 <∼ 0.5 where mi is approximately a linear function

of ρ2
they roughly coincide.

The choice of acquisition ultimately depends on the application and the

user, who may choose which measures of improvement on the integral

and cost to trade off.

5.5 Experiments

The key practical applications for amsbq is to solve integrals of expensive-

to-evaluate black-box functions that are accompanied by cheaper ap-

proximations, potentially in a setting where a finite budget is available.

Typical applications are models of complex nonlinear systems that need

to be tackled computationally. With evaluations being precious, the goal

is to get a decent estimate of the integral with as little budget as possible,

rather than caring about floating-point precision. In the experiments, we

focus on the rear vertices of the acquisition cube Figure 5.1, i. e., multiple

sources with source and input-dependent or only source-dependent cost,

and separate them into two main experiments:

1. A synthetic multi-source setting with cost that varies in source and

location for the purpose of exploring and demonstrating the behavior

of the acquisition functions derived in Section 5.4.2.

2. An epidemiological model of the spread of a disease with uncertain

input, in which two sources correspond to simulations that differ in

cost as well as quality of the quantity of interest.

To demonstrate validity in a multi-dimensional setting, we present a

bivariate experiment with three sources in Section 5.5.3. We take a myopic

approach to all scenarios in that we optimize the acquisition for a single

source-location pair a time. The implementation of the gp-model uses

GPy [98] [98]: GPy (since 2012), GPy: A Gaussian

process framework in Python

in Python 3.7.

5.5.1 Multi-source, variable cost

For demonstration purposes, we initially consider a synthetic two-source

setting with univariate input. The cost functions depend on both source

and location. The experiment’s purpose is to demonstrate our findings

from Section 5.4.2 and convey intuition about the behavior of the novel
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Figure 5.3: Demonstration of the sequen-

tial selection of new source-location pairs

to query f using the mi acquisition in a two-

source setting with a cost function that

depends on both source and location (Fig-

ure 5.4). Left column: The multi-output gp;

right column: the acquisition function for

the primary (solid) and secondary source

(dashed) for three consecutive iterations.

Vertical orange lines indicate the location

and source of the prospective query.
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Figure 5.4: The artificial cost assigned

to the Forrester functions and used for

demonstrating the cost-sensitive acquisi-

tion scheme in Figure 5.3.
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Figure 5.5: A later state for the experiment

shown in Figure 5.3. Note the absence of

f2 evaluations for small x where c1 and c2
are similar.

acquisition functions. The sources we consider have been suggested by

[74] [74]: Forrester et al. (2007), ‘Multi-fidelity

optimization via surrogate modelling’

with the primary and secondary source

f1(x) = (6x− 2)2 sin(12x− 4)

f2(x) =
1
2

f1(x) + 10x

for x ∈ [0, 1], respectively. The cost functions both take the form of a

scaled and shifted logistic function in a way that the cost lies in (0, 1] (cf.

Figure 5.4). The costs of both sources converge to the same value close to

x? = 0; for larger x?, f2 is two orders of magnitude cheaper than f1.

Figure 5.3 shows snapshots of three consecutive query decisions taken

by the mi multi-source acquisition. The gp model (depicted in the left

column) has been initialized with 3 data points in the primary and 5 in

the secondary source and merely the noise variance was constrained to

10−2
. The mi acquisition given the current state of the gp is shown on

the right—the top left frame is shown for mi, ivr, and ip in Figure 5.6

to emphasize the pathology of ip and to highlight the subtle difference

between mi and ivr in practice. The acquisition function is optimized

using the l-bfgs-b optimizer in scipy. A later state of the acquisition

loop shown in Figure 5.5 demonstrates that amsbq does not query f2
where the source costs are almost identical for x? <∼ 0.2. This is because

the two sources are not perfectly correlated and evaluating f1 always

conveys more information about Z1 than f2. The fact that c2 decreases

with increasing x? is nicely represented in the increasing height of the

maxima of the dashed acquisition function for the secondary source in

the top right frame of Figure 5.3.

For assessing the performance of amsbq, we compare against vbq and a

percentile estimator (pe) that both operate on the primary source. The

latter is obtained by separating the domain into intervals that contain
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Figure 5.6: mi, ivr, and ip acquisitions for the top row of Figure 5.3. mi and ivr do not differ a lot, i. e., the correlation ρ is rarely large enough

for mi to leave the linear regime. mi puts slightly more emphasis on the primary source where x? is close to 1. This indicates that the

correlation between Z and y? quite large there. The bottom plot displays the pathology of ip, where the acquisition for the secondary source

essentially follows the inverse cost c2. Note that the vertical scale is irrelevant and does not even have the same unit across plots.
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Figure 5.7: Final state of the gp for the

second experiment explained in Section

5.5.1 and shown in Figure 5.8 (‘wigglified

Forrester’). Note the increasing density of

evaluations of the secondary source where

the cost is minimal, and the lack of f2
queries where c1(x) ' c2(x). The leftmost

evaluation is at the primary source. See

Figure 5.8 for the cost functions. In this

experiment, the ip acquisition exclusively

evaluates at the location of the minimum

of the secondary cost function and is thus

stuck.

the same probability mass of the probability measure ν and summing

up the function values at these nodes. For the uniform integration

measure used here, this is equivalent to a right Riemann sum. We assume

that gp inference comes at negligible cost as compared to the function

evaluations and thus consider cost to be incurred purely by querying the

information sources.

To render the integration problem slightly more difficult, we modify

the Forrester functions to vary on a smaller length scale by adding a

sinusoidal term and adapting some parameters, s.t.

f1(x) = (6x− 2)2 sin(12x− 4)− (2− x)2 sin(36x)

f2(x) =
3
4

f1(x) + 16
(

x− 1
2

)
+ 10

which we integrate from 0 to 1 against a uniform measure (cf. Figure 5.8,

top left). To avoid over- or underfitting, we set a conservative gamma

prior on the lengthscale with a mode at a small fraction of the domain

[0, 1] for both vbq and amsbq, and assume zero observation noise. Due to

the construction of the coregionalization matrix B = WW> + diag(η)
amsbq has six more hyperparameters than vbq. Therefore, amsbq is

more prone to over-/underfitting, and we further set a prior on B (cf.

Section 5.3.2) with parameters estimated from the initial three data

points using empirical Bayes. This is to avoid initial over- or under-

estimation of the correlation between sources, which would either cause

the active scheme to select only f2 or only f1, respectively. Compared

to the previous experiment, the cost is changed to have a minimum,

but still composed of a sum of logistic functions and normalized to be

in (0, 1] (Figure 5.8, top right). The effect of these cost functions on the

final state is depicted in Figure 5.7. Furthermore, this setting reveals

the pathology of the ip acquisition (cf. Section 5.4.2) that everlastingly

re-evaluates the secondary source at the location of minimal cost. The

convergence behavior of the well-behaved acquisition functions mi and

ivr are displayed in Figure 5.8 (bottom) in comparison to vbq and pe. The

hyperparameters of the gp are optimized after every newly acquired node,

both for vbq and amsbq. Figure 5.8 shows the superior performance of

both amsbq methods in arriving close the true integral with little budget.

The vertical jumps in the amsbq methods occur when f2 is evaluated at

cheaper cost.
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Figure 5.8: Top left: the wigglified Forrester

functions with f1 and f2 primary/sec-

ondary source, respectively; top right: the

cost functions used; bottom: relative error

E[Z]−Z/Z with two std. deviations (shaded)

as a function of normalized cost for the

amsbq acquisitions mi and ivr compared

to vbq and a pe. Vertical dashed lines are

a visual help to indicate the cost spent to

achieve acceptable accuracy.

4: Compartmental models for epidemi-

ological modeling have experienced an

extraordinary revival following the out-

break of the covid-19 pandemic [e. g., 95].

They have been studied from a probabilis-

tic perspective [221] to predict infection

numbers with uncertainty. Even prior to

covid-19, these models have been founda-

tional to developing policies for combat-

ting epidemics (e. g., tuberculosis [180]).

The simplistic study presented here has

been carried out prior to covid-19.

5.5.2 A simulation of infections

We now consider multi-source models in which sources come at input-

independent cost, a.k.a. multi-fidelity models (bottom rear mi vertex in

Figure 5.1). We choose an epidemiological model in which evaluating the

primary source requires running numerous stochastic simulations and

the secondary source solves a system of ordinary differential equations.

Epidemiological models deal with simulating the propagation of an

infectious disease through a population. The sir model forms the base

for many compartmental models and assumes a population of fixed size

N where at any point in time, each individual is in one of three states—

susceptible, infected, and recovered (sir)—with sizes NS, NI , and NR
[138]

[138]: Kermack and McKendrick (1927), ‘A

contribution to the mathematical theory

of epidemics’

.
4

[95]: Giordano et al. (2020), ‘Modelling the

COVID-19 epidemic and implementation

of population-wide interventions in Italy’

[221]: Schmidt et al. (2021), A probabilistic

state space model for joint inference from

differential equations and data

[180]: Moualeu et al. (2015), ‘Optimal

control for a tuberculosis model with

undetected cases in Cameroon’

[58]: Daley and Gani (1999), Epidemic

modelling: An introduction

The dynamics are determined by stochastic discrete-time events

of individuals changing infection state, for which Poisson processes (i. e.,

exponentially distributed inter-event times) are commonly assumed [58,

e.g., ]. In the thermodynamic limit where N is large, the average dynamics

is governed by a system of ordinary differential equations (odes) that

does not admit a generic analytic solution. The thermodynamic limit can

safely be assumed for any realistic population size. When the population

size is large, the sir model can be described by the following system of

ordinary differential equations,

d NS
d t

= −a
NSNI

N
,

d NI
d t

= a
NSNI

N
− bNI ,

d NR
d t

= bNI ,

(5.7)

in which a is the rate of infection and b the rate of recovery. The sir

model is easily extended to more elaborate epidemiological models by

accounting for more compartments. Extensions accommodate additional

effects e.g., vital dynamics, immunity, incubation time [115] [115]: Hethcote (2000), ‘The mathematics

of infectious diseases’

. Some of

these extensions serve as a general model refinement, others are relevant
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5: For significantly higher population

sizes, the system of odes yield results

that are almost indistinguishable from

the average over many stochastic realiza-

tions. At the same time, the latter become

prohibitively expensive. The experimental

setup has been chosen here for demonstra-

tive purposes, not for practical relevance.

to specific diseases. More compartments inevitably introduce new free

parameters to describe the transition rates between them. The dynamics

of the sir model and an extension that accounts for incubation time is

illustrated in Figure 5.9.

Statistical properties, however, are not captured by the description

through odes and call for a stochastic model. The Gillespie algorithm

[92, 93] [92]: Gillespie (1976), ‘A general method

for numerically simulating the stochastic

time evolution of coupled chemical

reactions’

[93]: Gillespie (1977), ‘Exact stochastic

simulation of coupled chemical reactions’

enables discrete and stochastic simulations in which every tra-

jectory is an exact sample of the solution of the ‘master equation’ that

defines a probability distribution over solutions to a stochastic equation.

In the sir model, the rate constants are time-independent and thus, the

underlying process is Markovian in which the event times are Poisson

distributed. Here, an event denotes the transition of one individual from

one compartment to another (e.g., NI → NR).

Experimental details For the amsbq experiment, we assume that we

know the recovery rate b, but we are uncertain about the infection rate

a. Therefore, we rescale the odes and place a shifted gamma prior on

a/b that starts at a/b = 1 and has shape and scale parameters 5 and

4 respectively. With this prior we encode our belief that the infection

rate is significantly larger than the recovery rate so an offset of the

epidemic is very likely. Also, we set the population size to N = 100
to be well below the thermodynamic limit and set one individual to

be infected initially.
5

We are interested in the expected maximum

number Ea[maxt NI(t)] of simultaneously infected individuals and the

time this maximum occurs Ea[arg maxt NI(t)], which might be relevant

for predicting hospitalization numbers. Querying the primary source

f1 for the quantities of interest as a function of a requires numerous

realizations—we average over 1000 trajectories—of a stochastic four-

compartments epidemic model (an extension to the sir model) using

the Gillespie algorithm [92, 93]. In addition to the base model (sir), we

include the state ‘exposed’ (e), in which individuals are infected but

not yet infectious. The modified system of odes with assumed known

0 2 4 6 8
0

100

t/b

N
i

sir model

E[NS] N ode

S
E[NI ] N ode

I
E[NR] N ode

R

0 2 4 6 8
t/b

seir model

E[NE]

Figure 5.9: Ten trajectories (thin lines) of

the stochastic sir (left) and seir model

(right) for a/b = 10. Solid lines display

the mean over 100 of these stochastic real-

izations; dashed lines show the solution

of the odes. The non-zero mean of the

stochastic simulations in susceptible in-

dividuals after decline of the infection is

caused by trajectories in which the infec-

tion dies out before an outbreak.
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Figure 5.10: Integrands used for the epi-

demiological model. Solid lines denote

the primary source (i. e., stochastic simula-

tions), dashed lines indicate the secondary

source (solving the system of odes). It is

apparent from the function that simply

integrating the cheap source introduces a

significant bias.

incubation time γ−1
is

d NS
d t

= −a
NSNI

N
,

d NE
d t

= a
NSNI

N
− γNE,

d NI
d t

= γNE − bNI ,

d NR
d t

= bNI .

(5.8)

In the stochastic model, the maximum value and time are computed for

each trajectory and subsequently averaged over. In our implementation,

each query of f1 takes ∼ 16 s on a laptop’s cpu. The secondary source

f2 solves the system of odes (5.8) for given a and computes the maxi-

mum value and time for the resulting function NI(t), which takes about

8 · 10−3s to evaluate. For the integration task, we absorb the prior on a/b
in the black-box function for all methods and integrate against a uniform

measure.

As in previous experiments, we set a gamma prior on the kernel length-

scale λ, a prior on the coregionalization matrix B, and the noise variance

to zero as in Section 5.5.1. Both vbq and amsbq are given the same initial

value of f1, and amsbq additionally gets the value of f2 at the same loca-

tion, as well as one more random datum from f2. This is justified since

amsbq needs to learn more hyperparameters than vbq and secondary

source evaluations are very cheap. Otherwise, if the initial evaluations

of f2 were further apart than the prior lengthscale from the locations of

the initial primary datum, virtually zero correlation would be inferred

between the sources, and the primary source would be evaluated until a

sampled location roughly coincides with locations where the secondary

sources have been evaluated.

Figure 5.9 shows the sir and seir models ((5.7) and (5.8), respectively).

We also use the sir model for solving the odes even though the stochastic

model simulates the seir model. The purpose of doing so is to mimic

secondary sources that simplify the primary model by disregarding minor

contributions to the overall dynamics. In the stochastic case, there is not

always an outbreak of the disease, i. e., the initially infected individual

recovers before infecting someone else. This causes the average NR to

level off significantly below 1. For the integrals, only outbreaks are taken

into account. The corresponding integrands for the quantities of interest

are shown in Figure 5.10.
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Figure 5.11: Relative error vs. budget spent

for the sir model for the max number of

simultaneously infected individuals (left)

and for the time after which the maximum

occurs (right). Primary source has cost 1.
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Ea[maxt NI(t)]

f1

f2
Ea[arg maxt NI(t)]

Figure 5.12: Evaluation sequences of pri-

mary and secondary source in the sir ex-

periment.

Figure 5.11 shows the relative error of the amsbq estimator against

normalized cost as compared to vbq and pe for Ea[maxt NI(t)] (left)

and Ea[arg maxt NI(t)] (right). The horizontal dashed line shows Z2 =∫
X f2(a)da, i. e., the integral of the secondary source with one evolution

of a Monte Carlo estimator of f2. This illustrates that simply using the

secondary source for the integral estimate might be computationally

cheap, but results in an unknown bias. In the left plot, amsbq achieves a

good estimate with one additional evaluation of f1 only, while vbq takes

another six evaluations. Again, the vertical jumps for amsbq are caused

by evaluations of f2. The initial high confidence on the integral is caused

by the choice of prior on the output scale from the initial data, which is

located in the tail of the gamma prior on a. Figure 5.12 displays the order

in which amsbq evaluates primary and secondary source. It demonstrates

that the secondary source is queried considerably more often than the

primary source.

5.5.3 Bivariate linear combinations of Gaussians

We construct a bivariate integrand f1 on the domain [−3, 3]2 as a linear

combination of J = 20 normalized Gaussian basis functions

f1(x) =
K

∑
k=1

z1
j ϕ1

j (x),

ϕl
j(x) = (2π|Al

j|)−
1
2 exp

(
−1

2
(x−m1

j )
>(Al

j)
−1(x−ml

j)

)
.

The J = 20 means are sampled uniformly m1
j ∼ Uniform[−3, 3]2.

Covariance matices A1
j are constructed according to v1

j ∼ N (0, I),

η1
j ∼ Uniform[0, 1]2, and A1

j := diag(η1
j ) + v1

j (v
1
j )
>

. The scalar weights

z1
j are sampled from a standard Gaussian z1

j ∼ N (0, 1) and can be

negative. Thus, f1 is not a probability density function but rather a linear

combination of Gaussians with varying location, shape, and weight.

We then construct secondary sources f2 and f3 consecutively by adding

uniform noise to the means, and additive uniform noise to the diagonal

of the covariance matrices. Thus, with each additional source, each of

the J means get randomly but consecutively shifted up and right, and

the basis functions ϕl
j(x), l = 2, 3 randomly become wider and flatter.

Additionally, we consecutively add Gaussian random noise to the weights

zj which ensures that the true integrals of the secondary sources differ

from the integral of the primary source. All sources are depicted in Figure

5.13; the primary source f1 on the left, and secondary sources f2 and f3
in the middle and right respectively. The cost for evaluating the primary

source is 1 everywhere, the cost of evaluating f2 and f3 are 5% of the

primary cost each.
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x 2

x1 x1 x1

Figure 5.13: Integrands used for the bi-

variate linear combination of Gaussians.

From left to right: primary source f1 and

secondary sources f2 and f3. Initial evalu-

ations marked as black crosses.
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Figure 5.14: Relative error vs. budget spent

for vanilla-bq and amsbq.

f1

f2

f3

Figure 5.15: Evaluation sequence of the

three sources in the 2D experiment over

250 evaluations.

The priors on the kernel lengthscale and coregionalization matrix B are

set analogously to the other experiments already described in Section

5.5.1. amsbq is initialized with one evaluation of the primary source and

two evaluations each of the secondary sources which amounts to a total

initial cost of 1.2 (initial evaluations shown as red dots in Figure 5.13).

vbq is initialized with three evaluations which are needed to get an initial

guess for its hyperparameters (initial cost=3). The result is shown in

Figure 5.14 which plots relative error of the integral estimate versus the

budget spent as well as two standard deviations of the relative error as

returned by the model. It is apparent that amsbq finds a good solution

faster than vanilla-bq.

Figure 5.15 illustrates the sequence of sources chosen by amsbq. Secondary

source f2 is chosen more often than secondary source f3 at equal evolution

cost of 0.05. This is intuitive since f2, by construction, provides more

information about f1 than f3, but both secondary sources shrink the

budget equally when queried. The percentage of number of evaluations

for each source after spending a total budget of 50 is 15%, 57%, 28% for

sources f1, f2, f3 respectively.

5.6 Discussion

The purpose of the project was to study active learning schemes for

multi-source bq to infer the integral of a primary source while including

information from cheaper secondary sources. We discovered that utilities

that yield redundant acquisition policies in vbq give rise to various

policies, some desirable and others pathological, when evaluation cost is

accounted for and phrased desiderata for sane acquisition functions in bq.

Our experiments illustrate that with the sensible acquisition functions,

the amsbq algorithm allocates budget to information retrieval more

efficiently than traditional methods do for solving expensive integrals.

The multi-source model presented in Section 5.3 can be extended in

various ways to increase its expressiveness by using a more elaborate

kernel (e.g., one lengthscale per source), or by encoding knowledge about

the functions to be integrated, e.g., a probabilistic integrand. For example,

it could be used concurrently with a warped bq model (cf. Section 2.5).

Generally, applications might come with the complication that the cost

function c is unknown a priori and needs to be learned during the

active bq-loop from measurements of the amount of resource required

during the queries. A simple example was presented in Section 5.5.2

where the cost was parameterized by a constant, estimated during the

initial observations. A probabilistic model of the cost would induce an

acquisition function which is not only conditioned on the uncertain model

predictions but also on the uncertain cost predictions. Furthermore, as in
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other active learning schemes, non-myopic steps for acquiring multiple

observations y`?
at once might be beneficial especially when the multi-

source model is already known, and does not benefit from being re-fitted

to new data. Settings in which multiple evaluations of sources come at

lower cost than evaluating sequentially are also conceivable, and would

also benefit from a non-myopic treatment. The presented experiments

have merely a proof-of-concept character, and the practical benefit of

using amsbq in real-world applications should be empirically studied.



Figure 6.1: Shortest paths according to the

Euclidean ( ) and the Riemannian ( )

view.

Bayesian Quadrature on
Riemannian Data Manifolds 6

Riemannian manifolds provide a principled way to model nonlinear

geometric structure inherent in data. A Riemannian metric on said

manifolds determines geometry-aware shortest paths and provides the

means to define statistical models accordingly. However, these operations

are typically computationally demanding. To ease this computational

burden, we advocate probabilistic numerical methods for Riemannian

statistics. Following the main thread in this thesis, we focus on Bayesian

quadrature (bq) to numerically compute integrals over normal laws on

Riemannian manifolds learned from data. In this task, each function

evaluation relies on the solution of an expensive initial value problem. We

show that by leveraging both prior knowledge and an active exploration

scheme, bq significantly reduces the number of required evaluations and

thus outperforms Monte Carlo methods on a wide range of integration

problems. As a concrete application, we highlight the merits of adopting

Riemannian geometry with our proposed framework on a nonlinear

dataset from molecular dynamics.

The content of this chapter has been published as

C. Fröhlich, A. Gessner, P. Hennig, B. Schölkopf, and G. Arvanitidis.

‘Bayesian quadrature on Riemannian data manifolds’. In: Proceedings

of the 38th International Conference on Machine Learning. Ed. by M. Meila

and T. Zhang. Vol. 139. Proceedings of Machine Learning Research.

PMLR, July 2021.

The code is publicly available at github.com/froec/BQonRDM.

6.1 Context

The tacit assumption of a Euclidean geometry, implying that distances

can be measured along straight lines, is inadequate when data follows a

nonlinear trend. This is known as the manifold hypothesis (cf. Figure 6.1).

As a result, probability distributions based on a flat geometry may poorly

model the data and fail to capture its underlying structure. Generalized

distributions that account for curvature of the data space have been put

forward to alleviate this issue. In particular, Pennec [200] proposed an

extension of the normal distribution on Riemannian manifolds such as

the sphere.

[200]: Pennec (2006), ‘Intrinsic statistics

on Riemannian manifolds: Basic tools for

geometric measurements’

The key strategy to use such distributions on general data manifolds

is by replacing straight lines with continuous shortest paths, known

as geodesics, which respect the nonlinear structure of the data. This is

achieved by introducing a Riemannian metric in the data space that

specifies how data distorts distance and volume locally.

Arvanitidis et al. [10] [10]: Arvanitidis et al. (2016), ‘A locally

adaptive normal distribution’

proposed a maximum likelihood estimation scheme

to learn the parameters of a locally adaptive normal distribution (land) on a

data-induced metric space, illustrated in Figure 6.2. A practical limitation

of this method is the computationally expensive optimization task that

demands repeated numerical integration of the unnormalized density

on the manifold, for which no closed-form solution exists. Hence, we

https://github.com/froec/BQonRDM
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Figure 6.2: A land on a protein trajectory

manifold of the enzyme adenylate kinase

(adk) reduced to two dimensions using

linear principal component analysis (pca).

Each datum represents a conformation of

the protein, i.e., a spatial arrangement of its

atoms. The conformation corresponding

to the land mean ( ) is visualized. The

adk dataset will be used throughout this

chapter to illustrate particular aspects of

the suggested manifold approach.

are interested in techniques to improve the efficiency of the numerical

integration scheme on manifolds. Integrals on Riemannian manifolds,

and in particular as they appear in the land model, satisfy properties

that make Bayesian quadrature an excellent choice for the integration

task(s):

I Knowledge about the structure of the integrals in curved spaces

allows to specify an appropriate prior. In the case of a normalization

constant, a warped bq model is appropriate to encode positivity of

the integrand in the model (cf. Section 2.5).

I The land optimization loop requires repeated evaluation of the

normalization constant, and a small speed-up in the computation

of a single normalization constant induces tremendous savings in

the overall land procedure.

I Each individual integration problem on the manifold is itself

computationally challenging, as it requires solving the geodesic

equations, a system of second-order ordinary differential equations.

In other words, evaluation of the integrand is costly and benefits

from the sample-efficiency of bq.

I The manifold structure calls for a tailored acquisition function that

aggregates evaluations along geodesics by considering informative

directions instead of locations on the manifold.

I The repeated evaluation of similar integrals in subsequent iterations

of the land optimization scheme enables information transfer from

previous iterations.

The uptake of Riemannian methods in machine learning is principally

hindered by prohibitive computational costs. We here address a key

aspect of this bottleneck by improving the efficiency of integration on data

manifolds. Although integrals on Riemannian manifolds are generally

amenable to treatment by bq, the focus of this project are manifolds that

are constructed from data. For studying integration on manifolds, the

land serves as prime example to demonstrate the effectiveness of bq on

said manifolds. This chapter first establishes the relevant background

on Riemannian manifolds needed to construct a custom bq method.

Section 6.2 provides a more illustrative than rigorous introduction into

differential geometry, Section 6.2.1 details how to construct manifolds

from data, and the land model is introduced in Section 6.3. The remainder
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M
Figure 6.3: A protein trajectory manifold.

A subset of the geodesics is shown with

respect to a fixed point µ ( ). The back-

ground is colored according to the vol-

ume element

√
|M| (Section 6.2.1) on a

log scale. We omit a colorbar, since the

values are not easily interpreted. Darker

color indicates regions with small met-

ric, to which shortest paths are attracted;

white areas correspond to a large volume

element that would drastically increase

the lengths of any passing path.

1: The geodesic equations are provided

in Section C.1.1.

Expµ(v) = x

Logµ
(x) = v

Figure 6.4: Illustration of the logarithmic

and exponential map on the protein trajec-

tory dataset.

of the chapter deals with the development of the custom bq method and

its evaluation. The proposed bq method achieves speedups by factors of

up to 20 on synthetic and real-world data manifolds.

6.2 Riemannian geometry

A manifoldM of dimension D is a topological space which does not carry

a global vector space structure. As opposed to the familiar RD
, a manifold

lacks the possibility of adding or scaling vectors globally. Instead, an atlas

is used to cover the manifold in charts, which only locally give a Euclidean

view of the manifold. If transition maps between overlapping charts are

smooth, we callM a smooth manifold, which provides the means for doing

calculus.

In our applied setting, we view RD
as a smooth manifold M with a

changed notion of distance and volume measurement as compared to the

Euclidean case. This view arises from the assumption that data that lives

in (the set) RD
have a general underlying nonlinear structure within RD

,

which is captured by the manifoldM (see Figure 6.3). Here we are not

concerned with lower-dimensional embedded manifolds that data could

lie on, or manifolds with structure known a priori, e.g., spheres and tori,

which are thus excluded from the discussion.

WhenM imposes geometric structure on RD
, the corresponding tangent

space TµM at a point µ ∈M is again RD
, but centered at µ. The tangent

space is a vector space that allows to represent points on the manifold

as tangent vectors v ∈ RD
. Pictorially, a vector v ∈ TµM is tangential

to some curve passing through µ. As a bundle, these vectors give a

linearized view on the manifold with respect to a base point µ.

A Riemannian metric is a positive definite matrix M : RD → RD×D
+ that

varies smoothly across the manifold. Therefore, we can define a local inner

product between tangent vectors v, w ∈ TµM as 〈v, w〉µ = 〈v, M(µ)w〉,
where 〈·, ·〉 is the Euclidean inner product. This inner product makes the

smooth manifold a Riemannian manifold [40, 158] [40]: Carmo (1992), Riemannian geometry

[158]: Lee (2018), Introduction to Rieman-

nian manifolds

.

A Riemannian metric locally scales the infinitesimal distances and volume.

Consider a curve γ : [0, 1] → M with γ(0) = µ and γ(1) = x. The

length of this curve on the Riemannian manifoldM is computed as

L(γ) =
∫ 1

0

√
〈γ̇(t), M(γ(t))γ̇(t)〉dt,

where γ̇(t) = d
dt γ(t) ∈ Tγ(t)M is the velocity of the curve. The γ? that

minimizes this functional is the shortest path between the points. To over-

come the invariance of L under reparameterization of γ, shortest paths

can equivalently be defined as minimizers of the energy functional

E(γ) =
1
2

∫ 1

0
〈γ̇(t), M(γ(t))γ̇(t)〉dt.

In physics, the argument L := 〈γ̇(t), M(γ(t))γ̇(t)〉 of the integral is

known as Lagrangian. The shortest path between two points µ ∈M and

x ∈M is obtained by solving the Euler-Lagrange equations, which are

a system of 2nd
order nonlinear odes. Given the boundary conditions

γ(0) = µ and γ(1) = x, this set of odes known as geodesic equations pose

a boundary value problem (bvp).
1

The resulting length-minimizing curve

is known as geodesic.
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To perform computations onM we introduce two operators. The first is

the logarithmic map Logµ(·) :M→ TµM

Logµ(x) = v

which represents a point x ∈ M as a tangent vector v ∈ TµM. The

logarithmic map finds the initial velocity of the geodesic that reaches x
at t = 1 with starting point µ. The inverse operator is the exponential map

Expµ(·) : TµM→M

Expµ(t · v) = γ(t)

that generates a unique geodesic starting out at γ(0) = µ with a given

initial velocity γ̇(0) = v ∈ TµM. This geodesic terminates at γ(1) = x.

The exponential map therefore takes tangent vectors v and maps them

to points on the manifold x ∈M. The two operations are illustrated on

the adk dataset in Figure 6.4. Note that Logµ(Expµ(v)) = v, and also,

‖Logµ(x)‖2 = ‖v‖2 = L(γ). Computationally, the logarithmic map

amounts to solving a bvp, whereas the exponential map corresponds

to an initial value problem (ivp). For general data manifolds, analytic

solutions of the geodesic equations do not exist, so we rely on specialized

approximate numerical solvers for the bvps; however, finding shortest

paths still remains a computationally expensive problem [111, 12] [111]: Hennig and Hauberg (2014), ‘Proba-

bilistic solutions to differential equations

and their application to Riemannian

statistics’

[12]: Arvanitidis et al. (2019), ‘Fast and

robust shortest paths on manifolds

learned from data’

. In

contrast, the exponential map as an ivp is an easier problem and solutions

are significantly more efficient. We illustrate our applied manifold setting

in Figure 6.3, where we show geodesics between µ and other data

points.

6.2.1 Constructing Riemannian manifolds from data

The Riemannian volume element or measure dM(x) =
√
|M(x)|dx

represents the distorted infinitesimal standard Lebesgue measure dx. To

capture the geometry inherent to the data, a meaningful metric should be

small near the data and increases as we move away from them. Intuitively,

such a metric behavior pulls shortest paths near the data, because this is

where the volume element is smaller (cf. Figure 6.3).

There are broadly two unsupervised approaches to learn such an adaptive

metric from data. Given a dataset x1:N of N points in RD
, Arvanitidis

et al. [10] [10]: Arvanitidis et al. (2016), ‘A locally

adaptive normal distribution’

proposed a nonparametric metric to model nonlinear data

trends as the inverse of a local diagonal covariance matrix with entries

Mdd(x) =

(
N

∑
n=1

wn(x)(xnd − xd)
2 + ρ

)−1

, (6.1)

where the weights wn are obtained from an isotropic Gaussian kernel

wn(x) = exp
(
− ||xn−x||2

2σ2

)
. The lengthscale σ determines the curvature

of the manifold, i.e., how fast the metric changes. The hyperparameter

ρ > 0 controls the value of the metric components that is reached far

from the data, so the measure there is

√
|M| = ρ−

D
2 . Typically, ρ is

set to a small scalar to encourage geodesics to follow the data trend.

However, this metric does not scale to higher dimensions due to the curse

of dimensionality [30, Chapter 1.4].

[30]: Bishop (2006), ‘Pattern recognition

and machine learning’
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Another approach relies on generative models to capture the geometry of

high-dimensional data in a low-dimensional latent space [244, 11] [244]: Tosi et al. (2014), ‘Metrics for

probabilistic geometries’

[11]: Arvanitidis et al. (2018), ‘Latent

space oddity: On the curvature of deep

generative models’

. Let a

dataset y1:N ∈ RD′
with latent representation x1:N ∈ RD

and D′ > D,

such that yn ≈ η(xn) where η is a stochastic function with Jacobian

Jη(x) ∈ RD′×D
. Then, the pullback metric M(x) = E[J>η (x)Jη(x)] is

naturally induced in RD
, which enables the computation of lengths that

respect the geometry of the data manifold in RD′
. Even though this

metric reduces the dimensionality of the problem and can be learned

directly from the data by learning η, it is computationally expensive to

use due to the Jacobian.

To mitigate this shortcoming, we propose a surrogate Riemannian metric.

Consider a variational autoencoder (vae) [143, 213] [143]: Kingma and Welling (2014),

‘Auto-encoding variational Bayes’

[213]: Rezende et al. (2014), ‘Stochastic

backpropagation and approximate

inference in deep generative models’

with

qφ(x|y) = N (x; µφ(y), diag(σ2
φ(y))) (encoder)

pθ(y|x) = N (y; µθ(x), diag(σ2
θ(x))) (decoder)

and prior p(x) = N (x | 0, ID), with deep neural networks as the func-

tions that parametrize the distributions. Then, the aggregated posterior

is

qφ(x) =
∫

RD′
qφ(x | y)p(y)dy ≈ 1

N

N

∑
n=1

qφ(x | yn),

where the integral is approximated from the training data. This is a

Gaussian mixture model that assigns non-zero density only near the

latent codes of the data. Thus, motivated by Arvanitidis et al. [13] [13]: Arvanitidis et al. (2021), ‘Geometri-

cally enriched latent spaces’

we

define a diagonal Riemannian metric in the latent space as

M(x) = (qφ(x) + ρ)−
2
D · ID.

This metric fulfills the desideratum of modeling the local behavior of the

data in the latent space, and it is more efficient than the pullback metric.

The variance σ2
φ(·) of the components is typically small, so the metric

adapts well to the data, which, however, may result in high curvature.

6.3 Gaussians on Riemannian manifolds

The Riemannian normal distribution has been derived by Pennec [200] [200]: Pennec (2006), ‘Intrinsic statistics

on Riemannian manifolds: Basic tools for

geometric measurements’

as

the maximum entropy distribution on a manifoldM, given a mean µ

and covariance matrix Σ. The density
2

2: The covariance ΣM on M is not equal

to Γ−1
M, but the covariance on TµM is

Σ = Γ−1
. Throughout the paper we take

the second perspective. For additional

technical details see Section C.1.2.

onM is

p(x) =
1

C(µ, Σ)
exp

(
−1

2

〈
Logµ(x), Σ−1Logµ(x)

〉)
.

It is reminiscent of the familiar Euclidean density, but with a Mahalanobis

distance based on the nonlinear logarithmic maps. Analytic solutions for

the normalization constant C can be given only for certain manifolds that

are known a priori, like the sphere, since this requires analytic solutions

for the logarithmic and exponential maps. Hence, numerical integra-

tion is indispensable when defining densities on arbitrary Riemannian

manifolds, such as the manifolds constructed from data in Section 6.2.1.

In our data-driven setting, once the metric is constructed, the parameters

of such a geometry-aware normal distribution can also be learned from

data. This adaptive generalized Gaussian model is termed locally adaptive
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TµM
Figure 6.5: The function fµ on the tangent

space of the protein trajectory manifold.

The origin ( ) corresponds to the point

µ on the manifold from which the expo-

nential maps are computed. Contours of

the integration measure N (v; 0, Σ) are in

light gray. Logarithmic maps Logµ(xn) of

the data are scattered in white. The back-

ground is colored according to the volume

element on a log scale. The color scale is

quantitatively unrelated to Figure 6.3.

normal distribution (land) [10] [10]: Arvanitidis et al. (2016), ‘A locally

adaptive normal distribution’

. For the land, we consider settings in which

M = RD
and TµM = RD

, so Σ ∈ RD×D
+ .

The parameters µ and Σ of the distribution are founds using block

coordinate descent scheme to maximize the likelihood of the data. We

use gradient descent for this non-convex optimization problem and

update the parameters in an alternating fashion. That is, we keep µ fixed

while optimizing Σ and vice versa, as detailed in Section C.2.

In analogy to a standard Gaussian mixture model, it is possible to

construct a mixture of lands. Given a dataset x1:N assumed to be i.i.d.,

the log-likelihood of the land mixture can be stated as [10]

L ({µk, Σk}1:K) =
K

∑
k=1

N

∑
n=1

rnk

[
1
2
〈Logµk

(xn), Σ−1
k Logµk

(xn)〉+ log (C(µk, Σk))− log(πk)

]
(6.2)

where πk is the weight of the kth
component, ∑K

k=1 πk = 1 and rnk =
πk p(xn |µk ,Σk)

∑K
l=1 πl p(xn |µl ,Σl)

is the responsibility of the kth
component for the nth

datum. As in the single component case, the maximum likelihood solution

is obtained by alternating between gradient descent updates of µk and Σk,

and further cycling through the components k, as described in Algorithm

C.1.

The maximum likelihood parameters µ and Σ require estimating the

normalization constant C(µ, Σ). It acts as a regularizer that keeps µ near

the data manifold and penalizes an overestimated Σ. In the land mixture

model, C is essential to deriving correct weights.

The intractable normalization constant—the quantity of interest in this

work—is an integral over the manifold

C(µ, Σ) =
∫
M

exp
(
−1

2
〈Logµ(x), Σ−1Logµ(x)〉

)
dM(x), (6.3)

but can be lifted to an easier integration problem on the tangent space

C(µ, Σ) =
√
(2π)D|Σ|

∫
TµM

fµ(v)N (v; 0, Σ)dv, (6.4)

by introducing the tangent space view on the volume element

fµ : TµM→ R+ : v 7→ fµ(v) =
√
|M(Expµ(v))|. (6.5)

The fµ that corresponds to the metric constructed on the protein trajectory

data Figure 6.3 is depicted in Figure 6.5. Instead of having to solve bvps

for the logarithmic maps (6.3), it is possible to integrate on the Euclidean

tangent space (6.4). On the tangent space, evaluation of the integrand

(6.5) requires solving considerably faster exponential maps, i. e., ivps

instead of bvps.

In the original algorithm presented by Arvanitidis et al. [10], the normal-

ization constant is computed using a naïve Monte Carlo (mc) scheme as

C(µ, Σ) ' 1
S

S

∑
s=1

fµ(vs), vs ∼ N (0, Σ).

Despite the relatively cheaper version of computing the integral via

(6.4) instead of (6.3), the computation of S exponential maps for the
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3: Other integrals arising on the mani-

fold, e. g., expectations, can similarly be

solved with bq. Due to the abundance of

integrals for the normalization constant

in the land procedure, we only focus on

those.

TµM

mf |D

TµM

V[f |D]

Figure 6.6: Posterior mean (top) and vari-

ance (bottom) over fµ(v) multiplied with

the integration measureN (v; 0, Σ) accord-

ing to wsabi-l with points found sequen-

tially using uncertainty sampling. High

values have a brighter color.

mc estimator is still a significant overhead. The mc estimator is ignorant

about known structure of the integrand and requires a large number

of samples to reach a good accuracy. We replace mc by bq to drastically

reduce the number of these costly evaluations needed to retain accuracy.

Our foremost goal is to speed up numerical integration on data manifolds

since exponential maps are, albeit faster than the bvps, still relatively slow.

The runtime of exponential maps depends on the employed metric (see

Section 6.2.1) and on other factors such as curvature or curve length.

6.4 Bayesian quadrature on manifolds

The computational cost incurred by evaluating exponential maps mo-

tivates the use of bq for computing the integral (6.4).
3

Consider the

Gaussian on the tangent space the integration measure, i. e.,

ν(v) = N (v; 0, Σ).

The integration is carried out on the tangent space TµM (which is

isomorphic to RD
) over tangent vectors v ∈ TµM and we can write (6.4)

as

C ∝
∫
TµM

fµ(v)dν(v).

with known proportionality constant. In the tangent space view, the

integral is over a Euclidean space and thus, all the geometric effects are

conveniently absorbed in the integrand fµ itself. A modification of bq is

therefore not necessary. Yet, the manifold setting offers advantages that

we can tailor the bq method to.

6.4.1 Encoding positivity

The most evident adaptation is to employ warped bq (cf. Section 2.5) to

account for the positivity of the integrand. To this end, we introduce

a random function g ∼ GP(mg, kg) and consider the random process

induced by the warping f = 1
2g

2 + δ a surrogate for the integrand fµ. δ >
0 is a small additive constant here. Notice the slight difference to the square

transform given in Section 2.5 as we employ the transformation as defined

by Gunter et al. [102]. Approximation of f by a Gaussian process (gp) yields

the moments stated in (2.27) to (2.29) that can be summarized as

mf |D(v) = δ +
1
2

mg |D(v)
2 +

η

2
kg |D(v, v),

kf |D(v, v′) =
η

2
kD(v, v′) + mg |D(v)kg |D(v, v′)mg |D(v

′).

where η = 0 for wsabi-l and η = 1 for wsabi-m. The ’data’—not to be

confused with the dataset that the land is defined on—now contain the

pairs of tangent vectors and integrand evaluations D = {vn, fµ(vn)}Nbq

n=1
where we define Nbq here as the number of evaluations used for bq.

[102]: Gunter et al. (2014), ‘Sampling for

inference in probabilistic models with fast

Bayesian quadrature’

In the present setting, wsabi offers three main advantages over vanilla

bq and mc: First, it encodes the prior knowledge that the integrand is

positive everywhere. Second, for metrics learned from data, the volume

element typically grows fast and takes on large values away from the

data. This makes modeling g directly by a gp impractical, especially when

the kernel encourages smoothness. The square transform alleviates this
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TµM

mf |D

TµM

V[f |D]

Figure 6.7: The posterior mean and vari-

ance with wsabi-l as in Figure 6.6, but here

the points here have been found using the

dcv acquisition function. Because they lie

along straight lines in the tangent space,

they lie along rays that originate from

the current mean µ (cf. Figure 6.9). Com-

pared to wsabi-l with uncertainty sam-

pling, there is more unexplored space, but

this setting also required solving less ex-

ponential maps.

4: This is one of the remarkable integrals

that do admit a closed-form solution. How-

ever, such a solution causes combinatorial

entanglement of the data, making it more

expensive to evaluate than to solve the

integral numerically.

problem by reducing the dynamic range of f compared to that of g. The

exponential transform, which would be an alternative warping to encode

positivity, proved too extreme in reducing the metric’s range. Finally,

wsabi comes with a simple active learning scheme to select tangent vectors

(cf. Section 3.3). The traditional wsabi objective is the posterior variance

of the unwarped gp scaled with the squared integration measure (3.11)

αus(v) = kf |D(v, v) ν(v)2,

that, when optimized sequentially, finds the modes of high posterior vari-

ance V[f |D] = kf |D(v, v) of the approximate gp under the integration

measure. Figure 6.6 shows the posterior mean and variance found with

uncertainty sampling using the wsabi-l approximation to the warped

gp.

6.4.2 Active learning on the tangent space

The known structure of the computations performed to evaluate the

integrand on the tangent space—the solution of exponential maps—is

additional information that can be exploited towards a custom, although

heuristic, active learning policy. The numerical solution of exponential

maps yields intermediate steps along straight lines in the tangent space,

or, equivalently points along a geodesic on the manifold. The magnitude

of the initial velocity does not change the path of the geodesic, only the

distance traveled. Define the unit vector v̂ = v
v with norm v = ‖v‖ as

the direction of an initial velocity of a curve. When solving Expµ(v) =
Expµ(v · v̂) given v̂, solutions to the exponential map for initial velocities

βv̂, 0 < β < v are also available from intermediate steps of the numerical

solution of the ivp. Once the exponential maps are computed, evaluation

of the integrand gµ is cheap. Hence, integrand evaluations are cheaply

available along straight lines in the tangent space.

This observation motivates rethinking the scheme for sequential design to

select good initial directions instead of fixed velocities for the exponential

map. We propose to select these initial directions such that the cumulative

variance along the direction on the tangent space is maximized. Along

this line with large marginal variance, multiple points are then collected

in a way that they fall on modes of the angularly constrained variance.

The modified acquisition function that expresses the cumulative variance

along a straight line, can be written as

ᾱ(v̂) =
∫ ∞

0
α(βv̂)dβ. (6.6)

The new acquisition policy arises from optimizing ᾱ for unit tangent

vectors v̂. We call the acquisition function from (6.6) directional cumulative

variance (dcv). While it does have a closed-form solution (derived in

Section C.3.1), that solution costs O(N4
bq
) to evaluate in the number Nbq

of evaluations chosen for bq.
4

We resort to numerical integration to

compute the objective and its gradient (Section C.3). This is feasible

because these are multiple univariate integrals that can efficiently be

estimated from the same evaluations. Since v̂ is constrained to lie on the

unit hypersphere, we employ a manifold optimization algorithm. Once

an exponential map is computed, we use the standard wsabi objective



6 Bayesian Quadrature on Riemannian Data Manifolds 85

Figure 6.8: The geodesics chosen by the

dcv design scheme on the manifold. The

end positions ? fall well off the data sup-

port. Points collected along the trajectories

are indicated by .

Figure 6.9: Figure 6.8 seen from the tan-

gent space, showing the tangent vectors

selected by dcv. Additionally, the contours

of the Gaussian integration measure are

plotted.

to sample multiple informative points along the straight line v · v̂. For

simplicity, we use dcv only in conjunction with wsabi-l.

Optimizing this acquisition function is costly as it requires posterior

mean predictions and predictive gradients of the gp inside the integration.

Furthermore, confining observations to lie along straight lines implies

that bq may cover less space given a fixed number of function evaluations.

Therefore, dcv will be useful in settings where exponential maps come

at a high computational cost. Figure 6.7 illustrates the posterior mean

and variance arising when nodes are acquired using the dcv acquisition.

In contrast to Figure 6.6, dcv result in a less space-filling design, but

also requires a lower computational budget. Figure 6.8 illustrates the

geodesics chosen by dcv, and Figure 6.9 illustrates the same setting on

the tangent space.

6.4.3 Transfer learning in the land loop

An additional benefit of bq crystallizes in the setting in which integrals

are estimated in the land model. The land optimization process requires

the normalization constant (6.4) to be computed once per iteration. Due

to its dependency on the land parameters µ and Σ, this integral changes

smoothly as the parameters are altered over iterations. Integrals in con-

secutive iterations are hence correlated and suggest the possibility of

transferring information rather than recomputing normalization con-

stants from scratch. Elaborate schemes as in [265]

[265]: Xi et al. (2018), ‘Bayesian quadrature

for multiple related integrals’

and Chapter 5 that

explicitly model the covariance between integrals immediately come to

mind.

However, the block coordinate descent algorithms that updates µ and Σ

in an alternating manner enables a simpler, more elegant way to recycle

information. Reconsidering the integral (6.4), we make use of the fact

that the integrand fµ (6.5) only depends on the land mean µ, but is

independent on the covariance Σ. The covariance merely enters the

integration measure ν. Since the gp surrogate is only defined over fµ (and,

importantly, not over ν), the integrand only changes in an iteration that

updates µ. When only the covariance Σ is updated from one iteration

to the next while the mean µ remains fixed, fµ remains unaltered. This

also means that the expensive bit, namely the exponential maps, do not

change. bq can thus reuse the observations from the previous iteration

and only needs to collect a reduced number of new samples to account

for the changed integration measure. Only updates of the covariance

matrix call for a re-computation of exponential maps. This node reuse

enables tremendous runtime savings and motivates an adaptation of the

optimization scheme that runs multiple updates of the mean before the

covariance is updated again.

6.4.4 Choice of model

The known smoothness of the metric tensor makes the square exponential

kernel (rbf) a suitable choice in most cases. However, for high-curvature

manifolds, in particular in two dimensions, we found the Matérn-5/2

kernel to be numerically slightly more stable, so we use it throughout

instead of the rbf. Even if chosen isotropic, the Matérn kernel does not
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Table 6.1: Mean exponential map run-

time in milliseconds for the manifolds de-

scribed further on, obtained by averaging

over mc runtimes on the entire land fit.

circle 60
circle 5d 50
mnist 238
adk 68
circle 3d 32
circle 4d 45
curly 62
2-circles 36

provide an analytic form for the kernel mean. We therefore use f as an

emulator and compute the integrals (2.15) and (2.16) with exhaustive

mc sampling. To compute the integral without loss of precision, we use

S = 30,000 samples to estimate the integrals. The time overhead and the

approximation error of this procedure are negligible in practice, since

the gp emulator does not rely on expensive exponential maps.

We optimize the marginal likelihood of the gp with respect to the hyper-

parameters and use their final values to initialize the next iteration, since

during the optimization the function changes smoothly from each step

to the next. This information is not shared across the K components, but

kept separately.

Depending on the employed Riemannian metric, we set the constant

prior mean of f to the known volume element far from the data (Section

6.2.1). This amounts to the prior assumption that wherever there are no

observations yet, the distance to the data is likely high.

Our implementation of bq builds upon the bayesquad Python library

[252] [252]: Wagstaff et al. (2018), ‘Batch

selection for parallelisation of Bayesian

quadrature’

available at https://github.com/OxfordML/bayesquad.

6.5 Experiments

We test the methods (wsabi-l, wsabi-m, dcv) on both synthetic and real-

world data manifolds. Our aim is to show that Bayesian quadrature is

faster compared to the Monte Carlo baseline, yet retains high accuracy.

The experiments focus on the land model to illustrate practical use cases

of Riemannian statistics. Furthermore, the iterative optimization process

yields a wide range of integration problems of varying difficulty. In total,

our experiments comprise 43,920 bq integrations. For different manifolds,

we conduct two kinds of experiments:

Boxplot Experiments First, we fit the land model and record all integration

problems arising during the optimization procedure. This allows

us to compare the competitors on the whole problem, where bq can

benefit from node reuse. As the ground truth, we use extensive mc

sampling (S = 40,000).
5

5: Since obtaining a large number of expo-

nential maps is computationally extremely

expensive, we subsampled from this pool

of ground truth samples when mc sam-

ples were required in the experiments,

instead of running mc again. For example,

for Figure 6.12, we calculated the mean mc

runtime per sample from the ground truth

pool of this particular problem and then

subsampled as many samples as the given

runtime limit affords. For the boxplot ex-

periments, we averaged the mc runtimes

over the whole land fit and always ob-

tained the same number of samples per

integration. Note that the mc runtime prac-

tically corresponds to the runtime of the

exponential maps, since the overhead is

minimal.

We fix the number of acquired samples for

bq and generate boxplots from the mean errors on the whole land fit

for 16 independent runs (Figure 6.10). Due to the alternating update

of land parameters during optimization, either the integrand or

the integration measure changes over consecutive iterations. We

let wsabi-l and wsabi-m actively collect 80 in the former and 10
samples additionally to the reused ones in the latter case; for dcv,

we fix 18 and 2 exponential maps, respectively, and acquire 6 points

on each straight line. Integration cost for bq is thus highly variable

over iterations. Allocating a fixed runtime would not be sensible

as bq benefits from collecting more information after updates to

the mean, a time investment that is over-compensated in the more

abundant and—due to node reuse—cheap covariance updates. We

choose sample numbers so as to allow for sufficient exploration of

the space with practical runtime. For mc, we allocate the runtime

budget of the mean slowest bq method on that particular problem

in order to compare accuracy over runtime. Mean runtimes for

single integrations, averaged on entire land fits, are shown in

Figure 6.11 and mean exponential map runtimes, as computed by

mc, are reported in Table 6.1.

https://github.com/OxfordML/bayesquad
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Figure 6.10: Boxplot error comparison (log scale, shared y-axis) of bq and mc on whole land fit for different manifolds. For mc, we allocate

the runtime of the mean slowest bq method. Each box contains 16 independent runs.
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Figure 6.11: Mean runtime required by

the bq methods for the integration task

of Figure 6.10, averaged over 16 runs for

the land fit on the respective manifold. Er-

rorbars indicate 95% confidence intervals

over these runs.

These experiment were conducted on whole land fits, with 16
independent runs for each of the 3 bq methods. From Table 6.3, we

can easily calculate the total number of runs as 48 · (67 + 39 + 40 +
34 + 105 + 36 + 33 + 111) = 22,320.

Error vs. Runtime Experiments Secondly, we focus on the first integration

problem of each land fit in detail and compare the convergence

behavior of the different bq methods and mc over wall clock runtime

(Figure 6.12). We use the kernel metric (Section 6.2.1) when not

otherwise mentioned. In the plot legends, we abbreviate wsabi-

l/wsabi-m with w-l/w-m, respectively.

We evenly space 30 runtime limits between 5 and 65 seconds using

np.linspace(5., 65., 30). For each of these runtime limits, we

let each bq method run 30 times. bq will stop collecting more

samples as soon as the runtime limit is reached. After this, however,

it will take some more time to finalize, as an ongoing computation

is not interrupted. We then record the actually resulting runtimes

and average over the 30 runs. These averages are then used for

the x-axes of the plots, whereas the mean relative error is on the

y-axes. In total, each bq method thus has 900 runs on each problem.

The 8 plots contain 3 · 900 · 8 = 21,600 runs. Together with the

boxplot experiments, we obtain 21,600 + 22, = 43,920 bq runs,

that is, 14,640 for each of the 3 methods.

In Figure 6.12(c), we removed 4 extreme dcv outliers, where seem-

ingly the gp failed. This amounts to
4

21,600 = 0.01852% of the bq

runs in the 8 plots.

All experiments were run in a cloud setting on 8 virtual CPUs. We

restricted the core usage of blas linear algebra subroutines to a single

core, so as not to create interference between multiple processes.
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Figure 6.12: Comparison of bq and mc errors against runtime (vertical log scale, shared legend and axes) for different manifolds, on the first

integration problem of the respective land fit. Shaded regions indicate 95% confidence intervals over 30 independent runs.

(a) land (b) gmm

Figure 6.13: Comparison of a two-

component land vs. a Gaussian mixture

model on the synthetic circle data.

(a) curly (b) 2-circles

Figure 6.14: (a) A land fit on the curly

manifold; (b) a 3-component land mixture

fit on the 2-circles manifold.

6.5.1 Synthetic experiments

Toy Data We generated three toy data sets (circle, curly, and 2-circles)

and fitted the land model with pre-determined component numbers.

Figure 6.13 displays the circle manifold with 1000 data points, for which

we compare the resulting land fit to the Euclidean Gaussian mixture

model (gmm) in Figure 6.13. The other two synthetic manifolds are

displayed in Figure 6.14.

Higher-dimensional Toy Data With increasing number of dimensions,

new challenges for metric learning and geodesic solvers appear. With the

simple kernel metric, almost all of the volume will be far from the data

as the dimension increases, a phenomenon which we observe already in

relatively low dimensions. Such metric behavior can lead to pathological

integration problems, as the integrand may then become almost constant.

In this experiment, we embed the circle toy data in higher dimensions by

sampling random orthonormal matrices. After projecting the data, we

add Gaussian noise εi ∼ N (0, 0.01) and standardize. The circle dataset

has been considered in d = {3, 4, 5}.

6.5.2 Real-world experiments

mnist We sampled 5,504 random data points from the first three digits of

mnist [157] [157]: LeCun et al. (1998), ‘Gradient-based

learning applied to document recognition’

, which were preprocessed by normalizing them feature-wise

to [−1,+1] using sklearn.preprocessing.MinMaxScaler. We trained

a simple variational autoencoder (vae) to embed the 784 dimensional

input in a latent space of dimension 2. The architecture uses separate

encoders µφ, σφ and decoders µθ , σθ . The vae setup we used summarized

in Table 6.2.
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(a) gmm (b) land (c) metric

Figure 6.15: Comparison of a two-

component land vs. a gmm on three-digit

mnist. (c) shows the surrogate metric on a

logarithmic scale.

Encoder/Decoder Layer 1 Layer 2 Layer 3

µφ 128 (tanh) 64 (tanh) 2 (linear)

σφ 128 (tanh) 64 (tanh) 2 (softplus)

µθ 64 (linear) 128 (linear) 784 (linear)

σθ 64 (linear) 128 (linear) 784 (softplus)

Table 6.2: vae settings for dimension re-

duction in mnist.

We trained the network for 200 epochs using adam with a learning rate

of 10−3
. The resulting latent codes were used to construct the Aggregated

Posterior Metric, with ρ = 0.001, such that the measure far from the data

is 1000. The small variances cause high curvature, which makes the

integration tasks challenging and geodesic computations slow. To fit the

land, we used 250 subsampled points to lower the amount of time spent

on bvps. In contrast, the gmm was fitted on the whole 5,504 points. Figure

6.15 shows this training data.

The land is able to distinguish the three clusters more clearly than a

Euclidean Gaussian mixture model (gmm), see Figure 6.15. The land favors

regions of higher density, where the vae has more training data. In this

experiment, the gain in speed of bq is even more pronounced, since

exponential maps are slow due to high curvature. mc with 1000 samples

achieves 2.78% mean error on the whole land fit with a total runtime of

6 hours and 56 minutes, whereas dcv (18/2 exponential maps) achieves

2.84% error within 21 minutes; a speedup by a factor of ≈ 20.

Molecular Dynamics In molecular dynamics, biophysical systems are

simulated on the atomic level. This approach is useful to understand

the conformational changes of a protein, i.e., the structural changes it

undergoes. A Riemannian model is appropriate in this setting, because

not all atom coordinates represent physically realistic conformations. For

instance, a protein clearly does not self-intersect. Adapting locally to the

data by space distortion is thus critical for modeling. More specifically,

the land model is relevant because clustering conformations and finding

representative states are of scientific interest (see e.g., [197, 263, 235,

246]). The land can visualize the conformational landscape and generate

realistic samples. Plausible transitions between conformations may be

conceived of as geodesics under the Riemannian metric.

[197]: Papaleo et al. (2009), ‘Free-energy

landscape, principal component analysis,

and structural clustering to identify

representative conformations from

molecular dynamics simulations: The

Myoglobin case’

[263]: Wolf and Kirschner (2013), ‘Princi-

pal component and clustering analysis on

molecular dynamics data of the ribosomal

L11·23S subdomain’

[235]: Spellmon et al. (2015), ‘Molecular

dynamics simulation reveals correlated

inter-lobe motion in protein Lysine

Methyltransferase SMYD2’

[246]: Tribello and Gasparotto (2019),

‘Using dimensionality reduction to

analyze protein trajectories’

We obtained multiple trajectories of the closed to open transition of

the enzyme adenylate kinase (adk) [227]

[227]: Seyler et al. (2015), ‘Path similarity

analysis: A method for quantifying

macromolecular pathways’

.
6

6: We obtained protein trajectory data of

adenylate kinase from https://www.md

analysis.org/MDAnalysisData/adk_t

ransitions.html#adk-dims-transiti

ons-ensemble-dataset. We use the dims

variant, a dataset which comprises 200

trajectories and select a subset consisting

of the trajectories 160− 200, which contain

in total 2,038 data points.

Each observation consists of

the Cartesian (x, y, z) coordinates for each of the 3,341 atoms, yielding

a 10,023 dimensional vector. As is common in the field, we used pca to

extract the essential dynamics [7]

[7]: Amadei et al. (1993), ‘Essential

dynamics of proteins’
, which clearly exhibit manifold structure

https://www.mdanalysis.org/MDAnalysisData/adk_transitions.html#adk-dims-transitions-ensemble-dataset
https://www.mdanalysis.org/MDAnalysisData/adk_transitions.html#adk-dims-transitions-ensemble-dataset
https://www.mdanalysis.org/MDAnalysisData/adk_transitions.html#adk-dims-transitions-ensemble-dataset
https://www.mdanalysis.org/MDAnalysisData/adk_transitions.html#adk-dims-transitions-ensemble-dataset
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Figure 6.16: The protein adk in closed,

land mean and open state. To visualize

spatial protein structure, we used the soft-

ware vmd [119] with the ‘new cartoon’ rep-

resentation, colored according to ‘residue

type’.

Figure 6.17: Comparison of the Euclidean

Gaussian vs. land mean and eigenvectors

on adk data. Data is colored according to

the radius of gyration, a measure indicat-

ing how ‘open’ the protein is, providing a

visual argument for the manifold hypoth-

esis.

(Figure 6.2). The first two eigenvectors already explain 65% of the total

variance and suffice to capture the transition motion.

We model the adk manifold with the kernel metric (6.1) with σ = 0.035
and large measure far from the data (ρ = 10−5

) to account for high

curvature and the knowledge that realistic trajectories lie closely together.

This makes for a challenging integration problem, since most mass is

near the data boundary due to extreme metric values.

A single-component land yields a representative state for the transition

between the closed and open conformation. Whereas the Euclidean mean

falls outside the data manifold, the land mean is reasonably situated. The

eigenvectors of the covariance matrix demonstrate that the land captures

the intrinsic dimensions of the data manifold (Figure 6.17) and that the

mean interpolates between the closed and open state (Figure 6.16).

The purpose of this experiment is to highlight the applicability of Rieman-

nian statistics to molecular dynamics and sketch potential experiments,

which are then for domain experts to design.

[119]: Humphrey et al. (1996), ‘VMD –

Visual Molecular Dynamics’

6.5.3 Details on experiments

In Table 6.3, we report the relevant hyperparameters for the metrics (σ,

ρ), which were used to construct the manifolds, and those optimization

parameters which are not equal across all problems.

6.5.4 Interpretation

We find that bq consistently outperforms mc in terms of speed. Even

on high-curvature manifolds with volume elements spanning multiple

orders of magnitudes, such as mnist and adk, the gp succeeds in ap-

proximating the integrand well. Among the different bq candidates, we

cannot discern a clear winner, since their performance depends on the

specific problem geometry and exponential map runtimes. dcv performs

especially well when geodesic computations are costly, such as for mnist.

We note that geodesic solvers and metric learning are subject to new

challenges in higher dimensions, which merit further research effort.

Table 6.3: Manifold and land optimization hyperparameters and resulting number of integrations.

Parameter circle circle 3d circle 4d circle 5d mnist adk curly 2-circles

σ 0.1 0.25 0.25 0.25 - 0.035 0.2 0.15

ρ 0.001 0.01 0.0316 0.063 0.001 0.00001 0.01 0.01

K 2 2 2 2 3 1 1 3

tmax 7 4 4 4 7 7 7 7

α1
µ 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.3

ε∇µ
0.01 0.01 0.01 0.01 0.015 0.01 0.01 0.01

# integrations 67 39 40 34 105 36 33 111
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6.6 Conclusion and discussion

Riemannian statistics is the appropriate framework to model real data

with nonlinear geometry. Yet, its wide adoption is hampered by the

prohibitive cost of numerical computations required to learn geometry

from data and operate on manifolds. In this project, we have demon-

strated on the example of numerical integration the great potential of

probabilistic numerical methods (pnms) to reduce this computational

burden. The deliberate choice of informative computations in a Bayesian

framework saves unnecessary operations on the manifold. Bayesian

quadrature outperforms Monte Carlo on Riemannian manifolds over

a large number of integration problems owing to its increased sample

efficiency. Information transfer and a novel acquisition scheme both help

to further reduce the number of expensive geodesic evaluations needed

to estimate the integral.

Outlook Numerical integration is just one of multiple numerical tasks

in the context of statistics on Riemannian manifolds where pnm suggest

promising improvements. The key operations on data manifolds are

geodesic computations, i.e., solutions of ordinary differential equations.

Geodesics have been viewed through the pn lens, e.g., by Hennig and

Hauberg [111] [111]: Hennig and Hauberg (2014), ‘Proba-

bilistic solutions to differential equations

and their application to Riemannian

statistics’

, but still offer a margin for increasing the performance of

statistical models such as the considered land.

Once multiple pnm are established for Riemannian statistics, the future

avenue directs towards having them operate in a concerted fashion. As

data-driven Riemannian models rely on complex computation pipelines

with multiple sources of epistemic and aleatory uncertainty, their ro-

bustness and efficiency can benefit from modeling and propagating

uncertainty through the computations.

All in all, we believe the coalition of geometry- and uncertainty-aware

methods to be a fruitful endeavor, as these approaches are united by their

common intention to respect structure in data and computation that is

otherwise often neglected.
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Figure 7.1: Qualitative illustration of the

setup: The goal is to draw samples from the

shaded domain L and estimate its mass

under a standard normal distribution.

Inference With Gaussians
Under Linear Domain

Constraints 7
Multivariate Gaussian densities are omnipresent in statistics and machine

learning. Yet, Gaussian probabilities are hard to compute—they require

solving an integral over a constrained Gaussian volume—owing to the

intractability of the multivariate version of the Gaussian cumulative

distribution function (cdf). Inference in models that contain truncated

multivariate normal distributions thus inevitably relies on approxima-

tions.

This chapter addresses two aspects of approximate inference in such a

setting: sampling from multivariate normal distributions, and estimating

the mass of said domain under the Gaussian measure. This encourages a

natural split into the following two parts,

Sampling Simulation from a truncated Gaussian can be achieved through

an adapted version of elliptical slice sampling (ess) which we

call lin-ess. It allows for rejection-free sampling from the linearly

constrained domain. Its effectiveness is not compromised even if

the probability mass of the domain is very small.

Integration Based on the lin-ess algorithm, we introduce an efficient

integration scheme for truncated Gaussians. It relies on a sequence

of nested domains to decompose the integral into multiple, easier-

to-solve, conditional probabilities. The method embeds the Holmes-

Diaconis-Ross algorithm [67, 216, 150] [67]: Diaconis and Holmes (1995), ‘Three

examples of Monte-Carlo Markov chains:

At the interface between statistical

computing, computer science, and

statistical mechanics’

[216]: Ross (2012), Simulation

[150]: Kroese et al. (2013), Handbook of

Monte Carlo methods

into a pipeline adapted for

computing the mass of linearly restricted Gaussians.

The contents of this chapter have been published as

A. Gessner, O. Kanjilal, and P. Hennig. ‘Integrals over Gaussians

under linear domain constraints’. In: Proceedings of the Twenty Third

International Conference on Artificial Intelligence and Statistics. Ed. by S.

Chiappa and R. Calandra. Vol. 108. Proceedings of Machine Learning

Research. PMLR, Aug. 2020

and coincide with the article in large parts. A Python implementation of

the introduced methods are publicly available at https://github.com

/alpiges/LinConGauss.

7.1 Problem setting

Consider a standard normal measure on RD
and M linear functions fm :

RD → R : x 7→ a>mx + bm, where am ∈ RD
and bm ∈ R. Let L ⊂ RD

denote the linearly restricted domain of interest as the intersection where

all the M constraints exceed zero,

L =

{
x : x ∈

M⋂
m=1

{
a>mx + bm > 0

}}
. (7.1)

https://github.com/alpiges/LinConGauss
https://github.com/alpiges/LinConGauss
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p(x)

L

Figure 7.2: Sketch of the estimation of the

reliability of a system by computing its

complement, the probability of failure,

i. e., the probability mass of the domain

in parameter space that causes a failure

mode.

The probability mass that lies within this domain L can be written as

Z = P(x ∈ L) =
∫

RD

M

∏
m=1

1
[

a>mx + bm > 0
]
N (x; 0, I)dx, (7.2)

in terms of the indicator function

1[X] :=

{
1 if X evaluates to true

0 if X evaluates to false.

which simply acts as a selector regardless of whether x falls into L or not.

The setup is illustrated in Figure 7.1. We use the shorthand notation

1L =
M

∏
m=1

1
[

a>mx + bm > 0
]
= 1[x ∈ L]. (7.3)

It is also convenient to write the linear constraints of (7.2) in vectorial

form,

A>x + b, (7.4)

where A ∈ RD×M, x ∈ RD
, and b ∈ RM

. We take the integration

measure to be a standard normal without loss of generality, because any

correlated multivariate Gaussian can be whitened by linearly transform-

ing the integration variable.

For example, orthant probabilities of a correlated GaussianN (µ, Σ) can

be written in the form of (7.2) by using the transformation x = Lz + µ,

where L is the Cholesky factor of Σ. Typically, we expect M ≥ D, i. e., there

are at least as many linear constraints as dimensions. This is because if

M < D, there exist D −M unconstrained directions that can be inte-

grated out in closed form after an appropriate linear transformation, and

an M-dimensional integral with M constraints remains. However, there

are situations in which integrating out dimensions might be undesired,

for instance in probit regression, where samples from the untransformed

integrand are required for posterior predictions.

7.2 Motivation

[242]: Thiébaut and Jacqmin-Gadda

(2004), ‘Mixed models for longitudinal

left-censored repeated measures’

[47]: Chen and Chang (2007), ‘Identifica-

tion of the minimum effective dose for

right-censored survival data’

[268]: Zhou et al. (2019), ‘Reexamining the

proton-radius problem using constrained

Gaussian processes’

[256]: Wani et al. (2017), ‘Parameter

estimation of hydrologic models using

a likelihood function for censored and

binary observations’

[70]: Fisac et al. (2018), ‘A general safety

framework for learning-based control in

uncertain robotic systems’

[239]: Su et al. (2016), ‘Nonlinear statistical

learning with truncated Gaussian

graphical models’

[32]: Bolin and Lindgren (2015), ‘Excur-

sion and contour uncertainty regions for

latent Gaussian models’

[120]: Huser and Davison (2013), ‘Com-

posite likelihood estimation for the

BrownResnick process’

[85]: Genton et al. (2011), ‘On the likeli-

hood function of Gaussian max-stable

processes’

[76]: French and Sain (2013), ‘Spatio-

temporal exceedance locations and

confidence regions’

[15]: Au and Beck (2001), ‘Estimation

of small failure probabilities in high

dimensions by subset simulation’

[172]: Melchers and Beck (2018), Structural

reliability analysis and prediction

[8]: Andersen et al. (2018), ‘Efficient

simulation for dependent rare events with

applications to extremes’

[238]: Straub et al. (2020), ‘Reliability

analysis of deteriorating structural

systems’

Gaussian models with linear domain constraints occur in a myriad of

applications that span all disciplines of applied statistics. They arise

when a joint Gaussian assumption is made on a set of random variables,

but there are known inequality constraints on linear combinations of

these variables, which is usually captured by the likelihood. Instances of

truncated Gaussians appear in biostatistics [242], medicine [47], physics

[268], environmental sciences [256], robotics and control [70], machine

learning [239] and many more.

A common occurrence of integrals over linearly restricted Gaussians is

in spatial statistics, such as Markov random fields [32], the statistical

modeling of spatial extreme events called max-stable processes [120,

85], or in modeling uncertainty regions for latent Gaussian models. An

example for the latter is to find regions that are likely to exceed a given

reference level, e.g., pollution levels in geostatistics and environmental

monitoring [32], or in climatology [76]. Another area where such integrals

are often encountered is in reliability analysis [15, 172, 8, 238]. A key
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problem there is to estimate the probability for a rare event (e.g., a flood)

to occur or for a mechanical system to enter a failure mode. Commonly,

such integrals even deal with considerably more complicated domain

boundaries than the linear ones considered here (see Figure 7.2 for a

sketch).

[163]: López-Lopera et al. (2018), ‘Finite-

dimensional Gaussian approximation

with linear inequality constraints’

[164]: López-Lopera et al. (2019), ‘Gaus-

sian process modulated cox processes

under linear inequality constraints’

[3]: Agrell (2019), ‘Gaussian Processes

with linear operator inequality con-

straints’

[57]: Da Veiga and Marrel (2012), ‘Gaus-

sian process modeling with inequality

constraints’

[181]: Mulgrave and Ghosal (2018),

‘Bayesian inference in nonparanormal

graphical models’

[212]: Rasmussen and Williams (2006),

Gaussian Processes for machine learning

[155]: Lawrence et al. (2008), ‘Bayesian

inference for multivariate ordinal data

using parameter expansion’

[14]: Ashford and Sowden (1970), ‘Multi-

variate probit analysis’

[161]: Liao et al. (2007), ‘Quadratically

gated mixture of experts for incomplete

data classification’

[113]: Hennig and Schuler (2012), ‘Entropy

search for information-efficient global

optimization.’

[254]: Wang et al. (2020), ‘Parallel

Bayesian global optimization of expensive

functions’

[91]: Geweke (1991), ‘Efficient simu-

lation from the multivariate normal

and student-t distributions subject to

linear constraints and the evaluation of

constraint probabilities’

[86]: Genz (1992), ‘Numerical computation

of multivariate normal probabilities’

[126]: Joe (1995), ‘Approximations to mul-

tivariate normal rectangle probabilities

based on conditional expectations’

[250]: Vĳverberg (1997), ‘Monte Carlo

evaluation of multivariate normal

probabilities’

[188]: Nomura (2014), ‘Computation of

multivariate normal probabilities with

polar coordinate systems’

[79]: Gassmann et al. (2002), ‘Computing

multivariate normal probabilities: A new

look’

[88]: Genz and Bretz (2009), Computation

of multivariate normal and t probabilities

[87]: Genz (2004), ‘Numerical computa-

tion of rectangular bivariate and trivariate

normal and t probabilities’

[107]: Hayter and Lin (2013), ‘The evalu-

ation of trivariate normal probabilities

defined by linear inequalities’

[177]: Miwa et al. (2003), ‘The evaluation of

general non-centred orthant probabilities’

[55]: Craig (2008), ‘A new reconstruction

of multivariate normal orthant probabili-

ties’

[189]: Nomura (2016), ‘Evaluation of

Gaussian orthant probabilities based on

orthogonal projections to subspaces’

In machine learning, there are many Bayesian models in which linearly

constrained multivariate normal distributions play a role, such as Gaus-

sian processes under linear constraints [163, 164, 3, 57], inference in

graphical models [181], multi-class Gaussian process classification [212],

ordinal and probit regression [155, 14], incomplete data classification

[161], and Bayesian optimization [113, 254], to name a few.

7.2.1 Related work

This practical relevance has fed a slow-burn research effort in the integra-

tion of truncated Gaussians over decades [91, 86, 126, 250, 188]. Gassmann

et al. [79] and Genz and Bretz [88] provide comparisons and attest the

best accuracy across a wide range of test problems to the algorithm by

Genz [86], which has made it a default choice in the literature. Genz’s

method, detailed in Section 7.4.4, applies a sequence of transformations

to transform the integration region to the unit cube [0, 1]D and then solves

the integral numerically using quasi-random integration points. Other

methods focus on specialized settings such as bivariate or trivariate Gaus-

sian probabilities [87, 107], or on orthant probabilities [177, 55, 189, 106].

Yet, these methods are only feasible for at most a few tens of variables.

Only recent advances have targeted higher-dimensional integrals: Azzi-

monti and Ginsbourger [17] study high-dimensional orthant probabilities

and Genton et al. [84] consider the special case where the structure of

the covariance matrix allows for hierarchical decomposition to reduce

computational complexity. Phinikettos and Gandy [203] employ a combi-

nation of four variance reduction techniques to solve such integrals with

Monte Carlo methods. Botev [35] constructs an exponential tilting of an

importance sampling measure that builds on the method by Genz [86]

and reports effectiveness for dimensions D . 100. A different approach

has been suggested by Cunningham et al. [56]: They use expectation

propagation (ep) to approximate the constrained normal integrand by

a moment-matched multivariate normal density (cf. Section 7.4.4). This

allows for fast integration, at the detriment of guarantees. Indeed, the

authors report cases in which ep is far off the ground truth integral.

Closely related to integration is simulation from linearly constrained

Gaussians, yet these tasks have rarely been considered concurrently,

except for Botev [35] who proposes an accept-reject sampler alongside the

integration scheme. Earlier attempts employ Markov chain Monte Carlo

techniques (cf. Chapter 4) such as Gibbs sampling [91], or Hamiltonian

Monte Carlo [195]. Previous approaches to sampling are discussed in

more detail in Section 7.3.2.
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7.2.2 Why not Bayesian quadrature?

Failure probabilities, or in the simpler case, linearly constrained Gaussian

densities are inherently difficult settings for Bayesian quadrature. The

involved step function that delimits the region of interest is the cause

of trouble for Bayesian quadrature (bq). Under such circumstances, the

need to choose a suitable prior clashes with the kernel integrability

requirements (2.15) and (2.16). Selecting a covariance function according

to this constraint entails a misspecified model that is unable to capture

the geometry of the step function. Non-stationary covariance functions

that fit the needs of capturing the step come at the detriment of not

being integrable [212]

[212]: Rasmussen and Williams (2006),

Gaussian Processes for machine learning

Chapter 5.4, see Figure 5.9 and 5.10

. The alternative approach of keeping the indicator

function in the integral, i. e., to adapt the integration domain according

to the constraints, is not a viable option because they equally break the

integrability of the kernel mean and variance. In reliability analysis with

expensive simulators, Gaussian processes are nevertheless used as a

surrogate that is then integrated using Monte Carlo. This does not apply

to Gaussian probabilities, where the step function, the adversary of bq,

turns out to play exceptionally well with Monte Carlo methods.

[106]: Hayter and Lin (2012), ‘The evalua-

tion of two-sided orthant probabilities for

a quadrivariate normal distribution’

[17]: Azzimonti and Ginsbourger (2017),

‘Estimating orthant probabilities of

high-dimensional Gaussian vectors with

an application to set estimation’

[84]: Genton et al. (2018), ‘Hierarchical

decompositions for the computation of

high-dimensional multivariate normal

probabilities’

[203]: Phinikettos and Gandy (2011),

‘Fast computation of high-dimensional

multivariate normal probabilities’

[35]: Botev (2016), ‘The normal law

under linear restrictions: Simulation and

estimation via minimax tilting’

[56]: Cunningham et al. (2011), ‘Gaussian

probabilities and expectation propaga-

tion’

[195]: Pakman and Paninski (2014), ‘Exact

Hamiltonian Monte Carlo for truncated

multivariate Gaussians’

7.3 Sampling from truncated Gaussians

We first focus on the problem of simulating from the domain L. Naïve

rejection sampling, i. e., drawing from the Gaussian and rejecting samples

that do not satisfy the constraints, quickly becomes impracticable as

dimension increases and the probability of a sample to fall into the domain

plummets. It is illustrative to remember that orthant probabilities under a

standard normal distribution decrease exponentially with the dimension

as 2−D
, and we can expect a similar scaling for tilted constraints. We

therefore resort to a Markov chain Monte Carlo method that we dub

lin-ess. This routine is a special case of elliptical slice sampling [182] [182]: Murray et al. (2010), ‘Elliptical slice

sampling’

(ess,

cf. Section 4.2.5) that leverages the analytic tractability of intersections

of ellipses and hyperplanes to speed up the ess loop. lin-ess permits

rejection-free sampling from a linearly constrained Gaussian domain

of arbitrarily small mass once an initial sample within the domain is

known. lin-ess acts at the back-end of the integration method, which is

introduced in Section 7.4.

7.3.1 Elliptical slice sampling on linearly constrained domains

elliptical slice sampling (ess) is designed for generic likelihood functions

under a multivariate normal prior. In a truncated Gaussian model, the

selector function 1L in (7.2) and (7.3) takes the rôle of the likelihood

function. The particular form of this likelihood can be leveraged to

significantly simplify the ess algorithm:

1. The ‘selector likelihood’ `(x) := 1L can take only the values 0 and

1. Hence, there is no need for a likelihood threshold, the slice is

always defined by `(x) = 1 for x(ϑ) on the ellipse.

2. The intersections between the ellipse and the linear constraints

have closed-form solutions. The angular domain(s) to sample from

can be constructed analytically, and lin-ess is thus rejection-free.
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x0

ξ

x

Figure 7.3: Sampling from a constrained

normal space using ess. x0 is a current state

from the domain L and, together with the

auxiliary ξ, defines the ellipse. From all

intersections of the ellipse and zero lines

(or hyperplanes in higher dimensions), the

active intersections at the domain bound-

ary are identified ( ). These define the slice

from which a uniform sample is drawn

(x).

1: The mth
hyperplane and the ellipse ei-

ther intersect at two points, namely when

|bm| < r, or they do not, when |bm| > r,

since arccos : [−1, 1] → R. A tangential

intersection, leading to a single solution

at |bm| = r, is unlikely to occur.

The typical bisection search of slice sampling becomes a simple

analytic expression.

With these simplifications to ess, each new sample fromL requires exactly

one auxiliary normal sample ξ ∼ N (0, I) ∈ RD
and a scalar uniform

sample u ∼ Uniform[0, 1] to sample from the angular bracket. Figure 7.3

illustrates the process of drawing a sample from the domain of interest

(blue shaded area) using our version of ess. Given the current state

xn ∈ L and an auxiliary vector ξ, the ellipse is parameterized by its angle

ϑ ∈ [0, 2π] as

x(ϑ) = xn cos ϑ + ξ sin ϑ.

The intersections between the ellipse and the domain boundaries given by

A>x+ b = 0 can be found by solving the set of equations A>x(ϑ)+ b = 0
for ϑ. For the mth

constraint, this equation has between zero and two

closed-form solutions,
1

ϑ1/2
m = ± arccos

(
− bm

r

)
+ arctan

(
a>mξ

r + a>mxn

)
(7.5)

with r =
√
(a>mxn)2 + (a>mξ)2

. Not all intersection angles lie on the

domain boundary, and we need to identify those active intersections

where `(x(ϑ)) switches on or off. To identify potentially multiple brackets,

we sort the angles in increasing order and check for each of them if adding

or subtracting a small δϑ causes a likelihood jump. If there is no jump,

the angle is discarded, otherwise the sign of the jump is stored (whether

from 0 to 1 or the reverse), in order to know the direction of the relevant

domain on the slice. The procedure for lin-ess can be found in Algorithm

Algorithm 7.1 below. The computational cost of drawing one sample

on the ellipse is dominated by the M inner products that need to be

computed for the intersections, hence the complexity is O(MD). At first

glance, this seems comparable with standard ess for which drawing from

a multivariate normal distribution is O(D2), but this scaling does not

include the evaluation of the likelihood function yet.

lin-ess is a rejection-free sampling method to sample from a truncated

Gaussian of arbitrarily small mass. Yet it requires an initial point within

the domain from where to launch the Markov chain. How to obtain

such a sample without falling into the rejection trap will be discussed in

Section 7.4.2.

In principle, lin-ess supports sampling from non-convex domains. Valid

slices on the ellipse may be disconnected even when the domain is

defined through a convex polytope. Since the bracket-defining angles

are available in closed form, the uniform sample can be mapped to a

valid section on the ellipse by respecting the total arclength of the valid

sections. This procedure applies to both convex and non-convex domains;

from the sampling perspective, there is hence no need to discriminate

between those. The challenging aspect of non-convex domains is an

appropriate extension of the definition of the linear constraints. This

is easily done if we considered unions instead of intersections, i. e.,

L =
{

x : x ∈ ⋃M
m=1

{
a>mx + bm > 0

}}
instead of (7.1). More general

cases would require the integral to be split up into sums of domains 1Lk
which amounts to sampling from multiple convex domains.
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Algorithm 7.1 Elliptical slice sampling for a linearly constrained standard normal distribution

1 procedure LinESS(A, b, N, x0)

2 ensure all (a>mx0 + bm > 0 ∀m) � initial vector needs to be in domain

3 X = ∅ � initialize sample array

4 for n = 1, . . . , N do
5 ξ ∼ N (0, I)
6 x(ϑ) = x0 cos ϑ + ξ sin ϑ � construct ellipse

7 ϑ ^ sort({ϑ1/2
j }

M
j=1) s.t. a>j (x0 cos ϑ1/2

j + ξ sin ϑ1/2
j ) = 0 � 2M intersections, Eq. (7.5)

8 ϑact ^{[ϑmin
l , ϑmax

l ]}L
l=1 s.t. `(x(ϑmin/max

l + δϑ))− `(x(ϑmin/max
l − δϑ)) = ±1 � Set brackets

9 u ∼ [0, 1] ·∑L
l (ϑ

max
l − ϑmin

l )
10 ϑu ^ transform u to angle in bracket

11 X[n]^ x(ϑu) � update sample array

12 x0 ^ x(ϑu) � set new initial vector

13 end for
14 return X
15 end procedure

7.3.2 Related sampling schemes

Markov chain Monte Carlo (mcmc) sampling Other common mcmc sam-

plers also simplify in the considered setting. A well-known approach

to sampling from truncated Gaussians is the Gibbs sampler [91, 146].

Dimension-wise sampling reduces each conditional to a one-dimensional

truncated Gaussian which can be sampled from efficiently [215, 59].

The difficulty with Gibbs sampling arises when variables are strongly

correlated, which can deteriorate the mixing process.

[91]: Geweke (1991), ‘Efficient simu-

lation from the multivariate normal

and student-t distributions subject to

linear constraints and the evaluation of

constraint probabilities’

[146]: Kotecha and Djuric (1999), ‘Gibbs

sampling approach for generation of

truncated multivariate Gaussian random

variables’

[215]: Robert (1995), ‘Simulation of

truncated normal variables’

[59]: Damien and Walker (2001), ‘Sam-

pling truncated normal, beta, and gamma

densities’

[195]: Pakman and Paninski (2014), ‘Exact

Hamiltonian Monte Carlo for truncated

multivariate Gaussians’

Pakman and Paninski [195] found that Hamiltonian Monte Carlo, just

as ess, becomes very efficient in the specific case of linear or quadratic

constraints. With the base measure a standard normal distribution, the

Hamiltonian is

H(x, p) =
1
2

x>x +
1
2

p>p

with momentum p ∈ RD
. The Hamiltonian equations of motion are

ẋ = ∇p H = p and ṗ = −∇xH = −x,

which are the equations of the simple harmonic oscillator, ẍ = −x.

Trajectories have the closed-form solution x(t) = c0 sin(t) + c1 cos(t).
The amplitudes c0 and c1 are determined through the initial conditions

x(0) and p(0). For each trajectory, the time of collision with a linear

constraint can be computed, at which the fictitious particle bounces off

elastically. As most compute goes into finding wall bounces, the efficiency

of the algorithm depends on the geometry of the domain. Non-convex

domains might entail very low probability transitions, which is an issue

ess does not suffer from.

Exact sampling Botev [35]

[35]: Botev (2016), ‘The normal law

under linear restrictions: Simulation and

estimation via minimax tilting’

achieves exact sampling using minimax tilt-

ing. This method builds on the popular integration method by Genz

[86] [86]: Genz (1992), ‘Numerical computation

of multivariate normal probabilities’

by further transforming the integrand using exponential tilting,

which associates a density p(x) with its exponentially tilted counterpart
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eµ>x−K(µ)p(x) with tilting parameter µ and the cumulant generating

function K(µ). The tilting parameter can be optimized to achieve the best

possible asymptotic efficiency. Estimation itself is relies on importance

sampling from a density that becomes asymptotically indistinguishable

from the true truncated Gaussian. Acceptance rates are clearly superior

after exponential tilting of the proposal density, but drop with dimen-

sionality. The author therefore proposes to speed up Gibbs sampling

in high dimensions by sampling manageable chunks of variables using

minimax tilting.

7.3.3 Discussion

In the setting of linear constraints, ess simplifies to a rejection-free

mcmc method. Its key advantage over the methods discussed in Section

7.3.2, lin-ess is able to deal with non-convex or even disconnected linearly

restricted domains. The former case arises for example in minimax

optimization problems, when a function is maximized w.r.t. one variable,

and minimized w.r.t. another [257]

[257]: Weichert and Kister (2021),

‘Bayesian optimization for min max

optimization’

. In the case of disconnected domains,

the algorithm detects all active intersections with a likelihood jump

and samples from the entire slice, no matter if connected or not.
2

2: The current implementation of the al-

gorithm does not allow the definition of

multiple domains. However, this is a sim-

ple extension, since the sampler is already

sufficiently general to incorporate discon-

nected slices.

The

corresponding version of Hamiltonian Monte Carlo is confined to a

single domain and would exhibit difficulties in non-convex domains.

Given there are a number of samplers available at this point, an empirical

comparison of their performance in various settings would be desirable,

but would require a considerable amount of labor to ensure comparable

implementations.

7.4 From rare event estimation to Gaussian probabilities

Reliability analysis has brought forth a zoo of algorithms to estimate

probabilities of rare events.
3

3: The initial idea dates back to at least

1951, referred to as multilevel technique by

Kahn and Harris [127], which they at-

tribute to von Neumann. They were con-

cerned with estimating particle transmis-

sion probabilities in nuclear physics for

which they define regions of importance and,

[. . . ] when the sampled parti-

cle goes from a less important

to a more important region, it

is split into two independent

particles, each one-half of the

weight of the original. [. . . ]

The purpose of this is to spend

most of the time studying the

important rather than the typ-

ical particles [. . . ].

Sampling techniques for rare event estima-

tion are conceptually similar in that they direct the simulation towards

the regions in parameter space that initiate a rare event. The integral is

decomposed into easier-to-estimate probabilities that can be estimated

as samples draw closer to the domain of interest.

[96]: Glasserman et al. (1999), ‘Multilevel

splitting for estimating rare event

probabilities’

[152]: Lagnoux and Lezaud (2017),

‘Multilevel branching and splitting

algorithm for estimating rare event

probabilities’

[43]: Cérou et al. (2012), ‘Sequential Monte

Carlo for rare event estimation’

[15]: Au and Beck (2001), ‘Estimation

of small failure probabilities in high

dimensions by subset simulation’

[67]: Diaconis and Holmes (1995), ‘Three

examples of Monte-Carlo Markov chains:

At the interface between statistical

computing, computer science, and

statistical mechanics’

[216]: Ross (2012), Simulation

[150]: Kroese et al. (2013), Handbook of

Monte Carlo methods

Popular contemporary algorithms go under the keywords multilevel

splitting [96, 152], sequential Monte Carlo [43] and subset simulation [15],

to name a few. We will here consider subset simulation and a closely

related method named after Diaconis and Holmes [67] and Ross [216],

which will serve as integrators for the linearly restricted multivariate

normal distributions. The rejection-free lin-ess takes enters the game

as an mcmc sampler. It renders the need for tricks to drag the sampler

towards the domain of interest obsolete.

7.4.1 The Holmes-Diaconis-Ross algorithm

The Holmes-Diaconis-Ross algorithm (hdr) [67, 216, 150] is a specialized

method for constructing an unbiased estimator for probabilities of the

form P(x ∈ L) under an arbitrary prior measure x ∼ p0(x) and a domain

L = {x s.t. f (x) ≥ 0} with a deterministic function f : RD 7→ R. If this

domain has very low probability mass, P(L) is expensive to compute with

simple Monte Carlo because most samples are rejected. hdr mitigates
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x1

x 2

x1 x1 x1

Figure 7.4: Sketch of the hdr algorithm in a bivariate setting. The nested domains are fixed a priori (left). Conditional probabilities are

estimated from the number of samples drawn from the current domain that also fall into the subsequent nesting, until all the nestings have

been traversed and the domain of interest is reached (left to right).

this by using a sequence of T nested domains RD = L0 ⊃ L1 ⊃ L2 ⊃
... ⊃ LT = L, s.t. Lt =

⋂t
i=1 Li. The probability mass of the domain of

interest can be decomposed into a product of conditional probabilities,

Z = P(L) = P(L0)
T

∏
t=1

P(Lt|Lt−1). (7.6)

The conditional probabilities P(Lt|Lt−1) are estimated from samples

as the fraction of samples in Lt−1 that also fall into Lt. If each of the

conditional probabilities P(Lt|Lt−1) is closer to 1/2, they all require

quadratically fewer samples, reducing the overall cost despite the linear

increase in individual sampling problems. Noting that P(L0) = 1 and

introducing the shorthand ρt = P(Lt|Lt−1), (7.6) can be written in

logarithmic form as

log Z =
T

∑
t=1

log ρt.

hdr does not deal with the construction of the nested domains—a method

to obtain them is discussed in Section 7.4.2. For now, they are assumed

to be given in terms of a decreasing sequence of positive scalar values

{γ1, . . . , γT}, where γT = 0. Each shifted domain Lt can then be defined

through its corresponding shift value γt. In the general setting, this is

Lt = {x s.t. f (x) + γt ≥ 0}; in our specific problem of linear constraints,

x ∈ Lt if `t(x) = ∏M
m=1 1[a>mx + bm + γt > 0] = 1. Any positive shift γt

thus induces a domain Lt that contains all domains Lt′ with γt′ < γt,

and that engulfs a larger volume than Lt′ . The Tth
shift γT = 0 identifies

L itself.

Given the shift sequence {γ1, . . . , γT}, the hdr algorithm proceeds as

follows: Initially, N samples are drawn from L0, the integration measure,

in our case a standard normal. L0 corresponds to γ0 = ∞ which is

ignored in the sequence. The conditional probability ρ1 = P(L1 |L0)
is estimated as the fraction of samples from L0 that also fall into L1.

To estimate the subsequent conditional probabilities ρt for t > 1 as

the fraction of samples from Lt−1 falling into Lt, standard hdr uses

an mcmc sampler to simulate from Lt−1. If the sequence of nestings

is chosen well and initial seeds in the domain Lt−1 are known, these

samplers achieve a high acceptance rate. This procedure is repeated until

t = T. The procedure is illustrated in Figure 7.4 for our setting with a

domain constrained by linear functions. With the estimated conditional
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Algorithm 7.2 The Holmes-Diaconis-Ross algorithm applied to linearly constrained Gaussians

1 procedure HDR(A, b, {γ1, . . . , γT}, N)

2 X ∼ N (0, I) � N samples

3 log Ẑ = 0 � initialize log integral value

4 for t = 1 . . . T do
5 Lt = {x : minm(a>mxn + bm) + γt > 0}N

n=1 � find samples inside current nesting

6 log Ẑ ^ log Ẑ + log(#(X ∈ Lt))− log N
7 choose x0 ∈ Lt
8 X ^ LinESS(A, b + γt, N, x0) � draw new samples from constrained domain

9 end for
10 return log Ẑ
11 end procedure

probabilities ρ̂t, the estimator for the probability mass is then

log Ẑ =
T

∑
t=1

log ρ̂t.

In our adapted version of hdr, the lin-ess algorithm (cf. Section 7.3)

comes into play, which achieves a 100% acceptance rate for simulating

from the nested domains. In order to simulate rejection-free from Lt,

lin-ess requires an initial sample from the domain Lt, which is obtained

from the previous iteration of the algorithm. Every location sampled

requires evaluating the linear constraints, hence the cost for each subset in

hdr is O(NMD). Pseudocode for this algorithm is shown in Algorithm

7.2, where LinESS is a call to the lin-ess sampler (cf. Section 7.3 and

Algorithm 7.1) that simulates from the linearly constrained domain.

7.4.2 Obtaining nested domains

As the final missing ingredient, the hdr algorithm requires a sequence of

nested domains or level sets defined by positive shifts γt, t = 1, . . . , T. In

theory, the nested domains should ideally have conditional probabilities

of ρt = 1/2 ∀t (then each nesting improves the precision by one bit).

Yet, in a more practical consideration, the computational overhead for

constructing the nested domains should also be small. In practice, the

shift sequence is often chosen in an ad hoc way, hoping that conditional

probabilities are large enough to enable a decently accurate estimation

via hdr [131] [131]: Kanjilal and Manohar (2015),

‘Markov chain splitting methods in

structural reliability integral estimation’

. This is not straightforward and requires problem-specific

knowledge.

We suggest constructing the nestings via subset simulation [15] [15]: Au and Beck (2001), ‘Estimation

of small failure probabilities in high

dimensions by subset simulation’

which is

very similar to hdr. It only differs in that the conditional probabilities ρt
are fixed a priori to a value ρ, and then the shift values γt are computed

such that a fraction ρ of the N samples drawn from Lt−1 falls into the

subsequent domain Lt.

The construction of the nested domains is depicted in Figure 7.5. To find

the shifts, N samples are drawn from the integration measure initially

(left-most scene in Figure 7.5). Then the first (and largest) shift γ1 is

determined such that a fraction ρ of the samples fall into the domain L1.

This is achieved by computing for each sample by how much the linear
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x1

x 2

x1 x1

Figure 7.5: Finding the level sets in sub-

set simulation for linear constraints. Left:

Draw standard normal samples and find

the shift γ1 for which a fraction ρ of the

samples lie inside the new domain (orange

lines); center: Use lin-ess to draw samples

from the subsequent domain defined by

γ1 (now in dark blue) and find γ2 (orange

lines) similarly; right: Proceed until the do-

main of interest (shaded area) is reached.

Details in text.

constraints would need to be shifted to encompass the sample. For the

subsequent shifts, N samples are simulated from the current domain

Lt−1, and the next shift γt is again set s.t. bNρc samples fall into the

next domain Lt (Figure 7.5, center). This requires an initial sample from

Lt−1 to launch the lin-ess sampler, which is obtained from the samples

gathered in the previous nesting Lt−1 that also lie in Lt, while all other

samples are discarded to reduce dependencies. This nesting procedure is

repeated until more than bNρc samples fall into the domain of interest L
(Figure 7.5, right). We set ρ = 1/2 to maximize the entropy of the binary

distribution over whether samples fall in- or outside the next nested

domain, yet in reliability analysis a common choice is ρ = 0.1 [16] [16]: Au and Beck (2001), ‘First excursion

probabilities for linear systems by very

efficient importance sampling’

, which

has the advantage of requiring less nestings (to the detriment of more

samples). Pseudocode can be found in Algorithm 7.3.

In fact, subset simulation itself also permits the estimation of the integral

Z, without appealing to hdr: Since the subsets are constructed such that

the conditional probabilities take a predefined value, the estimator for

the integral is Ẑss = ρT−1ρT where ρT = P(LT |LT−1) ∈ [ρ, 1] is the

conditional probability for the last domain. For ρ = 1/2 the number of

required nestings is roughly the negative binary logarithm of the integral

estimator T ≈ − log2 Ẑss (cf. Figure 7.6). The main reason not to rely on

subset simulation alone is that its estimator Ẑss is biased, because the

samples are both used to construct the domains and to estimate Z. We

thus use hdr to get an unbiased estimate of the integral from level sets

constructed with subset simulation.

Both subset simulation and hdr are instances of a wider class of so-called

multilevel splitting methods which are related to sequential Monte Carlo

(smc) in that they are concerned with simulating from a sequence of

probability distributions. smc methods (aka. particle filters) were conceived

for online inference in state space models, but can be extended to non-

Markovian latent variable models [183]

[183]: Naesseth et al. (2019), ‘Elements of

sequential Monte Carlo’

. In this form, smc methods have

gained popularity for the estimation of rare events [65, 24, 43] [65]: Del Moral et al. (2006), ‘Sequential

Monte Carlo samplers’

[24]: Bect et al. (2017), ‘Bayesian subset

simulation’

[43]: Cérou et al. (2012), ‘Sequential Monte

Carlo for rare event estimation’

.

7.4.3 Derivatives of Gaussian probabilities

Many applications (e.g. Bayesian optimization, see below) additionally

require derivatives of the Gaussian probability w.r.t. to parameters λ

of the integration measure or the linear constraints. The absence of

such derivatives in classic quadrature sub-routines has thus sometimes

been mentioned as an argument against them (e.g., [56] [56]: Cunningham et al. (2011), ‘Gaussian

probabilities and expectation propagation’

). Our integra-

tion method allows to efficiently compute such derivatives, because it

produces samples. This leverages the classic result that derivatives of
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Algorithm 7.3 Subset simulation for linear constraints

1 procedure SubsetSim(A, b, N, ρ = 1
2 )

2 γ ^∅ � initialize shift sequences

3 X ∼ N (0, I) � N initial samples

4 γnew, ρ̂ = FindShift(ρ, X, A, b) � find new shift value

5 log Ẑ = log ρ̂ � record the integral

6 while γnew > 0 do
7 X ^ LinESS(A, b + γnew, N, x0) � draw new samples from new constrained domain using Algorithm 7.1

8 γnew, ρ̂ ^ FindShift(ρ, X, A, b) � find new shift value

9 γ ^ γ ∪ {γnew}
10 log Ẑ ^ log Ẑ + log ρ̂ � update integral with new conditional probability

11 end while
12 return log Ẑ, γ
13 end procedure

14 function FindShift(ρ, X, A, b) � find shift s.t. a fraction ρ of X fall into the resulting domain.

15 γ ^ sort(−minm(a>mxn + bm)
N
n=1) � sort shifts in ascending order

16 γnew ^(γ[bρNc] + γ[bρNc+ 1])/2 � find shift s.t. ρN samples lie in the domain

17 ρ̂ ^ count(γ < γnew)/N � true fraction could deviate from ρ

18 return γnew, ρ̂
19 end function

exponential families with respect to their parameters can be computed

from expectations of the sufficient statistics. To do so, it is advantageous

to rephrase (7.2) as the integral over a correlated Gaussian with mean µλ

and covariance matrix Σλ with axis-aligned constraints (or constraints

that are independent of λ). The derivatives w.r.t. a parameter λ can then

be expressed as an expected value,

dZ
dλ

= E

[
dlogN (x; µλ, Σλ)

dλ

]
, (7.7)

where the expectation is taken with respect to the transformed integrand

(2.1). Since lin-ess permits us to simulate from the integrand of (2.1),

derivatives can be estimated via expectations. We demonstrate in Section

7.5.2 that this is a lot more efficient than finite differences, which requires

Z to be estimated twice and at considerably higher accuracy.

7.4.4 Related integration methods

Genz’s Method The most widely employed algorithm for estimating

multivariate normal probabilities is the highly optimized method by

Genz [86]

[86]: Genz (1992), ‘Numerical computation

of multivariate normal probabilities’

.
4

4: Parts of its success can be at-

tributed to the efficient Fortran imple-

mentation, which is available (though

somewhat hidden) in Python’s scipy as

scipy.stats.mvn.mvndst.

The procedure relies on a sequence of transformations

that map the integration domain to the unit hypercube. It requires the

linear constraints to take the form of a potentially half-open box for some

covariance of the Gaussian, i. e.,

Z =
∫ u1

l1
· · ·

∫ uD

lD

N (x; µ, Σ)dx1 . . . dxD

for lower and upper bounds ld, ud ∈ R; d = 1, . . . , D, respectively.

Bringing this integral into the form of (7.2) yields bounds for the dth
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5: For a detailed description of the algo-

rithm, the reader may consult e. g., [212,

176, 56].

integral that are successively dependent on those for d′ < d due to the

triangular form of the Cholesky decomposition Σ = LL>. They can

further be written as cumulative Gaussians Φ(z) = 1√
2π

∫ z
−∞ e−ξ2/2 dξ,

which is used to map the integral to the unit hypercube as

Z = (u′1 − l′1)
∫ 1

0
(u′2 − l′2)

∫ 1

0
(u′3 − l′3)· · ·

∫ 1

0
(u′D − l′D)dξ

with l′d(z1, . . . , zd) = Φ
(
(ld −∑d−1

i=1 LdiΦ−1(zi))/Ldd

)
, u′d(z1, . . . , zd) =

Φ
(
(ud −∑d−1

i=1 LdiΦ−1(zi))/Ldd

)
and the additional transformation

zd = l′d + ξd(u′d − l′d). This integral can then be estimated for instance

from random uniform samples, or a quasi-Monte Carlo method that

operates on the hypercube.

Integration via Expectation Propagation Cunningham et al. [56] [56]: Cunningham et al. (2011), ‘Gaussian

probabilities and expectation propagation’

approach

the same problem with [176]

[176]: Minka (2013), ‘Expectation propa-

gation for approximate Bayesian inference’

. Expectation propagation (ep) is an ap-

proximate inference algorithm that finds a Gaussian approximation to

the non-Gaussian integrand, in this case the truncated normal distribu-

tion, by iterative moment matching. This is achieved by updating the

approximate density dimension-wise— thereby reducing the integration

problem to multiple univariate ones—to approximately minimize the

Kullback-Leibler divergence between the Gaussian approximation and

the unnormalized truncated Gaussian.
5

[212]: Rasmussen and Williams (2006),

Gaussian Processes for machine learning

This scheme has proven suc-

cessful e.g., in Gaussian process classification [151]

[151]: Kuss et al. (2005), ‘Assessing ap-

proximate inference for binary Gaussian

process classification.’

, which is similar in

that the likelihood is a softmax instead of a hard step function. ep may

be orders of magnitude faster than mcmc procedures for the same task,

but it has two fundamental issues: (i) ep works well empirically, but lacks

guarantees for convergence, and (ii) there is no means to estimate the

error committed on the integral itself. In Section 7.5 we observe that

ep fails in low-probability settings.

7.5 Applications and experiments

To shed light on the interplay of subset simulation, hdr, and lin-ess,

we dissect a single 500-dimensional synthetic integration problem with

a closed-form solution. Besides more synthetic experiments, we con-

sider integration problems arising bin Bayesian optimization where we

demonstrate our algorithm’s ability to estimate derivatives.

7.5.1 Synthetic experiments

As an initial integration problem we consider axis-aligned constraints

in a 500-dimensional space. Since this task amounts to computing the

mass of a shifted orthant under a standard normal distribution, it allows

comparison to an exact analytic answer. The goal of this setup is two-

fold: 1) to demonstrate that our method can compute small Gaussian

probabilities to high accuracy, and 2) to explore configurations for the

construction of nested domains using subset simulation. The domain is

defined by `(x) = ∏D
d=1 1[xd + 1 > 0]. The true mass of this domain is

Z = 3.07 · 10−38 = 2−124.6
. Estimating this integral naïvely by sampling

from the Gaussian would require of the order of 1038
samples for
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Figure 7.6: Shift values γ against number

of subsets T for different sample size per

nesting N (small dots). The connected dots

show − log2 Ẑss vs. log2 N. The ground

truth is indicated by the vertical line. This

plot emphasizes the connection between

T and − log2 Z for ρ = 1/2 (see text for

details).

one to fall into the domain of interest. With a standard library like

numpy.random.randn, this would take about 1015
ages of the universe.

Subset simulation First, we compute the shift sequence {γ1, . . . , γT}
using subset simulation for various numbers of samples N per subset

and a fixed conditional probability of ρ = 1/2. Since the contributing

factor of each nesting is ρ = 1/2, the integral estimate is roughly 2−T

for our choice of ρ (cf. Section 7.4.2). In other words, subset simulation

should ideally find T = dZe = 125 nestings for the given example. The

relation between the number of subsets T and the estimated integral

value Ẑss is visualized in Figure 7.6. It shows the sequences of shift

values for increasing sample sizes and the resulting integral estimate

log2 Ẑss. The Tth
nesting has shift value γ = 0 and is the only subset

with a conditional probability that deviates from the chosen value of ρ.

Yet, T is a good indicator for the value of the negative binary logarithm

of the estimated integral. Hence, we use the same axis to display the

number of subsets and − log2 Ẑss. The plot highlights the bias of subset

simulation: For small sample sizes, e.g. N = 2, 4, 8, the integral is severely

underestimated. This bias is caused by the dependency of the subset

construction method on the samples themselves: Since we are using

a mcmc method for simulating from the current domain, samples are

correlated and do not fall into the true next subset with probability exactly

ρ. This is why we only accept every 10th
sample to diminish this effect

when constructing the subsets. For the subsequent hdr simulation, we

accepted every second sample from the ess procedure.

We choose powers of 2 for the number of samples per subset and observe

that as of 16 samples per subset, the subset sequence is good enough to

be handed to hdr for more accurate and unbiased estimation. This low

requirement of 16 samples per nesting also means that subset simulation

is a low-cost preparation for hdr, and causes only minor computational

overhead.
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Figure 7.7: Left: hdr integral estimates for

subset sequences that have been obtained

with a varying number of samples be-

tween 25
to 211

(same color coding as in Fig-

ure 7.6). Left column: Integral estimate from

using different sample sizes for hdr on the

different nesting sequences, top: evaluated

in form of the binary logarithm of the

ground truth (horizontal line), and bottom:

the relative error. Right: Conditional prob-

abilities found by hdr with Nhdr = 211
for

the subset sequences created from differ-

ent sample sizes and ρ = 1/2 (vertical line)

with subset simulation.

Holmes-Diaconis-Ross Figure 7.7 shows the results achieved by hdr for

the nine subset sequences obtained with 21
to 29

samples per subset and

for different numbers of samples per nesting for hdr. The top left panel

of Figure 7.7 shows the binary logarithm of the hdr integral estimator.

The bad performance for the subsets created with 2, 4, or 8 samples
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Table 7.1: Three linearly constrained inte-

gration problems in 1000D

〈log2 Ẑ〉 std. dev. tcpu[103
s]

−162.35 4.27 8.86
−160.54 2.09 7.40
−157.62 3.19 7.64

6: The computations where carried out

on 6 cpus, leading to a wall clock time of

about 20 min per run.

per nesting indicates that a good nesting sequence is essential for the

effectiveness of hdr, but also that such a sequence can be found using

only about 16 samples per subset (this is thus the number used for all

subsequent experiments). The bottom left panel displays the relative

error of the hdr estimator. Bear in mind that the relative error is 9/11 if the

estimator is one order of magnitude off, indicating that hdr achieves the

right order of magnitude with a relatively low sample demand. The right

panel of Figure 7.7 shows the values for the conditional probabilities

found by hdr, using 211
samples per subdomain. If subset simulation

were perfectly reliable, these should ideally be ρ = 1/2. The plot confirms

that, with N ≥ 16, all conditional probabilities found by hdr are far

from 0 and 1, warranting the efficiency of hdr. The lowermost box also

indicates that hdr corrects for the terrible sequence constructed with

only 2 samples per nesting. hdr correctly finds conditional probabilities

to be larger than 1/2, and the integral estimate found by hdr is more

accurate than the corresponding estimator by subset simulation.

1000D integrals We further consider three similar synthetic integrals

over orthants of 1000D correlated Gaussians with a fixed mean and

a randomly drawn covariance matrix. Table 7.1 shows the mean and

std. dev. of the binary logarithm of the integral estimator averaged over

five runs of hdr using 28
samples per nesting for integration, as well as

the average cpu time.
6

7.5.2 Bayesian optimization

Bayesian optimization is a sample-efficient approach to global optimiza-

tion of expensive-to-evaluate black-box functions [78] [78]: Garnett (2022), Bayesian optimization. A surrogate over

the objective function f (x) serves to build a utility function and ultimately

derive a policy to determine the next query point. Information-based

utilities are directly concerned with the posterior distribution over the

minimizer, pmin(x |D), where D = {xn, f (xn)}N
n=1 summarizes previ-

ous evaluations of f . Entropy search [113] [113]: Hennig and Schuler (2012), ‘Entropy

search for information-efficient global

optimization.’

seeks to evaluate the objective

function at the location that bears the most information about the min-

imizer. The expression pmin(x |D) is an infinite-dimensional integral

itself, but for practical purposes, it can be discretized considering the

distribution over so-called representer points. The probability of the ith

representer point to be the minimum can be approximated as

p̂min(xi) =
∫

d f N ( f , µ, Σ)
NR

∏
j=1
j 6=i

1[ f (xj)− f (xi) > 0], (7.8)

where µ and Σ are the posterior mean and covariance of the Gaussian

process over f , respectively. Clearly, this is a linearly constrained Gaussian

integral in the form of (2.1) which has to be solved for all NR representer

points. The linear constraints can be rewritten in vectorial form as in (7.4)

by introducing the (NR − 1)× NR matrix

M =

[
I(i−1)×(i−1) −1i−1 0(i−1)×(NR−i)

0(NR−i)×(i−1) −1NR−i I(NR−i)×(NR−i)

]
,
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Figure 7.8: Top: Probability for x to be the

minimum, estimated via Thompson sam-

pling (blue), and ep (gray). Vertical lines

indicate locations at which we run hdr.

Bottom: Absolute relative error by ep and

hdr against cpu time at the locations in-

dicated above. Each hdr sequence shown

uses 26
to 213

samples per nesting. The

smaller p̂min, the longer takes the hdr run,

since there are more subsets to traverse.

a (NR − 1)× (NR − 1) identity matrix with a vector of−1s added in the

i
th

column. This allows transforming the linear constraints in (7.8) to a

standard normal space

p̂min(xi) =
∫
N ( f , µ, Σ)

NR

∏
j 6=i

1
[
[M f ]j > 0

]
d f

=
∫
N (u, 0, I)

NR

∏
j 6=i

1

[[
M
(

Σ
1/2u + µ

)]
j
> 0

]
du,

where we have done the substitution u = Σ−1/2( f − µ), and hence

f = Σ
1/2u + µ. The original paper and implementation uses expectation

propagation (ep) to approximate this integral.

Probability of minimum For our experiment, we consider the one-dimen-

sional Forrester function [74] [74]: Forrester et al. (2007), ‘Multi-fidelity

optimization via surrogate modelling’

with three initial evaluations. The top plot

in Figure 7.8 shows the ground truth distribution over the minimum

obtained by Thompson sampling, i. e., drawing samples from the dis-

cretized posterior Gaussian process (gp) and recording their respective

minimum, and the approximation over this distribution obtained by

ep. It is apparent that ep fails to accurately represent p̂min. For hdr, we

consider four locations (indicated by the vertical lines) and show that

while it takes longer to compute, the estimate obtained by hdr converges

to the true solution (see bottom plot of Figure 7.8). In the experiment

we use 200 representer points—which is an unusually high number

for a 1D problem—to show that our method can deal with integrals of

that dimension. Also note that we are reporting cpu time, which means

that due to automatic parallelization in numpy the wall clock time is

considerably lower.

Derivatives Entropy search requires derivatives of (7.8) to construct

a first-order approximation of the predictive information gain from

evaluating at a new location x?. We can estimate derivatives using

expectations (cf. Section 7.4.3 and Appendix D). Initially we choose 5

representer points to validate the approach of computing derivatives via

moments against finite differences. The latter requires estimating p̂min
at very high accuracy and has thus a high sample demand even in this

low-dimensional setting, for which we employ both rejection sampling

and hdr. The derivatives computed via moments from rejection sampling

and lin-ess take 0.7% of the time required to get a similar accuracy with

finite differences. Unsurprisingly, rejection sampling is faster in this case,

with p̂min(xi) ≈ 1/4, i.e. only ∼ 3/4 of the samples from the posterior

over f need to be discarded to obtain independent draws that have their

minimum at xi. lin-ess only outperforms rejection sampling at higher

rejection rates common to higher-dimensional problems.

Therefore, we also consider 20 representer points, which corresponds to a

20D linearly constrained space to sample from. In this setting, we consider

a location of low probability, with p̂min = 1.6 · 10−4
, which renders an

estimation via finite differences impossible and highly disfavors rejection

sampling even for computing the moments. lin-ess, however, enables

us to estimate the gradient of the normal distribution w.r.t. its mean

and covariance matrix with a relative standard deviation on the 2-norm
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Figure 7.9: The Forrester function (black),

the posterior gp given three evaluations

(gray), and the posterior distribution over

f conditioned on the minimum being lo-

cated at where the vertical line indicates

( ), each with the 2σ confidence inter-

val shaded. The latter has been obtained

from drawing 105
samples using lin-ess,

10 of which are shown ( ).

of the order of 10−2
using 5 · 105

samples and an average cpu time of

325 s for a problem that was previously unfeasible. An ill-conditioned

covariance matrix in (7.7) deteriorates runtime (which is already apparent

in the considered case) since it requires estimating moments at very high

accuracy to compensate for numerical errors.

7.5.3 Constrained samples

We emphasize that lin-ess allows to draw samples from linearly con-

strained Gaussians without rejection. In the Gaussian process setting, this

permits to efficiently draw samples that are subject to linear restrictions

[3, 163, 57]. In particular, the time required for sampling is essentially

independent of the probability mass of the domain of interest. This

probability mass only affects the pre-computation required to find an

initial sample in the domain for lin-ess (cf. Section 7.4.2). Since this can

be achieved with ∼16 samples per subset (cf. Section 7.5.1), this initial

runtime is typically negligible compared to the actual sampling. Figure

7.9 displays the posterior distribution of a gp conditioned on the loca-

tion of the minimum from the Bayesian optimization context, estimated

from lin-ess samples. This distribution is required in predictive entropy

search [114]—a reformulation of the original entropy search—where it

is approximated by imposing several related constraints (e.g., on the

derivatives at the minimizer xmin). The probability for the given location

to be the minimizer is . 10−6
, which renders direct sampling virtually

impossible. The unaltered ess algorithm fails on this problem due to the

domain selector—a binary likelihood.

[3]: Agrell (2019), ‘Gaussian Processes

with linear operator inequality con-

straints’

[163]: López-Lopera et al. (2018), ‘Finite-

dimensional Gaussian approximation

with linear inequality constraints’

[57]: Da Veiga and Marrel (2012), ‘Gaus-

sian process modeling with inequality

constraints’

[114]: Hernández-Lobato et al. (2014), ‘Pre-

dictive entropy search for efficient global

optimization of black-box functions’

7.6 Conclusions

This chapter focused on a ubiquitous and notoriously hard integration

problem: the estimation of Gaussian probabilities. The step functions

implied by linear constraints render this problem unsuitable for Bayesian

quadrature. In this case, Monte Carlo methods come to the rescue: We

have introduced a black-box algorithm that computes these integrals over

linearly constrained Gaussian densities with high numerical precision,

even if the integration domain is of high dimensionality and the proba-

bility to be computed is very small. This was achieved by adapting two

separate pieces of existing prior art and carefully matching them to the

problem domain: We designed a special version of elliptical slice sampling

that takes explicit advantage of the linearly-constrained Gaussian setting,

and used it as an internal step of the hdr algorithm. We showed that,

because this algorithm can not just compute integrals but also produces

samples from the nestings alongside, it also permits the evaluation of

derivatives of the integral with respect to the parameters of the measure.

One current limitation is that, because our algorithm was designed to

be unbiased, it has comparably high computational cost (but also supe-

rior numerical precision) over alternatives like expectation propagation.

This problem could be mitigated if one is willing to accept unbiased-

ness and thus reuse samples. Furthermore, both hdr and lin-ess are

highly parallelizable (as opposed to ep) and thus offer a straightforward

implementational improvement for application on modern hardware.
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Conclusion 8
After a brief summary of the main contributions of this thesis, we

outline some of the challenges that probabilistic integration methods

hinder from more widespread adoption. We then provide an outlook on

future research topics that might extend the practical scope probabilistic

numerical methods for integration.

8.1 Summary and discussion

The main topic of this thesis is numerical integration as a tool in approx-

imate Bayesian inference. Motivated by the probabilistic formulation

of numerical methods, the research conducted as a part of this work

was centered around Bayesian quadrature (bq). A main aspect was the

identification and demonstration of the scope of probabilistic integration

methods.

8.1.1 The scope of Bayesian quadrature

Active Bayesian quadrature Chapter 3 and 5 highlight active learning as a

benefit that the Bayesian formulation of a numerical method natu-

rally entails. This not only permits the construction of integration

schemes that adapt to the integrand, but also unlock application

areas that are out of reach for classical integration methods. One

such domain is transfer learning, in which information retrieved

from a correlated function can be carried over to the main problem

of interest. This setting is scrutinized with regard to active learning

schemes in Chapter 5 when information is not the only quantity

optimized for, but when there is also a trade-off with evaluation

cost of multiple present information sources. We found that this

extension lifts the degeneracy between commonly used active learn-

ing policies and observed properties of acquisition functions that

prevent such a policy from producing pathological strategies.

bq for expensive integrands Chapter 5 and 6 take up the theme of employ-

ing bq to computational settings in which integrals of expensive-to-

evaluate functions appear. While Chapter 5 deals with retrieving

information from cheaper sources to save cost, the considered ap-

plication in Chapter 6 are integrals on Riemannian manifolds that

occur when learning normal distributions that respect the intrinsic

geometry of given data. Integrand evaluations require solving the

geodesic equations and are thus moderately expensive; a setting

where bq demonstrates clear superiority over simple Monte Carlo.

In particular, the need for repeated computation of similar integrals

entails tremendous savings over the entire procedure of learning a

locally adaptive normal distribution.
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1: Numerical integration of the surrogate

model can be a desirable option when an

emulator is already in use for other pur-

poses and/or cheaper to integrate numer-

ically than its underlying ground truth.

However, this approach introduces a sec-

ond layer of numerical approximation and

will introduce error on the bq posterior

distribution.

8.1.2 Challenges

Not every integration problem is suitable to be solved with Bayesian

quadrature and theoretical as well as practical challenges of the method

remain.

Priors for bq The main restriction when choosing a gp prior (i. e., a kernel)

is its integrability w.r.t. the integration measure. The kernel mean

(2.15) and initial variance (2.16)

κ(x) :=
∫
X

k(x, x′)dν(x′),

k :=
∫∫

X
k(x, x′)dν(x)dν(x′)

are integrals that only have closed-form expressions for a small

amount of combinations of (mostly stationary) kernels and mea-

sures (cf. Table 2.1). Surrogate models over integrands are thus

severely limited by the availability of integrable kernels to avoid

having to use another level of numerical integration.
1

Besides practical constraints imposed by integrability of the kernel,

the choice of a suitable prior for a given integrand is not usually the-

oretically founded. Even if properties of the integrand are known, it

is rarely possible to inspect whether it is a member of a certain rkhs.

As a result, prior choice ends up being an empirical procedure in

practice, and recommendations are to use kernels that ‘behave well’

empirically on a wide range of problems.

Uncertainty calibration The potential danger of model misspecifiction

raises the question whether the uncertainty predicted by the

bq methods is a well-calibrated representation of numerical error.

A key ingredient to calibration is hyperparameter optimization

that adapts the model to the typical scales of the problem at hand.

Computational cost A widely criticized limitation of Gaussian processes

and consequentially bq is the cubic computational cost of inference

in the number of quadrature nodes. This scaling compares unfa-

vorably with the low overhead of competitors such as Monte Carlo

methods. Additional cost arises from intermediate optimization

during model adaptation and active learning. This limitation con-

fines bq to problems where benefits of the probabilistic approach

outweigh the computational investment (cf. Section 8.1.3).

Curse of dimensionality A strong prior can permit bq to extend beyond the

tight dimensionality constraints of classical quadrature methods.

Still, Gaussian processes do not scale well to high-dimensional input

and dimensionality compromises convergence rates of bq methods

(cf. Section 2.3.4).

Globality of quadrature On top of the issue of dimensionality, the fact that

integration is a global operation exacerbates the quadrature task.

A surrogate needs to be learned well everywhere as deviations

enter additively into the integral estimate. This property of inte-

gration renders bq a lot more intricate than for instance Bayesian

optimization that only requires a good surrogate locally.
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2: To put numbers on ‘moderately expen-

sive’, Chapter 6 already saw considerable

gains over simple Monte Carlo for evalua-

tions that take of the order of tens of mil-

liseconds (cf. Table 6.1) in low-dimensional

settings with D ≤ 5.

The identification of key challenges for probabilistic integration motivated

Chapter 7 as a tangential project that standard bq is utterly unsuitable

for: The computation of multivariate normal probabilities. These entail

integrating correlated Gaussians over a box or half-bounded domain

bounded through linear constraints. The linear constraints compromise

the tractability of the kernel integrals required in bq, which is therefore

stuck itself with precisely the kind of problem that one is trying to model.

Instead, we designed a custom mcmc method for estimating the mass and

sampling from such a domain. The particular setting permits rejection-

free sampling that at the backend of multilevel splitting methods enables

efficient estimation even of extremely small probability masses.

8.1.3 A checklist for bq

To guide a potential user, we have compiled a checklist that helps decide

whether bq might be a viable method for a given problem. As a rule of

thumb, integration problems with any of the following properties tend

to be auspicious for bq:

I The function to be integrated is at least moderately expensive to

evaluate,
2

such that function queries amortize the cost of inference.

I The integrand has well-known properties such as smoothness or

a known number of available derivatives that can naturally be

encoded in a Gaussian process prior through the choice of kernel.

I The integrand has properties such as positivity that can be encoded

in the prior via a transformation.

I Similar integration problems co-occur, e.g., when an integral has to

be computed repeatedly in a loop.

I Uncertainty over the outcome of the computation is essential for

consequential decision-making down the line.

If the integration is further over a low to moderate number of correlated

variables, the considered problem falls well into the scope of bq.

8.2 Outlook and future work

There are numerous conceivable directions to increase the scope of

probabilistic numerical integration methods. The following ideas may

serve as starting point for future work and inspiration for research

projects.

Implementation To date, bq has reached the maturity that it could be an

off-the-shelf integration method whenever uncertainty over the

output is essential. What has restrained bq from reaching this point

are to a certain extent the above-named challenges as well as limited

dissemination. Yet first and foremost, it is the lack of a comprehen-

sive implementation that facilitate adoption by non-expert users

that has prevented bq from overcoming its niche rôle amongst

methods for numerical integration. The recent collaborative effort

to join implementations of probabilistic numerical methods in one

toolbox, probnum, is a step in the right direction. The quad package

within probnum is yet in its infancy and awaits further contribution

by the bq community.
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3: Local adaptive normal distribution, in-

troduced in Chapter 6

Benchmarks Beyond pure implementation, an extensive empirical study

will provide empirical clarity about the practical scope of bq on

real-world integration problems. Most surveys, such as [37] [37]: Briol et al. (2019), ‘Probabilistic inte-

gration: A role in statistical computation?’

have

been studying the performance of bq from a theoretical perspec-

tive. A large scale benchmarking study would permit framing the

guidelines introduced above in a more quantitative manner and

sharpen the limitations of bq.

Dimensionality reduction Contemporary inference problems often deal

with a large quantity of correlated random variables. High-dimen-

sional numerical integration is challenging for bq due to the vast

volume that needs to be explored. A required assumption to deal

with high-dimensional problems is that they are not truly high-

dimensional, but typically live on a lower-dimensional manifold

that is embedded into the high-dimensional space [159] [159]: Levina and Bickel (2005), ‘Maxi-

mum likelihood estimation of intrinsic

dimension’

. Other

domains of machine learning employ dimensionality reduction tech-

niques to find lower-dinmensional representations with small loss

of information. Such techniques have not yet been applied in the

context of bq. In the simplest, linear case, this would permit de-

coupling directions of low variation to be left with a product of

lower-dimensional integrals that bq can solve. An evident chal-

lenge is quantifying the uncertainty introduced by discarding

correlations of neglected variables.

Uncertainty propagation Ideally, Bayesian quadrature is only one element

in a computational pipeline in which every step introduces new

numerical uncertainty. An example is the land,
3

where integration

hinges on the solution of initial or boundary value problems. In

such settings, chaining probabilistic numerical methods will be

desirable to achieve a meaningful uncertainty estimate of a sequence

of numerical problems. Most methods to date, however, deal with

outputting probability distributions, and there is little work on how

these methods should process probability distributions as inputs.

Non-linearity renders the propagation of uncertainty a challenging

problem across sub-disciplines of probabilistic numerics.

A vision for quadrature

The holy grail of numerical integration is the full automation of quadra-

ture. Neither should the user have to invest manual effort and time to

select a specialized integration scheme that is suitable for their partic-

ular problem at hand, nor should they need to resort to overly generic

algorithms that are applicable across a wide range of integration tasks,

but at the detriment of performance. To date, the function passed by

the user is usually treated as a black-box by the numerical integration

method and adaptation is achieved merely—if at all—through interaction

with the black-box. Automizing the selection of an integration scheme

demands opening the black-box and parsing its properties to attack

the meta-decision problem of choosing an appropriate method. Within

probabilistic integration schemes, this would amount to automizing the

selection of a prior and could be phrased as a Bayesian model selection

problem [170, 45]

[170]: Malkomes et al. (2016), ‘Bayesian

optimization for automated model

selection’

[45]: Chai et al. (2019), ‘Automated model

selection with Bayesian quadrature’

. The extension to non-probabilistic or stochastic meth-

ods is a tougher nut to crack but of pragmatic relevance in the endeavor

of automizing quadrature.
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Useful Identities A
A.1 Relevant matrix identities

We summarize here matrix identities used in the main text. A more

complete exposition is found in [202] [202]: Petersen, Pedersen, et al. (2008),

‘The matrix cookbook’

.

Define

C1 = A11 − A12 A−1
22 A21

C2 = A22 − A21 A−1
11 A12

Block matrix inversion(
A11 A12
A21 A22

)−1

=

(
C−1

1 −A−1
11 A12C−1

2
−C−1

2 A21 A−1
11 C−1

2

)−1
(A.1)

Matrices that can be written as (A−UBV>) with A, B square matrices

of size N × N and M×M, respectively, and U, V of size N ×M can be

inverted using the Woodbury inversion lemma

(A−UBV>)−1 = A−1 − A−1U(B−1 + V>A−1U)−1V>A−1.

The determinant of such a matrix can be written as

det(A−UBV>) = det(A)det(B)det(B−1 + V>A−1U). (A.2)

The determinant of a matrix written in terms of submatrices can be

written in terms of determinants of these blocks,

det
(

A11 A12
A21 A22

)
= det A22 det C1

= det A11 det C2. (A.3)

A.2 Gaussian identities

Consider a D-dimensional Gaussian distribution,

N (x, a, A) =
1

(2π)D/2|A|1/2
exp

(
−1

2
(x− a)>A−1(x− a)

)
.

A product of N Gaussian densities can be written as one term that

depends on x and N − 1 Gaussian terms that do not depend on x,

N

∏
i=1
N (x, ai, Ai) =N

x,

(
N

∑
i=1

A−1
i

)−1( N

∑
i=1

A−1
i ai

)
,

(
N

∑
i=1

A−1
i

)−1


×
N

∏
j=1
N

aj,

(
j−1

∑
i=1

A−1
i

)−1(j−1

∑
i=1

A−1
i ai

)
, Aj +

(
j−1

∑
i=1

A−1
i

)−1 (A.4)
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From this expression follows for example that

N (x; a, A)2 = π−D/2|A|−1/2N
(

x; a;
A
2

)
. (A.5)



1: as joint work with T. Karvonen, M. Mah-

sereci, and F.-X. Briol

Derivations Related to
Bayesian Quadrature B

B.1 Kernel embeddings for a Gaussian kernel and
Gaussian measure

We include an exemplary derivation of analytic expressions for integrals

that arise in bq. A compilation of kernel embeddings, i. e., solutions to

bq integrals for known pairs of kernels and integration measures is in

preparation.
1

LetX = Rd
and consider the case where the kernel is Gaus-

sian (aka. exponentiated quadratic) (2.9) with p.s.d. lengthscale matrix

Λ ∈ RD×D
and the integration measure is Gaussian with mean µ ∈ RD

and covariance Σ ∈ RD×D
. We restate the expressions for reference and

rewrite the Gaussian kernel in terms of the normal distribution as

kΛ(x, x′) = exp
(
−1

2
(x− x′)>Λ−1(x− x′)

)
= (2π)

D/2|Λ|1/2N (x; x′, Λ),

ν(x) = N (x; µ, Σ).

The integrals that arise can be solved using the identity for the product

of Gaussian density functions (A.4) to be left with one Gaussian to be

integrated over, and then exploiting that the Gaussian density integrates

to 1.

B.1.1 Integrals for vbq

In vbq, the two integrals to be solved are the kernel mean (2.15) and the

initial variance (2.16). The kernel mean is

κ(x) :=
∫
X

k(x, x′)dν(x′)

= (2π)
D/2|Λ|1/2

∫
X
N (x′; x, Λ)N (x′; µ, Σ)dx′

(A.4)

= (2π)
D/2|Λ|1/2N (x; µ, Σ + Λ),

and the initial variance

k :=
∫∫

X
k(x, x′)dν(x)dν(x′)

=
∫
X

κ(x)dν(x)

= (2π)
D/2|Λ|1/2

∫
X
N (x; µ, Σ + Λ)N (x; µ, Σ)dx

(A.4)

=

(
|Λ|

|2Σ + Λ|

)1/2

= |I + ΣΛ−1|−1/2
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B.1.2 Integrals for warped bq (square transform)

The derivations rely on the same principles when considering the integrals

(2.30) that appear when approximating the square transform in warped

bq, but they get more tedious. The required integrals are

∫
X

k(x, xi)k(x, xj)dν(x) = (2π)D|Λ|
∫
X
N (x; xi, Λ)N (x; xj, Λ)N (x; µ, Σ)dx

(A.4)

= (2π)D|Λ|N
(
µ;

xi + xj

2
, Σ +

Λ

2
)
N (xi; xj, 2Λ),

the double integral over the squared kernel

∫∫
X

k(x, x′)2 dν(x)dν(x′)
(A.5)

= π
D/2|Λ|1/2

∫∫
X
N
(
x; x′,

Λ

2
)
N (x; µ, Σ)N (x′; µ, Σ)dxdx′,

(A.4)

= π
D/2|Λ|1/2

∫
X
N
(

x′; µ, Σ +
Λ

2
)
N (x′; µ, Σ)dx′

(A.4)

= π
D/2|Λ|1/2 (2π)−D/2

∣∣∣∣2Σ +
Λ

2

∣∣∣∣
= |4Λ−1Σ + I|−1/2,

and lastly, the double integral

∫∫
X

k(x, xi)k(x, x′)k(x′, xj)dν(x)dν(x′)

(A.4)

= (2π)
3D/2|Λ|3/2N (xi; µ, Λ + Σ)∫
X
N
(

x′; (Λ−1 + Σ−1)−1(Λ−1xi + Σ−1µ), (Λ−1 + Σ−1)−1)N (x′; xj, Λ)N (x′; µ, Σ)dx′

(A.4)

= (2π)
3D/2|Λ|3/2N (xi; µ, Λ + Σ)N (xj; µ, Λ + Σ)

N
(
(Λ−1 + Σ−1)−1(Λ−1xi + Σ−1µ); (Λ−1 + Σ−1)−1(Λ−1xj,+Σ−1µ), 2(Λ−1 + Σ−1)−1)

= (2π)
3D/2|Λ|3/2 |I + ΛΣ−1|N (xi; µ, Λ + Σ)N (xj; µ, Λ + Σ)N

(
xi; xj, 2(Λ + ΛΣ−1Λ)

)
.

For the last step we have written out the exponent of the last Gaussian to

simplify (omitting the factor of −1/2)

(
(Λ−1 + Σ−1)−1(Λ−1xi +�

��Σ−1µ−Λ−1xj −�
��Σ−1µ)

)> 1
2
(Λ−1 + Σ−1)

(
(Λ−1 + Σ−1)−1(Λ−1(xi − xj))

)
= (Λ−1(xi − xj))

>(Λ−1 + Σ−1)−1 1
2������
(Λ−1 + Σ−1)(((((((

(Λ−1 + Σ−1)−1(Λ−1(xi − xj))

=
1
2
(xi − xj)

>(Λ + ΛΣ−1Λ)−1(xi − xj).

Furthermore, the factor |I +ΛΣ−1| appears when rewriting the Gaussian,

as care has to be taken of the normalization constant.

For stationary kernels, the remaining kernel integral in (2.30) is easy to

solve: k(x, x) integrates to 1 against measures that integrate to 1.

B.2 Optimal design for bq

We derive here the acquisition functions from Section 3.2 and motivate

the definition of the canonical squared correlation (3.5).
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B.2.1 Derivation of integral variance reduction

We start with the derivation of the integral variance reduction (ivr)

acquisition. Define the Gram matrix including noise as G = K + σ2 I.

Also note that for better readability, we sometimes write the posterior

variance of the integral as vD = V[Z |D]; both notations are equivalent.

The difference in variance of the integral over two consecutive updates

is

∆V = V[Z |D]−V[Z |D ∪ {X?, y?}]
= κ(X ∪ X?)

>G−1
X∪X?

κ(X ∪ X?) − κ>G−1κ

=

[
κ

κ?

]> [ G k(X, X?)
k(X?, X) G?

]−1 [
κ

κ?

]
− κ>G−1κ

(??)
=

[
κ

κ?

]> [G−1k(X, X?)C−1
? |Dk(X?, X)G−1 −G−1k(X, X?)C−1

? |D
−C−1

? |Dk(X?, X)G−1 C−1
? |D

] [
κ

κ?

]
= κ

(
G−1k(X, X?)C−1

? |Dk(X?, X)G−1
)

κ− κG−1k(X, X?)C−1
? |Dκ? − κ?C−1

? |Dk(X?, X)G−1κ + κ?C−1
? |Dκ?

=
(

κ? − κG−1k(X, X?)
)

C−1
? |D

(
κ? − κG−1k(X, X?)

)
= V[Z |D] ρ2

D(X?)

with the noise-corrected posterior covariance

C? |D = K? − k(X?, X)G−1k(X, X?) + σ2 I.

The other variance-based versions (niv, ip, ipi) follow straightforwardly

from the ivr acquisition function.

B.2.2 Derivation of mutual information

In standard bq, the joint distribution of the integral Z and any prospective

new data points y? after having observed data D is

p(Z, y?) = N

([
Z
y?

]
;
[

mD
mD(X?)

]
,

[
vD κ>? |D

κ? |D C? |D

])
(B.1)

The (almost) properly expanded covariance matrix in (B.1) is

C[Z, y?] =
[∫∫

X (k(x, x′)− k(x, X)G−1k(X, x′))dν(x)dν(x′)
∫
X (k(x, X?)− k(x, X)G−1k(X, X?))dν(x)∫

X (k(X?, x)− k(X?, X)G−1k(X, x))dν(x) K? − k(X?, X)G−1k(X, X?) + σ2 I

]
,

so κ>? |D denotes the posterior kernel mean at locations X?.

The mutual information between Z and y? can be written in terms of

entropy as

I[Z; y?] = H[Z] + H[y?]− H[Z, y?]. (B.2)

The entropy of a D-dimensional multivariate normal distributionN (µ, Σ)
is

H =
D
2

log(2πe) +
1
2

log det Σ.

The entropy is independent of the mean, and therefore in gps, inde-

pendent of the observations, since function evaluations do not enter
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the posterior covariance. Plugging (B.1) into the expression for the en-

tropy and applying the block matrix determinant rule (A.3), the mutual

information (B.2) turns into

I[Z, y?] =
1 + N? − (N? + 1)

2
log(2πe) +

1
2

(
log vD + log det C? |D − log

(
vD det C? |D − κ>? |DC−1

? |D κ? |D

))

= −1
2

log

1−
κ>? |DC−1

? |D κ? |D

vD


= −1

2
log
(

1− ρ2
D(X?)

)
,

using the definition of ρ2
D (3.5).

B.2.3 Summary of the acquisition functions

The following table summarizes the functional form of the optimal

acquisitions:

Table B.1: Functional form of optimal bq acquisition schemes.

acronym name origin α(ρ) sanity

mi mutual information I[Z; y?] −1/2 log(1− ρ2) 3

ivr integral variance reduction
V[Z |D]−V[Z |D∪D?

V[Z |D]
ρ2 3

ipi integral precision increase
V−1[Z |D∪D? ]−V−1[Z |D]

V−1[Z |D]
ρ2

1−ρ2 3

ip integral precision
V−1[Z |D∪D? ]

V−1[Z |D]
1

1−ρ2 7

niv negative integral variance −V[Z |D∪D? ]
V[Z |D]

ρ2 − 1 7



Details on Bayesian
Quadrature on Riemannian

Manifolds C
The additional details about Chapter 6

have been prepared by Christian Fröhlich,

except for parts on the dcv acquisition

function.

C.1 Aspects of Riemannian geometry

C.1.1 Geodesic equations

The energy or action functional of a curve γ with time derivative γ̇(t) is

defined as

E(γ) =
1
2

∫ 1

0
〈γ̇(t), M(γ(t))γ̇(t)〉︸ ︷︷ ︸

=:L

dt.

In physics, the argument of the integral is known as Lagrangian and we

therefore abbreviate the inner product as L := 〈γ̇(t), M(γ(t))γ̇(t)〉.
Geodesics are the stationary curves of this functional which are solutions

to the Euler-Lagrange equations. We are interested in the minimizers,

i.e., shortest paths. Minimizing curve energy instead of length avoids the

issue of arbitrary reparameterization. Let γd
denote the d-th coordinate

of the curve γ at time t and Mdd′ the metric component at row d and

column d′, if it is represented as a matrix. We leave sums over repeated

indices implicit (Einstein summation convention). Energy-minimizing

paths can be found by applying the Euler-Lagrange equations to the

functional E and solving for the curve γ ∈ RD
. They give rise to a system

of D coupled, 2nd
order differential equations, the dth

component of

which reads

∂L

∂γd =
∂

∂t
∂L

∂γ̇d , for d ∈ 1, . . . , D.

We first consider the left-hand side

I :=
∂L

∂γd =
1
2

∂Mij

∂γd γ̇iγ̇j,

which holds due to independence of the coordinates. The right-hand

side is

I I :=
∂

∂t

[
Midγ̇i

]
=

∂Mid

∂γj γ̇iγ̇j + Midγ̈i.

We expand this using a small index rearrangement trick

I I =
1
2

∂Mid

∂γj γ̇iγ̇j +
1
2

∂Mjd

∂γi γ̇iγ̇j + Midγ̈i.

This allows us to write I = I I ⇔ I I − I = 0 as

Midγ̈i +
1
2

(
∂Mid

∂γj +
∂Mjd

∂γi −
∂Mij

∂γd

)
γ̇j + Midγ̈i = 0.

the next step is to left multiply with the inverse metric tensor and plug

in the Christoffel symbols defined as follows

Γd
ij =

1
2

M−1
dh

(
∂Mih

∂γj +
∂Mjh

∂γi −
∂Mij

∂γh

)
,
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so we finally obtain the geodesic equations in the canonical form

γ̈d + Γd
ijγ̇

jγ̇j = 0, for d ∈ 1, . . . , D.

We assume our manifold to be geodesically complete [200] [200]: Pennec (2006), ‘Intrinsic statistics

on Riemannian manifolds: Basic tools for

geometric measurements’

, which means

that geodesics can be infinitely extended, i.e., their domain is R. As a

consequence, the exponential map is then defined on the whole tan-

gent space. In theory, the exponential map Expµ(·) is a diffeomorphism

only in some open neighborhood around µ and thus it only admits a

smooth inverse, i.e., Logµ(·), in said neighborhood. However, we assume

this to be true on the whole manifold in practice to keep the analysis

tractable. For long geodesics on high-curvature data manifolds, often

Logµ(Expµ(v)) 6= v. This is rather unproblematic since if ‖Logµk
(xn)‖

is high, the responsibility rnk will be low (see Section C.2), so this loga-

rithmic map will play a minimal role in the Mahalanobis distance of the

land density. Thus, the optimization process on its own favors mean and

covariances such that the density is concentrated in sufficiently small

neighborhoods where the exponential map approximately admits an

inverse.

C.1.2 Covariance and precision matrices

We here elaborate on Footnote 1 of the paper. The Riemannian normal

distribution [200] is defined using the precision matrix Γ. This matrix

lives on the tangent space TµM, i.e., it may be represented as a matrix in

RD×D
, where D is the dimension of the tangent space, which is equal

to the topological dimension of the manifold. In our applied setting, D
matches the dimension of the data space, as we view the whole RD

as the

manifold. We can use the tangent space ‘covariance’ matrix Σ = Γ−1
for

our reasoning and the optimization process. However, to obtain the true

covariance on the manifoldM, a subtle correction is necessary [200]

ΣM = E
[
Logµ(x)Logµ(x)>

]
=

1
C

∫
M

Logµ(x)Logµ(x)> exp
(
−1

2

〈
Logµ(x), Γ Logµ(x)

〉)
dM(x),

with respect to the density on the manifold. For conceptual ease, we focus

on the tangent space view in the paper. To plot the eigenvectors of the

adk land covariance (Figure 6.17), we used the exponential map on the

tangent space covariance matrix, i.e., we evaluate and plot Expµ(v1:2),
where v1:2 are the eigenvectors of Σ.

C.1.3 Geodesic Solvers

To solve the geodesic equations, we combine two solvers, which have

different strengths and weaknesses. By chaining them together, we obtain

a more robust computational pipeline.

First, we make use of the fast and robust fixed-point solver (fp) intro-

duced by Arvanitidis et al. [12] [12]: Arvanitidis et al. (2019), ‘Fast and

robust shortest paths on manifolds

learned from data’

. This solver pursues a gp-based approach

that avoids the often ill-behaved Jacobians of the geodesic ode system.

However, the resulting logarithmic maps are subject to significant ap-

proximation error, depending on the curvature of the manifold. The

parameters of this solver are as follows:
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Parameter Value Description

itermax 1000 maximum number of iterations

N 10 number of mesh nodes.

tol 0.1 tolerance used to evaluate solution correctness.

σ 10−4
noise of the gp.

For mnist, we set itermax = 500, and tol = 0.2, since this high-curvature

manifold easily leads to failing geodesics.

The second solver we employ is a precise, albeit less robust one. This

is the bvp solver available in the module scipy.integrate.solve_bvp.

On high-curvature manifolds, this solver often fails (especially for long

curves) and takes a significant amount of time to run. When it succeeds,

however, the logarithmic maps are reliable. For this solver, we set the

maximum number of mesh nodes to 100 and the tolerance to 0.1. We

empirically found that choosing a high maximum number of mesh nodes

(e.g., 500) can lead to high runtimes for failing geodesic computations.

To obtain fast and robust geodesics, these solvers may be chained together,

i.e., we initialize the bvp solver with the fp solution, which is often worth

the extra effort for speedup and improved robustness. For initialization,

we use 20 mesh nodes, evenly spaced on the fp solution. If the fp solver

already failed, it is very unlikely for the bvp solver to succeed, so we abort

the computation.

Furthermore, we exploit previously computed bvp solutions: assume we

want to compute Logµt
(x). We search for past results Logµ∗t

(x), with

t∗ < t, t∗ = arg min ‖µt − µt∗‖ and ‖µt − µt∗‖ < εd, where we choose

εd = 0.5. Since we compute logarithmic maps for data points x1:N , which

do not change during land optimization, we can use them as hash keys

in a dictionary, where we store the solutions. Looking up the solution is

then linear in the number of previous land iterations. If such a solution

is found, the fp is skipped and the solution is used to directly initialize

the bvp solver.

For the exponential maps, we use scipy.integrate.solve_ivp with a

tolerance of 10−3
.

C.2 The land algorithm

Algorithm C.1 and Algorithm C.2 show pseudocode for the optimization

of the land mixture likelihood (6.2). For completeness, we also state the

gradients required for the gradient descent procedure.
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Algorithm C.1 land mixture main loop

Input: data x1:N , manifoldMwith Exp and Log operators, max. number of iterations tmax,

initial stepsize α1
µ ∈ R, gradient tolerance ε∇µ

, likelihood tolerance εL
Output: estimates (µk, Σk, Ck, πk)1:K

Initialize land parameters

(
µ1

k , Σ1
k , C1

k , π1
k

)
1:K

, t← 1.

repeat
Expectation step: rnk =

πk p(xn |µk ,Σk)

∑K
l=1 πl p(xn |µl ,Σl)

Maximization step:

for k = 1 to K do
Compute Ct

k(µ
t
k, Σt

k) � apply bq

Compute dµk
L(µt

k, Σt
k) using (C.1)

if ||dµk
L|| < ε∇µ

then
Continue

end if
µt+1

k ← Expµt
k
(αt

µdµk
L)

Compute Log
µt+1

k
(x1:N)

Compute Ct+1
k (µt+1

k , Σt
k) � apply bq

Σt+1
k ← updateΣt

k
using Algorithm C.2

πt
k =

1
N ∑N

n=1 rnk

end for
if Lt+1 < Lt then

αt+1
µ ← 1.1 · αt

µ � optimism

else
αt+1

µ ← 0.75 · αt
µ � pessimism

end if
t← t + 1

until ||Lt+1 −Lt|| ≤ εL or t = tmax
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Algorithm C.2 land updateΣk
on the symmetric positive definite manifold S+

Input: Covariance Σt
k, mean µk, max. line search iterations tmax,Σ, last stepsize αk, initial stepsize α1 = 1.0,

sufficient decrease factor c0 = 0.5, contraction factor c1 = 0.5
Output: Σt+1

k , αk (for reuse)

Function Exp+
X (Ξ):

� define the exp. map on the S+ manifold, where X is an SPD matrix and Ξ is a tangent vector, i.e., a symmetric matrix

return X
1
2 exp

(
X−

1
2 ΞX−

1
2

)
X

1
2 , where exp denotes the matrix exponential.

EndFunction

Function
(
‖ · ‖+X

)
(Ξ): � define the norm of a vector Ξ in the tangent space of X ∈ S+

X ← LL> � cholesky decomposition

return ‖L−1ΞL−ᵀ‖2

EndFunction

for i = 1 to 2 do � outer gradient descent loop

Compute (or retrieve from cache) L(Σt
k)

Compute (or retrieve from cache) Euclidean gradient∇Σt
k
L(Σt

k) using (C.2)

Obtain manifold gradient: g := ∇Σt
k ;S+

= 1
2 Σt

k

(
∇Σt

k
+∇>

Σt
k

)
Σt

k

if αk is None or αk = 0 then
αk ← α0

‖g‖
end if
Σt+1

k ← Exp+
Σt

k
(−αk · g)

Compute Ck(µk, Σt+1
k ) � apply bq

Evaluate land objective L(Σt+1
k )

j← 1
while L(Σt+1

k ) > L(Σt
k)− c0 · αk · ‖g‖2

and j ≤ tmax,Σ do � line search subroutine

αk ← αk · c1 � while no sufficient decrease, contract

Σt+1
k ← Exp+

Σt
k
(−αk · g)

Compute Ck(µk, Σt+1
k ) � apply bq

Evaluate land objective L(Σt+1
k )

j← j + 1
end while
if L(Σt+1

k ) > Lt(Σt
k) then

αk ← 0
end if
if j 6= 2 then

αk = 1.3 · αk � optimism

end if
t← t + 1

end for
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For µ, we use the steepest descent direction as in [10] [10]: Arvanitidis et al. (2016), ‘A locally

adaptive normal distribution’

dµk
L =

N

∑
n=1

rnkLogµk
(xn)−

Zk · Rk
Ck(µk, Σk)

∫
TµkM

v fµk
(v)N (v; 0, Σk)dv, (C.1)

where the vector-valued integral stems from bq and Rk = ∑N
n=1 rnk,

Zk =
√
(2π)d|Σk|.

[10] decomposed the precision Σ−1
k = A>A for unconstrained optimiza-

tion using gradient descent. We opt for a more principled approach by

exploiting geometric structure of the symmetric positive definite (SPD)

manifold, to which the covariance is confined. More specifically, we use

the bi-invariant metric [29] [29]: Bhatia (2009), Positive definite matrices. Under this metric, geodesics from A to B may

be parameterized as γ(t) = A
1
2

(
A−

1
2 B

1
2 A−

1
2

)t
A

1
2 , 0 ≤ t < 1, and

the distance from A to B is d(A, B) =
∥∥∥log A−

1
2 B

1
2 A−

1
2

∥∥∥
2
. The name

stems from the fact that this distance is invariant under multiplication

with any invertible square matrix Ξ, i.e., d(A, B) = d(Ξ · A, Ξ · B). For

manifold gradient descent, we calculate the Euclidean gradient and then

project it onto the manifold. We begin with the first term

∇Σk

(
N

∑
n=1

rnk

[
1
2
〈Logµk

(xn), Σ−1
k Logµk

(xn)〉
])

= −1
2

N

∑
n=1

rnkΣ
−ᵀ
k Logµk

(xn)Logµk
(xn)

>Σ
−ᵀ
k .

For the gradient of the normalization constant we get

∇Σk log(C(µk, Σk)) =
1

C(µk, Σk)

∫
M
∇Σk exp

(
1
2
〈Logµk

(x), Σ−1Logµk
(x)〉

)
dMx

=
1

2 · C(µk, Σk)

∫
M

Σ
−ᵀ
k Logµk

(x)Logµk
(x)>Σ

−ᵀ
k exp

(
−1

2
〈Logµk

(x), Σ−1Logµk
(x)〉

)
dMx

=
1

2 · C(µk, Σk)

∫
TµkM

Σ
−ᵀ
k vv> fµk

(v)Σ−ᵀk exp
(
−1

2
〈v, Σ−1v〉

)
dv.

Taking this together, we obtain the gradient

∇ΣkL =− 1
2

N

∑
n=1

rnkΣ
−ᵀ
k Logµk

(xn)Logµk
(xn)

>Σ
−ᵀ
k

+
Rk

2 · C(µk, Σk)

∫
TµkM

Σ
−ᵀ
k vv> fµk

(v)Σ−ᵀk exp
(
−1

2
〈v, Σ−1v〉

)
dv,

(C.2)

where the matrix-valued integral again stems from bq. To project the

Euclidean gradient ∇Σk onto the tangent space of a SPD matrix Σk,

we simply calculate
1
2 Σk

(
∇Σk +∇

>
Σk

)
Σk. We optimize with gradient

descent and a deterministic manifold line search as a subroutine, which

adaptively chooses its step lengths. This procedure as well as the SPD

manifold are conveniently available in the Pymanopt [245]

[245]: Townsend et al. (2016), ‘Pymanopt:

A Python toolbox for optimization on

manifolds using automatic differentiation’

library.

In sum, the optimization process is as follows: we cycle through the

components K. After taking a single steepest-direction step for µk, we

perform two gradient descent steps for Σk, each of which may use up

to 4 steps in the line search subroutine to satisfy a sufficient decrease

criterion. We provide pseudocode for the covariance update in Alg. C.2.

The optimizer uses the following hyperparameters:
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Parameter Value Description

tmax - update each component tmax times.

α1
µ - initial stepsize for mean updates.

ε∇µ
- tolerance for mean gradients

εL 2 likelihood tolerance

tmax,Σ 4 max. Σ line search steps.

α1 1.0 initial step size (Σ line search).

c0 0.5 sufficient decrease factor (Σ line search).

c1 0.5 contraction factor (Σ line search)

Cells with unspecified values (-) imply that the value of the respective

parameter is not equal across all experiments and problems. Experiment-

specific parameter details are in Section 6.5.

C.3 The directional cumulative variance

The dcv acquisition function is

ᾱ(v̂) =
∫ ∞

0
α(βv̂)dβ =

∫ ∞

0
kf |D(βv̂, βv̂)ν(βv̂)2 dβ,

with derivative

∂

∂v̂
ᾱ(v̂) =

∫ ∞

0
βν(βv̂)

[
2kf |D(βv̂, βv̂)

∂

∂βv̂
ν(βv̂) + ν(βv̂)

∂

∂βv̂
kf |D(βv̂, βv̂)

]
dβ.

Since the integration measure is Gaussian, i.e., ν(βv̂) = N (βv̂; 0, Σ), its

derivative is

∂

∂βv̂
ν(βv̂) = −ν(βv̂)Σ−1βv̂.

For simplicity, we always use wsabi-l in combination with dcv, so the

derivative of the variance of the warped gp is

∂

∂βv̂
kf |D(βv̂, βv̂) =

∂

∂βv̂

[
mg |D(βv̂)2kg |D(βv̂, βv̂)

]
= 2mg |D(βv̂)kg |D(βv̂, βv̂)

∂

∂βv̂
mg |D(βv̂) +

∂

∂βv̂
mg |Dkg |D(βv̂, βv̂)mg |D(βv̂)2.

the derivative of the dcv acquisition function is significantly more costly

to evaluate than the objective, because it requires predictive gradients of

the underlying gp. Instead of using a quadrature routine like scipy.quad,

which would evaluate the integral for every dimension sequentially,

we use Simpson’s rule on 50 evenly spaced points between 0 and vmax

(defined below). Since these are multiple univariate integrals of a smooth

function, the errors are practically negligible.

The scalar vmax simultaneously constitutes an upper bound for the inte-

gration and the length of the exponential map. A bound is reasonable

since longer exponential maps are slower to compute and the integra-

tion measure concentrates the mass near the center, so very far-away

locations become irrelevant. For a sensible bound, we use the chi-square

distribution:

〈v · v̂, Σ−1v · v̂〉 = χ2
p
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by choosing a high value p = 99.5%, we make sure that there is no

significant amount of mass outside of this isoprobability contour. Note

that this limit applies only to the computation of exponential maps and

the collection of observations, not to the main quadrature itself.

Since v̂ is constrained to lie on the unit hypersphere, we employ manifold

gradient descent with a line search subroutine. Conveniently, the line

search only evaluates the objective and not its gradient, which saves a

significant amount of time. Overall, optimizing this acquisition function

is costly, however.

For completeness, we briefly describe the geometry of the unit (hy-

per)sphere. If the tangent space of our data manifold is TµM = RD
, then

a direction in this tangent space is a point on SD−1
, which we represent as

a unit norm vector in RD
. For a point x on the sphere and a tangent vector

ξ, which lies in the plane touching the sphere tangentially, the exponential

map is Expx(ξ) = cos(‖ξ‖2)x + sin(‖ξ‖2)
ξ
‖ξ‖2

. However, the optimizer

uses a retraction map Retrx(ξ) =
x+ξ
‖ξ‖2

instead of the exponential map to

take a descent step. To obtain the gradient on the manifold, the Euclidean

gradient is orthogonally projected onto the tangent plane.

The gradient descent is allowed a maximum of 15 steps in the “error vs.

runtime experiment”, whereas in the boxplot experiment we decrease

this number to 5, as this experiment focuses more on speed given a

fixed number of samples. The line search may use up to 5 steps. We set

the optimism of the line search to 2.0 and the initial stepsize to 1.0. If a

descent step has norm less than 10−10
, the optimization is aborted.

After an exponential map is computed according to dcv, we discretize

the resulting straight line in the tangent space into 30 evenly spaced

points and sequentially select 6 points using the standard wsabi objective,

updating the gp after each observation.

C.3.1 Analytical solution of dcv

The integral (6.6) comes with a closed-form solution which we state here.

It did not turn out useful in practice, because for a typical number of

bq nodes, the cost of evaluating this solution becomes prohibitive. We

provide intuition about this issue further below.

For the cumulative variance acquisition function, we need to compute

univariate integrals of the form
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Ψ(v̂, a, A) :=
∫ ∞

0
N (βv̂, a, A) dβ = σβ(v̂)

√
2π exp

(
µ2

β(v̂)

2σ2
β(v̂)

)
Φ0

(
µβ(v̂)
σβ(v̂)

)
N (a, 0, A)

with the cumulative Gaussian

Φ0(x) =
∫ x

−∞
N (x, 0, 1) dx =

1
2

[
1 + erf

(
x√
2

)]
and

µβ(v̂) =
v̂>A−1a
v̂>A−1v̂

,

σβ(v̂) =
1√

v̂>A−1v̂
.

These terms have been checked numerically.

We derive the dcv acquisition for wsabi-l with constant prior mean func-

tion in model space m0 and posterior weights w = K−1(
√

2(y + δ)−m0)
where [K]ij = k(vi, vj). Also, we assume the integration measure

N (a, A) for generality, noting that in our case we are dealing with

a zero-mean Gaussian a = 0.

ᾱ(v̂) =
∫ ∞

0
m2
g |D(βv̂) kg |D(βv̂, βv̂)N (βv̂; a, A)2 dβ

=
∫ ∞

0
(m0 + k(βv̂, V)w)2

(
θ2 − k(βv̂, V)K−1k(V , βv̂)

)
N (βv̂; a, A)2 dβ

= m2
0θ2

∫ ∞

0
N (βv̂; a, A)2 dβ

+ 2 θ2m0

Nbq

∑
i=1

wi

∫ ∞

0
k(βv̂, vi)N (βv̂; a, A)2 dβ

+ θ2
Nbq

∑
i,j=1

wiwj

∫ ∞

0
k(βv̂, vi)k(βv̂, vj)N (βv̂; a, A)2 dβ

− m2
0

Nbq

∑
i,j=1

[K−1]ij

∫ ∞

0
k(βv̂, vi)k(βv̂, vj)N (βv̂; a, A)2 dβ

− 2 m0

Nbq

∑
i,j,k=1

[K−1]ijwk

∫ ∞

0
k(βv̂, vi)k(βv̂, vj)k(βv̂, vk)N (βv̂; a, A)2 dβ

−
Nbq

∑
i,j,k,l=1

[K−1]ijwkwl

∫ ∞

0
k(βv̂, vi)k(βv̂, vj)k(βv̂, vk)k(βv̂, vl)N (βv̂; a, A)2 dβ

With (A.4) and (A.5) we can integrate each of these terms. With the

following definition

Σn = (nΛ−1 + 2A−1)−1
(C.3)

we can write these individual terms as∫ ∞

0
N
(

βv̂; a,
A
2

)
dβ = Ψ(v̂, a, A/2)
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∫ ∞

0
k(βv̂, vi)N

(
βv̂; a,

A
2

)
dβ = θ2

√
(2π)D|Λ| Ψ

(
v̂; Σ1(Λ

−1vi + 2A−1a), Σ1

)
N (vi, a, Λ + 1/2A)

∫ ∞

0
k(βv̂, vi)k(βv̂, vj)N

(
βv̂; a,

A
2

)
dβ =

= θ4(2π)D|Λ| Ψ
(

v̂; Σ2(Λ
−1(vi + vj) + 2A−1a), Σ2

)
×N

(
vj; Σ1(Λ

−1vi + 2A−1a), Λ + Σ1

)
N (vi, a, Λ + 1/2A)

∫ ∞

0
k(βv̂, vi)k(βv̂, vj)k(βv̂, vk)N

(
βv̂; a,

A
2

)
dβ =

= θ6(2π)
3D/2|Λ|3/2 Ψ

(
v̂; Σ3(Λ

−1(vi + vj + vk) + 2A−1a), Σ3

)
×N

(
vk; Σ2(Λ

−1(vi + vj) + 2A−1a), Λ + Σ2

)
N
(

vj; Σ1(Λ
−1vi + 2A−1a), Λ + Σ1

)
N (vi, a, Λ + 1/2A)

∫ ∞

0
k(βv̂, vi)k(βv̂, vj)k(βv̂, vk)k(βv̂, vl)N

(
βv̂; a,

A
2

)
dβ =

= θ8(2π)2D|Λ|2 Ψ
(

v̂; Σ4(Λ
−1(vi + vj + vk + vl) + 2A−1a), Σ4

)
×N

(
vl ; Σ3(Λ

−1(vi + vj + vk) + 2A−1a), Λ + Σ3

)
N
(

vk; Σ2(Λ
−1(vi + vj) + 2A−1a), Λ + Σ2

)
×N

(
vj; Σ1(Λ

−1vi + 2A−1a), Λ + Σ1

)
N (vi, a, Λ + 1/2A)

The last term is the culprit for the evaluation cost of O(M4). However,

the term vi + vj + vk + vl has (N+k−1
k ) distinct terms only, and this

symmetry could be used in a smart way to ease computation.

In our specific case, A = Σ, a = 0 and Λ = λ2 I. Because we need to

compute all the inverses Σn = (nλ−2 I + Σ−1)−1
, it is desirable to have

the eigendecomposition of Σ = UDU> where D is diagonal and U
unitary. Cost is not an issue here since we are dealing with relatively low

dimensions anyway. Then the eigendecomposition of (C.3) is

Σn = (nλ−2 I + UD−1U>)−1

= U(nλ−2 I + D−1)−1U>.

We find that evaluating (6.6) by numerical integration is way more

efficient than the analytical solution for the number of tangent vectors

that we consider, so this path has not been pursued further.



Derivatives for Entropy Search D
In order to compute a first-order approximation to the objective function in

entropy search, we need the derivatives of p̂min w.r.t. the parameters µ and

Σ. The algorithm requires the following derivative, where λ = {µ, Σ},

d
dλ

log pmin ≈
1

p̂min

dp̂min

dλ

=
1

p̂min

∫
d f

dN ( f , µ, Σ)

dλ

NR

∏
j 6=i

1
[
[M f ]j > 0

]
=

1
p̂min

E

[
dlogN ( f , µ, Σ)

dλ

]
,

using
dN ( f ,µ,Σ)

dλ = N ( f , µ, Σ)
dlogN ( f ,µ,Σ)

dλ . Hence, all we need is to com-

pute the derivatives of the log normal distribution w.r.t. its parameters,

and the expected values thereof w.r.t. the integrand. The required deriva-

tives are

dlogN ( f , µ, Σ)

dµi
=
[
Σ−1( f − µ)

]
i
,

dlogN ( f , µ, Σ)

dΣij
=

1
2

[
Σ−1( f − µ)( f − µ)>Σ−1 − Σ−1

]
ij

and the second derivative

d2N ( f , µ, Σ)

dµi dµj
= N ( f , µ, Σ)

([
Σ−1( f − µ)( f − µ)>Σ−1 − Σ−1

]
ij

)

Hence we only need Epmin [( f − µ)] and Epmin [( f − µ)( f − µ)>] to com-

pute the following gradients,

dlog pmin

dµi
≈ 1

p̂min
Ep̂min

[[
Σ−1( f − µ)

]
i

]
,

dlog pmin

dΣij
≈ 1

p̂min
Ep̂min

[
1
2

[
Σ−1( f − µ)( f − µ)>Σ−1 − Σ−1

]
ij

]
,

and the Hessian w.r.t. µ,

d2log pmin

dµi dµj
= 2

dlog p̂min

dΣij
− dlog pmin

dµi

dlog pmin

dµj
.
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