Low-Cost Bayesian Methods for Fixing
Neural Networks’ Overconfidence

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultit
der Eberhard Karls Universitit Tiibingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
Agustinus Kristiadi
aus Bandung, Indonesien

Tiibingen
2022

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultit der Eberhard
Karls Universitit Tiibingen.

Tag der miindlichen Qualifikation: 13.01.2023

Dekan: Prof. Dr. Thilo Stehle
1. Berichterstatter: Prof. Dr. Philipp Hennig
2. Berichterstatter: Prof. Dr. Robert Bamler

ABSTRACT

Well-calibrated predictive uncertainty of neural networks—essentially making them know when
they do not know—is paramount in safety-critical applications. However, deep neural networks
are overconfident in the region both far away and near the training data. In this thesis, we study
Bayesian neural networks and their extensions to mitigate this issue. First, we show that being
Bayesian, even just at the last layer and in a post-hoc manner via Laplace approximations, helps
mitigate overconfidence in deep ReL.U classifiers. Then, we provide a cost-effective Gaussian-
process extension to ReLU Bayesian neural networks that provides a guarantee that ReL.U nets
will never be overconfident in the region far from the data. Furthermore, we propose three
ways of improving the calibration of general Bayesian neural networks in the regions near the
data by (i) refining parametric approximations to the Bayesian neural networks’ posteriors with
normalizing flows, (ii) training the uncertainty of Laplace approximations, and (iii) leveraging
out-of-distribution data during training. We provide an easy-to-use library, laplace-torch,
to facilitate the modern arts of Laplace approximations in deep learning. It gives users a way to
turn a standard pre-trained deep net into a Bayesian neural network in a cost-efficient manner.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Philipp Hennig—my main supervisor—for his belief
in me. Without his help in guiding me in the world of academia, I will not be able to accomplish
much. I would also like to thank Matthias Hein—my second supervisor—for his counsel from
a fresh, different perspective. I also acknowledge the support from the third member of my
Thesis Advisory Committee, Jorg Stiickler, along with the International Max Planck School of
Intelligent Systems (IMPRS-IS) community in general.

Special thanks to Runa Eschenhagen, Alexander Immer, and Erik Daxberger for stimulating
discussions; and to all excellent scientists who I am fortunate to do research with during my
doctoral study. My thank also goes to the Methods of Machine Learning running group, for
promoting healthy habit in the midst of busy academic life. Last but not least, I am grateful to
Jonathan Wenger, Nathanael Bosch, Marius Hobbhahn, and Runa Eschenhagen for proofreading
this thesis.

Contents

1 Introduction 1
1.1 Probabilistic Inference oo o 1
1.2 Neural Networks 4
1.3 Bayesian Neural Networks, 8
1.4 Gaussian Processes 15
1.5 Normalizing Flows 17
1.6 Predictive Uncertainty Quantification 18
2 Laplace Approximations for Deep Learning 21
2.1 Modern Laplace Approximations in Deep Learning 23
2.2 The laplace-torchtoolkit 27
2.3 Applications 28
3 Fixing Asymptotic Overconfidence 36
3.1 The Asymptotic Overconfidence Problem 37
3.2 Being A Bit Bayesian Mitigates Asymptotic Overconfidence 39
33 ReLU-GPResidual 53
4 Improving Non-Asymptotic Confidence Estimates 68
4.1 Refining the Approximate Posteriors of Neural Networks 69
4.2 Learnable Uncertainty under Laplace Approximations 78
4.3 Out-of-Distribution Training for BNNs 89
5 Conclusion 101
Appendix A Derivations 102
Appendix B Appendix of Chapter 2 106
Appendix C Appendix of Section 3.2 117
Appendix D Appendix of Section 3.3 120
Appendix E Appendix of Section 4.1 126
Appendix F Appendix of Section 4.2 129
Appendix G Appendix of Section 4.3 133
Reference 139

Index 150

Chapter 1
Introduction

Machine learning models, especially neural networks, are increasingly being used in practical
applications due to their groundbreaking predictive power. They have thus become an integral
part of modern human life. For this reason, neural networks must be safe and robust.

One way to make neural networks safe is by ensuring that their predictions are well-calibrated.
Essentially, the goal is to make neural networks know when they do not know. Well-calibrated
predictive uncertainty is important since it allows the network to defer the decision-making to
a human expert—high-confident wrong predictions could potentially be disastrous, e.g. in self-
driving vehicles or medical diagnoses.

In this thesis, we approach the uncertainty calibration of neural networks from the point of
view of Bayesian inference. The key idea is that the uncertainty in the parameter space of a
neural network, as quantified by an approximate posterior distribution of the network, can give
useful information about the lack of knowledge about the correct parameter due to the lack
of training data. When this uncertainty is incorporated into the outputs of the network, the
networks’ predictions should become more calibrated and robust. In this introductory chapter,
we shall review the necessary background knowledge for the later chapters.

1.1 Probabilistic Inference

Probability theory provides a principled way of reasoning under uncertainty. Suppose that z;
and z, are random variables, taking values in sets Z1 and Z», respectively, with associated joint
probability distribution p(z1, z2). The rules of probability can be summarized into the following
equations:

(a) PRODUCT RULE: p(z1,z2) = p(z1 | z2)p(z2) = p(z2 | z1)p(z1). Moreover, if z1 is
independent of z5, then p(z1,z2) = p(z1) p(z2).

(b) SUM RULE: p(z1) = [p(z1,22) dz>.

(c) CONDITIONAL PROBABILITY: p(z1 | z2) = p(z1,72)

e p(22)
s . = P\22121)plz
(d) BAYES’ RULE: p(z1 | z2) = W'

For the sum rule, if z1, z, are discrete random variables—i.e., when Z1, Z, are countable—the
integral is replaced by a summation. Note that, if z;, z, are continuous random variables—i.e.,
when Z1, Z, are uncountable—the distributions considered above can also be interchangeably
replaced by their probability density function. We henceforth interchangeably refer to p(z) as
the distribution and the density function of z, whenever z is a continuous random variable.

Let z be a random variable with a chosen distribution p(z), and let D := {x;}_, be a set
of m independent and identically distributed (i.i.d.) observations. Assume that each observation

1 Introduction

0.4 4]
0.3 | 2 |
0.2 | 01
_2 J
0.1 1
_4 J
0 T T T T T T T T
-10 -5 0 5 10 —4 -2 0 2 4

Figure 1.1: Gaussian probability density functions on R (left) and R? (right)—the latter is visualized in
terms of its contour.

is modeled via a chosen p(x; | z). Then, the task of probabilistic inference is to obtain the
probability distribution of the random variable z given the data D using Bayes’ rule, that is:

p@p®@|z) _ p@IIiL; plxi|2)
p(D) P TTZ p(xi | 2)dz

The distribution p(z) and p(x | z) are called the prior and likelihood, respectively. Meanwhile,
the resulting distribution p(z | D) is called the posterior.

p(z | D)= 1.1)

Since both p(x | z) and p(z) are subjective, i.e. they are modeling choices, they are often
chosen to be simple, parametric distributions. The term “parametric” here refers to the property
that the distribution is fully characterized by its parameters. In the following, we review some
common parametric distributions.

1.1.1 Gaussian Distribution

One of the most commonly-used continuous probability distributions is the Gaussian distribu-
tion, defined by its density function on the real line

1 1
N(x | p,0?):= mexp(—ﬁ X —M)Z), (1.2)

where i € R and 02 € R are its parameters. Its generalization on R? with d > 1 is given by
1 1
Nix|pn X):= (det2_1)2(2n)_% exp(—i(x —w)" N x = u)). (1.3)

In this case, 4 € R? and ¥ € S (d), where Sy (d) denotes the set of d x d positive-definite
matrices. The parameters p and o2 (or X) encode the location of the mode and the width
of the density function, respectively—see Fig. 1.1. These parameters are also the mean and
(co)variance of the random variable x, respectively.

Gaussian distributions are important in probabilistic inference since they have many conve-
nient properties. First, all three rules of probability are closed form for Gaussian random vari-
ables, see e.g. Bishop (2006, Section 2.3). Second, they have the following properties—useful
for later when we discuss approximate Bayesian neural networks:

1.1 Probabilistic Inference

(a) CONVOLUTION: Let N'(x | p1,07) and N(z | j12,03) be two Gaussians in R. Their
convolution is given by

NG| of) s N | pz03) = [W= 2 | o) NG | a3 dz
:/N(X|M1+Z,012)N(Z|/L2,022)d2 (1.4)
R

= N | g1 + 2,07 +03).

As a corollary, we thus have
[NG 120N p2.03) dz = N x| iz.0? + o) (15)
R

(b) AFFINE TRANSFORMATION: If x ~ NV (x | u, X) is a Gaussian random variable in R”
and A € R b e R¥, then

Ax +b ~N(Ax+b| A+ b, AXAT). (1.6)
(¢) PROBIT INTEGRAL: The probit function ® is the cumulative distribution function of the

univariate Gaussian '(z | 0, 1) on R, i.e., @(r) := ["_ N (z | 0,1) dz. We have

M
\/R(D(QX)N(X | /J,,O'z) dx = @(ﬁ), (17)

foranya e R.

1.1.2 Categorical and Dirichlet Distribution

Suppose we have aset C = {1,...,k} for a positive integer k > 1. A probability distribution
on C can be described by an element of the (k — 1)-probability simplex

A=) ._ {v eRE, YK v = 1}, (1.8)

That is, for each ¢ € C, the probability of having the value ¢ is v.—the c-th component of v. In
other words, if y is a vector of size k with one component equals one and zero otherwise—the
so-called one-hot encoding of an element ¢ € C; a “corner” of the simplex A®~D_—then we
can write the probability mass function as

k
Cat(y | v) := 1_[vt (1.9)

i=1

This distribution is the so-called Categorical distribution. When k = 2, it is called the Bernoulli
distribution.

1 Introduction

0.2

Ve
N

0.1 1

S

(a) Categorical (b) Dirichlet

Figure 1.2: A Categorical distribution on {1,...,8} and a Dirichlet distribution on the simplex A®.
The probability vector (vq,...,vg) of a Categorical distribution is an element of the probability (k —
1)-simplex. So, the Dirichlet distribution can also be thought of as a distribution over (Categorical)
distributions.

One can also define a probability distribution on the probability simplex A®=D) jtself, called
the Dirichlet distribution, via the following density function on AG=D,

F(Zf:l“!‘) k

Dir(v | @) := [Tvi . (1.10)
k
Zi:lr(ai) i=1 '
where o € Rio is the parameter and I'(z) := ooo x?~lexp(—x) dx is the Gamma function.

The Dirichlet distribution can thus be thought of as a distribution over Categorical distributions.

1.2 Neural Networks

Neural networks are the workhorses of modern machine learning. The main principle of neural
networks is to stack simple parametric nonlinear functions to end up with a much more sophis-
ticated one.! That is, if / : R” — RF is a neural network function from the input space R” to
the output space R¥ then it can be written as

L 1
fo= oo £0, (1.11)
for some functions fe((ll)), el 0(5)) parametrized by oW . W), respectively. Note that, the

dimensions of each fo((?) must agree with its “neighbors”: if fe((% is a function from R"*¢-1 —

f(ﬁ—i-l)

R™¢, then fe(é__g must be a function with codomain R*¢=" and £, ;) must be a function with

domain R”¢. Note also that defining
0 = {VCC 9(1), ..., vec Q(L)} € Rd,

to be the concatenation of the vectorization of all its weights, the neural network f is often also
written as fy or f(-;6). Finally, the number L is referred to as the depth of the neural network.

IThere are many variants of neural networks, but here we focus on classic neural networks.

1.2 Neural Networks

41.0
36.5
32,0
27.5
23.0
18.5
N 14.0

—4 5.0
0.5

-4 -2 0 2 4

Figure 1.3: Gradient descent’s dynamics. Background shade is the contour of the loss function.

©

What specifically is each f,, : R*¢~1 — R"¢? Commonly, it is defined as a composition of

0
an affine function and a nonlinear function ¢. That is, f, 9((% (x) = ¢(Wx +b), where in this case

0® = (W e R"*me=1 | e R™}. Note that, this definition includes common neural network
building blocks such as the dense layer and the convolution layer. As for the nonlinearity ¢,
it is often chosen to be a simple component-wise nonlinear function. For example, the ReLU
activation function acts on each component z; of a vector z via

ReLU(z;) := max(0, z;), (1.12)
Meanwhile, the hyperbolic-tangent activation function acts component-wise on a vector z via

exp(z;) — exp(—z;)

tanh(z;) := exp(z;) + exp(—z;)

(1.13)

The ReLU activation function is virtually the de facto nonlinearity for deep neural networks.

1.2.1 Training

Let D := {(x;,y;) € R" x R¥ 37, be an i.i.d. dataset. The goal of neural network training is
to “learn” the unknown function R” — RK by finding a suitable parameter value 6 of a neural
network fp : R” — RK given the dataset D. This setup is known as supervised learning, as
opposed to unsupervised learning where the dataset is not constructed by pairs of input-output

observations, i.e. D = {x; € R"}7L .

To that end, one must define a loss function £ : RY — R which measures how well the
network parameter 6, and thus the network function fy, fit the dataset D. For instance, the sum
squared error loss is defined as

m k
£0) = % S5 o) — v, (1.14)

i=1j=1

1 Introduction

where B > 0 is freely chosen. On other hand, when the output variable y takes values in
{1,...,k}, which is isomorphic to the k corners of the simplex A*~1) < R¥_ one often uses
the cross-entropy loss, written under the one-hot encoded y by

m k
L(O) = — Z Z vij log softmax(fg(x;));, (1.15)

i=1j=1

where the softmax function softmax : R — A%~ s defined by

(1.16)

softmax(z) :=(exp(21) exp(2k))

e oo TR
Zi:l exp(z;i) Zi=1 exp(z;i)

It is worth noting that when k& = 2, one can alternatively define a real-valued neural network
fo : R" — R and use the logistic function o : R — AM ~ [0, 1] instead, defined by

1 _exp(2)
1 +exp(—z) 1+4exp(z)’

o(z):= (1.17)

The softmax and logistic functions are instances of nontrivial (inverse) link functions, because

it “links” between the output space of the network fp and the space where y takes values in.”
Training the neural network fy can thus be reduced to minimizing the loss function:

0y = argmin L£(6). (1.18)
ferd

The most common way to carry out this optimization is via backpropagation: Assuming that £
is almost-everywhere differentiable, one computes the gradient Vg £ via the chain rule, exploit-
ing the layered structure of fy, and then uses the gradient to iteratively update the value of 6.
The update part of backpropagation can be done in various ways, the simplest of which is via
gradient descent:

bi+1 = 06; —aVyLlg,, (1.19)

where o € R~ is a step size which governs how much one moves away from 6; in the direction
of the negative-gradient. This update rule can be generalized to preconditioned gradient descent
which employs a positive-definite matrix field P : R? — S, (d) to take into account the
geometry of the parameter space R:

01 =0; —aP(0) ' VyLlg,. (1.20)

For efficiency reason, P(0) is often restricted to be diagonal matrix (Duchi et al., 2011; Hinton
et al., 2012; Kingma & Ba, 2015, etc.).

One can further reduce the computational burden of performing gradient descent by comput-
ing the gradient VgL using only a subset of the dataset. The resulting methods are subsumed
in stochastic gradient descent methods—the word “stochastic” indicates that the update rule is
subject to a noise that arises from the subsampling process of D.

Optimizing the loss function £ as-is risks overfitting: a phenomenon where the network fy
only memorizes the dataset D and does not approximate the underlying function x — y well.

2In the case where y takes values in R¥ | then the link function is simply the identity function id(x) = x.

1.2 Neural Networks

To prevent this, one can augment the loss function with a regularization term which limits the
network’s complexity. This can be done, for example, by encouraging 6 to have small norm:

L£(0) = L) + LgTe (1.21)
2y

This regularization is often referred to as the weight decay regularization and is almost always
employed when training a neural network.

1.2.2 Probabilistic Interpretation

Many loss functions can be interpreted probabilistically. Let us use the sum squared error as a
first example. Denoting the identity matrix in RZ*¢ by I, notice how (1.14) can be written as

m

k
£0) = = 3" ~35 20w = fol))?
j=1

i=1

N
B _Z(—E(yi — foGei) T (B) (i — fe(xz'))) (1.22)

i=1

=4%Fth§m—mumWﬁﬁwm—ﬁ@m)

i=1

We can thus identify the term inside the product to be proportional to a Gaussian on R¥ with
mean fg(x;) and covariance f~!11;. Note that adding a constant term to take into account
the normalization constant of this Gaussian does not change the optimization result. So, by
the definition of likelihood in (1.1), we can think of the sum squared loss as the negative-log
Gaussian likelihood.

Similarly, we can write the cross-entropy loss as

m k m
L(0) = —log 1_[1_[softmax(fg(xi));ij = —log 1_[Cat(y; | softmax(fy(x;))). (1.23)

i=1j=1 i=1

Thus, comparing it against (1.15), we can immediately see that the cross-entropy loss is equiva-
lent to the negative-log Categorical likelihood.

Furthermore, one can also interpret the weight decay probabilistically. We can identify the
second term in (1.21) as the negative log-probability of a Gaussian on R4 with mean zero and
covariance Y1 ;. Notice that this term does not depend on the data—comparing it to (1.1), we can
identify this term as a Gaussian prior over the parameter 6. The regularized loss function (1.21)
can thus be seen as the negative of the unnormalized posterior probability over the parameter 9
of fp under the dataset D. The solution 6x = argming E(Q) is thus the mode of the posterior
density p(6 | D). For this reason, the problem of minimizing L is also called maximum a
posteriori (MAP) estimation. The solution 8, of MAP estimation is also written as Oyap.

While MAP estimation does indeed work with the posterior density p(6 | D), it only concerns
in finding a single, most-likely parameter 6. That is, one can see MAP estimation as finding the
best Dirac-delta approximation §(6 — 6yap) of the posterior. Note that, the Dirac-delta function
can be seen as the limit of a Gaussian with variance that goes to zero. So, MAP estimation lacks

1 Introduction

Figure 1.4: A MAP estimate Oyap and its (Gaussian-approximated) Bayesian counterpart ¢(6). While
MAP estimation is an approximation to the posterior p(6 | D), the resulting network is not a Bayesian
neural network since it does not capture a nontrivial probability mass of the posterior, either via an
approximate parametric density or via samples.

an uncertainty estimate. To mitigate this issue, one can capture the uncertainty by moving away
from point-estimation, via the so-called Bayesian neural network formulation of fy.

1.3 Bayesian Neural Networks

Let & € R? be a random parameter of a neural network fp : R” — RK and p(6 | D) be its
posterior under an independent and identically distributed dataset D := {(x;, y;)}7L,, written
via Bayes’ rule as

p(0|D) = p(D [0)p0) =: %h((?), (1.24)

1
S p(@10)p(©)do

where p(D | 0) :=[]/L; p(vi | fo(xi)) and p(0) are a likelihood and a prior, respectively. The
quantity Z is a function of the data and often also called the marginal likelihood or the evidence
p(D). A neural network equipped with its non-point-mass posterior distribution is called a
Bayesian neural network. Note in particular that this definition excludes MAP-estimated neural
networks. However, the posterior of a Bayesian neural network is generally intractable since the
integral Z is, because (i) p(D | 0) is nonlinear in 6 and (ii) 6 is high-dimensional.

Approximating p(6 | D) is thus necessary for Bayesian neural networks. Two paradigms ex-
ist: (i) approximating p(6 | D) with a simpler, parametric distribution such as the Gaussian and
(ii) obtaining samples from p (6 | D) based solely on the readily available 4(8). We shall review
the Laplace approximation and variational Bayes for the former, and Markov Chain Monte Carlo
methods for the latter.

1.3.1 The Laplace Approximation
Let Opap := argmaxgy log p(0 | D) = argmaxgy log 2(0) be a (local) maximum of the posterior—

the so-called maximum a posteriori (MAP) estimate. Taylor-expanding log 4 around Gyiap up
to second order yields

1
log h(0) ~ log h(Owap) — (0 - Onap) T A (0 — Oniap), (1.25)

1.3 Bayesian Neural Networks

(a) Laplace approximation (b) Variational Bayes (c) MCMC

Figure 1.5: Comparison between the approximations obtained via the Laplace approximation, Gaussian-
based variational Bayes, and MCMC. Black contours are the true posterior density. Grey contours are
the density estimates of the aforementioned approximations, computed using their samples. The Laplace
approximation provides a good approximation around the mode of the true distribution but can yield
inaccurate results far from it. Variational Bayes fixes this issue but MCMC methods yield good ap-
proximations in general since they are not constrained to be parametric and they are guaranteed to yield
samples from the true posterior if the Markov chain is long enough.

where A 1= —Vg log hg,,,, is the negative Hessian matrix of the log-unnormalized posterior at
Omap. Integrating (1.25), we thus obtain a (multivariate) Gaussian integral, the analytic solution
of which is readily available:

1
Z ~ exp(logh(@MAp)) / exp (—5(9 — QMAP)TA (9 — QMAP)) do 1 26)

= h(Opap) (27) % (det A) 2.

Plugging the approximations (1.25) and (1.26) back into the expression of p(6 | D), we obtain
1 / 1
p(@|D)= Eh(@) ~ (det A)2 (2m) "% CXP(—E(Q — Omap) ' A (6 — QMAP)), (1.27)

which we can immediately identify as the Gaussian density N (6 | Oyap,) with mean Oyiap
and covariance matrix ¥ := A~!. This Gaussian is called the Laplace approximation of

p@|D).

Since both the MAP estimate 6yap and the Hessian A are local quantities, the Laplace ap-
proximation is thus a local approximation around a mode of p(6 | D). Intuitively, it can be
seen as “surrounding” a point estimate with a Gaussian probability mass, cf. Fig. 1.5a. Nev-
ertheless, the Laplace approximation is among the cheapest approximate inference method for
Bayesian neural networks due to the fact that it can be done in a post-hoc manner, i.e. it can
be applied to any MAP pre-trained neural networks—the Hessian matrix A only need to be
computed once and can be done easily thanks to recent advances in the field of second-order
optimization (Dangel et al., 2020). Given the ubiquity of MAP training in deep learning, the
Laplace approximation is thus invaluable to essentially transform a standard neural network into
a Bayesian neural network without much hassle.

1 Introduction

1.3.2 Variational Bayes

Another way of obtaining a parametric approximation of the posterior p(8 | D) is via variational
inference. Let M := {q,(0) : ¢ € @} be a set of parametric densities, usually chosen to be the
set of Gaussian densities, i.e. ¢ := (¢, X) and ® := R? x S, (d), where S4(d) is the space
of d x d positive definite matrices. The goal of variational Bayesian inference is to minimize
the reverse Kullback-Leiber (KL) divergence between g, and p(6 | D) w.r.t. o—intuitively,
minimizing the non-symmetric distance between ¢, and p(0 | D):

Qw(Q)

_— 0)do. 1.28
(0| D) %() ()

in D 0),p(6 | D)) = mi 1
min Dic. (49(6). (8 | D)) = min | 1og
However, the integral above is intractable in general since it implies that one can evaluate the
normalizing constant Z of p(6 | D).

To mitigate this issue, one can consider the upper bound of the KL-divergence above. To
obtain it, we add and substract the log-marginal likelihood log p(D) to the KL-divergence and
note that p(6, D) = p(6 | D)p(D) = p(D | 0) p(6):

0
Dr a9 ®). (6| D)) = By, (10g 7)) ~1og p(D) + 10g p(D)
_ qe(0))
= o (log @ Dyp(my) TEPP) (1.29)
D1 0)p(0
= —Eq, (log p@19p©) qL(Q))p()) + log p(D)

=: —ELBO(¢p) + log p(D).

The function ELBO : & — R is thus an approximation to the KL-divergence—the nomenclature
ELBO (evidence lower bound) is coming from the fact that it is a lower bound of log p(D), due
to the nonnegativity of the KL-divergence. Note that, unlike Dky.(¢4,(6), p(6 | D)), ELBO is
easy to work with since it only depends on h(8) = p(D | 0)p(0) and q,(0). In particular, it
does not depend on Z.

In practice, generally, the expectation presents in ELBO does not have an analytic solution,
especially for Bayesian neural networks. Thus, it is often further approximated via Monte Carlo
integration by:

1 N
BLBO(p) ~ — } log p(D | ;) +log p(6;) + H(gy): 0 ~qu(6), (1.30)

i=1

where H(gy) := —Eq, log gy is the entropy of q,, which has an analytic solution for common
parametric densities such as Gaussian.

While it is more flexible than the Laplace approximation—see Fig. 1.5—variational Bayes
is more expensive since it cannot be done post-hoc and the dimensionality of the optimization
problem is larger than the standard MAP optimization.

10

1.3 Bayesian Neural Networks

1.3.3 Markov Chain Monte Carlo

Let 61, ..., 0; be a sequence of random variables in R4, Suppose we assume that 6; is indepen-
dent of (6;);-_:11 given 0;_; for each i = 1,...,t, the so-called Markov assumption, then we
have the following joint distribution:

t
p(O1,....00) = p&) [p@i | 6i-1). (1.31)

=2

The sequence (6;)¢_, is then called a Markov chain and the probability p(6; | 6;—1) is called
the transition probability. Once p(0; | 6;—1) is defined, a Markov chain provides us with an
easy way to obtain sequence of random variables: simply sample 6; from p(6; | 6;—1) given the
previous sample 6;_1.

Let 6;, 8; +1 be two random variables in a Markov chain with a transition probability p(6;+1 |
0;). Suppose that the distribution of 6 is given by g(6). Then we say that g is the stationary
distribution of the Markov chain if

¢(0is1) = /9P(9i+1 6 q(6;) 6. (1.32)

That is, the distribution of # is unchanged under the Markov chain transition p(6’ |). Intu-
itively, if a Markov chain has reached its stationary distribution at “time” i, then every 6; with
Jj =i comes from the same distribution q.

The main idea of Markov Chan Monte Carlo (MCMC) methods for Bayesian inference is
to construct a Markov chain on R¢—i.e. defining the transition function p(6; 11 | 6;)—which
stationary distribution ¢ is the posterior p(6 | D). This way, once the Markov chain enters
the stationary distribution, running the Markov chain equals sampling from the true posterior
p(60 | D). How soon the Markov chain arrives at its stationary distribution, often referred to as
the mixing speed of the Markov chain, is important in practice since it determines the costs of
sampling from the posterior.

One commonly-used MCMC algorithm is the Hamiltonian Monte Carlo method (Neal, 2012):
Let v ~ A/(0, M) be an auxiliary variable in R? with M € Sy (d), and let

1
p0,r | D) x exp(logh(ﬁ) — EUTM_lv) (1.33)

be the augmented posterior. To generate samples from this distribution, one then follow the
Hamiltonian dynamics under the Hamiltonian function H(6,v) := —logh(6) + v M~ lv.
That is, one simulates the following discretized ordinary differential equation to obtain a sample
6; +1 given 6; for m steps, under the inital conditions v® ~ A/(0, M) and 6 = ¢;:

G(I) _ e(t_l) +aM—1v(t—1)’
(1.34)
v(t) — v(l—l) —O{Vg 10gh|9(z71),

where « is a step size, and set 6; = 6™ The cost-effectiveness of this method has been

improved further by enabling noisy, minibatch computation of the gradient (Chen et al., 2014).
The resulting method is subsumed under the name stochastic-gradient MCMC methods.

11

1 Introduction

1.3.4 Predictive Distributions

Given a parametric approximation ¢ () of the posterior p(6 | D), how does one make a pre-
diction yx on a new input x« € R"? Given the likelihood p(y« | fg(xx)), one must take
into account the fact that one has infinitely-many possible values for 6, as weighted by the
approximate density ¢(6). The answer thus comes from the rules of probability, discussed in
Section 1.1:

pOe 15 = [pr 1 foe)a)de. (1.39)

However, in the case of neural networks, no analytic solution to this integral exists even when
both the likelihood p(y« | fo(xx)) and the approximate posterior g(6) are Gaussian, due to the
nonlinearity of fy. One must then rely on further approximation to obtain p(y | xx).

1.3.4.1 Monte Carlo Integration

The most straightforward approximation is via Monte Carlo integration:

1 N
POw LX) ~ =3 pO | fo ()i 6~ q(6). (1.36)

i=1

This approximation is advantageous since it is unbiased, i.e. the average above tends to the true
integral as s — oo, due to the law of large numbers. However, a small value of s is often used
in practice due to the cost of computing each fy, (x«). The associated error, which scales like
1/4/s, can thus be high for Bayesian neural networks. Note that Monte Carlo integration is the
only choice of computing p(y« | xx) under a Markov Chain Monte Carlo approximation.

1.3.4.2 Linearization

Recall that Gaussians are closed under linear/affine transformations. Thus, one way to obtain an
analytic approximation to the distribution of the network output fi := f(xx) € R¥, where the
parameter 6 has been marginalized out, under a Gaussian approximation ¢(0) = N'(@ | u, X)
is via a linearization of fy around j:3

Jo(xe) & fu(xs) + J(xx) (0 —), (1.37)

where J(x«) := (Vg fo(x«) |) is the d x k Jacobian of fp(x«) w.r.t. 0 at s1. Then, using the
fact that the Dirac delta function § can be written as a Gaussian with variance tending to zero,
we can use the convolution and affine-transformation properties of Gaussians to obtain

p(fe | x4) ~ /Rd 8(fr = fo(x)) q(0)dO = N(f | fu(xa), J(xx) T ZJ(xx)). (1.38)

This approximation is often useful for theoretical analysis due to its analytic nature. It is also
useful in practice since one can use this k-variate Gaussian, instead of the d-variate Gaussian
¢(0) in Monte Carlo integration, to do the computation in downstream tasks.

3Note that the network function x — f3(x) is still nonlinear.

12

1.3 Bayesian Neural Networks

—o(x)
081 . ®(x)
0.6 1 --- ®&(/7/8x)
0.4
0.2 1
—6 -5 —4 -3 -2 -1 0 1 2 3 4 5 6

Figure 1.6: Approximating the logistic function with the probit function. The scaling factor /7 /8 for
the probit function is chosen so that they both have the same derivative at zero.

Given the Gaussian p(fx | xx), one more integration is needed to obtain the final prediction:

Py« | xx) = /Rk P(ys | fo) p(fs | X4) dfs. (1.39)

As before, this can be approximated via Monte Carlo integration. Unlike the Monte Carlo inte-
gration in (1.36), however, (1.39) is more cost-efficient due to the smaller domain of integration
and due to the fact that no costly evaluation of the network fg(x«) for each sample 6 ~ ¢(6)
is needed. Thus, one can use a larger number of samples in (1.39), leading to more accurate
approximations.

Nevertheless, having a Gaussian distribution over the network output enables us to either ana-
Iytically solve or approximate the integral (1.39). For regression tasks with a Gaussian likelihood
Py« | fx) = N (¥« | f«,B), this can be done exactly:

PO | X6) = N (s | fulxa), B+ J(x) T DT (x4)), (1.40)

since the integral above is a convolution of two Gaussians.

For classifications, both with the logistic and softmax link functions, a further approximation
is needed. Let us start with binary classification with the logistic function p(y« | f«x) = 0 (fx),
Using the approximation ¢(z) & CIJ(\/JT_/S z) and the probit integral (1.7), we obtain the ap-
proximation

Su(xx)
PO 150 = [o(f p(fe | x2)df U(\/l—i—n/SJ(x*)TEJ(x*)) (141

This approximation is called the probit approximation, due to Spiegelhalter & Lauritzen (1990)
and MacKay (1992b).

Meanwhile, for multiclass classification with the likelihood p(y« | fx) = softmax(fx), due
to the similarity between each component in (1.16) with the logistic function (1.17), we can

13

1 Introduction

obtain an analytic approximation to the softmax-Gaussian integral via the probit approximation,
due to Gibbs (1998):

PV« | xx) = A&k softmax(fx) p(fx | xx) df«

. (1.42)
T+ 7/8diag(J(xn) T £J(n)))

~ softmax(

where the division above is taken componentwise. We call this approximation the multiclass
probit approximation. See Appendix A for detailed derivations of the (multiclass) probit ap-
proximation.

Laplace Bridge The Laplace bridge is a more expressive alternative to the multiclass probit
approximation. The main idea is to perform a Laplace approximation to the Dirichlet distribu-
tion, which has support on the simplex A%~ by first writing it as a distribution over R with
the help of the softmax function (MacKay, 1998). This way, the Laplace approximation can be
reasonably applied to approximate the Dirichlet, which can be thought of as mapping the Dirich-
let Dir(«) to a Gaussian N (i1, X'). The pseudo-inverse of this map, mapping (i, X') to @ where

foreachi = 1,...,k, the i-th component « is given by the simple closed-form expression
1 2 me
a,-:z—ii I_E Zexp(wi) |,

is the Laplace bridge. Unlike the multiclass probit approximation, it yields a full distribution
over the solutions of the softmax-Gaussian integral (1.42). So, the Laplace bridge is a richer yet
comparably simple approximation to the integral (Hobbhahn et al., 2022).

Specifically for Bayesian neural networks, Hobbhahn et al. (2022) further proposed to add
corrections to the standard Laplace bridge, which (i) project the Gaussian N (u, X') to one that
adhere the constraint that the random variable sums to zero, and (ii) scale both parameters of the
Gaussia by a factor of (tr X')/ /K /2. These correction terms are useful to (i) fullfill the original
assumption by MacKay (1998), and (ii) to alleviate the observation that the Laplace bridge does
not work well when the variance in X' is high.

Recall that the Laplace bridge provides a distribution over the softmax-Gaussian integral. In
some practical applications of Bayesian neural networks, however, one often only needs a single
estimate of the integral. This can be done analytically in the Laplace bridge by summarizing the
resulting Dirichlet by its mean. That is, we approximate

o

POy =1 | x4) & - foreachi =1,...,k, (1.43)

j=19%j

to obtain an approximation to the predictive distribution p(y« | x«), where « is obtained via the
Laplace bridge from the Gaussian over the network output fi with mean f,(x) and covariance
J(xe) T 2T (x4).

14

1.4 Gaussian Processes

5
N el
5]
%6 -4 -2 0 2 4 6 6 -4 -2 0o 2 4 &
(a) Prior (b) Posterior

Figure 1.7: A Gaussian process prior of a function R — R with a kernel K(x, x’) := exp(—(x —x")2/2),
along with its corresponding posterior. Solid and dashed curves are mean and 95% credible intervals,
respectively. Dots represent data points.

1.4 Gaussian Processes

Suppose we have a linear model f : R” — R defined by
f(x) = ¢(x) Tw,

where w € R¥ is the parameter and ¢ : R” — R4 is an arbitrary feature map. Given a Gaussian
prior p(w) := N(w | 0,021;) on R4, we can show by the property of the Gaussian distribution
(1.6) that the distribution over the output p(f(x)) is also a Gaussian with mean 0 and variance
o2¢(x) "¢ (x). Moreover, for a pair of inputs x, x’ € R”, the covariance between f(x) and
£(x') is given by 62¢(x) T ¢(x’). Thus, the joint distribution p(f(x), f(x")) is also given by a
Gaussian

o FON[(O 2f ¢(x)Tp(x) ¢(x)T¢(x')))
p(f(x),f(x))—f\/((f(x,))‘(O),o (¢(x)T¢(x/) ST)) (1.44)

It is easy to see that this property also holds for any finite collection (x1,...,Xs) of inputs,
or, in other words, a finite collection (f(x1), ..., f(xm)) of function outputs. That is, writing
X = (x;)/L, and f(X) := (f(x;))]L,, we have a Gaussian on R":

p(f(X) = N(f(X) 0. K(X, X)), (1.45)

where K(X, X) is the covariance matrix in (1.44). This leads to the definition of Gaussian
process: It is a collection of random variables where any finite number of which is distributed
as a joint Gaussian distribution.

In applications, often the focus is on the function outputs f(x) itself, regardless of the under-
lying linear model. Thus, it is useful to “skip” the construction (1.4) and instead directly model
the joint Gaussian. Notice that this can be done by generalizing K(X, X) so that it does not de-
pend on the feature map ¢ used in (1.4). A useful object for this is a kernel. A (positive-definite)
kernel is a function K : R” x R” — R s.t. for any finite collection X = (x1, ..., Xy) of points
in R”, its matrix
K(x1,x1) ... K(x1,xm)
KX, X):= : : (1.46)

K(xm,x1) ... K&xm,xm)

15

1 Introduction

0.4 0.6 |
0.3 |
0.4
0.2 |
o1 | 0.2 |
0 ‘ : : 0 : ‘ :
—4 -2 0 2 4 0 2 4 6 8
(@) p(x) (b) p(exp(x))

Figure 1.8: A change of density under the diffeomorphism exp : R — (0, 00).

is positive-definite. The matrix K(X, X) is called the kernel matrix of K. Given a kernel
K and noticing that the graph of a function f can be represented as an infinite collection
(f(x1), f(x2),...), we can think of a Gaussian process as a prior over function, denoted by

p(f)=GP(f 10,K). (1.47)
where f : R" — R.

Gaussian processes are useful for approximating an unknown function R” — R given a set of
observations D = {(x;, y;)}jL; =: (X,Y) where each x; and y; is in R"” and R, respectively—
this is essentially the task of (Bayesian) regression. Suppose a Gaussian process prior p(f) =
GP(0, K) is used and assume an observation noise € ~ N (g | 0, af) on y. Then, the posterior
predictive distribution over f(Xx) under a finite collection X« = (Xx1, ..., Xxm,) Of M test

points in R”, is also given by a Gaussian process with mean and covariance (Rasmussen &
Williams, 2005, Sec. 2.2)

E(f(X+)) = K(X+, X)(K(X. X) +02) 'Y (1.48)
and
Cov(f(Xs), f(Xx)) = K(Xu, Xu) — K(Xe. X)(K(X. X) + 02) K(X.X2). (1.49)

See Fig. 1.7 for an illustration.

Notice that we have so far only considered a Gaussian process with a mean zero. However,
(1.47) can be generalize further to take into account non-zero mean functions. For instance, Qiu
et al. (2020) uses a fixed pre-trained neural network fp,,,, as the mean function of a Gaussian
process prior. In this case, the mean of Gaussian process posterior in (1.48) becomes (Rasmussen
& Williams, 2005, Sec. 2.7):

E(f(Xx)) = fouu(Xx) + K(Xx, X)(K(X, X) + Uyz)_l(Y = Sounr (X)),

while the covariance in (1.49) stays unchanged.

16

1.5 Normalizing Flows

1.5 Normalizing Flows

Let F : R" — R” be a diffeomorphism—a smooth function with a smooth inverse—in the
sense of C¥(R™) for a fixed k > 1 € N. If p(x) is a density of a random variable x in R” * then
the density g of the random variable y = F(x) is given by

q(y) = p(F~1(»)) |det Jp—1 ()|, (1.50)

where Jp—1 = Jp 1 is the d x d Jacobian matrix of F~!. This is the so-called change of
variable formula of probability density functions. See Fig. 1.8 for an example.

A normalizing flow is a method exploiting the change of variable formula (Rezende & Mo-
hamed, 2015; Rippel & Adams, 2013; Dinh et al., 2015). Specifically, its main idea is to assume
a parametrized diffeomorphism Fp : R” — R”, constructed as a composition of simpler ones—
similar to the idea of neural networks:

Foi=F\) oo F{). (1.51)
for some L € N and # € R4. Note that, different from standard neural networks, Fyg—the
so-called flow—is required to be invertible, which can be satisfied by requiring each F O(f)’s to
be invertible. Given an “initial density” po(6)—often chosen to be a simple density such as
N (0 | 0, I;)—and using the change of variable formula, we can thus define

L
det J]
l_[Fe(?()’)

{=1

qo(y) := po(Fy ' (»)) (1.52)

to be the resulting density under the flow Fy. Then, this parametric density can be used for
approximating an unknown density p«(6) by optimizing some objective function w.r.t. the
parameter 8. When the objective function is the ELBO (1.29), one can think of this task
as a variational approximation scheme where the feasible set of variational approximations
® := {gg(y) : 0 € R} is induced by the parameter of the flow.

An example of the flow F 9(9) is the radial flow (Rezende & Mohamed, 2015) defined by

F{Q(x) 1= x + Bh(e.r)(x — xo). (1.53)
where r := ||x — x¢|| for some norm || - ||, A(«, 7) := 1/(« + r), and the parameter is given by
9 .— {xo € R", @ € R>o,B € R}.

Meanwhile, the planar flow—also proposed by Rezende & Mohamed (2015)—is defined by
F{Q (x) i= x +uh(w x + b), (1.54)

where
Y = (weR" uecR", B R}

is the parameter.

4 All densities considered here are assumed to be w.r.t. the Lebesgue measure.

17

1 Introduction

1.6 Predictive Uncertainty Quantification

The key advantage of Bayesian neural networks (and Bayesian predictive systems in general)
compared to standard point-estimated neural networks is the fact that they produce uncertainty
estimates associated with the networks’ outputs. This additional information can thus be lever-
aged to make neural networks more reliable on tasks such as predictive uncertainty calibration
and out-of-distribution data detection.

1.6.1 Calibration

Let f : R” — R¥ be a neural network classifier and let D := {(x; € R",y; € {1,... KDY
dataset. For any input x, € R”, we can define the confidence associated with the network
prediction on x4 to be the predictive probability associated with the predicted label, i.e.

conf(xx) := {max p(y =i| f(x«),D), (1.55)
ie{l,...,
where p(y | f(xx), D) is the predictive distribution of f under D—e.g. p(y | f(xx),D) =
softmax(fg,,,, (Xx)) under a MAP estimation Oyiap of f or p(y | f(x«), D) equals (1.42) if we
perform an approximate Bayesian inference on f.

We call the confidence estimates of the network f to be calibrated if its confidence matches
the probability of its prediction being correct. For example, given 100 predictions under f, each
with 0.6 confidence, then f is well-calibrated if f correctly classifies 60 of them (Guo et al.,
2017). More formally, let y(x) := argmax; p(y =i | f(x), D) be the predicted label. Then, f
is well-calibrated if for all r € [0, 1] (Wenger et al., 2019):

IE:x,y’vp(x,y)([57\()0 = y]|conf(x) =r) =r, (1.56)

where p(x, y) is the data distribution—the distribution D is assumed to be sampled from—and
[-] is the Iverson bracket, i.e. it equals one if its argument is true and zero otherwise.

It is useful to measure the miscalibration of f by 1
measuring the discrepancy between the confidence es- ey
timate and accuracy at each confidence level r. This 0.8 |)
can be done in practice by partitioning the interval [0, 1] — 11
into b bins B := {B;}?_, where U’_ B; = [0,1]. . o | = |)
Given a test set Dy of size miest, we denote by acc(B;) % A
and conf(B;) the accuracy and confidence of a subset < ¢4 | R
of S; C Dt Wwhose confidences all fall into the bin B;, ;
respectively. Then, we define the expected calibration 0.2 | e
error (ECE) metric (Naeini et al., 2015) by
b 15| 0 0 02 04 06 08 1
ECE := Z ! |acc(B,-) — conf(Bi)|, (].57) Confidence

=1 Miest
Figure 1.9: The ECE metric is the sum of
where |S;| is the size of the subset S;. See Fig. 1.9 for the absolute discrepancy between the con-

an illustration. fidence and accuracy in each bin.

18

1.6 Predictive Uncertainty Quantification

1 1 1l ————————————
\
o 0.8 0.8 1 o 0.8 ‘
g 5 !
& - & \
2 0.6 5 0.6 2 0.6 | \
£ 0.4 1 £ 0.4 S 0.4 1 !
) 5 |
= = \
& 02] 0.2 1 & 0.2] |
\
0 ; ; ; ; 0 ; ; ; ; 0 ; ; ; —l

0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
False Positive Rate Recall False Positive Rate
(a) AUROC (b) AUPRC (¢) FPR@95

Figure 1.10: The AUROC, AUPRC, and FPR@95 metrics. The area-under-curves are the shaded regions.

Alternatively, one can use the Brier score to evaluate the calibration of a model (Brier et al.,
1950), defined by the mean-squared error between the predicted probability vectors p(y |
f(x%), D) and the one-hot encoded true label y. under a test set Diest = {(Xx, ¥x)}:

> (O | f(x).D) = ya)? (1.58)

X, Yk €Dpest

Finally, one can also use the (Categorical) negative log-likelihood (NLL) score under Di:

NLL := —

k
D D> ywilogp(y =i| f(x4).D). (1.59)

X, Y €EDrest i =1

|Dtest|

where again we have assumed the label y, is one-hot encoded.

1.6.2 Out-of-Distribution Data Detection

The task of out-of-distribution data detection, or OOD detection for short, is concerned with the
question of how well a (neural network) classifier distinguishes between data sampled from the
same distribution as the training data D and data sampled from another distribution. The former
are called the in-distribution (ID) data while the latter are called the OOD data.

Notice that we can formulate OOD detection as a binary classification problem. Assume
without loss of generality that we assign the label 1 if an input point x is an ID point and the
label 0 otherwise. Then, we can assign a threshold 7 € [0, 1] to obtain a binary classifier where
the prediction y of a point x € R” is given by

R 0 if conf(x) < 7,
y(x) = . &) (1.60)
1 if conf(x) > t,

where the confidence function is defined as in (1.55)—in particular, it depends on the formula-
tion of the predictive distribution of the network f. Note that, y(x) predicts whether x is ID or
OO0D.

19

1 Introduction

To measure how useful the confidence estimates of f are for distinguishing ID against OOD
data, one can use standard metrics used in classic binary classification tasks. Let Dj, and Doy
be ID and OOD test sets, respectively, and let Dy := Din LI Doyt. A popular metric for OOD
detection is the area under the receiver operating characteristic curve (AUROC). The receiver
operating characteristic (ROC) curve itself is defined by taking into account the true-positive
and false-positive rates of the binary classifier y under the test set Dg. A commonly-used
alternative to the AUROC metric is the area under the precision-recall curve (AUPRC), which
is defined by simply replacing the false-positive rates above with the precision of y. For both the
area-under-curve metrics above, higher values are better. Finally, one can also fix a particular
threshold value T and evaluate the ROC curve at that particular true-positive rate. The resulting
metric is called the FPR@TTPR or simply FPRT. Commonly, T is chosen to be 95 percent
(Hein et al., 2019; Meinke & Hein, 2020). Note that, lower FPRT values are better for a fixed 7.
See Fig. 1.10 for illustrations.

20

Chapter 2
Laplace Approximations for Deep Learning

The contents of this chapter are primarily based on:
Erik Daxberger*, Agustinus Kristiadi*, Alexander Immer*, Runa Eschenhagen®, Matthias
Bauer, and Philipp Hennig. Laplace Redux—Effortless Bayesian Deep Learning. Advances

in Neural Information Processing Systems (NeurIPS), 2021 A

Idea Analysis Experiment Code Writing

Erik Daxberger* 16.7% 20% 25% 25% 20%
Agustinus Kristiadi* 16.7% 20% 25% 25% 20%
Alexander Immer* 16.7% 20% 25% 25% 20%
Runa Eschenhagen™ 16.7% 20% 25% 25% 20%
Matthias Bauer 16.7% 10% 0% 0% 15%
Philipp Hennig 16.7% 10% 0% 0% 5%

Despite their successes, modern neural networks (NNs) still suffer from several shortcomings
that limit their applicability in some settings. These include (i) poor calibration and overcon-
fidence, especially when the data distribution shifts between training and testing (Guo et al.,
2017), (ii) catastrophic forgetting of previously learned tasks when continuously trained on new
tasks (Kirkpatrick et al., 2017), and (iii) the difficulty of selecting suitable NN architectures and
hyperparameters (Hutter et al., 2019). Bayesian modeling (Barber, 2012; Ghahramani, 2015)
provides a principled and unified approach to tackle these issues by (i) equipping models with
robust uncertainty estimates (Gal & Ghahramani, 2016), (ii) enabling models to learn continu-
ally by capturing past information (Nguyen et al., 2018), and (iii) allowing for automated model
selection by optimally trading off data fit and model complexity (MacKay, 1995).

Even though this provides compelling motivation for using Bayesian neural networks (BNNs),
they have not gained much traction in practice. Common criticisms include that BNNs are dif-
ficult to implement, finicky to tune, expensive to train, and hard to scale to modern models
and datasets. For instance, popular variational Bayesian methods (Hinton & Van Camp, 1993;
Graves, 2011; Blundell et al., 2015, etc.) require considerable changes to the training procedure

! Asterisk indicates randomly-ordered equal-contribution authors.

21

2 Laplace Approximations for Deep Learning

(a) MAP Estimation (b) Laplace Approximation (c) Prediction

Figure 2.1: Probabilistic predictions with the Laplace approximation. (a) We find a MAP estimate
(star) via standard training (background contours is the log-posterior landscape on the parameter space).
(b) We locally approximate the posterior landscape by fitting a Gaussian centered at the MAP estimate,
with covariance matrix equal to the negative inverse Hessian of the loss at the MAP—this is the Laplace
approximation. (c) We use the this Gaussian to make predictions with error bars—here, the black curve
is the predictive mean, and the shading covers the 95% confidence interval.

and model architecture. Also, their optimization process is slower and typically more unstable
unless carefully tuned (Osawa et al., 2019). Other methods, such as deep ensembles (Lak-
shminarayanan et al., 2017), Monte Carlo dropout (Gal & Ghahramani, 2016), and Gaussian
stochastic weight averaging (Maddox et al., 2019a) promise to bring uncertainty quantification
to standard NNs in simple manners. But these methods either require a significant cost increase
compared to a single network, have limited empirical performance, or an unsatisfying Bayesian
interpretation.

In this chapter we argue that the Laplace approximation (LA) is a simple and cost-efficient,
yet competitive approximation method for inference in Bayesian deep learning. First proposed
in this context by MacKay (1992a), the LA dates back to the 18th century (Laplace, 1774). Re-
call from Section 1.3.1 that it locally approximates the posterior with a Gaussian distribution
centered at a local maximum, with covariance matrix corresponding to the local curvature. Two
key advantages of the LA are that the local maximum is readily available from standard max-
imum a posteriori (MAP) training of NNs (Section 1.2.1), and that curvature estimates can be
easily and efficiently obtained thanks to recent advances in second-order optimization, both in
terms of more efficient approximations to the Hessian (Heskes, 2000; Martens & Grosse, 2015;
Botev et al., 2017) and easy-to-use software libraries (Dangel et al., 2020; Osawa, 2021b). To-
gether, they make the LA practical and readily applicable to many already-trained NNs—the LA
essentially enables practitioners to turn their high performing point-estimate NNs into BNNs
easily and quickly, without loss of predictive performance. Furthermore, the Laplace approxi-
mation to the marginal likelihood may even be used for Bayesian model selection or NN training
(MacKay, 1995; Immer et al., 2021a). Figure 2.1 provides an intuition of the LA: we first fit a
point estimate of the model, and then estimate a Gaussian distribution around that.

Yet, despite recent progress in scaling and improving the LA for deep learning (Ritter et al.,
2018a;b; Khan et al., 2019; Immer et al., 2021b; Daxberger et al., 2021b; Kristiadi et al., 2020;
Lee et al., 2020), it is far less widespread than other methods. This is likely due to miscon-
ceptions, like that the LA is hard to implement due to the Hessian computation, that it must
necessarily perform worse than the competitors due to its local nature, or quite simply that it is
old and too simple. Here, we show that these are indeed misconceptions. Moreover, we argue
that the LA deserves a wider adoption in both practical and research-oriented deep learning.

22

2.1 Modern Laplace Approximations in Deep Learning

Deterministic neural network fy (1) Weights to be treated probabilistically with Laplace
o0
_ Oﬁi,{O -0 7:0—0 -0
O
Optional: Train 6 as usual (MAP) (a) Al (b) Subnetwork (c) Last-Layer
@ Hyperparameter tuning method @ Approximation of the Hessian
CAGE o,
il]
it
= | T LR
= T 4 4 F .
ms i 1
(a) Full (b) LowRank (¢) KFAC (d) Diag.

(@) (Approximate) predictive p(y« | x«, D)

; Classification
Regression

Monte Carlo

A 4

Monte Carlo .
Probit approx.

Laplace bridge

(b) Post-hoc Laplace

Figure 2.2: Four key components to scale and apply the LA to a neural network fy (with randomly-
initialized or pre-trained weights 0). @ First, choose which part of the network we want to perform
inference over with the LA. @ Then, select how to to approximate the Hessian. @ We can then perform
model selection using the evidence: (a) If we started with an untrained model fy, we can jointly train
the model and use the evidence to tune hyperparameters online. (b) If we started with a pre-trained
model, we can use the evidence to tune the hyperparameters post-hoc. Here, shades represent the loss
landscape, while contours represent LA log-posteriors—faded contours represent intermediate iterates
during hyperparameter tuning to obtain the final log-posterior (thick contours). @ Finally, to make
predictions for a new input, we can use the options described in Section 1.3.4.

2.1 Modern Laplace Approximations in Deep Learning

The LA can be used in two different ways to benefit deep learning: Firstly, we can use the
LA to approximate the model’s posterior distribution to enable probabilistic predictions (as
also illustrated in Fig. 2.1) or other downstream applications such as continual learning (Ritter
et al., 2018b). Secondly, we can use the LA to approximate the model evidence to enable model
selection (e.g. hyperparameter tuning).

The canonical form of (supervised) deep learning is that of empirical risk minimization.
Given, e.g., an i.i.d. classification dataset D := {(x; € R",y; € Rk)};":l, the weights 0 € R?
of an L-layer NN fy : R — R¥ are trained to minimize the (regularized) empirical risk, which
typically decomposes into a sum over empirical loss terms £(x;, y;; 0) and a regularizer r (),

Omap = argmingcgpa L£(D; 0) = argmingcpa (r(9) + Z;":l L(xi, yis 9)). 2.1

23

2 Laplace Approximations for Deep Learning

From the Bayesian viewpoint, these terms can be identified with i.i.d. log- likelihoods and a
log-prior, respectively and, thus, Oyiap is indeed a maximum a-posteriori (MAP) estimate:

C(x;,yi:0) = —logp(yi | fo(xi)) and r(0) = —log p(0) (22)

For example, the widely used weight regularizer r (6) = %y‘z 10|? (a.k.a. weight decay) corre-
sponds to a centered Gaussian prior p() = N(6 | 0, y2I), and the cross-entropy loss amounts
to a categorical likelihood. Hence, the exponential of the negative training loss exp(—L(D; 0))
amounts to an unnormalized posterior. By normalizing it, we obtain

p(0 | D)=z p(D|6) p(d) = zexp(=L(D;), Z:=[pD]|6)p@®)dfs (23)

with an intractable normalizing constant Z. Laplace approximations (Laplace, 1774) use a
second-order expansion of £ around fyap to construct a Gaussian approximation to p(6 | D).
I.e., we consider:

L(D; 0) ~ L(D; Oap) + (0 — Onar) T (VEL(D; 0)]gy0) (0 — Oniap), (2.4)

where the first-order term vanishes at fyiap. Then we can identify the Laplace approximation as

p(O | D)~ N@O | Oap, ¥) with X := (V§£(D;9)|9MAP)‘1. (2.5)

The normalizing constant Z (which is typically referred to as the marginal likelihood or evi-
dence) is useful for model selection and can also be approximated as

Z ~ exp(—L(D; 6map)) 27)P/? (det £)1/2. (2.6)

Thus, to obtain the approximate posterior, we first need to find the argmax Oyap of the log-
posterior function, i.e. do “standard” deep learning with regularized empirical risk minimiza-
tion. The only additional step is to compute the inverse of the Hessian matrix at Gyap (see
Fig. 2.1(b)). The LA can therefore be constructed post-hoc to a pre-trained network, even one
downloaded off-the-shelf. As we discuss below, the Hessian computation can be offloaded to re-
cently advanced automatic differentiation libraries (Dangel et al., 2020). LAs are widely used to
approximate the posterior distribution in logistic regression (Spiegelhalter & Lauritzen, 1990),
Gaussian process classification (Williams & Barber, 1998; Rasmussen & Williams, 2005), and
also for Bayesian neural networks (BNNs), both shallow (MacKay, 1992b) and deep (Ritter
et al., 2018a). The latter is the focus of this work.

Generally, any prior with twice differentiable log-density can be used. Due to the popularity
of the weight decay regularizer, we assume that the prior is a zero-mean Gaussian p(f) =
N(| 0,y21) unless stated otherwise.” The Hessian V;E(D;) |6y, then depends both on the
(simple) log-prior / regularizer and the (complicated) log-likelihood / empirical risk:

Vo L(D;0) oy = =y 21 = Y721 Vi log p(yi | fo(xi))l oy 2.7

A naive implementation of the Hessian is infeasible because the second term in (2.7) scales
quadratically with the number of network parameters, which can be in the millions or even

20ne can also consider a per-layer or even per-parameter weight decay, which corresponds to a more general, but
still comparably simple Gaussian prior. In particular, the Hessian of this prior is still diagonal and constant.

24

2.1 Modern Laplace Approximations in Deep Learning

billions (He et al., 2016; Shoeybi et al., 2019). In recent years, several works have addressed
scalability, as well as other factors that affect approximation quality and predictive performance
of the LA. In the following, we identify, review, and discuss four key components that allow
LAs to scale and perform well on modern deep architectures. See Fig. 2.2 for an overview
and Section 2.1 for a more detailed version of the review and discussion. Further discussion
regarding (approximate) predictive distributions is in Section 1.3.4.

Components of Scalable Laplace Approximations for Deep Neural Networks
(1) Inference over all Weights or Subsets of Weights

In most cases, it is possible to treat all weights probabilistically when using appropriate approx-
imations of the Hessian, as we discuss below in (2). Another simple way to scale the LA to
large NNs (without Hessian approximations) is the subnetwork LA (Daxberger et al., 2021b),
which only treats a subset of the model parameters probabilistically with the LA and leaves the
remaining parameters at their MAP-estimated values. An important special case of this applies
the LA to only the last linear layer of an L-layer NN, while fixing the feature extractor defined
by the first L — 1 layers at its MAP estimate (Snoek et al., 2015; Kristiadi et al., 2020). This
last-layer LA is cost-effective yet compelling both theoretically and in practice (Kristiadi et al.,
2020).

(2) Hessian Approximations and Their Factorizations

One advance in second-order optimization that the LA can benefit from are positive semi-definite
approximations to the (potentially indefinite) Hessian of the log-likelihoods of NN in the second
term of (2.7) (Martens, 2020). The Fisher information matrix (Amari, 1998), abbreviated as
the Fisher and defined by

F =31 B pioifocin[(Volog PV | fo(xi)lowa) (Vo log p(F | fo(xi))lome) '] (2-8)

is one such choice.?

(Schraudolph, 2002)

One can also use the generalized Gauss-Newton matrix (GGN) matrix

G = Sy JG) (V2102 O |)= g))0 T 29

where J(x;) := Vg fg(x;)|gy,p 1S the NN’s Jacobian matrix. As the Fisher and GGN are equiva-
lent for common log-likelihoods (Martens, 2020), we will henceforth refer to them interchange-
ably. In deep LAs, they have emerged as the default choice (Ritter et al., 2018a;b; Kristiadi et al.,
2020; Lee et al., 2020; Daxberger et al., 2021b; Immer et al., 2021b, etc.).

As F and G are still quadratically large, we typically need further factorization assumptions.
The most lightweight is a diagonal factorization which ignores off-diagonal elements (LeCun
et al., 1990; Denker & LeCun, 1990). More expressive alternatives are block-diagonal factor-
izations such as Kronecker-factored approximate curvature (KFAC) (Heskes, 2000; Martens
& Grosse, 2015; Botev et al., 2017), which factorizes each within-layer Fisher* as a Kronecker

3Tf, instead of taking expectation in (2.8), we use the training label y;, we call the matrix the empirical Fisher,
which is distinct from the Fisher (Martens, 2020; Kunstner et al., 2019).
“4The elements F or G corresponding to the weight W; C 6 of the {-th layer of the network.

25

2 Laplace Approximations for Deep Learning

product of two smaller matrices. KFAC has been successfully applied to the LA (Ritter et al.,
2018a;b) and can be improved by low-rank approximations of the KFAC factors (Lee et al.,
2020) by leveraging their eigendecompositions (George et al., 2018). Finally, recent work has
studied/enabled low-rank approximations of the Hessian/Fisher (Madras et al., 2020; Maddox
et al., 2020; Sharma et al., 2021).

(3 Hyperparameter Tuning

As with all approximate inference methods, the performance of the LA depends on the (hy-
per)parameters of the prior and likelihood. For instance, it is typically beneficial to tune the prior
variance y2 used for inference (Ritter et al., 2018a; Kristiadi et al., 2020; Daxberger et al., 2021b;
Immer et al., 2021b;a). Commonly, this is done through cross-validation, e.g. by maximizing
the validation log-likelihood (Ritter et al., 2018a; Foong et al., 2019) or, additionally, using
out-of-distribution data (Kristiadi et al., 2020; 2021). When using the LA, however, marginal
likelihood maximization (a.k.a. empirical Bayes or the evidence framework (MacKay, 1992b;
Bernardo & Smith, 2009)) constitutes a more principled alternative to tune these hyperparam-
eters, and requires no validation data. Immer et al. (2021a) showed that marginal likelihood
maximization with LA can work in deep learning and even be performed in an online man-
ner jointly with the MAP estimation. Note that such approach is not necessarily feasible for
other approximate inference methods because most do not provide an estimate of the marginal
likelihood. Other recent approaches for hyperparameter tuning for the LA include Bayesian op-
timization (Humt et al., 2020) or the addition of dedicated, trainable hidden units for the sole
purpose of uncertainty tuning (Kristiadi et al., 2021).

(4) Approximate Predictive Distribution

To predict using a posterior (approximation) p(6 | D), we need to compute p(y | f(x«), D) =
[Py | fo(x«)) p(0 | D)d0 for any test point x4« € R”, which is intractable in general. The
simplest but most general approximation to p(y | x«, D) is Monte Carlo integration using s
samples (0;);_, from p(6 | D): p(y | f(xx).D) ~ s p(y | Jo; (x+)). However, for
LAs with GGN and Fisher Hessian approximations Monte Carlo integration can perform poorly
(Foong et al., 2019; Immer et al., 2021b). Immer et al. (2021b) attribute this to the inconsistency
between Hessian approximation and the predictive and suggest to use a linearized predictive
instead, which can also be useful for theoretic analyses (Kristiadi et al., 2020). For the last-layer
LA, the Hessian coincides with the GGN and the linearized predictive is exact.

The predictive of a linearized neural network with a LA approximation to the posterior
p(@ | D) =~ N(O | Ouap, X) results in a Gaussian distribution on neural network outputs
f« := f(xx) and therefore enables simple approximations or even a closed-form solution. The
distribution on the outputs is given by p(fx | Xx. D) &~ N(fs | Sfoyup (X%), J(xx) T 2T (x4))
and is typically significantly lower-dimensional (number of outputs C instead of parameters D).
It can also be inferred entirely in function space as a Gaussian process (Khan et al., 2019; Immer
et al., 2021b). Given the distribution on outputs f, the predictive distribution can be obtained
by integration against the likelihood: p(y | x«,D) = [p(y | f«)p(f« | X+, D) dO. In the case
of regression with a Gaussian likelihood with variance o2, the solution can even be obtained
analytically: p(y | x«,D) ~ N(¥ | Sfoyup (X%, J(xx) T 2 J(x4) + 02I). For non-Gaussian
likelihoods, e.g. in classification, a further approximation is needed. Again, the simplest ap-
proximation to this is Monte Carlo integration. In the binary case, we can employ the probit

26

2.2 The laplace-torch toolkit

1 from laplace import Laplace

2

3 # Load pre-trained model

4 model = load_map_model ()

5

6 # Define and fit LA variant with custom settings
7 la = Laplace(

8 model, 'classification',

9 subset_of_weights='all', hessian_structure='diag’
10)

11 la.fit (train_loader)

13 # Hyperparameter tuning via cross-validation

14 la.optimize_prior_precision (method='CV', val_loader=val_loader)
15

16 # Make prediction with custom predictive approx.

17 pred = la(x, pred_type='glm', link_approx='probit')

Listing 2.1: Fit diagonal LA over all weights of a pre-trained classification model, do post-hoc tuning
of the prior precision hyperparameter using cross-validation, and make a prediction for input x with the
probit approximation.

approximation (Spiegelhalter & Lauritzen, 1990; MacKay, 1992a) which approximates the lo-
gistic function with the probit function. In the multi-class case, we can use its generalization, the
extended probit approximation (Gibbs, 1998). Finally, first proposed for non-BNN applications
(MacKay, 1998; Hennig et al., 2012), the Laplace bridge approximates the softmax-Gaussian
integral via a Dirichlet distribution (Hobbhahn et al., 2022). The key advantage is that it yields
a distribution of the integral solutions.

2.2 The laplace-torch toolkit

Implementing the LA is non-trivial, as it requires efficient computation and storage of the Hes-
sian. While this is not fundamentally difficult, there exists no complete, easy-to-use, and stan-
dardized implementation of various LA flavors—instead, it is common for deep learning re-
searchers to repeatedly re-implement the LA and Hessian computation with varying efficiency
(Maddox et al., 2019b; Kristiadi, 2020; Lee & Humt, 2020, etc.). An efficient implementation
typically requires hundreds of lines of code, making it hard to quickly prototype with the LA. To
address this, we introduce laplace-torch: a simple, easy-to-use, extensible library for scal-
able LAs of deep NNs in PyTorch (Paszke et al., 2019). The laplace-torch library enables
all sensible combinations of the four components discussed in Fig. 2.2. Listings 2.1 to 2.4 show
code examples.

The core of 1aplace-torch consists of efficient implementations of the LA’s key quantities:
(i) posterior (i.e. Hessian computation and storage), (ii) marginal likelihood, and (iii) posterior
predictive. For (i), to take advantage of advances in automatic differentiation, we outsource the
Hessian computation to state-of-the-art, optimized second-order optimization libraries: Back-
PACK (Dangel et al., 2020) and ASDL (Osawa, 2021a). Moreover, we design laplace-torch
in a modular manner that makes it easy to add new backends and approximations in the fu-
ture. For (ii), we follow Immer et al. (2021a) in our implementation of the LA’s marginal
likelihood—it is thus both efficient and differentiable and allows the user to implement both
online and post-hoc marginal likelihood tuning, cf. Listing 2.3. Note that laplace-torch

27

2 Laplace Approximations for Deep Learning

1 from laplace import Laplace

2

3 # Load un- or pre-trained model

4 model = load_map_model ()

5

6 # Fit default, recommended LA variant, last-layer KFAC LA
7 la = Laplace (model, 'regression')

8 la.fit (train_loader)

9

10 # Post-hoc marginal likelihood

11 la.optimize_prior_precision (method='marglik')

Listing 2.2: Fitting a KFAC LA over the last layer of a pre- or un-trained regression model and performing
a post-hoc hyperparameter tuning via marginal likelihood maximization.

also supports standard cross-validation for hyperparameter tuning (Ritter et al., 2018a; Kristiadi
et al., 2020), as shown in Listing 2.1. Finally, for (iii), laplace-torch supports all approxi-
mations to the posterior predictive distribution discussed shown in Fig. 2.2—it thus provides the
user with flexibility in making predictions, depending on the computational budget.

Default behavior To abstract away from a large number of options available, we provide the
following default choices based on our extensive experiments (Section 2.3); they should be
applicable and perform decently in the majority of use cases: we assume a pre-trained network
and treat only the last-layer weights probabilistically (last-layer LA), use the KFAC factorization
of the GGN and tune the hyperparameters post-hoc using empirical Bayes. To make predictions,
we use the closed-form Gaussian predictive distribution for regression and the (extended) probit
approximation for classification. Of course, the user can pick custom choices (Listings 2.1
and 2.3).

Limitations Because laplace-torch employs external libraries (BackPACK (Dangel et al.,
2020) and ASDL (Osawa, 2021a)) as backends, it inherits the available choices of Hessian fac-
torizations from these libraries. For instance, the LA variant proposed by Lee et al. (2020) can
currently not be implemented via 1aplace-torch, because neither backend supports eigenvalue-
corrected KFAC (George et al., 2018) (yet).

2.3 Applications

We benchmark various LAs implemented via laplace-torch. Section 2.3.1 addresses the
question of “which are the best design choices for the LA”, in light of Fig. 2.2. Section 2.3.2
shows that the LA is competitive to strong Bayesian baselines in in-distribution, dataset-shift,
and out-of-distribution (OOD) settings. We then showcase some applications of the LA in down-
stream tasks. Section 2.3.3 demonstrates the applicability of the (last-layer) LA on various data
modalities and NN architectures (including transformers (Vaswani et al., 2017))—settings where
other Bayesian methods are challenging to implement. Section 2.3.4 shows how the LA can be
used as an easy-to-use yet strong baseline in continual learning. In all results, arrows behind
metric names denote if lower ({) or higher (1) values are better.

28

2.3 Applications

from laplace import Laplace

1

2

3 precO = nn.Parameter(...) # Or its log

4 hyper_optimizer = ...

5

6 for train_epoch in range (n_train_epochs) :

7 for x, y in train_loader:

8 out = model (x)

9 loss = -loglik (out, y) - logprior (precO)

10 loss.backward()

11 optimizer.step ()

12

13 # Tune prior precision with LA marginal likelihood
14 la = Laplace (model, 'classification', prior_precision=prec0)
15 la.fit (train_loader)

16

17 for tune_epoch in range (n_tune_epochs) :

18 Iml = -la.log_marginal_likelihood (precO)

19 1ml.backward /()

20 hyper_optimizer.step ()

Listing 2.3: Online empirical Bayes (Immer et al., 2021a) with laplace-torch.

2.3.1 Choosing the Right Laplace Approximation

In Section 2.1 we presented multiple options for each component of the design space of the LA,
resulting in a large number of possible combinations, all of which are supported by laplace-torch.
Here, we try to reduce this complexity and make suggestions for sensible default choices that
cover common application scenarios. To this end, we performed a comprehensive comparison
between most variants; we measured in- and out-of-distribution performance on standard image
classification benchmarks (MNIST, FashionMNIST, CIFAR-10) but also considered the compu-
tational complexity of each variant.

Hyperparameter tuning and parameter inference. We can apply the LA purely post-hoc
(only tune hyperparameters of a pre-trained network) or online (tune hyperparameters and train
the network jointly, as e.g. suggested by Immer et al. (2021a)). We find that the online LA
only works reliably when it is applied to all weights of the network. In contrast, applying the
LA post-hoc only on the last layer instead of all weights typically yields better performance due
to less underfitting, and is significantly cheaper. For problems where a pre-trained network or
optimal hyperparameters are available, e.g. for well-studied data sets, we, therefore, suggest
using the post-hoc variant on the last layer. This LA has the benefit that it has minimal overhead
over a standard neural network forward pass (cf. Fig. 2.6) while performing on par or better than
state-of-the-art approaches (cf. Fig. 2.5). When hyperparameters are unknown or no validation
data is available, we suggest training the neural network online by optimizing the marginal
likelihood, following Immer et al. (2021a) (cf Listing 2.3). Figure 2.3 illustrates this on CIFAR-
10: for CIFAR-10 with data augmentation, strong pre-trained networks and hyperparameters are
available and the post-hoc methods directly profit from that while the online methods merely
reach the same performance. On the less studied CIFAR-10 without data augmentation, the
online method can improve the performance over the post-hoc methods.

29

2 Laplace Approximations for Deep Learning

CIFAR-10 + DA CIFAR-10

94 — 90 ‘

< DD @ online O | a 'S 1}
B O -
8 ° . 4 . o g5 | O post hoc %
S 92 O - -MAP |
°

S ° 80 { O |
[L4 Y I
- S R 1 w

90 1 | 75 7‘ 777777777777 ‘77: 77777777777

91 92 93 82 86 90

Acc. (ID) 4 Acc. (ID) 4

Figure 2.3: In- vs. out-of-distribution (ID and OOD, resp.) performance on CIFAR-10 of different LA
configurations (dots), each being a combination of settings for 1) subset-of-weights, 2) covariance struc-
ture, 3) hyperparameter tuning, and 4) predictive approximation. “DA” stands for “data augmentation”.
Post-hoc performs better with DA and a strong pre-trained network, while online performs better without
DA where optimal hyperparameters are unknown.

Covariance approximation and structure. Generally, we find that a more expressive covari-
ance approximation improves performance, as would be expected. However, a full covariance
is in most cases intractable for full networks or networks with large last layers. The KFAC
structured covariance provides a good trade-off between expressiveness and speed. Diagonal
approximations perform significantly worse than KFAC and are therefore not suggested. Inde-
pendent of the structure, we find that the empirical Fisher (EF) approximations perform better
on out-of-distribution detection tasks while GGN approximations tend to perform better on in-
distribution metrics.

Predictive distribution. Considering in- and out-of-distribution (OOD) performance as well
as cost, the probit provides the best approximation to the predictive for the last-layer LA. MC
integration can sometimes be superior for OOD detection but at an increased computational cost.
The Laplace bridge has the same cost as the probit approximation but typically provides inferior
results in our experiments. When using the LA online to optimize hyperparameters, we find
that the resulting MAP predictive provides good performance in-distribution, but a probit or MC
predictive improves OOD performance.

Overall recommendation. Following the experimental evidence, the default Laplace approx-
imation in laplace—-torch is a post-hoc KFAC last-layer LA with a GGN approximation to
the Hessian. This default is applicable to all architectures that have a fully-connected last layer
and can be easily applied to pre-trained networks. For problems where trained networks are
unavailable or hyperparameters are unknown, the online KFAC LA with a GGN or empirical
Fisher provides a good baseline with minimal effort.

2.3.2 Predictive Uncertainty Quantification

We consider two flavors of LAs: the default flavor of laplace-torch (LA) and the most
robust one in terms of distribution shift found in Section 2.3.1 (LA*—Ilast-layer, with a full em-
pirical Fisher Hessian approximation, and the probit approximation). We compare them with
the MAP network (MAP) and various popular and strong Bayesian baselines: Deep Ensemble

30

2.3 Applications

Table 2.1: OOD detection performance averaged over all test sets (see Appendix B.2 for details). Confi-
dence is defined as the maximum of the predictive probability vector (Hendrycks & Gimpel, 2017). LA
and especially LA* reduce the overconfidence of MAP and achieve better results than the VB, CSGHMC,
and SWAG baselines.

Confidence | AUROC 1
Methods MNIST CIFAR-10 MNIST CIFAR-10
MAP 75.0+0.4 76.1+1.2 96.54+0.1 92.1+0.5
DE 65.7+0.3 65.4+0.4 97.54+0.0 94.0+0.1
VB 73.24+0.8 58.8+0.7 95.840.2 88.74+0.3
CSGHMC 69.2+1.7 69.440.6 96.1+0.2 90.6+0.2
SWAG 75.84+0.3 68.1+2.3 96.5+0.1 91.3+0.8
LA 67.5+0.4 69.0+1.3 96.240.2 92.240.5
LA* 56.1+0.5 55.7+1.2 96.41+0.2 92.4+0.5
100 100% 109 96%
Umap [IDE[VB [JcsGHMC
OswaGLalLa*
1071 4 99% 1071 4 93%
102 98% 102 90%
NLL } ECE | % Acc. 1 NLL } ECE | % Acc. 1
(a) MNIST (b) CIFAR-10

Figure 2.4: Assessing model calibration on in-distribution data. We report accuracy and, to measure
calibration, negative log-likelihood (NLL) and expected calibration error (ECE)—all evaluated on the
standard test sets. LA is the best-calibrated method in terms of ECE, while also retaining the accuracy of
MAP (unlike VB and CSGHMC).

(DE, Lakshminarayanan et al., 2017), mean-field variational Bayes (VB, Graves, 2011; Blundell
et al., 2015) with the flipout estimator (Wen et al., 2018), cyclical stochastic-gradient Hamilto-
nian Monte Carlo (CSGHMC, Zhang et al., 2020), and Gaussian stochastic weight averaging
(SWAG, Maddox et al., 2019a). For each baseline, we use the hyperparameters recommended
in the original paper—see Appendix B.2 for details.

First, Figs. 2.4 and 2.5 shows that LA and LA* are, respectively, competitive with and superior
to the baselines in trading-off between in-distribution calibration and dataset-shift robustness.
Second, Table 2.1 shows that LA and LA* achieve better results on out-of-distribution (OOD)
detection than even VB, CSGHMC, and SWAG. The LA shines even more when we consider its
(time and memory) cost relative to the other, more complex baselines.

In Fig. 2.6 we show the wall-clock times of each method relative to MAP’s for training and
prediction. As expected, DE, VB, and CSGHMC are slow to train and in making predictions:
they are between two to five times more expensive than MAP. Meanwhile, despite being post-
hoc, SWAG is almost twice as expensive as MAP during training due to the need for sampling
and updating its batch normalization statistics. Moreover, with 30 samples, as recommended
by its authors (Maddox et al., 2019a), it is very expensive at prediction time—more than ten
times more expensive than MAP. Meanwhile, LA (and LA*) is the cheapest of all methods

31

2 Laplace Approximations for Deep Learning

NLL |

0.6 1

0.4 1

ECE |

0.2 4 -4~ CSGHMC -&- SWAG -@- LA

- LA*

0 30 60 90 120 150 180
Rotation Angle

(a) Rotated-MNIST

NLL |

ECE |

Shift Intensity

(b) CIFAR-10-C

Figure 2.5: Assessing model calibration under distribution shift, for the MNIST (top row) and CIFAR-
10 (bottom row) datasets. We use the Rotated-MNIST (a) and Corrupted-CIFAR-10 (b) benchmarks
(Hendrycks & Dietterich, 2019; Ovadia et al., 2019). Even though post-hoc, all LAs achieve competitive
results, even to DE. In particular, LA* achieves the best results.

77777777

- DTraining
g 10 1 @Prediction
=
()
2
g 51 -
2
21 oy ,7
[—|77777777a sr7727277/7
0 L

SNNNNNY
NNNANNY
NN
NNNANNY
SNNNNNY
AN
SNNNNNY
NNNNNNN
RN

RN
SNNNNNNN

N

N

N

N

N

N

N

N

MAP DE VB

CSGHMC SWAG LA

Figure 2.6: Wall-clock time costs relative to MAP. LA introduces negligible overhead over MAP, while

all other baselines are significantly more expensive.

considered: it only incurs a negligible overhead on top of the costs of MAP. This shows that
the LA is significantly more compute-efficient than all the other methods considered, adding
minimal overhead over MAP inference and prediction.

Finally, Table 2.2 compares the theoretical
memory complexity and actual memory foot-
print (of a WideResNet 16-4 on CIFAR-10) of
the different methods. There, M denotes the
number of model parameters, H denotes the
number of neurons in the last layer, K denotes
the number of model outputs, R denotes the
number of SWAG snapshots, S denotes the
number of CSGHMC samples, and N denotes
the number of deep ensemble’s members. VB
has a complexity of 2M as it needs to store
a variance vector of size M in addition to the

Table 2.2: The memory complexities of all meth-
ods in big-O notation. To get a better idea of what
these complexities translate to in practice, we also
report the actual memory footprints (in megabytes)
of a WideResNet 16-4 (WRN) on CIFAR-10.

Method Mem. Complexity = WRN on CIFAR-10

MAP M 11 MB
LA M + H? + K2 12 MB
VB oM 22 MB
DE NM 55 MB
CSGHMC SM 132 MB
SWAG RM 440 MB

mean vector of size M. For the actual memory footprints, we assume R = 40 SWAG snapshots,

32

2.3 Applications

OMAP ADE HETS XLA

ID 00D ID OOD ID 00D ID OOD ID OOD
0.3 1 ;
0.75 1 on 3 ¢ - o| |] ® 0.7
> A 0.2 1 X A)l(
= 050 | [) : 065 1o mx | 065 +
Z 2
025 | @, X AlX AR 1A X 0.60 j(0.60 { A X 4
> 02) %(0.4 A ° 40 | A
% ¢ ¢ 03 1@ 0.10 {@ + *
2 o1 A 0.2 1 0-21 X .A. oos | A 4 20 1
m 0.1 1 .05 1
g o' 0o | Ame| “m m| x m<| ™ [qa x
(a) Camelyonl7 (b) FMoW (¢) CivilComments (d) Amazon (e) PovertyMap

Figure 2.7: Assessing real-world distribution shift robustness on five datasets from the WILDS bench-
mark Koh et al. (2020), covering different data modalities, model architectures, and output types. We
plot means =+ standard errors of the NLL (top) and ECE (for classification) or regression calibration error
Kuleshov et al. (2018) (bottom).

S = 12 CSGHMC samples, and N = 5 ensemble members, which are the hyperparameters
recommended in the original papers. It can be seen that the proposed default KFAC-last-layer
approximation poses a small memory overhead of O(H? + K?) on top of the MAP estimate.

Altogether, the results in Fig. 2.6 and Table 2.2 make the LA particularly attractive for practi-
tioners, especially in low-resource environments. Together with Fig. 2.5 and Table 2.1, this jus-
tifies our default flavor of Laplace approximation in laplace-torch, and importantly, shows
that Bayesian deep learning does not have to be expensive.

2.3.3 Realistic Distribution Shift

So far, our experiments focused on comparably simple benchmarks, allowing us to comprehen-
sively assess different LA variants and compare to more involved Bayesian methods such as VB,
MCMC, and SWAG. In more realistic settings, however, where we want to improve the uncer-
tainty of complex and costly-to-train models, such as transformers (Vaswani et al., 2017), these
methods would likely be difficult to get to work well and expensive to run. However, one might
often have access to a pre-trained model, allowing for the cheap use of post-hoc methods such
as the LA. To demonstrate this, we show how laplace-torch can improve the distribution
shift robustness of complex pre-trained models in large-scale settings. To this end, we use the
WILDS testbed (Koh et al., 2020), a recently proposed benchmark of realistic distribution shifts
encompassing a variety of real-world datasets across different data modalities and application
domains. While the WILDS models employ complex (e.g. convolutional or transformer) archi-
tectures as feature extractors, they all feed into a linear output layer, allowing us to conveniently
and cheaply apply the last-layer LA. As baselines, we consider: 1) the pre-trained MAP models
(Koh et al., 2020), 2) post-hoc temperature scaling of the MAP models (for classification tasks)
Guo et al. (2017), and 3) deep ensembles (Lakshminarayanan et al., 2017).5 More details on the
experimental setup are provided in Appendix B.3. Fig. 2.7 shows the results on five different

SWe simply construct deep ensembles from the various pre-trained models provided by Koh et al. (2020).

33

2 Laplace Approximations for Deep Learning

1 from laplace import Laplace

2

3 # Initialize Gaussian prior N(0, I)

4 prior_mean = torch.zeros(...)

5 prior_prec = torch.eye(...)

6

7 for task in range (num_of_tasks):

8 # MAP training with L2 regularization

9 model = train(train_loader([task], prior_mean, prior_prec)
10

11 # Fit LA with the current prior mean and precision

12 la = Laplace (model, 'classification',

13 prior_mean=prior_mean,

14 prior_precision=prior_prec)

15 la.fit (train_loader[task])

16

17 prediction = la(x_test[task])

18

19 # Set the current posterior as the next prior
20 prior_mean = la.mean

21 prior_prec = la.posterior_precision

Listing 2.4: Bayesian continual learning with laplace—-torch.

WILDS datasets. Overall, the LA is significantly better calibrated than MAP, and competitive
with temperature scaling and ensembles, especially on the OOD splits.

2.3.4 Continual learning

Beyond predictive uncertainty quantification, the LA is useful in wide range of applica-
tions such as Bayesian optimization (Snoek et al., 2015), bandits (Chapelle & Li, 2011), ac-
tive learning (MacKay, 1992b; Park et al., 2011), and continual learning (Ritter et al., 2018b).
The laplace-torch library conveniently facilitates these applications. As an example, we
demonstrate the performance of the LA on the standard continual learning benchmark with
the Permuted-MNIST dataset, consisting of ten tasks each containing pixel-permuted MNIST
images (Goodfellow et al., 2013). Figure 2.8 shows how the all-layer diagonal and Kronecker-
factored LAs can overcome catastrophic forgetting. In this experiment, we update the LAs
after each task as suggested by Ritter et al. (2018b) and improve upon their result by tuning
the prior precision through marginal likelihood optimization during training, following Immer
et al. (2021a) (details in Appendix B.4). Using this scheme, the performance after 10 tasks is at
around 96% accuracy, outperforming other Bayesian approaches for continual learning (Nguyen
et al., 2018; Titsias et al., 2020; Pan et al., 2020). Concretely, we show that the KFAC LA, while
much simpler when applied via laplace-torch, can achieve better performance to a recent
VB baseline (VOGN, Osawa et al., 2019). Our library thus provides an easy and quick way of
constructing a strong baseline for this application.

Related Work

The LA is fundamentally a local approximation that covers a single mode of the posterior; sim-
ilarly, other Gaussian approximations such as mean-field variational inference (Graves, 2011;
Blundell et al., 2015; Osawa et al., 2019) or SWAG (Maddox et al., 2019a) also only capture

34

2.3 Applications

1 L] — —8 ‘Qﬁ@
< 09|
g
§ 0.8 1 —2—MAP —s— VOGN
< 0.7] —e— LA-Diag —m— LA-KFAC
1 2 3 4 5 6 7 8 9 10
Task

Figure 2.8: Continual learning results on Permuted-MNIST. MAP fails catastrophically as more tasks
are added. The Bayesian approaches substantially outperform MAP, with LA-KFAC performing the best,
closely followed by VOGN.

local information. SWAG uses the first and second empirical moment of SGD iterates to form
a diagonal plus low-rank Gaussian approximation but requires storing many NN copies and
applying a (costly) heuristic related to batch normalization at test time. In contrast, the LA di-
rectly uses curvature information of the loss around the MAP and can be applied post-hoc to
pre-trained NNs.

In contrast to local Gaussian approximations, (stochastic-gradient) MCMC methods (Welling
& Teh, 2011; Wenzel et al., 2020a; Zhang et al., 2020; Izmailov et al., 2021b; Garriga-Alonso
& Fortuin, 2021, etc.) and deep ensembles (Lakshminarayanan et al., 2017) can explore several
modes. Nevertheless, prior works—also validated in our experiments in Section 2.3—indicate
that using a single mode might not be as limiting in practice as one might think. Wilson &
Izmailov (2020) conjecture that this is due to the complex, nonlinear connection between the
parameter space and the function (output) space of NNs. Moreover, while unbiased compared to
its simpler alternatives, MCMC methods are notoriously expensive in practice and, thus, often
require further approximations such as distillation (Korattikara et al., 2015; Wang et al., 2018).
Finally, note that both the LA as well as SWAG can be extended to ensembles of modes in a
post-hoc manner (Eschenhagen et al., 2021; Wilson & Izmailov, 2020).

35

Chapter 3
Fixing Asymptotic Overconfidence

The contents of this chapter are primarily based on:

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. "Being Bayesian, even just a bit,
fixes overconfidence in ReLU networks." International Conference on Machine Learning

(ICML). 2020.

Idea Analysis Experiment Code Writing

Agustinus Kristiadi 80% 100% 100% 100% 85%
Matthias Hein 10% 0% 0% 0% 5%
Philipp Hennig 10% 0% 0% 0% 10%

And:

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. "An Infinite-Feature Extension for
Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence.”" Advances in Neural
Information Processing Systems (NeurIPS). 2021.

Idea Analysis Experiment Code Writing

Agustinus Kristiadi 70% 90% 100% 100% 85%
Matthias Hein 5% 10% 0% 0% 5%
Philipp Hennig 25% 0% 0% 0% 10%

ReLU networks are currently among the most widely used neural architectures. This class
comprises any network that can be written as a composition of linear layers (including fully-
connected, convolutional, and residual layers) and a ReLU activation function. But, while ReLU
networks often achieve high accuracy, the uncertainty of their predictions has been shown to be
miscalibrated (Guo et al., 2017). Indeed, Hein et al. (2019) demonstrated that ReLLU networks
are always overconfident “far away from the data”: scaling a training point x (a vector in a Eu-
clidean input space) with a scalar § yields predictions of arbitrarily high confidence in the limit
8 — oo. This means ReLU networks are susceptible to out-of-distribution examples. Mean-
while, probabilistic methods (in particular Bayesian methods) have long been known empirically

36

3.1 The Asymptotic Overconfidence Problem

to improve predictive uncertainty estimates. MacKay (1992b) demonstrated experimentally that
the predictive uncertainty of Bayesian neural networks will naturally be high in regions not cov-
ered by training data. Although the theoretical analysis is still lacking, results like this raise the
hope that the overconfidence problem of ReLU networks, too, might be mitigated by the use of
probabilistic and Bayesian methods.

This chapter offers theoretical analyses of ReLU classification networks. In Section 3.2 we
show that equipping a two-class ReLLU network with a Gaussian approximate distribution over
the weights mitigates the aforementioned theoretical problem, in the sense that the predictive
confidence far away from the training data approaches a known limit, bounded away from one,
whose value is controlled by the covariance. In the case of Laplace approximations (MacKay,
1992c¢; Ritter et al., 2018a), this treatment in conjunction with the probit approximation (Spiegel-
halter & Lauritzen, 1990; MacKay, 1992b) does not change the decision boundary of the trained
network, so it has no negative effect on the predictive performance. Furthermore, we show that
a sufficient condition for this desirable property to hold is to apply a Gaussian approximation
only to the last layer of a ReLU network. This motivates the commonly used approximation
scheme where an L-layer network is decomposed into a fixed feature map composed of the first
L —1 layers and a Bayesian linear classifier (Wilson et al., 2016a; Riquelme et al., 2018; Ober &
Rasmussen, 2019; Brosse et al., 2020, etc.). This particular result implies that just being “a bit”
Bayesian—at low-cost overhead—already gives desirable benefits. Meanwhile, in Section 3.3
we propose a method to incorporate infinitely-many ReLU features in Gaussian-approximated
ReLU networks in a cheap and post-hoc manner. Using this method, we provide a stronger re-
sult: the augmented multiclass ReLU classification network will always attain the ideal uniform
confidence far away from the training data.

3.1 The Asymptotic Overconfidence Problem

We call a function f : R" — RK piecewise affine if there exists a finite set of polytopes
1Qi}i_,, referred to as the linear regions of f, such that U/_, O; = R" and f/|g, is an affine
function for every Q,. ReLU networks are networks that result in piecewise affine classifier
functions (Arora et al., 2018), which include networks with fully-connected, convolutional, and
residual layers where just ReLLU or leaky-ReLLU are used as activation functions and max or
average pooling are used in convolution layers.

Let D := {x; € R",y; € Rk}:.":l be a dataset, where the targets are y; € {0,1} or y; €
{1,...,k} for the binary and multi-class case, respectively. Let ¢ : R* — R? be an arbitrary
fixed feature map. Given a neural network fy, we consider the distribution p(6 | D) over its
parameters. The predictive distribution for the binary case is

py=1]x.D) = / o (fo(x)) p(8 | D) de, (3.1)
and for the multi-class case

p(y=i|x,D) = /softmax(fg(x),i)p(e | D) d6. (3.2)

37

3 Fixing Asymptotic Overconfidence

Sx

oax

Figure 3.1: A sketch of the situation in Theorem 3.2. The intersections of gray lines are the linear regions
induced by a ReLLU network f. Far enough from the data region—the region around x—one can always
find a linear region that extends to infinity, such that §x will always be contained in that region for § large
enough, i.e. § > «. In this case, analyzing f is simple since f(8x) is a simple affine function.

The functions A;(+), Amax(+), and A (-) return the i-th, maximum, and minimum eigenvalue
(which are assumed to exist) of their matrix argument, respectively.! Similarly for the function
5i (+), Smax (+), and Smin (-) which return singular values instead. Finally, we assume that || - || is the
€2 norm.

The following lemma shows the existence of an “outer linear region” induced by a ReLU
network which contains the scaled input §x for § sufficiently large.

Lemma 3.1 (Hein et al., 2019). Let {Qn},,—, be the set of linear regions associated to the
ReLU network f : R* — R¥. For any x # 0 € R" there existsano > Oandt € {1,...,r}
such that 8x € Q; for all § > a. Furthermore, the restriction of f to Q; can be written as an
affine function U " x + ¢ for some suitable U € Rk and ¢ € R¥,]

Based on the previous lemma, the following theorem shows that ReLLU networks exhibit ar-
bitrarily high confidence far away from the training data: If a point x € R” is scaled by a
sufficiently large scalar § > 0, the input éx attains arbitrarily high confidence.

Theorem 3.2 (Hein et al., 2019). Let R" = Ujr.:1 Qjand flg;(x) = Ujx+c;j be the piecewise
affine representation of the output of a ReLU network on a linear region Qj. Suppose that U;

does not contain identical rows for all j = 1,...,r, then for almost any x # 0 € R" and any
e > 0, there exists a d > 0 and a class i € {1,...,k} such that it holds softmax(f(6x),i) >
1 — &. Moreover, limg_, o, softmax(f(6x),i) = 1. O

The proofs of Lemma 3.1 and Theorem 3.2 can be found in the work of Hein et al. (2019). The
intuition of Theorem 3.2 is that due to the existence of an outer linear region (Lemma 3.1), far
away from the training data, a ReL.U network becomes a simple affine function that is almost
always increasing or decreasing. Because of this, as § — oo, the softmax output of the network
tends to a one-hot vector and thus has confidence of 1. See Fig. 3.1 for an illustration.

'We assume they are sorted in a descending order.

38

3.2 Being A Bit Bayesian Mitigates Asymptotic Overconfidence

3.2 Being A Bit Bayesian Mitigates Asymptotic Overconfidence

In this section we focus on binary classification problems. It is standard to treat neural networks
as probabilistic models of the conditional distribution p(y | x,8) over the prediction y. In
this case, we define the confidence of any input point x as the maximum predictive probability,
which, in the case of a binary problem, can be written as

conf(x) := max, py=ilx,0)=0c(fe(x)). (3.3)

Standard training corresponds to assigning a maximum a posteriori (MAP) estimate Gyap to the
weights, ignoring potential uncertainty on 6. We will show that this lack of uncertainty is the
primary cause of the overconfidence discussed by Hein et al. (2019) and argue that it can be
mitigated by considering the marginalized prediction—where uncertainty over the weights are
taken into account—in (3.1) instead.

Even for a binary linear classifier parametrized by a single weight matrix 6 = w, there is gen-
erally no analytic solution for (3.1). But, good approximations exist when the distribution over
the weights is a Gaussian p(w | D) ~ N (w | i, ¥') with mean p and covariance X'. One such
approximation is given by the probit approximation (Spiegelhalter & Lauritzen, 1990; MacKay,
1992b). Using this approximation and the Gaussian assumption, if we let a := w ' ¢(x), we get

1 (x)
VI+7/8¢(TZ¢(x)
In the case of © = wpmap, (3.4) can be seen as the “softened” version of the MAP prediction of

the classifier, using the covariance of the Gaussian. The predictive confidence on an input x in
this case is defined by

p(y=1|x,D) ~ O'() =:0(z(x)). (3.4)

conf(x) = ,max, p(y =i|x,D)=o(z(x)]). (3.5)

We can generalize the previous insight to the case where the parameters of the feature map
¢ are also approximated by a Gaussian. Let # € R? be the parameter vector of a NN fp :
R"” — R with a given Gaussian approximation p(6 | D) ~ N (6 | u, XY). Let x € R” be an
arbitrary input point. Letting g(x) := V fg(x)|,, we do a first-order Taylor expansion of fy at
n (MacKay, 1995): fo(x) ~ fu(x) + g(x)T(6 —). This implies that the distribution over
fo(x)is given by p(fp(x) | x,D) ~ N(fy(x) | fu(x),g(x)T Xg(x)). Therefore, we have

fu(x) .
V14 7/8g(x)T Zg(x)

It is easy to see that z in (3.4) is indeed a special case of (3.6).

As the first notable property of this approximation, we show that, in contrast to some other
methods for uncertainty quantification (e.g. Monte Carlo dropout, Gal & Ghahramani, 2016) it
preserves the decision boundary induced by the MAP estimate.

z(x) = (3.6)

Proposition 3.3 (Invariance property). Let fy : R® — R be a binary classifier network
parametrized by 0 and let N (0 | i, X) be the distribution over 6. Then for any x € R", we
have o (f,.(x)) = 0.5 if and only if o (z(x)) = 0.5.

39

3 Fixing Asymptotic Overconfidence

1.0 1.0 1.0
0.9 0.9 0.9
08 % 058 m 058
0.7 0.7 0.7
0.6 0.6 0.6
0.5 0.5 0.5
1.0 1.0 1.0
0.9 0.9 0.9
0.8 - 0.8 - 0.8
0.7 0.7 0.7
0.6 0.6 0.6
0.5 0.5 0.5
(a) MAP (b) Temp. scaling (c) Bayesian (last-layer) (d) Bayesian (all-layer)

Figure 3.2: Binary classification on a toy dataset using a MAP estimate, temperature scaling (Guo et al.,
2017), and both last-layer and all-layer Gaussian approximations over the weights which are obtained
via Laplace approximations. Background shades represent confidence estimates. Bottom row shows
a zoomed-out view of the top row. The Bayesian approximations—even in the last-layer case—give
desirable uncertainty estimates: confident close to the training data and uncertain otherwise. MAP and
temperature scaling yield overconfident predictions.

Proof. Let x € R" be arbitrary and denote puyr := fg,.,(x) and vy := g(x)T Xg(x). For
the forward direction, suppose that o(ir) = 0.5. This implies that uy = 0, and we have
o(0/(1 + 7/8 vf)l/z) = 0(0) = 0.5. For the reverse direction, suppose that o(uz/(1 +
/8 vf)l/z) = 0.5. This implies ur /(1 + /8 vf)l/2 = 0. Since the denominator of the L.h.s.
is positive, it follows that i s must be 0, implying that o (i s) = 0.5. O

This property is useful in practice, particularly whenever © = 6Oyap, since it guarantees
that employing a Gaussian approximation on top of a MAP-trained network will not reduce the
original classification accuracy. Virtually all state-of-the-art models in deep learning are trained
via MAP estimation and sacrificing the classification performance that makes them attractive in
the first place would be a waste.

As our central theoretical contribution, we show that for any x € R”, as § — oo, the value of
|z(6x)] in (3.6) goes to a quantity that only depends on the mean and covariance of the Gaussian
over the weights. Moreover, this property also holds in the finite asymptotic regime, far enough
from the training data. This result implies that one can drive the confidence closer to the uniform
(one-half) far away from the training points by shifting |z (x)| closer to zero by controlling the
Gaussian. The following lemma is needed to get the desired result.

Lemma 3.4. Let A € R™" and z € R" withm > n, then |Az||*> > s2. (A)]|z]?.
Proof. By SVD, A = USV T. Notice that U, V are orthogonal and thus are isometries, and that
S is a rectangular diagonal matrix with n non-zero elements. Therefore,

n
IUSVTIP = ISV 2> =) stV T 2)}

i=1

40

3.2 Being A Bit Bayesian Mitigates Asymptotic Overconfidence

n
> spin(A)) (VT 2)7
i=1
= sain(DIV 27 = s3in (D127 (3.7)
thus the proof is complete. O

We formalize our main result in the following theorem.

Theorem 3.5 (All-layer approximation). Let fy : R" — R be a binary ReLU classification
network parametrized by 0 € R? withd > n, and let N'(0 | i, X)) be the Gaussian approxima-
tion over the parameters. Then for any input x € R”",

lim o(jz(8x)|) < o [, (3.8)
§—o0 Smin(J)V /8 Amin(X)
where u € R”" is a vector depending only on |1 and the n X p matrix J 1= g—“ is the Jacobian

of u w.r.t. 6 at u. Moreover, if fy has no bias parameters, then there exists o > 0 such that for
any § > «a, we have that

o(|z(6x)]) < Slim o(|z(6x)]).

Proof. By Lemma 3.1 there exists an @ > 0 and a linear region R, along with u € R” and
¢ € R, such that for any § > «, we have that §x € R and the restriction fy|g can be written as
uTx + c. Note that, for any such §, the vector u and scalar ¢ are constant w.r.t. §x. Therefore
for any such §, we can write the gradient g(8x) as follows:

ASu T x) dc u|t dc
gBx) = ——— —| =8—| x+ —
90 |, 00l 09|, " 06l
1
= S(JTx + 5V c|M). (3.9)
Hence, by (3.6),
S T
12(6x)] = [6u' x + c|

V1+7/8g(6x)T Xg(8x)
8uTx + $0)

JUH /882 T+ 19 cl,)TE(U T + 19l
B Sl(u'x + 30|
B/ +7/8(Tx + EVcl) T Tx + 195 cl)

Now, notice that as § — oo, 1/ 82 and 1 /6 goes to zero. So, in the limit, we have that

u x|
Vr/8(UTx)TEUTx)

lim |z(6x)| =
§—o00

41

3 Fixing Asymptotic Overconfidence

Using the Cauchy-Schwarz inequality and Lemma 3.6, we can upper-bound this limit with

e[l xl

lim |2(8x)| < :
§—o00 \/ﬂ/Slmin(Z)”JTx”z

Notice that J T € R?*" with d > n by our hypothesis. Therefore, using Lemma 3.4 on || J " x||2
in conjunction with $yin(J) = Smin(J T), we conclude that

lim [2(5x)] < [l || 1] I
500 \/71/8 Amin(Z) 52, (J) |1 x]|2
flue]|

(3.10)

w8 hin(2)

thus the first result is proved.

To prove the second statement, let L := limg_, o, |z (dx)|. Since L is the limit of |z| g (dx)] in
the linear region Q given by Lemma 3.1, it is sufficient to show that the function (0, co] — R
defined by § = |z|p(dx)] is increasing.

For some suitable choices of u € R” that depends on i, we can write the restriction of the
“point-estimated” ReLU network f;,|o(x) as u " x by definition of ReLU network and since we

assume that f has no bias parameters. Furthermore, we let the matrix J := g—’g| u to be the
Jacobian of u w.r.t. 6 at u. Therefore for any § > o, we can writ:

|6u T x|
1zlo(6x)| =
V14+7/882(JTx)TE(JTx)
|8al
1+ 7/882b°
where for simplicity we have let ¢ := u'x and b := (J"x)T X(J "x). The derivative is
therefore given by
d S|al
—lzlo(6x)| = —————
ds (14 82b)2|5|

and since X is positive-definite, it is non-negative for § € (0, 00]. Thus we conclude that
|z| o (8x)| is an increasing function. O

The following question is practically interesting: Do we have to construct a probabilistic
(Gaussian) uncertainty to the whole ReLU network for the previous property (Theorem 3.5)
to hold? Surprisingly, the answer is no. The following theorem establishes that a guarantee
similar to Theorem 3.5, is feasible even if only the last layer’s weights are assigned a Gaussian
distribution. This amounts to a form of Bayesian logistic regression where the features are
provided by the ReLLU network. First, we state the following lemma.

Lemma 3.6. Let x € R”" be a vector and A € R™" be an SPD matrix. If Anin(A) is the
minimum eigenvalue of A, then x T Ax > Amin|lx||2.

42

3.2 Being A Bit Bayesian Mitigates Asymptotic Overconfidence

Proof. Since A is SPD, it admits an eigendecomposition 4 = QAQ T and A = A2 A% makes
sense. Therefore, by keeping in mind that O T x is a vector in R”, we have

xTAx = xTQA%A%QTX = ||A%QTX||2
=Y L0 T)? = Amin(4) D (0T x)?

i=1 i=1
= Amin (A Q T X)1? = Amin(4) |1 x]1%,

where the last equality is obtained since |Q Tx||> = x" QT Qx and by noting that Q is an
orthogonal matrix. 0

Using this lemma, we can show the result.

Theorem 3.7 (Last-layer approximation). Let ¢ : R — R be a binary linear classifier
defined by g(¢(x)) := w' ¢(x) where ¢ : R" — RS is a fixed ReLU network and let N'(w |
W, X) be the Gaussian approximation over the last-layer’s weights. Then for any input x € R",

. [l
81l>n;o o(]z(6x)|) < U(m) 3.11)

Moreover, if ¢ has no bias parameters, then there exists o > 0 such that for any § > «, we have
that

0(jz(8x)]) = lim o(jz(8x))).

Proof. By Lemma 3.1 of Hein et al. (2019) there exists & > 0 and a linear region R, along with
U € R4*" and ¢ € R4, such that for any § > o, we have that §x € R and the restriction ¢|g
can be written as Ux + ¢. Therefore, for any such &,

luT (8Ux + ¢)|
V14 7/8@Ux +b)TX(@BUx + ¢)
B luT (Ux + 30)|
\/8% + /8 (Ux + 50)T Z(Ux + 3¢)

|z 0 (@R)(8x)| =

Now, notice that as § — oo, 1/82 and 1/ goes to zero. So, in the limit, we have that

" (Ux)|
Vr/8(Ux)TE(Ux)

Jim |z o0 ($[r)(6x)] =

Using the Cauchy-Schwarz inequality and the Lemma 3.6, we can upper-bound the limit with

. Il Ux]]
1 o 1)
oim |z 0 (¢|R)(8x)| < a8 o (D) [UA
[l

V7 /8 Anin(2)

43

3 Fixing Asymptotic Overconfidence

— 1
3 0.8 | 0.8 |
g L 0.6 L
“g 0.4 0.4 1
O 0.2 1 0.2 1
0 ; : . 0 : . .
0 10 20 30 40 0 10 20 30 40
§ 8
(a) MAP (b) Bayesian

Figure 3.3: Confidence (mean and +3 standard deviation) of the dataset in Fig. 3.2 as a function of §.

which concludes the proof for the first statement.

For the second statement, since the previous limit is the limit of |(z| g)(§x)| in the linear region
R, it is sufficient to show that the function (0, co] — R defined by § — |z|gr(6x)]| is increasing.
For some U € R?*" that depends on the fixed parameter of ¢, we write the restriction ¢| g (x) as
Ux by definition of ReLU network and since ¢ is assumed to have no bias parameters. Therefore
for any § > «, we can write as a function of §:

5u T Ux|
1(z]@)(6x)| =
V1+7/882(Ux)T X (Ux)
|8al
1+ 7/882bh
where for simplicity we have let a := /LTUX and b = (Ux)TE (Ux). The derivative is
therefore given by
$lal

d
—=<1zle)(6x)| = —————
dé (1 + 82b)2 3]

and since X is positive-definite, it is non-negative for § € (0,00]. Thus we conclude that
|(z| @) (8x)| is an increasing function. O

We show, using the same toy dataset and Gaussian-based last-layer Bayesian method as in
Fig. 3.2, an illustration of the previous results in Fig. 3.3. Confirming the findings, for each
input x, the Gaussian approximation drives |z(8x)| to a constant for sufficiently large §. Note
that on true data points (§ = 1), the confidences remain high and the convergence occurs at some
finite §.

Taken together, the results above formally validate the usage of the common Gaussian approx-
imations of the weights distribution, both in Bayesian (MacKay, 1992¢; Graves, 2011; Blundell
et al., 2015, etc.) or non-Bayesian (Franchi et al., 2019; Lu et al., 2020, etc.) fashions, on ReLU
networks for mitigating overconfidence problems. Furthermore, Theorem 3.7 shows that an all-
layer Gaussian approximation or Bayesian treatment (i.e. on all layers of a NN) is not required
to achieve control over the confidence far away from the training data. Put simply, even being
“just a bit Bayesian” is enough to overcome at least asymptotic overconfidence.

We will show in the experiments (Section 3.2.6) that the same Bayesian treatment also miti-
gates asymptotic confidence in the multi-class case. However, extending the theoretical analysis

44

3.2 Being A Bit Bayesian Mitigates Asymptotic Overconfidence

to this case is not straightforward, even with analytic approximations such as those by Gibbs
(1998) and Wu et al. (2019).

3.2.1 Laplace Approximations

The results in the previous section imply that the asymptotic confidence of a binary ReLLU classi-
fier with a Gaussian approximation—either via a full or last-layer approximation—can be driven
closer to uniform by controlling the covariance. In this section, we analyze the case when a
Bayesian method in the form of a Laplace approximation is employed for obtaining the Gaus-
sian. Although Laplace approximations are currently less popular than variational Bayes (VB),
they have useful practical benefits: (i) they can be applied to any pre-trained network, (ii) when-
ever the approximation (3.6) can be employed, Proposition 3.3 holds, and (iii) no re-training
is needed. Indeed, Laplace approximations can be attractive to practitioners who already have
a working MAP-trained network, but want to enhance its uncertainty estimates further without
decreasing performance.

The principle of Laplace approximations is as follows. Let p(6 | D) o« p(0)]_[x,yGD p(y |
x, 0) be the posterior of a network fy. Then we can obtain a Gaussian approximation p(6 |
D) ~ N (0 | u, X) of the posterior by setting t = Oyap and X := (—V; log p(6 | D)|gy.p) L
the inverse Hessian of the negative log-posterior at the mode. In the binary classification case,
the likelihood p(y | x, 6) is assumed to be a Bernoulli distribution with parameter o (fy(x)).
The prior p(6) is assumed to be an isotropic Gaussian N'(6 | 0,21).

While the prior variance (73 is tied to the MAP estimation (it can be derived from the weight
decay), it is often treated as a separate hyperparameter and tuned after training (Ritter et al.,
2018a). This treatment is useful in the case when one has only a pre-trained network and not the
original training hyperparameters. Under this situation, in the following proposition, we analyze
the effect of (Tg on the asymptotic confidence presented by Theorem 3.5.

Proposition 3.8 (All-layer Laplace). Let fg be a binary ReLU classification network modeling
a Bernoulli distribution p(y | x,0) = Ber(co(fy(x))) with parameter 0 € R%. Let N(0 | ., X)
be the posterior obtained via a Laplace approximation with prior N'(6 | 0, Ugl), H be the
Hessian of the negative log-likelihood at |1, and J be the Jacobian as in Theorem 3.5. Then for
any input x € R", the confidence o(|z(x)|) is a decreasing function of 03 with limits

. | f1u ()]

|

i, TN = “(1 T xmax(H)quuZ)
iim o(12(0) = o(1fu).

Proof. The assumption on the prior implies that —log p(6) = 1/2607(1/ 031)6 + const, which
has Hessian 1/0¢ 1. Thus, the Hessian of the negative log posterior —log p(6 | D) = —log p(6)—
log]_[x’yGD p(y | x,0)is 1 /031 + H. This implies that the posterior covariance X' of the
Laplace approximation is given by

-1
1

T = (-21 + H) . (3.12)
0

45

3 Fixing Asymptotic Overconfidence

Therefore, the ith eigenvalue of X foranyi = 1,...,nis

2
1 (o

Ai(X) = 102 + Ai(H) 1+ 02 (H)

(3.13)

For alli = 1,...,n, the derivative of A;(X) w.r.t. ag is 1/(1 + ag)ti(H))z which is non-
negative. This tells us that A;(X') is a non-decreasing function of Ug. Furthermore, it is also
clear that 03 /(1 + agki(H)) goes to 1/A;(H) as ag goes to infinity, while it goes to O as crg
goes to zero.

Now, we can write

/)|
Vi+7/8 T 1(E)QTd)?

lz(0)| = (3.14)

where ¥ = Qdiag(A;(X),....A4(X)) QT is the eigendecomposition of ¥. It is therefore
clear that the denominator of the r.h.s. is a non-decreasing function of og. This implies |z (x)] is
a non-increasing function of og.

For the limits, it is clear that A, (X)) has limits 1/A < (H) and 0 whenever ag — oo and
02 — 0, respectively. From these facts, the right limit is immediate from Lemma 3.6 while the

left limit is directly obtained by noticing that the denominator goes to 1 as ag — 0. O
The following is the last-layer version of the previous proposition.

Proposition 3.9 (Last-layer Laplace). Ler g : R? — R be a binary linear classifier defined
by g o ¢(x) := w'(x) where ¢ : R" — R? is a ReLU network, modeling a Bernoulli
distribution p(y | x,w) = B(co(g o ¢(x))) with parameter w € R%. Let N'(w | j1, X) be the
posterior obtained via a Laplace approximation with prior N'(6 | 0, agl) and H be the Hessian
of the negative log-likelihood at ju. Then for any input x € R”", the confidence o(|z(x)|) is a
non-increasing function of 03 with limits

. 1T (x)])
lim o (|z(x)]) <
AN e “(1 + V78 ke (D)9 (1) 2

lim o(z(x)) = o(ln ¢()).

Proof. The assumption on the prior implies that —log p(w) = 1/2w (1 /O'gl)Jw + const,
which has Hessian 1/ O'gl . Thus, the Hessian of the negative log posterior —log p(w | D) =
—log p(w) —log]_[x,yeD p(y | x,w)is 1/031 + H. This implies that the posterior covariance
X of the Laplace approximation is given by

-1
1
Y = (—21 + H) . (3.15)
)
Therefore, the ith eigenvalue of X foranyi =1,...,n1is
1 2
2:(2) % (3.16)

T 1o+ A(H) 1+ 02A(H)

46

3.2 Being A Bit Bayesian Mitigates Asymptotic Overconfidence

For all i = 1,...,n, the derivative of A;(X) w.r.t. o is 1/(1 + oZA;(H))* which is non-
negative. This tells us that A;(X) is a non-decreasing function of crg. Furthermore, it is also
clear that 03 /(1 + Ug/li(H)) goes to 1/A;(H) as Ug goes to infinity, while it goes to O as Ug
goes to zero.
Now, we can write.
T
lz(0)] = i 9l : (3.17)
J1+H7/8 Y 0(2)(QTp(x))?

where ¥ = Qdiag(A;(X),...,A4(X)) QT is the eigendecomposition of X¥. It is therefore
clear that the denominator of the r.h.s. is a non-decreasing function of og. This implies |z (x)] is
a non-increasing function of 03.

For the limits, it is clear that Ay, (X) has limits 1/Apax(H) and O whenever 03 — 00 and
02 — 0, respectively. From these facts, the right limit is immediate from Lemma 3.6 while the

left limit is directly obtained by noticing that the denominator goes to 1 as og — 0. U

The result above shows that the “far-away” confidence decreases (up to some limit) as the
prior variance increases. Meanwhile, we recover the far-away confidence induced by the MAP
estimate as the prior variance goes to zero. One could therefore pick a value of og as high as
possible for mitigating overconfidence. However, this is undesirable since it also lowers the
confidence of the training data and test data around them (i.e. the so-called in-distribution data),
thus, causing underconfident predictions. Another common way to set this hyperparameter is by
maximizing the validation log-likelihood (Ritter et al., 2018a). This is also inadequate for our
purpose since it only considers points close to the training data.

Inspired by Hendrycks et al. (2019) and Hein et al. (2019), we simultaneously prefer high
confidence on the in-distribution validation set and low confidence (high entropy) on the out-of-
distribution validation set. Let D := = {(xi,yi)}7, be a validation set and D := {Xi}7_, be an
out-of-distribution dataset. We then pick the optimal 00 by solving the following one-parameter
optimization problem:

argmax — Zlog p(3i | Xi, D) + AH[p(y | X7, D)], (3.18)

() l—l

where A € [0, 1] is controlling the trade-off between both terms. The first term in (3.18) is the
standard cross-entropy loss over D while the second term is the negative predictive entropy over
D. Alternatively, the second term can be replaced by the cross-entropy loss where the target is
the uniform probability vector. In all our experiments, we simply assume that D is a collection
of uniform noise in the input space.

3.2.2 Related Work

The overconfidence problem of deep neural networks, and thus ReLU networks, has long been
known in the deep learning community (Nguyen et al., 2015), although a formal description
was only delivered recently. Many methods have been proposed to combat or at least detect this
issue. Post-hoc heuristics based on temperature or Platt scaling (Platt et al., 1999; Guo et al.,

47

3 Fixing Asymptotic Overconfidence

1.0 1.0 1.0 1.0
’ 0.9 0.9 0.9 0.9
0.8 xx i || os x* i || os x& s ([l os
+ + +
0.7 L 0.7 L - 0.7 Ch 0.7
0.6 0.6 0.6 0.6
0.5 0.5 0.5 0.5
1.0 'i 1.0 1.0 1.0
0.9 0.9 0.9 0.9
os | Mgt fos | Mgty [los | Mgty [tos
0.7 ‘ 0.7 ‘ 0.7 ‘ 0.7
0.6 0.6 0.6 0.6
0.5 0.5 0.5 0.5
(a) MAP (b) Temp. scaling (c) LLLA (d) Full Laplace

Figure 3.4: Binary (top) and multi-class (bottom) toy classification problem. Background shades repre-
sent confidence estimates. Background shades in (d) are obstructed by the data—the full Laplace yields
confidence estimates that are high only in the data regions.

2017; Liang et al., 2018) are unable to detect inputs with arbitrarily high confidence far away
from the training data (Hein et al., 2019).

Many works on uncertainty quantification in deep learning have recently been proposed. Gast
& Roth (2018) proposed lightweight probabilistic networks via assumed density filtering. Ma-
linin & Gales (2018;2019); Sensoy et al. (2018) employ a Dirichlet distribution to model the dis-
tribution of a network’s output. Lakshminarayanan et al. (2017) quantify predictive uncertainty
based on the idea of model ensembling and frequentist calibration. Hein et al. (2019) proposed
enhanced training objectives based on robust optimization to mitigate this issue. Meinke & Hein
(2020) proposed a similar approach with provable guarantees. However, they either lack in their
theoretical analysis or do not employ probabilistic or Bayesian approximations. Our results,
meanwhile, provide a theoretical justification to the commonly-used Gaussian approximations
of NNs’ weights, both Bayesian (Graves, 2011; Blundell et al., 2015; Louizos & Welling, 2016;
Maddox et al., 2019a, etc.) and non-Bayesian (Franchi et al., 2019; Lu et al., 2020, etc.).

Bayesian methods have long been thought to mitigate the overconfidence problem on any
neural network (MacKay, 1992b). Empirical evidence supporting this intuition has also been
presented (Liu et al., 2019; Wu et al., 2019, etc.). Our results complement these with a theo-
retical justification for the ReLU-logistic case. Furthermore, our theoretical results show that,
in some cases, an expensive Bayesian treatment over all layers of a network is not necessary
(Theorem 3.7). Our results are thus theoretically validating the usage of Bayesian generalized
linear models (Gelman et al., 2008) (especially in conjunction with ReLU features) and last-
layer Bayesian methods (Snoek et al., 2015; Wilson et al., 2016a;b; Riquelme et al., 2018); and
complementing the empirical analyses of Ober & Rasmussen (2019) and Brosse et al. (2020).

3.2.3 Experiments

We corroborate our theoretical results via four experiments using various Bayesian methods with
Gaussian approximations. In Section 3.2.4 we visualize the confidence of 2D binary and multi-
class toy datasets. In Section 3.2.5 we empirically validate our main result that the confidence of

48

Conf. (Temp.) Conf. (MAP)

Conf. (LLLA)

0.5 frrrrrrsressssnnnnnnnnnns

3.2 Being A Bit Bayesian Mitigates Asymptotic Overconfidence

(a) Bin.-MNIST

0 5 10 15 20

(b) Bin.-CIFAR-10

0 50 100 150 200 O 5 10 15 20

§
(¢) Bin.-SVHN

§
(d) Bin.-CIFAR-100

Figure 3.5: Confidence of MAP (top row), temperature scaling (middle row), and LLLA (bottom row) as
functions of § over the test sets of binary classification datasets. Thick blue lines and shades correspond
to means and +3 standard deviations, respectively. Dotted lines signify the ideal uniform confidence.

binary classification datasets approaches finite constants as § increases. Furthermore, we show
empirically that this property also holds in the multi-class case, along with the usefulness of
Bayesian methods in standard OOD detection tasks in Section 3.2.6. Finally, in Section 3.2.7,
we show that our results also hold in the case of last-layer Gaussian processes.

Unless stated otherwise, we use LeNet (for MNIST) or ResNet-18 (for CIFAR-10, SVHN,
CIFAR-100) architectures. We train these networks by following the procedure described by
Meinke & Hein (2020): We train all networks we use in Table 3.2 for 100 epochs with batch
size of 128. We use ADAM and SGD with 0.9 momentum with the initial learning rates of
0.001 and 0.1 for MNIST and CIFAR-10/SVHN/CIFAR-100 experiments, respectively, and we
divide them by 10 at epoch 50, 75, and 95. Standard data augmentations, i.e. random crop
and standardization are also used for training the network on CIFAR-10. To obtain the optimal
hyperparameter 03, we follow (3.18) with A set to 0.25.

We mainly use a last-layer Laplace approximation (LLLA) where a Laplace approximation
with an exact Hessian or its Kronecker factors is applied only to the last layer of a network.
Whenever the (binary) probit approximation cannot be used, we compute the predictive distri-
bution via Monte Carlo integration with 100 posterior samples. Other Laplace approximations
that we use will be introduced in the subsection where they are first employed. Besides the
vanilla MAP method, we use the temperature scaling method (Guo et al., 2017) as a baseline
since it claims to give calibrated predictions in the frequentist sense. In particular, the optimal
temperature is found via a validation log-likelihood maximization using PyCalib (Wenger et al.,
2019). For each dataset that we use, we obtain a validation set via a random split from the
respective test set.” Lastly, all numbers reported in this section are averages along with their
standard deviations over 10 trials.

2We use 50, 1000, and 2000 points for the toy, binary, and multi-class classification cases, respectively.

49

3 Fixing Asymptotic Overconfidence

Table 3.1: OOD detection for far-away points in binary classification settings. The in-distribution datasets
are Binary-MNIST, Binary-CIFAR-10, Binary-SVHN, and Binary-CIFAR-100. Each OOD dataset is
obtained by scaling uniform noise images in the corresponding input space of the in-distribution dataset
with 6 = 100. All values are means and standard deviations over 10 trials.

MAP +Temp. +LLLA

MMC | AUROC 1 MMC | AUROC 1 MMC | AUROC 1
Binary-MNIST 99.9+0.0 - 100.0£0.0 - 79.4£0.9 -
Noise (§ = 100) 100.0+0.0 0.240.1 100.0+0.0 45.1£5.8 67.5+0.8 99.6+0.1
Binary-CIFAR-10 96.3£0.3 - 90.5£0.6 - 76.41+0.3 -
Noise (6 = 100) 98.9£1.0 11.3£10.3 97.6£2.2 11.3£10.3 50.6+0.1 99.5+0.1
Binary-SVHN 99.440.0 - 98.240.1 - 80.740.1 -
Noise (6 = 100) 98.8£0.6 50.5+42.3 95.9£3.0 50.5£42.3 51.2+0.6 99.8+0.1
Binary-CIFAR-100 94.5£0.5 - 74.5+2.9 - 66.7£0.5 -
Noise (6 = 100) 100.0£0.0 1.5+0.7 100.0£0.0 0.0+0.0 53.5+0.1 93.6+1.8

3.2.4 Toy Dataset

Here, the dataset is constructed by sampling the input points from & independent Gaussians.
The corresponding targets indicate from which Gaussian the point was sampled. We use a 3-
layer ReLU network with 20 hidden units at each layer. We use the exact Hessian and the
full generalized-Gauss-Newton (GGN) approximation of the Hessian for the case of LLLA and
all-layer Laplace approximations, respectively.

We show the results for the binary and multi-class cases in Fig. 3.4. The MAP predictions
have high confidence everywhere except at the region close to the decision boundary. Temper-
ature scaling assigns low confidence to the training data, while assigning high confidence far
away from them. LLLA, albeit simple, yields high confidence close to the training points and
high uncertainty otherwise, while maintaining the MAP’s decision boundary. Furthermore, we
found that the all-layer Laplace approximation makes the aforementioned finding stronger: the
boundaries of the high-confidence regions are now closer to the training data.

3.2.5 Binary Classification

We validate our theoretical finding by plotting the test confidence of various binary classification
datasets as functions of §. Each dataset is constructed by picking two classes which are most
difficult to distinguish, based on the confusion matrix of the corresponding multi-class problem.

As shown in Fig. 3.5, both MAP (top row) and temperature scaling (middle row) methods are
overconfident for sufficiently large §. Meanwhile, LLLA which represents Bayesian methods,
mitigates this issue: As § increases, the confidence converges to some constant close to the
uniform confidence (one-half). Moreover, when § = 1 (the case of in-distribution data), LLLA
retains higher confidence.

Table 3.1 further quantifies the results where we treat collections of 2000 uniform noise
images scaled by § = 100 as the OOD datasets. Note that, while the resulting data points
are not in the image space anymore, this construction is useful to assess the effectiveness of
the Bayesian methods in unbounded problems. We report the standard metrics proposed by
Hendrycks & Gimpel (2017): mean-maximum-confidence (MMC) and area-under-ROC-curve

50

3.2 Being A Bit Bayesian Mitigates Asymptotic Overconfidence

Table 3.2: Multi-class OOD detection results for MAP, last-layer Laplace (LLLA), (all-layers) diagonal
Laplace (DLA), and (all-layers) Kronecker-Factored Laplace (KFLA). Each “far-away” Noise dataset is
constructed as in Table 3.1 with § = 2000. All values are averages and standard deviations over 10 trials.

MAP +Temp. +LLLA +DLA +KFLA

MMC| AUROCtY MMC| AUROC{ MMC| AUROCY MMC| AUROCt MMC| AUROC}
MNIST - MNIST 99.240.0 - 995+0.1 - 984402 - 845402 - 929403 -
MNIST - EMNIST 823400 89.240.1 87.6+14 889+£02 702£19 920404 545103 877404 587404 89.6+03
MNIST - FMNIST 663+£0.0 974400 752425 97.140.1 560418 982402 425400 963401 399405 98.6+0.1
MNIST - Noise (§ = 2000) 100.04£0.0 0.1£0.0 1000400 6.844.1 99.940.0 9.6+07 849413 537431 556420 97.3+04
CIFAR-10 - CIFAR-10 97.10.1 - 954402 - 928411 - 88.440.1 - 86.540.1 -
CIFAR-10 - SVHN 625400 958+0.1 546406 961400 459416 964401 433401 955401 43.040.1 94.840.1
CIFAR-10 - LSUN 745400 91.940.1 669406 922401 574£19 927404 490405 928403 47.6:04 922402
CIFAR-10 - Noise (§ = 2000) 987402 109404 98.4+02 100405 17.4+0.0 100.0£0.0 60.742.0 89.6+1.1 61.8£15 87.6+0.9
SVHN - SVHN 98.5+0.0 - 974402 - 932410 - 88.840.0 - 90.840.0 -
SVHN - CIFAR-10 704400 954400 641409 954400 434421 972401 380400 97.6+0.0 412401 97.5+0.0
SVHN - LSUN 717400 955400 65410 956400 443423 973401 39.540.7 975402 420406 97.5+0.1
SVHN - Noise (§ = 2000) 98.740.1 11.9406 984+0.1 11.0£0.6 275401 99.6:0.0 60816 928406 624420 940405
CIFAR-100 - CIFAR-100 81.240.1 - 789408 - 746402 - 764402 - 734402 -
CIFAR-100 - SVHN 535400 788401 492412 79240.1 427403 804402 460401 79.6+02 414400 80.1+0.2
CIFAR-100 - LSUN 507400 81.0+£0.1 46.8%1.1 81.14+0.1 398402 826402 435403 815402 397404 81.6+03
CIFAR-100 - Noise (§ = 2000) ~ 99.54+0.1 28402 994+0.1 2.6£02 59+0.0 99.940.0 415415 842409 37.1+13 842408

(AUROC). Confirming our finding in Fig. 3.5, LLLA is able to detect OOD data with high ac-
curacy: for the chosen values of §, the MMC and AUROC values are close to the ideal values of
50 and 100, respectively. Both MAP and temperature scaling fail to do so since their confidence
estimates saturate to one. These results (i) confirm our theoretical analysis, (ii) show that even
a simple Bayesian method yields good uncertainty estimates, and (iii) temperature scaling is not
calibrated for outliers far-away from the training data.’

3.2.6 Multi-class Classification

We also show empirically that Bayesian Table 3.3: Wall-clock time (in second) of posterior
methods yield a similar behavior in multi- inferences and predictions over test sets.

class settings. On top of LLLA, repre-
senting Bayesian methods, we employ var-
ious other scalable Laplace approximation Inference

MNIST CIFAR-10 SVHN CIFAR-100

H T : : MAP - - - -
techniques: dlagqnal Laplace apprgmmauon +Temp, 0.0 00 00 0.0
(DLA) where a diagonal Gaussian is used to y11 A 1.8 23.0 337 231
approximate the posterior over all layers of +DLA 1.3 229 336 23.0
a network, and Kronecker-factored Laplace +KFLA 4.3 78.1 1151 78.6
approximation (KFLA) (Ritter et al., 2018a) Prediction
where a matrix-variate normal is used to ap- MAP 0.4 12 27 1.2
proximate the posterior over all layers. We *1emp. 0.4 1227 1.2

. +LLLA 0.9 1.7 4.3 1.6
use 20 posterior samples for both DLA and 5 73 1000 260.6 100.4
KFLA. +KFLA 21.5 151.0 3928 151.7

For each training dataset we evaluate all
methods both in the non-asymptotic (the corresponding OOD test datasets, e.g. SVHN and
LSUN for CIFAR-10) and asymptotic (Noise datasets) regime. Each “far-away” Noise dataset
is constructed by scaling 2000 uniform noise images in the corresponding input space with
8 = 2000. As in the previous section, we report the MMC and AUROC metrics.

3This confirms the theoretical arguments of Hein et al. (2019).

51

3 Fixing Asymptotic Overconfidence

As presented in Table 3.2, all the Bayesian methods improve the OOD detection performance
of the base models both in the non-asymptotic and asymptotic regime. Especially in the asymp-
totic regime, all the Bayesian methods perform well, empirically confirming our hypothesis that
our theoretical analysis carries over to the multi-class setting. Meanwhile, both MAP’s and
temperature scaling’s MMC and AUROC are close to 100 and 0, respectively.* Moreover, while
LLLA is the simplest Bayesian method in this experiment, it often outperforms DLA and KFLA.
Our finding agrees with the prior observation that last-layer Bayesian approximations are often
sufficient (Ober & Rasmussen, 2019; Brosse et al., 2020).

In Table 3.3, we present the computational cost analysis in terms of wall-clock time. We
measure the time required for each method to do posterior inference (or finding the optimal tem-
perature) and to make predictions. While MAP and temperature scaling are fast, as we have
shown in the previous results, they are overconfident. Among the Bayesian methods, since the
cost of LLLA is constant w.r.t. the network depth, we found that it is up to two orders of mag-
nitude faster than DLA and KFLA when making predictions. All in all, this finding, combined
with the previous results, makes this simple Bayesian method attractive in applications.

3.2.7 Last-layer Gaussian Processes

It has been shown that Gaussian-approximated Table 3.4: Multi-class OOD detection results for
linear models with infinitely many features, deep kernel learning (DKL). Each “far-away” Noise
e.g. two-layer networks with infinitely wide dataset is constructed as in Table 3.2 with § = 2000.
hidden layers, are equivalent to Gaussian pro- Values are averages and std. dev. over 10 trials.

cesses (Neal, 2012). In the language of The-

- ; : Train - Test MMC| AUROC t
orem 3.7, this is the case when the dimension
.Of the featu@ space R? goes to infinity. .It ﬁﬁiﬁgﬁg@T zggigg 944 iO.l-
is therefore interesting to see, at least empir- \NIST - EMNIST 70.64-0.1 08.84-0.0
ically, whether low asymptotic confidence is ~ MNIST - Noise 58.6+£0.5 99.7+0.0
also attained in this case. CIFAR-10 - CIFAR-10 97.54+0.0 _
While unlike LLLA, deep kernel learn- CIFAR-10- SVHN 50.6+0.1 98.6£0.0
ing (DKL, Wilson et al., 2016a;b) is not a CIFAR-10-LSUN 77.9+0.3 93.4+0.1
post-hoc method, it is a suitable model for CIFAR-10 - Noise 36.5+0.7 98.5+0.1
showcasing our theory in the case of last- SVHN-SVHN 98.6+0.0 -
layer Gaussian processes. We therefore train gzgﬁ SI:JAI\II{'IO ;é;ig? gg?ig?
stochastic variational DKL models (Wilson ¢ypN - Noise 43,6407 99.440.0
et al., 2016b) which use the same networks
. . . . CIFAR-100 - CIFAR-100 80.5+0.0 -
used in the previous experiment (minus the ~EAR-100 - SVHN 72740.1 63.140.1
top layer) as their feature extractors, follow- CIFAR-100 - LSUN 66.840.4 69.740.3
ing the implementati()n provided by GPy- CIFAR-100 - Noise 43.1£1.1 90.3£0.7

Torch (Gardner et al., 2018). The training
protocol is identical as before. To compute each prediction, we use 20 samples from the Gaus-
sian process posterior. We are mainly interested in the performance of DKL in term of multi-
class OOD detection (both in asymptotic and non-asymptotic regimes), similar to the previous
section.

The results are presented in Table 3.4. When compared to the results of the MAP estimation
in Table 3.2, we found that DKL is able to mitigate asymptotic overconfidence (see results

4Le. the worst values for those metrics.

52

3.3 ReLU-GP Residual

4 1.0 100 1.0
2 0.9 50 0.9
0.8 0.8

0 0 »
0.7 0.7
-2 0.6 —50 0.6
—4 0.5 -100 0.5

—4 -2 0 2 4 -100 =50 0 50 100
(a) Zoomed in (b) Zoomed out

Figure 3.6: Confidence estimates of a Laplace-approximated BNN.

against the Noise dataset). These results empirically verify that our analysis also holds in the
non-parametric infinite-width regime. Nevertheless, we found that LLLA generally outperforms
DKL both in term of MMC and AUROC metrics. This finding, along with the simplicity and
efficiency of LLLA make it more attractive than DKL, especially since DKL requires retraining
and thus cannot simply be applied to pre-trained ReLU networks.

3.3 ReLU-GP Residual

We have seen that BNNs, even with a simple Gaussian approximate posterior, can help to mit-
igate this problem in binary classifications. The crux of the proof is the observation that in an
outer linear region, the predictive distribution (via the probit approximation) over the prediction
v+ of a test input x4 is given by’

8T
p(y*=1|8x*,1>)w< s) (3.19)

V14 7/8v(6x4)

where o is the logistic-sigmoid function, u is the parameter vector corresponding to the linear re-
gion and the quadratic function v maps §x to the variance of the network output. Unfortunately,
both the numerator and denominator above are linear in § and thus altogether p(y = 1 | §x«, D)
only converges to a constant strictly less than 1 as § — oo, not necessarily the ideal uniform
confidence prediction. BNNs can therefore still be overconfident, albeit less so than the point-
estimated counterpart (Fig. 3.6).

From Section 3.1 it becomes clear that the asymptotic miscalibration of ReLU BNNs is due
to the finite number of ReL.U features used, which results in only quadratic variance growth. An
infinite-ReL.U GP with the cubic spline kernel has cubic variance growth, which, combined with
the probit approximation, yields uniform confidence in the limit. But of course, full GP infer-
ence is prohibitively expensive. In this section, we propose a cheap, post-hoc way to extend any
pre-trained ReLU BNN with the aforementioned GP by extending the cubic spline kernel and
exploiting its two important properties. We will see that the resulting model approximates the
full GP posterior and combines the predictive power of the BNN with a guarantee for asymptot-
ically uniform confidence. While in our analysis we employ network linearization for analytical
tractability, the method can be applied via MC-integration as well (cf. Section 3.3.5).

SWe omit the bias parameter for simplicity.

53

3 Fixing Asymptotic Overconfidence

3.3.1 The Double-Sided Cubic Spline Kernel

The ReLU activation function ReLU(z) := max(0, z) (Nair & Hinton, 2010) has become the
de facto choice of non-linearity in deep learning. Given an arbitrary real number c, it can be
generalized as ReLU(z;c¢) := max(0,z — ¢), with the “kink” at location ¢. An alternative
formulation, useful below, is in terms of the Heaviside function H as®

RelLU(z;¢c) = H(z —c¢) - (z —c¢).

We may define a collection of d such ReLLU functions evaluated at some point in R as a function
¢ : R — R? defined by

$(2) := (ReLU(z;¢1), ..., ReLU(z;¢q)) .

We call this function the ReLU feature map, which can be interpreted as “placing” ReLLU func-
tions at different locations in R.

Consider a linear model f : R x R? — R defined by g(x;w) := w'$(x). Suppose
¢ regularly places d generalized ReLLU functions centered at evenly-spaced points ((:i)l‘.l=1 on
[Cmin» Cmax] € R, where ¢iin < ¢max. If we consider a Gaussian prior

p(w) :=N(w | 0,02d ™ (cmax — Cmin) 1),
then as d — o0, the distribution over g is a Gaussian process with mean 0 and covariance:

K'(x.x"; Cmin. 02)
_ 1 1 _ (3.20)
:= 02 H(X — Cmin) (3(763 — Cin) —E(xz — 2)(x +x) + (X — Cmin)xx,)a

where the superscript 1 denotes the fact that this function is over a 1-dimensional input space,
X := min(x, x), and H is the Heaviside step function. To show this, note that the covariance of
the output of f is given by

cov(f(x). f(x)) = o2 E— () T (')

d
c — Cmi
_ Uzy > ReLU(x: ¢i)ReLU(x'; ¢;)
i=1
[— Cmi d
:azyzl‘l(x—Ci)H(x/—Ci)(x_Ci)(x/_ci)

i=1

d
Cmax — Cmin .
= azT E H(min(x,x") — ¢;) (¢} — ci(x +x') + xx7), (3.21)

i=1

SH(x) = 1if x > 0 and H(x) = 0 otherwise.

54

3.3 ReLU-GP Residual

13 e

0

~10 : : : ‘ : ‘ ‘ : : | : :
—10 — 0 5 10 —10 —5 0 5 10 —10 —5 0 5 10 —10 —5 0 5 10
(@)d=6 (b)d =20 (¢c)d =60 (d)d — o0

Figure 3.7: The construction of a GP prior with the proposed “ReLU kernel”, as the limiting covariance
of the output of a Bayesian linear model with d ReLU features (grey), arranged at regular intervals,
oriented away from the origin. Red curves are function samples with the thick one being the mean, and
the red shade their std. dev. With finite d (a-c), the variance grows only quadratically, leading to the
asymptotic overconfidence in ReLU BNNs. But, with d — oo (d), the variance grows cubically away
from the origin. The fact that this kernel has zero mean and negligible variance near the origin enables us
to easily combine this GP with standard finite pre-trained ReLU BNNs.

where the last equality follows from the fact that both x and x’ must be greater than or equal to
¢;i, and by expanding the quadratic form in the second line. Since (3.21) is a Riemann sum, in
the limit of d — o0, it is expressed by the following integral

dlim cov(f(x), f(x") = o2 - H(x —c)(c? —c(x + x') + xx") dc

Cmin
min('iQCde)
= 02 H(X — Cmin) c? —c(x + x) + xx'dc

Crmin

_ 1 1
= 0”H(% — cmm)[g(f = Cain) = 5 (% =) (X)) + (2 - cmm)xx’}

where we have defined z := min(X, ¢max). The term H (X — cmin) has been added in the sec-
ond equality as the previous expression is zero if X < ¢y, (since in this region, all the ReLU
functions evaluate to zero). Note that

H(X — cmin) = H(Xx — cmin) H(X" — ¢min)

is itself a positive definite kernel. We also note that c.x can be chosen sufficiently large so that
[—Cmax» Cmax] contains the data for sure, e.g. this is anyway true for data from bounded domains
like images, and thus we can set z = ¥ = min(x, x’).

Since the expression (3.20) does not depend on cp,x, We can consider the limit cpx — 00,
and thus this kernel is non-zero on (¢yin,). This covariance function is the cubic spline kernel
(Wahba, 1990). The name indicates that posterior mean of the associated GP is piecewise-cubic.
But it also has variance K (X, X; Cmin, 02) Which is cubic in x and negligible for x close to ¢pyjn.

The cubic spline kernel is one-sided in the sense that it has zero variance on (—00, ¢pin), and
therefore is unsuitable for modeling over the entire domain. This is easy to fix by first setting
Cmin = 0 to obtain a kernel K,1 (x,x";0%) = K! (x,x’;0,02) which is non-zero only on (0, 00).
Now, by an entirely analogous construction with infinitely many ReLU functions pointing to
the opposite direction (i.e. left) via ReLU(—z; ¢), we obtain another kernel K ll (x,x";0%) =

55

3 Fixing Asymptotic Overconfidence

K!(—x,—x";02), which is non-zero only on (—o00, 0). Combining them together, we obtain the
following kernel, which covers the whole real line:

K'(x,x';0%) = K} (x,x";0%) + K} (x,x;0?).

See Fig. 3.7 for an intuition. Note in particular that the variance K1(0, 0) at the origin is zero.
This is a key feature of this kernel that enables us to efficiently combine the resulting GP prior
with a pre-trained BNN.

For multivariate input domains, we define

1 n
K(x,x";0%) = - Z K'(xi, x!;02) (3.22)

i=1

for any x, x’ € R" with n > 1. We here deliberately use a summation, instead of the alternative
of a product, since we want the associated GP to add uncertainty whenever at least one input
dimension has non-zero value. (By contrast, a product K (x, x’) is zero if one of the K (x;, x7)
is zero.) We call this kernel the double-sided cubic spline (DSCS) kernel. Similar to the one-
dimensional case, two crucial properties of this kernel are that it has negligible variance around
the origin of R” and for any x4 € R” and § € R, the value K(8xx, 6xx) is cubic in 8.

3.3.2 ReLU-GP Residual

For simplicity, we start with real-valued BNNs and discuss the generalization to multi dimen-
sional output later. Let f : R” x R? — R be an L-layer real-valued ReLU BNN parametrized
by 0 € R4. Since f by itself can be asymptotically overconfident, it has residual in its uncer-
tainty estimates far from the data. Our goal is to extend f with the GP prior that arises from
the DSCS kernel, to model this uncertainty residual. We do so by placing infinitely many ReLLU
features over its input space R” by following the DSCS kernel construction in the previous sec-
tion. Then, we arrive at a zero-mean GP prior GP(f | 0, K) over a real-valued random function
f : R” — R. Following previous works (Wahba, 1978; O’Hagan, 1978; Qiu et al., 2020), we
use this GP prior to model the residual of f by defining

fi=f+7F, where f ~GP(0,K), (3.23)

and call this method ReLU-GP residual (RGPR).

We now analyze RGPR. Besides linearization, we assume that the DSCS kernel has, without
loss of generality, a negligibly small value at the data, i.e. K(x;,x«) ~ 0 forall (x;)/_, and any
i.i.d. test point x«. Note that this can always be satisfied by centering and scaling. The error of

this approximation is stated in the following.

Lemma 3.10. Let 0 < § < 1, and let 62 > 0 be a constant. For any x,x’ € R" with
Ix]12, |1x")|> < 8 we have K(x,x";0%) € O(83).

Proof. First, note that ||x||2, |x'||?> < & implies x;, x; < & foralli = 1,...,n. By definition of
the 1D DSCS kernel K} (i, X[0?), it is upper bounded by 02(%53) since X; = min(x;, x;) <
d; and similarly for Kl1 (xi, X[02) by the symmetry of the DSCS kernel. Thus K (x;, X0 0?) €
0(83) and hence K (x, x"; 0%) also is, since it is just the average of {K!(x;, X0 02)};;1. O

56

3.3 ReLU-GP Residual

Using this approximation and the following lemma by Higham (1994), we show the approxi-
mate GP posterior of f.

Lemma 3.11 (Higham, 1994). Let Am = b and (A + AAyn = b + Ab, and let E and d be a
matrix and vector with non-negative components, respectively. Assume that |AA| < || E|| and
|AB| < e||d||, and that | A=Y ||| E|| < 1, where & > 0. Then,

_e(lATM gl + lim 1A~ ED
- L—elA7H]E]

[m —n| (3.24)

O]

Proposition 3.12 (RGPR’s GP Posterior). Let f : R" x R? — R be a ReLU BNN with weight
distribution N(0 | ., X), and let D := (x;,y;); =: (X,Y) be a dataset. Assume that
lxi 1%, |x||?> < 8 foralli = 1,...,m and any i.i.d. test point x € R", with 0 < § < 1. Then
given an i.i.d. input point x« € R", under the linearization of f w.rt. theta around u, the GP
posterior over [y is a Gaussian with mean and variance

E(fx | D) ~ f(xsip) +hiCTHY — f(X;p), (3.25)
Var(fy | D) ~ g(xx) T Zg(xs) + K(xs, x:) — by C 7y, (3.26)

respectively, where hy := (Cov(f(x«), f(x1))....,Cov(f(xx), f(xm))) T, while C is the co-

variance matrix (Cov(f(x,-), f(xj)));.?, and f(X;pn) = (f(x1i i), ..., f(xmip)T. More-
over, the approximation errors are in

o(G°lIcTHICTHY = f(X5)/ =8 ICHD)

and

o(@°UCTH + IICTHIIC™ had)/ (1 =83 1CHD)
for (3.25) and (3.26), respectively.

Proof. Under the linearization of f w.r.t. 6 around u, we have
f:60) ~ [) + Vo [(x:0)], (0 — o).
~———
=:g(x)

So, the distribution over the function output f(x), where 6 has been marginalized out, is given
by f(x) ~ N(f(x;pn),g(x)" ¥g(x))—see (1.38). The definition of RGPR in (3.23) thus
implies that "

@)~ N(f(x), g(x) T Zg(x) + K(x,x)), (3.27)

since f(x) is a sum of two Normal r.v.s. Note that we can see this distribution as a marginal
distribution of a Gaussian process with a mean function f(-;) and a kernel K defined by

(x,x") — g(x)TEg(x/) + K(x,x).

57

3 Fixing Asymptotic Overconfidence

Thus, we write the following GP prior

f~GP(f(-:p), K). (3.28)

Our goal is to find the corresponding GP posterior under the dataset D.

Let x, € R" be an arbitrary test point. The GP posterior at x«, i.e. the predictive distribution
of fx := f(xx), is thus identified by the following mean and variance (see Section 1.4):

E(fs | D) = £) + Ko, X)TK (X, X) TN Y = f(X;) (3.29)
Var(fx | D) = K (xs, Xx) — K (s, X) T K(X, X) VK (x4, X), (3.30)

where we have used the shorthand K (x«, X) := (K(xx,x1),.... K (Xx,Xm)) " and K(X, X)
is the m x m kernel matrix of K under the training inputs X. For the latter we can also write
K(X,X) = C + K(X, X), where C is the kernel matrix of g(x) " ¥g(x’) under X.

Since we assume || xp, ||, ||x[|> < 8 foralli = 1,...,m and any i.i.d. test point x € R”, we
have K(x, x;) ~ 0. Thus, we have K (X, X) ~ C and

K(xe, X) & (g(x) T Zg(x1)..... g(xa) T Tg(xm)) T
= (Cov(f(xx). f(x1)). ... Cov(f(xx). f(xD) T = ha,

where the covariances above are of the network’s outputs under the linearization. And so the
mean and the variance of the GP posterior simplify to

E(fu | D) ~ f(xaip) + hICTNY = £(X: 1))
and

Var(ﬁ: | D) &~ g(xs) ' Tg(xxs) + K(xx, X5) — hIC_lh*.

We have thus obtained both (3.25) and (3.26).

The only thing that remains is to obtain the approximation errors of both the mean and vari-
ance above. Using Lemma 3.11, we find the error of (C 4+ K(X, X))~ 1 (Y — f(X; u)) in (3.29)
due to RGPR, i.e. we quantify the error caused by § presents in K(X, X). We set A = C,
AA = K(X,X),and b = Y — f(X;un). Moreover, we set m = C~ (Y — f(X;u)) and
n=(C+K(X,X) 1Y - f(X;u)). For simplicity, we let E be a matrix where all its compo-
nents are 1 and set ¢ = §3¢ for some constant ¢ s.t. the conditions in Lemma 3.11 are satisfied.
Note that the §3 term in ¢ is so that the condition || AA|| < ¢|| E|| is satisfied, since one can write
|AA| = co|E|| where co € O(83). Moreover, we set d = 0 since Ab = 0. Plugging these
into (3.24), we thus have
gA| IIMII)

_ GO .+ ner
I == (1—83||A—1||

Combining this with the O(83) error in the approximation K (x«, X) & hs, we conclude that
using (3.25) as an approximation of (3.29) incurs an error of

of SIA lml ’
1 =83l a=t|

58

3.3 ReLU-GP Residual

which is small since § € (0, 1).

For the approximation error of the variance, we use A, AA, E, and ¢ as before. But, here
we set b = hy, Ab = K(x«,X), and d = 1. Moreover, we set m = C 'hy and n =
(C + K(X, X)) ' (h« + K(x4, X)). Then, plugging them into Lemma 3.11, we obtain

AT+ 1A lm)

— c O .
im—ni e o =)

Combining this with the approximation error in K (x«, X) & h4 as before, we obtain the desired

result. 0

While this result is applicable to any Gaussian weight distribution, an interesting special case
is where we assume that the BNN is well-trained, i.e. we have a Gaussian (approximate) poste-
rior p(6 | D) which induces (i) accurate prediction and (ii) high output confidence on each of
the training data. In this case, due to (i), the last term of (3.25) is negligible since the residual
Y — f(X; u) is close zero. Moreover, the last term in (3.26) can be upper-bounded by

m
hiC ™ e < Amaxll s |® = Amax Y Cov(f(x), f(x))*,

i=1

where Ama. denotes the largest eigenvalue of C~!. The last summand above can further be
upper-bounded via the Cauchy-Schwarz inequality by

Cov(f(xx), f(xm))* < Var(f (x+))Var(f (xm)).

But assumption (ii) implies that Var(f(x;)) is close to zero for alli = 1,...,m. Thus, if f isa
pre-trained ReLU BNN, we approximately have

Fo ~ N(f (s 1), 81 D + K, (3.31)

which can be thought of as arising from the sum of two Gaussian random variables
fe ~ N(f(xai0). g0 Zgs) and fu ~ N(0, Ky).

Thus, we are back to the definition of RGPR in (3.23). That is, unlike previous works on mod-
eling residuals with GPs (Wahba, 1978; O’Hagan, 1978; Qiu et al., 2020), the GP posterior of
RGPR can approximately be written as a posteriori f plus a priori f RGPR can hence be
applied post-hoc, after the usual training process of the BNN. Furthermore, we see that RGPR
does indeed model only the uncertainty residual of the BNN since it only affects the predictive
variance. In particular, it does not affect the output mean of the BNN and thus preserves its pre-
dictive accuracy—this is often desirable in practice since the main reason for using deep ReLU
nets is due to their accurate predictions.

Generalization to BNNs with multiple outputs is straightforward. Let f : R" x R — Rk
be a vector-valued, pre-trained, L-layer ReLU BNN with R(osterior N@ | n,X)onRY. We
assume that the following real-valued random functions (f DR — R)le are i.i.d. as the

GP prior GP(0, k) (3.23). Thus, for any x. € R”, defining ﬁ = (ﬁ(l), cee, :(k))T, we have

59

3 Fixing Asymptotic Overconfidence

p(ﬁ) = N(0, K. I), and so under the linearization of f, this implies that the marginal GP
posterior of RGPR is approximately given by the following k-variate Gaussian

p(fa | 6. D) ~ N (fu(xx). I ZJ + Kil). (3.32)

We can do so since intuitively (3.32) is simply obtained as a result of “stacking” k independent
Am’s each of which satisfies Proposition 3.12. The following lemma shows that asymptotically,

the marginal variances of f* grow cubically as we scale the test point.

Proposition 3.13 (Asymptotic Variance Growth). Let f : R" x R? — RX pe a pre-trained
ReLU network with posterior N (0 | i, X) and f be obtained from f via RGPR. Suppose that
the linearization of f w.r.t. 6 around v is employed. For any x« € R" with x« # 0 there exists
o > 0 such that for any § > o and each ¢ = 1,.. ., k, the variance Var(f©) (8x4)) under (3.32)
is in ©(83).

Proof. Let x4« € R™ with x4 # 0 be arbitrary. By Lemma 3.1 and definition of ReLU network,
there exists a linear region R and real number o > 0 such that for any § > «, the restriction of
f to R can be written as

fIr($x:6) = W(bx) + b,

for some matrix W € R¥*N and vector b € R¥, which are functions of the parameter 6,
evaluated at w. In particular, for each ¢ = 1, ..., k, the c¢-th output component of f|g can be
written as
@, — T
SR = we (8x) + b,

where w, and b are the c-th row of W and b, respectively.

Letc € {1,...,C} and let jc(6xx) be the c-th column of the Jacobian J(8xx) as defined in
(1.37). Then by deﬁmtlon of p(f* | X%, D), the variance of f (c)| R(8xx)—the c-th diagonal
entry of the covariance of p(f* | x4, D)—is given by

Var(F© g (6xx)) = je(6x2) T Zje(6x4) + K (8, 8x5).

Now, from the definition of the DSCS kernel in (3.22), we have

1 <& 1 & 402 83 &
(B, Bxa) = D K (8xui 8xui) = - 233?)@. =— D K (xai, xui) € O(8).

i=1 i=1 i=1

Furthermore, we have

:
je@xa) T je@x) = (8(Vawel,)Tx + Vobelu) T (8(Vowel,)Tx + Vobel).

Thus, je(8x4) " X je(8xx) is quadratic in 8. Therefore, Var(f(c)lR(&c*)) is in ©(83). O

Equipped with this result, we are now ready to state our main result. The following theorem
shows that RGPR yields the ideal asymptotic uniform confidence of 1/k given any pre-trained
ReLU classification BNN with an arbitrary number of classes.

60

3.3 ReLU-GP Residual

Theorem 3.14 (Uniform Asymptotic Confidence). Let f : R" x R? —>~Rk be a k-class pre-
trained ReLU network equipped with the posterior N (0 | i, X) and let f be obtained from f
via RGPR. Suppose that the linearization of f and the multiclass probit approximation (1.42) is
used for approximating the predictive distribution p(yx | 6Xx«, J?: D) under]7 For any nonzero
input x« € R" and for every classc = 1,...,k,

. ~ 1
lim p(y« =c | 8x«, f,D) = —.
§—00 k

Proof. Let xx # 0 € R” be arbitrary. By Lemma 3.1 and definition of ReLU network, there
exists a linear region R and real number o > 0 such that for any § > «, the restriction of f to
R can be written as

SIr(x) = W(8x) + b,

where the matrix W € R¥*" and vector b € R¥ are functions of the parameter 6, evaluated at
. Furthermore, fori = 1,..., k we denote the i-th row and the i-th component of W and b as
w; and b;, respectively. Under the linearization of f, the marginal distribution (3.32) over the
output f(6x) holds. Hence, for each ¢ = 1,..., k, under the multiclass probit approximation,
the predictive distribution restricted to R is given by

- exp(me(8xx) ke(6xx))
Py« =c[6xs,D) ~ %
>_i=1 exp(m; (8xx) ki (8xx))
1
! + Z;;c exp(m;i(§xx) ki (6xx) —me(6xx) ke (Sx*))’
=:zjc(6xx)
where foralli = 1,...,k,
mi(Sxx) = fOIr(x; p) = w] (6x) + bi € R, (333)
and 1
ki(6x) = (1 + /8 (vii (§xx) + K(6xx,8x%)))” 2 € Rop. (3.34)

In particular, for all i = 1,...,k, note that m(6xx); € O(§) and x(6x); € @(1/8%) since
;i (8x4) + k(8xx, 8x4) is in ©(83) by Proposition 3.13. Now, notice that forany ¢ = 1,...,k
andanyi € {1,...,k}\ {c}, we have
Zic(8xx) = (m; (8xx) ki (X)) — (M (8xx) ke (8xx))
= (k; (0x4) Wi —Kke(8xx) wc)T(Sx*) 4+ ki (6x4) bi —kc(6xx) be .

@(1/5%) @(1/5%) @(1/5%) @(1/5%)

Thus, it is easy to see that limg_, o Zic (6xx) = 0. Hence we have

~ . 1 1 1
lim p(y« =c | 8xx,D) = lim 2 = . = —,
800 500 [+ 31, exp(zic(Bxx)) 14 Y 4 exp(0) K

as required. O

61

3 Fixing Asymptotic Overconfidence

4 120 4 120
105 105
2 90 2 90
75 75
45 45
-2 30 -2 30
15 15
—4 = 0 —4 0
—4 -2 0 2 4 —4 -2 0 2 4
(a) Input only (b) Input and hiddens

Figure 3.8: The variance of f, under the assumption that RGPR is applied only on the input space (a) or
on the input and hidden spaces of a ReLU network f (b).

As a sketch of the proof for this theorem, consider the special case of binary classification.
Here, we notice that the variance v in the probit approximation (3.19) is now a cubic function of
8 under RGPR, due to Proposition 3.13. Thus, it is easy to see that the term inside of o decays
like 1/ V8 far away from the training data. Therefore, in this case, p(y = 1 | §x«, D) evaluates
to 0(0) = 1/2 as § — oo, and hence we obtain the asymptotic maximum entropy prediction.

We remark that the pre-trained assumption on f in Proposition 3.13 and Theorem 3.14 can
be removed. Intuitively, this is because under the scaling of § on x4, the last term of (3.26)
is in ©(82). Thus, it is asymptotically dominated by the ®(§3) growth induced by the DSCS
kernel in the second term. We however present the statements as they are since they support the
post-hoc spirit of RGPR.

3.3.3 Extending RGPR to Non-Asymptotic Regimes

While the previous construction is sufficient for modeling uncertainty far away from the data, it
does not necessarily model the uncertainty near the data region well. Figure 3.8(a) shows this
behavior: the variance of the GP prior equipped with the DSCS kernel grows slowly around the
data and hence, even though Theorem 3.14 will still apply in the limit, RGPR has a minimal
effect on the uncertainty of the BNN in non-asymptotic regimes.

A way to address this is to adapt RGPR’s notion of proximity between input points. This
can be done by using the higher-level data representations already available from the pre-trained
NN—a test point close to the data in the input space can be far from them in the representation
space, thereby the DSCS kernel might assign a large variance. Based on this intuition, we extend
RGPR by additionally placing infinite ReLU features on the representation spaces of the point-
estimated network f, induced by the BNN f, where is the mean of the Gaussian posterior of
f, as follows.

Foreach{ = 1,..., L — 1 and any input x, let ny be the size of the £-th hidden layer of f,
and hg) be the £-th hidden representation of x«. By convention, we assume that nyg = n and
hio) = xx. Now, we place for each £ = 0,..., L — 1 an infinite number of ReL.U features on
the representation space R”¢, and thus we obtain a random function f(() : R*¢ — R distributed
as GP(0, K). Then, given that N = 25;01 ng, we define f: R” — R by f:= f\(o) + o+
fA (L=1) je. we assume that { f (Z)}le_l are independent. This function is therefore a function

0
over all representation (including the input) spaces of f,, distributed as the additive Gaussian

62

3.3 ReLU-GP Residual

Algorithm 1 MC-prediction for RGPR. Differences from the standard procedure are in grey.

Input:
Pre-trained L-layer, ReLU BNN classifier f with posterior N'(6 | w,). Test point

xx € R". Centering and scaling function std. Hyperparameters (aéz)é‘;ol. Number of
MC samples s.
1: (lzﬁf))lL:*l‘ = forward(fy, x«) > Get representations of x4 via a forward pass on f,.
2: vg(xx) =]L;()l k(std(/zf,f')). std(/sz)): Uf) > Compute the prior variance of f:
3: fori =1,...,sdo
4: O ~N@O |, X)
S filw) = f(xe)
6: ‘}i(.\‘*) ~ N0, v; (,\‘*A)I) > Sample from the marginal of GE-DSCS.
7: fi(xs) = fi(xx) + fi(xx) > Compute RGPR’s output f(x«;6;).
8: end for
9: return s~ Y 7, softmax(ﬁ(X)) > Monte Carlo averaging under RGPR.

process GP(0, Zf:_ol K). In other words, given all representations /i := (h Sf)) 5;01 of x, under
Ju, the marginal over the function output f (hy) is given by

p(f = N(0. 2125 K (1.1 02)). (3.35)

We can then use this definition of f as a drop-in replacement in (3.23) to define RGPR. Fig-
ure 3.8(b) visualizes the effect: the low-variance region modeled by f becomes more compact
around the data.

The analysis from the previous section still applies here since it is easy to see that the variance
of fx in (3.35) is still cubic in §. In practice, however, it is not necessarily true anymore that
each hg) is close to the origin in R”¢. To fix this, one can center and scale each hg) via stan-
dardization using the mean Excp(h® (x)) and scaled standard deviation r/Var,ep(h© (x))
with r > 1, before evaluating the kernel in (3.35) (these quantities only need to be computed
once). Note that by tuning the DSCS kernel’s hyperparameter o2 such that confidence over the
training data is preserved (cf. the next section), RGPR becomes insensitive to the choice of r
since intuitively the tuning procedure will make sure that the DSCS kernel does not assign large
variance to the training data. Therefore, in practice we setr = 1.

Algorithm 1 provides a pseudocode of RGPR for classification predictions via MC integration.
The only overhead compared to the usual MC-integrated BNN prediction step are (marked in
grey) (i) a single additional forward-pass over f,, (ii) L evaluations of the DSCS kernel K,
and (iii) sampling from a k-dimensional diagonal Gaussian. The additional costs are negligible
compared to the cost of obtaining the standard MC-prediction of f in the first place, which, in
particular, requires multiple forward passes.

The kernel hyperparameters (062) ﬁ;ol =: 02 control the variance growth of the DSCS kernel.
Since RGPR is a GP model, one way to tune o2 is via marginal likelihood maximization. How-
ever, this leads to an expensive procedure even if a stochastic approximation (Hensman et al.,
2015) is employed since the computation of the RGPR kernel (3.32) requires the network’s Ja-
cobian and the explicit kernel matrix need to be formed. Note however that those quantities are
not needed for the computation of the predictive distribution via MC-integration (Algorithm 1).

63

3 Fixing Asymptotic Overconfidence

4 10 4 10 4 10 4 1.0
5 09, 09, 09, 0.9
0.8 0.8 0.8 0.8
0 0 0 0
0.7 0.7 : 0.7 0.7
=2 06 2 06 2 06 2 0.6
—4 05 -4 05 -4 05 -4 0.5
25 00 25 25 00 25 25 00 25 25 00 25
(a) No RGPR (b) Marg. Likelihood (¢) CV with £, (d) CV with Loop

Figure 3.9: Different objectives for tuning o2. Shades are predictive confidence. Dy consists of uniform
noise images.

Hence, a cheaper yet still valid option to tune o2 is to use a cross-validation (CV) which depends
only on predictions over validation data D, (Rasmussen & Williams, 2005, Ch. 5).

A straightforward way to perform CV is by maximizing the validation log-likelihood (LL).
That is, we maximize the objective

L1 (0?) = Z log p(yx | X%, D; 02).

X3V €Dyal

However, this tends to yield overconfident results outside the training data (Fig. 3.9). Thus, we
can optionally add an auxiliary term to Ly that depends on some OOD dataset Doy, resulting
in
2 k
Loop(0?) 1= L1 (0?) + A Z Zlog p(y =i | x«,D;0?).

X« €Dgyr i=1

In particular, the additional term is simply the negative cross-entropy between the predictive dis-
tribution and the uniform probability vector of length k, with A = 0.5 as proposed by Hendrycks
et al. (2019). Note that both objectives can be optimized via gradient descent without the need
of backprop through the network. See Fig. 3.9 for comparison between different objectives. In
Section 3.3.5, we discuss the choice of Dgy.

3.3.4 Related Work

Mitigation of asymptotic overconfidence has been studied recently: Hein et al. (2019) noted,
demonstrated, and analyzed this issue, but their proposed method does not work for large 6.
Kristiadi et al. (2020) showed that a Bayesian treatment could mitigate this issue even as § — oo.
However, the analysis is restricted to binary classification and the asymptotic confidence of
standard ReLU BNNs only converges to a constant in (0, 1). In a non-Bayesian framework,
Meinke & Hein (2020) used density estimation to achieve the uniform confidence far away from
the data. Nevertheless, this property has not been previously achieved in the context of BNNs.
Unlike a line of works that connects NNs and GPs (Cho & Saul, 2009; Lee et al., 2018a; Khan
et al., 2019, etc.) which studies properties of NNs as GPs in an infinite-width limit, we focus
on combining finite-width BNNs with a GP a posteriori. Though similar in spirit, our method
thus differs from Wilson et al. (2020) which propose a combination of a weight-space prior
and a function-space posterior for efficient GP posterior sampling. Our method is also distinct

64

3.3 ReLU-GP Residual

from other methods that model the residual of a predictive model with a GP (Blight & Ott,
1975; Wahba, 1978; O’Hagan, 1978; Qiu et al., 2020, etc.) since RGPR models the uncertainty
residual of BNNSs, in contrast to the predictive residual of point-estimated networks, and RGPR
does not require further posterior inference given a pre-trained BNN.

Cho & Saul (2009) proposed a family of kernels for deep learning, called the arc-cosine ker-
nels. The first-order arc-cosine kernel can be interpreted as a ReLU kernel but it only has a
quadratic variance growth and thus is not suitable to guarantee the uniform asymptotic confi-
dence. While higher-order arc-cosine kernels have super-quadratic variance growth, they ulti-
mately cannot be interpreted as ReLU kernels, and hence are not as natural as the cubic-spline
kernel in the context of ReLU BNNS.

3.3.5 Empirical evaluations

We empirically validate Theorem 3.14 in the asymptotic regime and the effect of RGPR on
non-asymptotic confidence estimates in multiclass image classification. The LeNet architecture
(LeCun et al., 1998) is used for MNIST, while ResNet-18 (He et al., 2016) is used for CIFAR-10,
SVHN, and CIFAR-100—details in Appendix D.2. For each dataset, we tune o' via a validation
set of size 2000 obtained by splitting the corresponding test set. Following Hein et al. (2019),
Dout consists of smoothed noise images, which are obtained via random permutation, blurring,
and contrast rescaling of the original dataset—they do not preserve the structure of the original
images and thus can be considered as synthetic noise images. Particularly for ResNet, we use
the outputs of its residual blocks to obtain input representations /..

3.3.6 Asymptotic Regime

In this experiment, we use the last-layer Laplace approximation (LLL) as the base BNN. Results
with other, more sophisticated BNNs (Ritter et al., 2018a; Maddox et al., 2019a; Wilson et al.,
2016b) are in Appendix D.2—we observe similar results there. Figure 3.10 shows confidence
estimates of both the BNN and the RGPR-imbued BNN over 1000 samples obtained from each
of MNIST, CIFAR-10, SVHN, and CIFAR-100 test sets, as the scaling factor § increases. As
expected, the vanilla BNN does not achieve the ideal uniform confidence prediction, even for
large 6. This issue is most pronounced on MNIST, where the confidence estimates are far away
from the ideal confidence of 0.1. Overall, this observation validates the hypothesis that BNNs
have residual uncertainty, leading to asymptotic overconfidence that can be severe. We confirm
that RGPR fixes this issue. Moreover, its convergence appears at a finite, small §; without a
pronounced effect on the original confidence.

3.3.7 Non-Asymptotic Regime

We report results on standard dataset shift and out-of-distribution (OOD) detection tasks. For
the former, we use the standard rotated-MNIST and CIFAR-10-C datasets (Ovadia et al., 2019;
Hendrycks & Dietterich, 2019) and measure the performance using the following metrics: neg-
ative log-likelihood (NLL), the Brier score, expected calibration error (ECE), accuracy, and av-
erage confidence. Meanwhile, for OOD detection, we use five OOD sets for each in-distribution
dataset. The FPR@95 metric measures the false positive rate of an OOD detector at a 95% true
positive rate. We use LLL as the base BNN for RGPR and compare it against the MAP-trained
network, temperature scaling (TS, Guo et al., 2017), the method of Qiu et al. (2020) with the

65

3 Fixing Asymptotic Overconfidence

14 = = = BNN
5] \l BNN-RGPR
% “ ------ Uniform Conf.
E o5 "0 | S
=) f R
8 . | S
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ - ‘ ‘ ‘ e
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
o o o o
(a) MNIST (b) CIFAR-10 (¢) SVHN (d) CIFAR-100

Figure 3.10: Confidence of a vanilla BNN (LLL) and the same BNN with RGPR, as a function of §. Test
data are constructed by scaling the original test set. Curves are means, shades are &1 std. devs. Note that
in (b) and (d), even though close, the BNN does not achieve the uniform confidence.

NLL | Brier | Accuracy 1 Confidence |
6.0 1 1.5 1 1
0.8 | 0.8 |
4.0 1 1 0.6 | 0.6 |
2.0 | 0.5 | 0.4 0.4 1
0.2 | 0.2 |
0.0 ‘ ‘ ‘ 0 ‘ ‘ ‘ 0 ‘ ‘ ‘ 0 ‘ ‘ ‘
0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
1.00
MaP [Temp. Scaling [] Deep Ens.
0.75 1] Gp-DSCS fLLL JLLL-RGPR-LL : -

0.50 | JLLL-RGPR-OOD

| om0 |

Brier ECE MMC Acc

Figure 3.11: (Top) Rotated-MNIST x-axes are rotation angles. (Bottom) Corrupted-CIFAR-10—values
are normalized to [0, 1] and are averages over all types of corruption and all severity levels.

DSCS kernel (GP-DSCS), and Deep Ensemble (DE, Lakshminarayanan et al., 2017), which is
a strong baseline in this regime (Ovadia et al., 2019). We denote the RGPR tuned via £y and
Loop with the suffixes “-LL” and “~-O0D”, respectively. More results are in Appendix D.2.

On the rotated-MNIST benchmark, we observe in Fig. 3.11 that RGPR consistently improves
the base LLL, especially when tuned with Loop, while still preserving the calibration of LLL on
the clean data. LLL-RGPR attains better results than GP-DSCS, which confirms that applying a
GP on top of a trained BNN is more effective than on top of MAP-trained nets. Some improve-
ments, albeit less pronounced are also observed in CIFAR-10-C. For OOD detection (Table 3.5)
we find that LLL is already competitive with all baselines, but RGPR can still improve it further,
making it better than Deep Ensemble. Further results comparing RGPR to recent non-Bayesian
baselines (Lee et al., 2018c; Van Amersfoort et al., 2020) are in Appendix D.2.

Finally, we discuss the limitation of Loop. While the use of additional OOD data in tuning
o2 improves both dataset-shift and OOD detection results, it is not without a drawback: Loop
induces slightly worse calibration in terms of ECE (Table D.5 in Appendix D.2). This implies
that one can somewhat trade the exactness of RGPR (as assumed by Proposition 3.12) off with

66

3.3 ReLU-GP Residual

Table 3.5: OOD data detection in terms of FPR@95. All values are in percent and averages over five
OOD test sets and over 5 prediction runs.

Methods MNIST CIFAR-10 SVHN CIFAR-100
MAP 28.2 389 17.8 72.2
TS 28.4 349 17.6 71.9
DE 23.0 51.0 11.3 74.7
GP-DSCS 27.8 46.7 19.1 69.1
LLL 24.8 29.8 15.7 69.5
LLL-RGPR-LL 39 29.6 13.8 65.8
LLL-RGPR-OOD 3.6 24.2 9.6 63.0

better OOD detection. This trade-off is expected to a degree since OOD data are often close to
the training data. Hence, the single multiplicative hyperparameter 012 of each the DSCS kernel
in (3.35) cannot simultaneously induce high variance on outliers and low variance on the nearby
training data. Table D.9 (Appendix D.2) corroborates this: When a Dy, “closer” to the training
data (the 32x32 ImageNet dataset (Chrabaszcz et al., 2017)) is used, the ECE values induced
by Loop become worse (but the OOD performance improves further). Note that this negative
correlation between ECE and OOD detection performance also presents in state-of-the-art OOD
detectors (Section D.2.2.5). So, if the in-distribution calibration performance is more crucial
in applications of interest, £y is a better choice for tuning o2 since it still gives benefits on
non-asymptotic outliers, but preserves calibration better than Loop.

67

Chapter 4
Improving Non-Asymptotic Confidence

Estimates

The contents of this chapter are primarily based on:

Agustinus Kristiadi, Runa Eschenhagen, and Philipp Hennig. "Posterior Refinement Im-
proves Sample Efficiency in Bayesian Neural Networks." Advances in Neural Information

Processing Systems (NeurIPS). 2022.

Idea Analysis Experiment Code Writing

Agustinus Kristiadi 60% 80% 50% 50% 90%
Runa Eschenhagen 20% 20% 50% 50% 5%
Philipp Hennig 20% 0% 0% 0% 5%

And:

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. "Learnable uncertainty under Laplace
approximations." Uncertainty in Artificial Intelligence (UAI). 2021.

Idea Analysis Experiment Code Writing
Agustinus Kristiadi 30% 80% 100% 100% 85%
Matthias Hein 0% 0% 0% 0% 5%
Philipp Hennig 70% 20% 0% 0% 10%

And:

Kristiadi, Agustinus, Matthias Hein, and Philipp Hennig. "Being a Bit Frequentist Improves
Bayesian Neural Networks." International Conference on Artificial Intelligence and Statistics

(AISTATS). 2022.

Idea Analysis Experiment Code Writing
Agustinus Kristiadi 95% 95% 100% 100% 90%
Matthias Hein 5% 0% 0% 0% 5%
Philipp Hennig 0% 5% 0% 0% 5%

68

4.1 Refining the Approximate Posteriors of Neural Networks

We have seen in Chapter 3 that Bayesian neural networks are useful for calibrating the uncer-
tainty of test points that lie far away from the training data. However, as shown by Guo et al.
(2017) and Ovadia et al. (2019), standard Bayesian neural networks are also not generally cali-
brated near the training data. In this chapter, we, therefore, propose several methods that can be
used to improve the non-asymptotic uncertainty calibration of Bayesian neural networks.

In Section 4.1 we study the de facto method for approximating the predictive distributions of
Bayesian neural networks—few-sample Monte Carlo integration. While theoretically, it requires
many samples to be accurate, Monte Carlo integration can be used with few samples provided
that the weight-space approximate posterior is accurate. However, accurately approximating a
neural network’s posterior is very challenging and expensive. We thus propose a cheap, post-
hoc method for refining a parametric approximate posterior, which calibration performance can
match that of the gold-standard full-batch Hamiltonian Monte Carlo.

Meanwhile, in Section 4.2 we propose a post-hoc way to “train” the predictive uncertainty
of a Laplace approximation, without affecting its accuracy. The crux of the method is to es-
sentially embed the parameter space of a neural network into a higher dimensional space in a
particular way. Then, due to the added degrees of freedom, in this “augmented space”, one can
find a point that yields the same predictions as the original parameter but with a different local
curvature. Moreover, the Hessian matrix at that point depends on the free parameters introduced
by the augmentation. Thus, the Hessian matrix and therefore the uncertainty under a Laplace
approximation can be tuned to make the resulting Bayesian neural network better calibrated.

Finally, in Section 4.3, we show that a key to improving the calibration of a Bayesian neural
network is to follow the standard method used in non-Bayesian uncertainty quantification litera-
ture: the out-of-distribution (OOD) training (Hendrycks et al., 2019; Hein et al., 2019, etc). We
show several ways of incorporating OOD training data in Bayesian neural networks and show
that the simplest, most philosophically clean method, which simply adds an additional class to
the original network, is preferable.

4.1 Refining the Approximate Posteriors of Neural Networks

A prediction in a BNN amounts to an integration of the likelihood w.r.t. the (approximate) pos-
terior measure. Due to the non-linearity of NNs, no analytic solution to the integral exists, even
when the likelihood and the approximate posterior are both Gaussian. A low-cost, unbiased,
stochastic approximation can be obtained via Monte Carlo (MC) integration: obtain s samples
from the approximate posterior and then compute the empirical expectation of the likelihood
w.r.t. these samples. While MC integration is accurate for large s, because of the sheer size of
modern (B)NNs, virtually all BNNs use small s (typically 10 to 30, see (Blundell et al., 2015;
Louizos & Welling, 2016; 2017; Ritter et al., 2018a; Osawa et al., 2019; Maddox et al., 2019a;
Dusenberry et al., 2020, etc.)). Due to its well-known error scaling of ®@(1/4/s), intuitively, MC
integration with a small s is inadequate for an accurate prediction—yet, this has not been studied
in depth for BNNs. Furthermore, while linearization of an NN around a point estimate in the pa-
rameter space is an alternative to MC integration (Immer et al., 2021b; MacKay, 1992b; Foong
et al., 2019), it is generally costly due to the computation of per-example Jacobian matrices.

In this section, we study the quality of MC integration for making predictions in BNNs. We
show that few-sample MC integration is inaccurate for even an “easy” integral such as when the
domain of integration is the output space of a binary-classification BNNGs, cf. Fig. 4.1 (left). Fur-
ther, we show that its alternative, the network linearization, disagrees with large-sample MC in-

69

4 Improving Non-Asymptotic Confidence Estimates

02 031
o1 | 0.2 [JLA (s = 10000)
. s = 30; Error = 0.08 01 | DHMC (s = 10)
oL ‘ | | | | o ‘ | [Humc s = 600)
0 1000 2000 3000 4000 5000 ECE | NLL |
Num. of samples Metrics
(a) The Monte Carlo standard error to the integral (b) Calibration on the Fashion-MNIST dataset

[softmax(x) N'(x | 5,10%) dx € [0,1]

Figure 4.1: Left: Few-sample MC integration is inaccurate for computing classification predictive dis-
tribution: the standard error of the MC integration of the logistic-Gaussian integral is large for the
commonly-used (few) number of samples. Right: But one can still obtain good predictive performance
with a small s if a high-quality posterior approximation, e.g. HMC, is used.

tegration, making it unsuitable as a general-purpose predictive approximation method, i.e. when
the Gauss-Newton matrix is not employed.! Meanwhile, as indicated by full-batch Markov
Chain Monte Carlo methods (Neal et al., 2011; Hoffman et al., 2014) or even (the Bayesian in-
terpretation of) ensemble methods (Lakshminarayanan et al., 2017), few-sample MC integration
might still be useful for making predictions, provided that the approximate posterior measure is
“close enough” to the true posterior—cf. Fig. 4.1 (right). This implies that one should focus on
improving the accuracy of posterior approximations.

Nevertheless, prior methods for obtaining expressive posteriors (e.g., Louizos & Welling,
2017; Zhang et al., 2020) require either significant modification to the NN or storing many copies
of the parameters. Moreover, they require training from scratch and thus introduce a significant
overhead, which can be undesirable in practical applications. Therefore, we propose a post-
hoc method for “refining” a Gaussian approximate posterior by leveraging normalizing flows
(Rezende & Mohamed, 2015). Contrary to the existing normalizing flow methods with a priori
base distribution (e.g. A(0, I)), the proposed refinement method converges faster with shorter
flows, making it cheaper than the naive application of normalizing flows in BNNs. When used
in conjunction with last-layer BNNs, which have been shown to be competitive to their all-layer
counterparts (Daxberger et al., 2021a), the proposed method is simple, cheap, yet competitive to
even the gold-standard Hamiltonian Monte Carlo in terms of predictive performance.

4.1.1 Pitfalls of BNNs’ Approximate Predictive Distributions

We begin our analysis with some observations in obtaining high-performing approximate pre-
dictive distributions in BNNs. First, we observe that while accurate MC integration requires
many samples (Fig. 4.1(a)), one can “get away” with much fewer samples when the posterior
approximation accurately reflects the true posterior, as in the case of Hamiltonian Monte Carlo
(HMC). However, such accurate posterior approximations do not come cheaply: HMC and other
MCMC algorithms are generally prohobitively expensive for large neural networks (Izmailov
et al., 2021b). Alternatives to MC integration for obtaining predictive distributions are not gen-
erally applicable either and come with some biases, making the resulting approximation less
accurate. Moreover, linearization is also expensive during test time since per-example Jacobian

The generalized Gauss-Newton matrix is the exact Hessian matrix of a linearized network.

70

4.1 Refining the Approximate Posteriors of Neural Networks

MC 5=100 MC s= 10000 Probit
30] . . 0.20
s 0.018 0.018
[AV
20 | :] 0.017 013
2 0.10
10 1 0.05
0.00
-100 -50 0 50 100 100 -50 0 50 100 -100 -50 O 50 100
m ms ms

Figure 4.2: The (absolute) errors of the MC integration and the probit approximation for computing
I(my, s«) across different values of m, and s«. A trapezoid method with 20000 evaluation points is used
as a gold-standard baseline. Dots indicate the maximum errors. White indicates (near) zero error.

matrices need to be computed. All those observations motivate us to obtain a cheap—preferrably
post-hoc like the Laplace approximation—yet accurate like HMC, which we will discuss in the
next section.

4.1.1.1 Accurate MC integration requires many samples

We begin our analysis with the simplest yet practically relevant case. Let x, € R” and fi =
f(x+) € R be the output of a binary classifier f, with p(fx | x4, D) = N (fx | m«,s2) for
some m, € R and s2 € Rx¢. We are interested in approximating the integral (cf. Fig. 1.6)

I(ms,54) := p(y | x«,D) = [Rff(f*)f\/(f* | ma 53) dfs.

Note that this integral is prevalent in practice, e.g. in linearized or last-layer classification BNNs
(Daxberger et al., 2021b; Immer et al., 2021b; Eschenhagen et al., 2021). We compare the MC

integration
s

I(my, 5%) ~ %Zo(f*s) where fus ~ N (fi | 14, 52), (4.1)
i=1
with s = 100 against the probit approximation, using a trapezoid quadrature with 20000 evalua-
tion points to represent a gold-standard baseline. That is, we compute the discrepancy |T(m*, Sx)—
L (my, s%)| where T(m*, Sx) 18 1(m«, sx) computed either with MC integration or the probit ap-
proximation, and /(7 «, sx) obtained via the trapezoid method.

The results are in Fig. 4.2: Even with s = 100 samples—larger than the usual s = 10-30—
MC integration is inaccurate. Its error can be as high as 0.18, which is substantial considering
I(m«,s+) € [0,1]. As s increases beyond 10000, MC integration improves and eventually
overtakes the probit approximation, as to be expected given its theoretical guarantees. This
highlights the flaw of few-sample MC integration—accurate MC integration generally requires
large number of samples.

71

4 Improving Non-Asymptotic Confidence Estimates

4.1.1.2 Many-sample MC integration is not sufficient

However, even with a large s, MC integration can still Table 4.1: The expected calibration error
fail to yield good predictive performance in BNNs. (ECE) and negative log-likelihood (NLL)
This can happen when the approximation ¢(f) used of aLA (s = 10000) and HMC (s = 10).
in MC integration is an inaccurate approximation of
p(0 | D)—virtually the case for every parametric
BNN. Thankfully, there is some evidence that the er- F-MNIST

. LA 10.5+0.4 0.311£0.005
ror of MC integration might be relatively small in com- 3/ 34402 0.275-0.004
parison to the error generated by crude posterior ap- CIFARL10
proximations. As an extreme example, Deep Ensemble 49402 0.161-£0.001
(Lakshminarayanan et al., 2017) and its variants, even HgmC 42402 0.158--0.001
though they perform MC integration with a small num-
ber of samples (usually s = 5), generally yield better approximations to the predictive dis-
tributions. This is perhaps due to their multimodality, i.e. due to their finer-grained posterior
approximations.

Methods ECE | NLL |

To show this more concretely, consider the following experiment. We take Fashion-MNIST
(F-MNIST) pre-trained LeNet and CIFAR-10 pre-trained WideResNet-16-4. For each case,
we perform a last-layer Laplace approximation with the exact Hessian and a full-batch NUTS-
HMC (Hoffman et al., 2014), under the same prior and likelihood. We find in Table 4.1 that
HMC, even with few samples, yields better-calibrated predictive distribution than the LA with
three orders of magnitude more samples. This finding validates the widely-believed wisdoms
(Louizos & Welling, 2016; 2017; Dusenberry et al., 2020; Eschenhagen et al., 2021, etc.) that
highly accurate posterior approximations are most important for BNNs. Furthermore, this also
shows that with a fine-grained posterior approximation, the predictive performance of a BNN is
less sensitive to the number of MC samples, leading to better test-time efficiency.

4.1.1.3 Analytic alternatives to MC integration are not the definitive answer

Of course, fine-grained posterior approximations are Table 4.2: Calibration of MC integration
expensive. So, a natural question is whether one can s = 10000 and the multi-class probit ap-
keep a cheap but crude posterior approximation by re- proximation.

placing MC integration. Network linearization seems

. . . . Methods ECE NLL
to be a prime candidate to replace MC integration in the v v
case of Gaussian approximations (Immer et al., 2021b; F-MNIST
MacK 1992b). But i | bl . Fi MPA 3.3+0.2 0.281+0.002
MacKay, ‘). ut it poses several problems: irst, e 10.500.4 0.31140.005
it requires relatively expensive computation of the per-
CIFAR-10

example Jacobian, where for each test point xx, one \ o, 3.840.1 0.161-20.001
must store the associated d x k matrix, where d could pc 4.940.2 0.161+0.001
easily be tens of millions (e.g. in ResNets) and k could
be in the order of thousands (e.g. ImageNet). Second, while Immer et al. (2021b) argued that
network linearization is the correct way to make predictions in Gauss-Newton-based Gaussian
approximations, it is not generally applicable. We show this in Fig. 4.3: Everything else being
equal, MC integration (s = 10000) and linearization yield different results especially in terms
of predictive uncertainty. Since one should prefer MC integration in this many-sample regime,
linearization is thus not accurate for the general cases.

72

4.1 Refining the Approximate Posteriors of Neural Networks

D MC B Linearization

/////

(=] S N =)} [>]
L . L
N NNNNNNNNNNNNNNNNNNNN

-5 0 5 10 -1 0 1 0.2 0.4 0.6
(a) Predictive distributions. (b) Densities of pred. means. (c) Densities of pred. std. dev.

Figure 4.3: Predictive distributions (means and 95% confidence intervals), computed via a MC inte-
gration (s = 10000) and network linearization, of a BNN with a weight-space Gaussian approximate
posterior (a LA with the exact Hessian on a two-layer NN under a toy regression dataset).

Moreover, we show that the multiclass probit approximation (MPA), which is often used on
top of a linearized output distribution p(f(x«) | x«, D) to obtain the predictive distribution
p (¥« | x«, D) (Daxberger et al., 2021a; Eschenhagen et al., 2021), can also obscure the predic-
tive performance, albeit often for the better (Daxberger et al., 2021a; Eschenhagen et al., 2021).
To that end, we use the same experiment setting as Section 4.1.1.2 and Table 4.1, and compare
the MPA against MC integration. The results are in Table 4.2.

Indeed, we see that the MPA yields better-calibrated predictive distributions. However, this
results should be taken with a grain of salt: The MPA ignores the off-diagonal elements of the
covariance of p(f(xx) | Xx«,D), as shown in (1.42). That is, the MPA “biases” the predic-
tive distribution p(y | x«, D) since it generally assumes that fi has lower uncertainty than it
actually has. And since p(fx | x«, D) is usually induced by the LA or VB which are often un-
derconfident on large networks (Immer et al., 2021b; Sun et al., 2019; Lotfi et al., 2022), the bias
of MPA towards overconfidence thus counterbalances the underconfidence of p(fx | x«, D).
Therefore, in this case, the MPA can yield better-calibrated predictive distributions than MC
integration (Eschenhagen et al., 2021; Daxberger et al., 2021a). Nevertheless, it can also fail
even in simple cases such as in Fig. 4.4, where the MPA yields underconfident predictions even
near the training data. Moreover, the structured nature of the error of the MPA (cf. Fig. 4.2 for
the binary case) might also contribute to the cases where the MPA differs from MC integration.
Both examples above thus highlight the need of careful consideration when analytic alternatives
to MC integration is employed.

4.1.2 Refining Gaussian Approximate Posteriors

The previous analysis indicates that accurate approximate posteriors ¢(8) are most important
for BNNs’ predictive distributions. While one can obtain them via MCMC methods such as
HMC (Neal et al., 2011; Hoffman et al., 2014), in practice, those methods are very expensive
since they require a full-batch of data in their updates (Izmailov et al., 2021b). While mini-batch
versions of MCMC methods exist, they do not seem to yield as good of results as their full-batch
counterparts—indeed, Daxberger et al. (2021a) even showed that a well-tuned last-layer LA can
outperform a state-of-the-art all-layer stochastic-gradient MCMC method (Zhang et al., 2020).
Furthermore, these sample-based methods—both the full- and mini-batch versions, along with
deep ensembles and their variants—are costly in terms of storage since one effectively must

2 An all-layer full-Hessian LA on a three-layer t anh network is used.

73

4 Improving Non-Asymptotic Confidence Estimates

0.75 0.75

0.5 0.5

0.25 0.25
(a) MC (b) MPA

Figure 4.4: Confidence estimate of MC integration and the MPA. The MPA is less confident compared
to MC near the data.

store s copies of the network. We, therefore, propose a simple post-hoc technique for “refining”
Gaussian approximations using normalizing flows. The resulting method is thus parametric yet
can produce high-quality samples.

Let fy be a NN equipped with a Gaussian approximate posterior g(f) = N (0 | u, X) (e.g.,
via a LA, VB, or SWAG (Maddox et al., 2019a)) on the parameter space under a dataset D.
Given a NF Fy of length £ with parameter ¢, we obtain the refined posterior by

~ ~ ~ |1
@ = a(F; @) |det Jr,)] (42)

Then, a refinement of ¢(6) amounts to minimizing the reverse KL-divergence to the true poste-
rior, using the evidence lower bound (ELBO) as a proxy (IH below is the entropy functional):

¢ = arg;nax]ng% [log p(D | f3) +log p(’él)] + H[’qu,], 4.3)

Given a refined posterior gg+* (5) and a test point x*, we can obtain the predictive distribution
via MC integration:

* * 1 d * * n .
p(Y" | x ,D)z;Zp(y | fg.(x)); where 0; = Fy«(6;); 0; ~q(0) Vi=1,...,s.

i=1

Due to the expressiveness of NFs (Papamakarios et al., 2021), we can expect based on the previ-
ous analysis that a large s is not necessary here to obtain good predictive performance. We shall
validate this in Section 4.1.4. Last but not least, this refinement technique is especially useful
for last-layer BNNS since their parameter spaces typically have manageable dimensions—e.g.,
WideResNets’ last-layer features’ dimensionality typically range from 256 to 2048 (Zagoruyko
& Komodakis, 2016).

4.1.3 Related Work

Normalizing flows have previously been used for approximate Bayesian inference in BNNs. An
obvious way to do so, based on the flexibility of NFs in approximating any density (Papamakar-
ios et al., 2021), would be to apply a NF on top of the standard normal distribution N'(6 | 0, I)
to approximate p(6 | D), see e.g. Izmailov et al. (2019) and the default implementation of

74

4.1 Refining the Approximate Posteriors of Neural Networks

variational approximation with NF in Pyro (Bingham et al., 2019). We show in Section 4.1.4.2
that the subtle difference that we make—using an approximate posterior instead of an a priori
distribution—is more cost-effective. In a more sophisticated model, Louizos & Welling (2017)
combine VB with NF by assuming a compound distribution on each NN’s weight matrix and
use the NF to obtain an expressive mixing distribution. However, their method requires training
both the BNN and the NF jointly from scratch. In an adjacent field, Maroiias et al. (2021) use
NFs to transform Gaussian process priors.

Posterior refinement in approximate Bayesian inference has recently been studied. Immer
et al. (2021b) proposes to refine the LA using a Gaussian-based VB and Gaussian processes.
However, this implies that they still assume a Gaussian posterior. To obtain a non-Gaussian
posterior, Miller et al. (2017) form a mixture-of-Gaussians approximation by iteratively adding
component distributions. But, at every iteration, their methods require a full ELBO optimiza-
tion, making it costly for BNNs. A lower-cost LA-based alternative to their work has also been
proposed by Eschenhagen et al. (2021). These methods have high storage costs since they must
store many high-dimensional Gaussians. By contrast, our method only does an ELBO optimiza-
tion once and only requires storage of the base Gaussian and the parameters of a NF. In a similar
vein, Havasi et al. (2021) perform an iterative ELBO optimization for refining a sample of a
variational approximation. But, this inner-loop optimization needs to be conducted each time a
sample is drawn, e.g., during MC integration at test time. Our method, on the other hand, only
requires sampling from a Gaussian and evaluations of a NF, cf. (4.1.2).

4.1.4 Experiments

Datasets We validate our method using standard classification datasets: Fashion-MNIST (F-
MNIST), CIFAR-10, and CIFAR-100. For the out-of-distribution (OOD) detection task, we use
three standard OOD test sets for each in-distribution dataset, see Appendix E.0.2 for the full list.
Finally, for the toy logistic regression experiment, a dataset of size 50 is generated by sampling
from a bivariate, bimodal Gaussian.

Network architectures For the F-MNIST experiments, we use the LeNet-5 architecture (Le-
Cun et al., 1998). Meanwhile, for the CIFAR experiments, we use the WideResNet architecture
with a depth of 16 and widen factor of 4 (WRN-16-4, Zagoruyko & Komodakis, 2016). For
the NF, we use the radial flow (Rezende & Mohamed, 2015) which is among the simplest and
cheapest non-trivial NF architectures.

Baselines We focus on last-layer Bayesian methods to validate the refinement technique. We
use the LA to obtain the base distribution for our refinement method—following recent prac-
tice (Daxberger et al., 2021a), we tune the prior precision via post-hoc marginal likelihood
maximization. The No-U-Turn-Sampler Hamiltonian Monte Carlo (HMC, Neal et al., 2011;
Hoffman et al., 2014) with 600 samples is used as a gold-standard baseline—all HMC results
presented in this paper are well-converged in term of the Gelman-Rubin diagnostic (Gelman &
Rubin, 1992), see Appendix E. Furthermore, we compare our method against recent, all-layer
BNN baselines: variational Bayes with the Flipout estimator (VB, Wen et al., 2018) and cyclical
stochastic-gradient HMC (CSGHMC, Zhang et al., 2020). For all methods, we use MC integra-
tion with 20 samples to obtain the predictive distribution, except for HMC and CSGHMC where
we use s = 600 and s = 12, respectively. Finally, we use prior precisions of 510 and 40 for the

75

4 Improving Non-Asymptotic Confidence Estimates

(a) LA (0.040) (b) VB (0.016) (¢) LA+Refine (0.002) (d) HMC

Figure 4.5: Comparison of approximate posterior densities, visualized via a kernel density estimation,
on a 2D logistic regression problem. Black contour: The exact posterior contour, up to a normalizing
constant. Grey contour: The kernel density estimate obtained from the posterior samples of each method.
Number: The MMD distance to HMC’s samples; lower is better.

Table 4.3: In-distribution calibration performance. The proposed method can make the LA closer to
HMC, both in terms of the weight-space approximation and the calibration performance.

F-MNIST CIFAR-10 CIFAR-100
Methods MMD | NLL | MMD | NLL | MMD | NLL |
MAP 1.093£0.003 0.3116£0.0049 0.438-£0.001 0.1698-£0.0009 0.416£0.001 0.9365+0.0063
LA 0.418+£0.002 0.3076£0.0046 0.299+0.001 0.1672+0.0009 0.063+0.000 0.986540.0057

LA-Refine-1 ~ 0.356+0.004 0.2752£0.0031 0.346+0.000 0.16164-0.0007 0.063+0.000 0.9548+0.0062
LA-Refine-5 0.022+0.002 0.2699+£0.0028 0.2904+0.000 0.158240.0007 0.018+0.000 0.9073+0.0062
LA-Refine-10 0.013£0.002 0.2701£0.0028 0.1304+0.001 0.157740.0008 0.0194+0.000 0.9037+0.0058
LA-Refine-30 0.012+0.002 0.2701£0.0028 0.002+0.000 0.158140.0008 0.020+0.000 0.9035+0.0055

HMC - 0.2699+0.0028 - 0.1581+0.0008 - 0.8849+0.0047

last-layer F-MNIST and CIFAR experiments, respectively. These prior precisions are obtained
via grid search on the respective HMC baseline, maximizing validation log-likelihood. More
implementation details are in Appendix E.

Metrics We use standard metrics to measure both calibration and OOD-detection performance.
For the former, we use the negative log-likelihood (NLL) and the expected calibration error
(ECE, Naeini et al., 2015). For the latter, we employ the false-positive rate at 95% true-positive
rate (FPR95). Finally, to measure the closeness between an approximate posterior to the true
posterior, we use the maximum-mean discrepancy (MMD, Gretton et al., 2012) distance be-
tween the said approximation’s samples to the HMC samples, i.e. we use HMC as a proxy to
the true posterior.

4.1.4.1 Toy example

We visualize different approximations to the posterior of the toy logistic regression problem
in Fig. 4.5. Note that the true posterior density is non-symmetric and non-Gaussian. The LA
matches the weight-space posterior mean, but inaccurate the further away from it. It even assigns
probability mass on what are supposed to be low-density regions. While VB yields a more
accurate result than the LA, it still assigns some probability mass on low-density regions due to
the symmetry of the Gaussian approximation. Furthermore, it is unable to match the posterior’s

76

4.1 Refining the Approximate Posteriors of Neural Networks

mode well. The proposed refinement method, on the other hand, is able to make the LA more
accurate—it yields a skewed, non-Gaussian approximation, similar to HMC.

We further quantify the previous observation using the MMD distance between each approx-
imation’s samples and HMC’s samples. The LA, as expected, obtain the worst weight-space
MMD. While VB is better than the LA with an MMD, the refined LA achieve even better MMD.
This quantifies the previous visual observation.

4.1.4.2 Image classification

We present the calibration results in Table 4.3 using the LA and HMC as baselines, which
represents a two “extremes” in the continuum of posterior approximations. As has previously
shown by e.g. Guo et al. (2017), the vanilla MAP approximation yields uncalibrated, low-quality
predictive distributions in terms of NLL and ECE. While the LA is a cheap way to improve MAP
predictive, its predictive performance is still lagging behind HMC. By refining it with a NF, the
LA becomes even better and closer to the HMC predictive. We also note that one does not need
a complicated nor long (thus expensive) NF to achieve these improvements. Furthermore, we
observe a positive correlation between posterior-approximation quality (measured via MMD)
and the predictive quality. Considering that s = 20 is used, this validates our hypothesis that
one can “get away” with fewer number of MC samples when accurate weight-space posterior
approximations are employed.

Moreover, we present out-of-distribution (OOD) Table 4.4: OOD detection in terms of
data detection in Table 4.4. We observe that while the FPR95 (in percent, lower is better), av-
last-layer LA baseline can already be better than all- eraged over three test sets and five seeds.
layer baselines—as also observed by Daxberger et al. All-layer baselines are asterisk-marked.
(2021a)—refining it can yield better results: Even with
a small NF, e.g., £ = 5, the OOD detection perfor-

Methods CIFAR-10 CIFAR-100

. VB* 62.9+2.0 80.8+1.0
mance of the refined LA is close to that of the gold- CSGHMC* 587+ 16 7931410
standard HMC. LA 49.24+2.4 79.6%+1.0
' We sbow that it is 1r.1deed demral.)lt: to do reﬁnemei'lt, LA-Refine-] 477421 773207
i.e. using an approximate posterior as the base dis- [A_Refine-5 46.842.2 77.840.7
tribution of the NF, instead of starting from scratch, LA-Refine-10 46.2+2.3 77.840.7
i.e. starting from a data-independent distribution such ~ LA-Refine-30 46.142.3 77.9£0.8
as N(0,71). As shown in Fig. 4.7, starting from an HMC 46.042.3 77.840.9

approximate posterior yields better predictive distribu-
tions faster than when A/(0, I) is used as the base distribution of the NF. This is particularly
important since the computational cost of a NF depends on its length: We see a 53% increase in
training time from £ = 5 to £ = 10—the latter is required for the a priori NF approximation to
yield similar predictive performance to the refined posterior.

Finally, to validate that the refinement technique yields accurate posterior approximations, we
plot the empirical (i.e., obtained via samples) marginal densities g (w; | D) of randomly selected
weight w; € 6 in Fig. 4.6. We validate that the refinement method makes the crude, base LA
posteriors closer to HMC in the weight space.

77

4 Improving Non-Asymptotic Confidence Estimates

2.5 1
<
—
0.0 I B e 1 e ——— | | e —— | e |
2.5 1
5
5
0.0 | T s 1 N s = __A_ | ol | | e |
=25]
>
<
= 0.0 .‘- —_*» L —_‘—
Z 25]
>
<
= 0.0
R 2.5]
A
<
= 0.0
o 2517]
- A A
o
0.0
-2 0 2 -2 0 2 -2 0 2 2 0 2
Wi241 We605 w37 Ws566
Figure 4.6: Marginal weight distributions on CIFAR-10.
L5 —e— N(0,1)+NF 150
—m— LA +NF =
= " Z 100
5 2
Z 05 B 50 —e— F-MNIST
oL® a o —m— CIFAR-10
1 5 10 15 20 1 5 10 15 20
Flow Length Flow Length

Figure 4.7: Calibration and wall-clock refinement time vs. flow length.

4.1.4.3 Costs

The proposed refinement technique is post-hoc and cheap when applied to last-layer BNNs.
Suppose one already has a last-layer Gaussian approximate posterior. Using a standard con-
sumer GPU (Nvidia RTX 2080T1), each epoch of a length-5 NF’s optimization takes around 3.4
seconds. From our experiments, we found that a low number of epochs (we use 20) is already
sufficient for improving a crude approximate posterior. Thus, the entire refinement process is
quick, especially when compared to MAP estimation, ELBO optimization, or HMC sampling.

4.2 Learnable Uncertainty under Laplace Approximations

A standard practice in contemporary LAs is to tune a single hyperparameter—the prior precision—
to calibrate their predictive uncertainty (Chapter 2). However, this scalar parametrization allows
only for a very limited form of uncertainty calibration. Here, we propose a more flexible frame-
work to tune the uncertainty of Laplace-approximated BNNs without changing their point es-
timates. The idea is to introduce additional hidden units, associated with partly zero weights,

78

4.2 Learnable Uncertainty under Laplace Approximations

LA —» —— LULA —»

Figure 4.8: A schematic of our LULA. Top row: grey and black curves represent the true and the
Laplace-approximated posteriors over the parameter space, respectively—the point estimates are dotted.
Bottom row: predictions induced by the respective Laplace approximation—curves and shades are pre-
dictive means and 95% confidence intervals, respectively. Our method adds further degrees of freedom to
the parameter space—as induced by additional hidden units with a particular weight structure—and finds
a point in the augmented space that induces the same predictions but with better-calibrated uncertainty
estimates (esp. w.r.t. outliers), under a Laplace approximation.

to the hidden layers of any MAP-trained network. Because of their weight structure, they are
partly inactive and do not affect the prediction of the underlying network. However, they can still
contribute to the Hessian of the loss with respect to the parameters, and hence induce additional
structure to the posterior covariance under a Laplace approximation—these units are thus uncer-
tainty units under Laplace approximations. Furthermore, the non-zero weights associated with
these units can then be trained via an uncertainty-aware objective (Lee et al., 2018b; Hendrycks
et al., 2019, etc.), such that they improve the predictive uncertainty quantification performance
of the Laplace-approximated BNN. Figure 4.8 provides intuition.

To that end, we introduce learnable uncertainty under Laplace approximations (LULA) method.
The premise is to add uncertainty units, which can be added to the layers of any MAP-trained
network (Section 4.2.1) and trained via an uncertainty-aware loss (Section 4.2.2) to improve
uncertainty calibration under Laplace approximations.

4.2.1 Construction

Let f : R” x R — RK be a MAP-trained L-layer neural network with parameters fyiap =
(WI\SIKA)P, bﬁﬁp)le- The premise of the method is simple: At each hidden layer{ = 1,...,L—1,
we add my € Zx¢ additional hidden units (under the original activation function) to hO_asa
consequence, the £-th weight matrix and bias vector need to be extended to accommodate them.
The method augments these parameters in such a way that for any input x € R”, the original
network output f(x; Ouap) is preserved, as follows.

79

4 Improving Non-Asymptotic Confidence Estimates

For each layer £ = 1,...,L — 1 of the network f, we expand the MAP-estimated weight
matrix WI\SIQP € R™"¢*"e—1 and the bias vector bﬁ/)\}, € R to obtain the following block matrix
and vector:

©)
wo .— (WMAP 0) € Reretmox(me—y+me_y)

(4.4)

to take into account the additional n1, hidden units. We do not add additional units to the input
layer, so mg = 0. Furthermore, for £ = L, we define

w) .~ (Wh%&,o) € RFxn—1+mr—1).
(L) (L) k (3
bY™ = byap € R",

so that the output dimensionality is also unchanged. For brevity, we denote by 6 the non-zero
additional parameters in (4.4), i.e. we define 8© to be the tuple (171\/1((), Wz(e), b®). Altogether,
considering all layers £ = 1, ..., L — 1, we denote

6:= (09},

to be the tuple of all non-zero additional parameters of the network f. Furthermore, we write
the resulting augmented network as f* and the resulting overall parameter vector—consisting
of (W(e),g(z))é‘zl—as 5MAP c R4 , where d is the resulting number of parameters. Refer to
Fig. 4.9 for an illustration. Note that we can easily extend this construction to convolutional
networks by expanding the “channel” of hidden convolution layers.?

Let' us inspect the implication of this con- . e L@ £0)
struction. Here foreach ¢ = 1,..., L —1, the A
sub-matrices Wl(e), Wz(e) and the sub-vector

b® contain parameters for the additional my
hidden units in the £-th layer. We are free to
choose the values of these parameters since
the upper-right quadrant of W© _ je. the zero N
part of the additional weights, deactivates the N
my—_q additional hidden units in the previous N
layer, hence they do not contribute to the orig-

inal hidden units in the £-th layer. Part (a) of Figure 4.9: An illustration of the proposed construc-
the following proposition thus guarantees that tion. Rectangles represent layers, solid lines repre-

the additional hidden units will not change the ~sent connection between layers, given by the origi-
output of the network nal weight matrices. The additional units are repre-

sented by the additional block at the bottom of each
layer. Dashed lines correspond to the free parame-

ters é: while dotted lines to the zero weights.

Proposition 4.1 (Properties). Let f : R" x
R? — R¥ be a MAP-trained L-layer network

3E.g. if the hidden units are a 3D array of (channel x height x width), then we expand the first dimension.

80

4.2 Learnable Uncertainty under Laplace Approximations

under dataset D, and let Oyap be the MAP estimate. Suppose [: R" x RY — R and Oy4p € RY
are obtained via the previous construction, and L is the resulting loss function under f .

(a) For an arbitrary input x € R", we have 7()(; 5MAP) = f(x;Opap).
(b) The gradient of L w.r.t. the additional weights in W L) is non-linear in 6.

Proof. For each layer £ = 1,..., L we denote the hidden units and pre-activations of fas o
and a0, respectively.

We begin with (a). Let x € R” be arbitrary. We need to show that the output of f, i.e. the last
pre-activations @), is equal to the last pre-activations a‘%) of f. For the first layer, we have

that -
7D = Dy LM

W@ p(D
= ~ X + ~,

WOy 4 pD o
- Wl(l)x TACY B (ﬁ(l))'

For every layer £ = 1,..., L — 1, we denote the hidden units as the block vector
70 _ pa©)) _ (n®
~\@®) = o)
Now, for the intermediate layer [= 2, ..., L — 1, we observe that

7O — FORE-D L 50
w® o pE=1D p©®
= (Wl(e) Wz(e)) (ﬁ(@—l)) + (g(e)) 47
WORED 4 o4 p® 2O
= (Wl(li)h(e—l) L WORED +j;(e)) = (5(6))'

Finally, for the last layer, we get

A = Wy 4 50

H(L—1) L
:(W(L) ()) L) +pD

— wDREL-D Lo 4 pD

(4.8)

_ 4

’

and thus we have the desired invariance.
For part (b), we denote the additional (zero) weights in w L) by W@ 1t is clear from (4.8)
that the gradient V) a'D is given by h&~1_ Hence, by chain rule we have
Vil = (Vaw L) Vg, a)
= (V,w Z) AR

81

4 Improving Non-Asymptotic Confidence Estimates

By observing (4.6) and (4.7), along the fact that the non-linearity ¢ is used in the forward pass, it
is clear that 7L~ is non-linear in 8 = (W(l) b(l) , WI(L_I), WZ(L_D, b(L_l)) and there-
fore VW(L)E also is. O

Part (b) of the last proposition tells us that the additional non-zero weights 6 affect the loss
landscape in a non-trivial way, and they, in general, induce non-trivial curvatures along the
additional dimensions in the last-layer weight matrix (4.5) of the network. Therefore this con-
struction non-trivially affects the covariance matrix in a LA. The implication of this insight to
predictive uncertainty can be seen clearly in real-valued networks with diagonal LA posteriors,
as the following proposition shows.

Proposition 4.2 (Predictive Uncertainty). Suppose f : R" x R — R is a real-valued net-
work and f is as constructed above. Suppose further that diagonal Laplace approximations
N (Oyap, diag(o)), N(GMAP, diag(c)) are employed for f and f respectively. Under the net-
work linearization, for any input x € R", the variance over the output f (x; 9) is at least that of

f(x:0).

Proof. Let us denote the random variable taking values in the augmented parameter space by
0. W.lLo.g. we re-arrange 0 as CAR /9\'—)-'— where § € R9~4 contains the weights corresponding
to the the additional LULA units. If g(x) is the gradient of the output f(x;6) w.r.t. 6 at Ovap,
then the gradient of f (x; 9) w.rt. 0 at QMAP, say g(x), can be written as the concatenation
(g(x)T,g(x)")T where g(x) is the corresponding gradient w.r.t. 0. Furthermore, diag(o) has
diagonal elements

T
~ ~ (T ATHT
(011,...,add,all,...,ag_d,g_d) =:(c',0')".

Let x € R” be an arbitrary input. Denoting the output variance of fN(x; 5) by v(x), we have

T(x) = g(x) " diag(@)g(x)
= g(x) "diag(0)g(x) +&(x) " diag(3)g(x)
=v(x)

> v(x),

since diag(o) is positive-definite by definition. O

In summary, the construction along with Propositions 4.1 and 4.2 imply that the additional
hidden units we have added to the original network are uncertainty units under Laplace ap-
proximations, i.e. hidden units that only contribute to the Laplace-approximated uncertainty and
not the predictions. Furthermore, by part (b) of Proposition 4.1, the values of 6—which can
be set freely without affecting the output—influence the loss-landscape Hessian in a non-trivial
way. They are thus learnable and so we call these units learnable Uncertainty under Laplace
approximations (LULA) units.

82

4.2 Learnable Uncertainty under Laplace Approximations

4.2.2 Training

In this section, we discuss a way to train LULA units to improve predictive uncertainty under
Laplace approximations. We follow a contemporary technique from the non-Bayesian robust
learning literature which has been shown to be effective in improving uncertainty calibration of
non-Bayesian networks (Lee et al., 2018b; Hendrycks et al., 2019; Bitterwolf et al., 2020, etc.).

Let f : R* x R? — R be an L- -layer neural network with a MAP-trained parameters
QMAp and let f R” X]Rd — R along with GMAp be obtained by adding LULA units. Let
q(«9) =N (QMAP, Y) be the Laplace-approximated posterior and p(y | x, D; QMAP) be the (ap-
proximate) predictive distribution under the LA. Furthermore, let us denote the dataset sampled
i.i.d. from the data distribution as D;, and that from some outlier distribution as Dy, and let H
be the entropy functional. We construct the following loss function to induce high uncertainty
on outliers while maintaining high confidence over the data (inliers):

Lrura(Byap) :=

> Hip(y | x.D: fap)]

xX€Dj,

1
|Din|
N (4.9)
Z H[p(y | x, D; Omap)],

XE€Dout

| Dout |

and minimize it w.r.t. only the free parameters 6. This objective is task agnostic—it can be
used in regression and classification networks alike. Furthermore, the first term of this objective
can alternatively be replaced with the standard negative log-likelihood loss. In our case, since by
Proposition 4.1, predictions do not change under LULA, using the negative log-likelihood yields
the same result as predictive entropy: they both only affect uncertainty and keep predictions over
Din confident. In any case, without this term, £y s potentially assigns the trivial solution of
maximum uncertainty prediction everywhere in the input space.

The intuition of LULA training is as follows. By adding LULA units, we obtain a non-trivially
augmented version of the network’s loss landscape (Proposition 4.1(b)). The goal of LULA
training is then to exploit the weight-space symmetry (i.e. different parameters that induce the
same output) arising from the construction as shown by Proposition 4.1(a), and pick a point
in the extended parameter space that is symmetric to the original parameters but has “better”
curvatures, in the sense that they induce lower loss (4.9). These parameters, then, when used in
a LA, improve the predictive uncertainty of standard non-LULA-augmented LAs.

4.2.2.1 Practical Matters

Datasets We can simply set Dy, to be the validation set of the dataset D. Meanwhile, Dy, can
be chosen depending on the task at hand, e.g. noise and large-scale natural image datasets can
be used for regression and image classification tasks, respectively (Hendrycks et al., 2019).

Maintaining Weight Structures Since our aim is to improve predictive uncertainty by ex-
ploiting weight-space symmetries given by the structure of LULA weights, we must maintain
the structure of all weights and biases in fyap, in accordance to (4.4) and (4.5). This can be en-
forced by gradient masking: Forall £ = 1, ..., L —1, set the gradients of the blocks of W® and
5(6) not corresponding to Wl(ﬁ)’ Wz(e), and Z)\(Z), to zero. Under this scheme, Proposition 4.1(a)
will still hold for trained LULA units.

&3

4 Improving Non-Asymptotic Confidence Estimates

Algorithm 2 Training LULA units.

Input:
MAP-trained network f. Dataset Dj,, OOD dataset D,y Learning rate . Number of
epochs E.

Construct ffrom f by following Section 4.2.1.

for i il,...,gdo e
q(0) = N(Omap, X (Omar)) -
Compute Lrua (Omap) via (4.9) with g(6), D, Dou
g = VLruLa(Omap)
g = mask_gradient(g)
Onmap = Ovap — g

end for _ _

p(0 | D) ~ N (Buap, £ (Omar))

return f and p(6 | D)

R A A S S oy

_
e

Laplace Approximations During Training Since the covariance matrix Y of the Laplace-
approximated posterior depends on Oyap, it needs to be updated at every iteration during the
optimization of Ly yra. This can be expensive for large networks depending on the Laplace ap-
proximation used, not to mention that one must use the entire dataset Dj, to obtain this matrix.
As a simple and much cheaper proxy to the true covariance, we employ a simple diagonal Fisher
information matrix (Amari, 1998; Martens, 2020), obtained from a single minibatch, irrespective
of the Laplace approximation variant employed at test time—we show in Section 4.2.4 that this
training scheme is both effective and efficient.* Finally, we note that backpropagation through
this diagonal matrix, which is fully determined by the network’s gradient, does not pose a dif-
ficulty since modern deep learning libraries such as PyTorch and TensorFlow support “double
backprop” efficiently. Algorithm 2 provides a summary of LULA training in pseudocode. Code
can be found in https://github.com/wiseodd/lula.

4.2.3 Related Work

While traditionally hyperparameter optimization in LAs requires re-training the network (under
type-II maximum likelihood or the evidence framework (MacKay, 1992c) or empirical Bayes
(Robbins, 1956)), tuning it in a post-hoc manner has become increasingly common. Ritter et al.
(2018bsa) tune the prior precision of a LA by maximizing the predictive log-likelihood. How-
ever, they are limited in terms of flexibility since the prior precision of the LAs constitutes a
single scalar parameter. LULA can be seen as an extension of these approaches with greater
flexibility and is complementary to them since it does not modify the prior precision used.

Confidence calibration via outliers has achieved state-of-the-art performance in non-Bayesian
outlier detection. Hendrycks et al. (2019); Hein et al. (2019); Meinke & Hein (2020) use outliers
to regularize the standard maximum-likelihood training. Malinin & Gales (2018; 2019) use out-
liers to train probabilistic models based on the Dirichlet distribution. In contrast to our approach,
all these methods are neither Bayesian nor post-hoc.

“4The actual Laplace approximations applied after LULA training can be non-diagonal.

84

4.2 Learnable Uncertainty under Laplace Approximations

4.2.4 Experiments

We empirically validate that LULA does improve vanilla LAs via toy and image classification
experiments—results on UCI regression tasks are in the appendix. We expand the image clas-
sification experiment into dataset shift robustness and out-of-distribution (OOD) experiments to
show LULA’s performance over standard benchmark suites.

4.2.4.1 Setup

Toy experiments We use the “cubic” (Hernandez-Lobato & Adams, 2015) and “two moons”
datasets for regression and classification, respectively. For classification, we use a full Laplace
with generalized Gauss-Newton Hessian approximation on a three-layer FC network. For re-
gression, we apply the Kronecker-factored Laplace (KFL) (Ritter et al., 2018a) on a two-layer
fully-connected network. In this particular case, we directly use the predictive variance instead
of (differential) entropy for (4.9). The two are closely related, but in the case of regression with
continuous output, the variance is easier to work with since it is lower-bounded by zero. Finally,
the corresponding numbers of additional LULA units are 30 and 50, respectively.

Image classification We use the following standard datasets: MNIST, SVHN, CIFAR-10, and
CIFAR-100. For each dataset, we split its test set to obtain a validation set of size 2000. On all
datasets and all methods, we use the WideResNet-16-4 architecture (Zagoruyko & Komodakis,
2016) and optimize the network with Nesterov-SGD with weight decay 5 x 107 and initial
learning rate 0.1 for 100 epochs. We anneal the learning rate with the cosine decay method
(Loshchilov & Hutter, 2017).

Baselines We use the vanilla MAP-trained network (abbreviated as MAP), a last-layer KFL
(LA), and Deep Ensemble (DE) (Lakshminarayanan et al., 2017) as baselines. For MAP and
DE, we additionally use the temperature scaling post-processing scheme to improve their cali-
bration (Temp) (Guo et al., 2017). Specifically for DE, a single temperature hyperparameter is
used for all ensemble members (Rahaman & Thiery, 2020). Note that DE is used to represent
the state-of-the-art uncertainty-quantification methods (Ovadia et al., 2019). For the Bayesian
baseline (LA), we use a last-layer Laplace since it has been shown to be competitive to its
all-layer counterpart while being much cheaper and thus more suitable for large networks (Kris-
tiadi et al., 2020). We do not tune the prior variance of LA—it is obtained from the weight
decay used during MAP training. Nevertheless, to show that LULA is also applicable to and
can improve methods which their uncertainty is already explicitly tuned, we additionally use
two OOD-trained/tuned baselines for the OOD-detection benchmark: (i) the last-layer Laplace
where the prior variance is tuned via an OOD validation set (LLLA) (Kristiadi et al., 2020), and
(ii) the outlier exposure method (OE) (Hendrycks et al., 2019) where OOD data is used during
the MAP training itself. For the latter, we apply a standard last-layer KFL post-training (see
(Kristiadi et al., 2020, Appendix D.6)).

LULA For the toy experiments, we use uniform noise as Doy. We add 50 and 30 LULA units
to each layer of the toy regression and classification networks, respectively. Meanwhile, we use
the downscaled ImageNet dataset (Chrabaszcz et al., 2017) as D, for the image classification
experiments. We do not use the 80 Million Tiny Images dataset (Torralba et al., 2008) as used by

85

4 Improving Non-Asymptotic Confidence Estimates

1.0 1.0

0.9 0.9

0.8 0.8

0.7 ’W 0.7

0.6 0.6

0.5 0.5
(a) MAP (b) LA (¢c) LA-LULA

Figure 4.10: Predictive uncertainty estimates of a standard LA and the LULA-augmented LA. Black
curves and shades are decision boundaries and confidence estimates, respectively.

Hendrycks et al. (2019); Meinke & Hein (2020); Bitterwolf et al. (2020) since it is not available
anymore. We use the aforementioned ImageNet dataset as the OOD dataset for training/tuning
the LLLA and OE baselines. We put LULA units on top of the pre-trained LA baseline and opti-
mize them using Adam for 10 epochs using the validation set. To pick the number of additional
(last-layer) LULA units, we employ a grid search over the set {32, 64, 128,256,512, 1024} and
pick the one minimizing validation LULA loss Ly uypa under the LA. Finally, note that we im-
plement LULA on top of the KFL discussed above, thus by doing so, we show that LULA is
generally applicable even though it is specifically trained via a proxy diagonal LA.

Benchmark For the dataset shift robustness experiment, we use the standard rotated-MNIST
(MNIST-R) and corrupted-CIFAR-10 (CIFAR-10-C) datasets, which contain corrupted MNIST
and CIFAR-10 test images with varying severity levels, respectively. Meanwhile, for the OOD
experiment, we use 6 OOD datasets for each in-distribution dataset (i.e. the dataset the model is
trained on).

Metrics First, we denote with “}” next to the name of a metric to indicate that lower values
are better, and vice versa for “1”. We use the standard uncertainty metrics: expected calibration
error (ECE |) (Naeini et al., 2015), Brier score () (Brier et al., 1950), test log-likelihood (1),
and average confidence (MMC |) (Hendrycks et al., 2019). Additionally, for OOD detection,
we use the FPR95 (|) metric which measures the false positive rate at a fixed true positive rate
of 95% when discriminating between in- and out-of-distribution data, based on their confidence
(maximum predictive probability) estimates.

4.2.4.2 Toy Experiments

We begin with toy regression and classification results in Fig. 4.8 (bottom) and Fig. 4.10, re-
spectively. As expected, the MAP-trained networks produce overconfident predictions in both
cases. While LA provides meaningful uncertainty estimates, it can still be overconfident near
the data. The same can be seen in the regression case: LA’s uncertainty outside the data region
grows slowly. LULA improves both cases: it makes (1) the regression uncertainty grow faster far
from the data and (ii) the classification confidence more compact around the data region. Notice
that in both cases LULA does not change the prediction of LA.

86

4.2 Learnable Uncertainty under Laplace Approximations

Table 4.5: Calibration and generalization performance. All values are in percent and averages over five
prediction runs. Best ECE values among each pair of the vanilla and LULA-equipped methods (e.g. LA
and LA-LULA) are in bold. Best overall values are underlined.

MNIST SVHN CIFAR-10 CIFAR-100
ECE |
MAP 13.840.0 9.7+£0.0 12.240.0 16.6+0.0
MAP-Temp 14.8+0.0 2.0+0.0 4.54+0.0 4.1+0.0
DE 13.2+0.0 4.3+0.0 6.1£0.0 5.440.0
DE-Temp 16.940.0 2.240.0 3.840.0 4.54+0.0
LA 12.6+0.1 9.34+0.0 10.9+0.3 7.040.1
LA-LULA 14.8+0.3 3.3+0.1 7.5+0.1 5.3+0.2
Accuracy 1
MAP 99.7£0.0 97.1£0.0 95.0£0.0 75.84+0.0
MAP-Temp 99.7+0.0 97.1+0.0 95.0+0.0 75.8+0.0
DE 99.7£0.0 97.6+0.0 95.5+0.0 79.0+£0.0
DE-Temp 99.740.0 97.6£0.0 95.5£0.0 79.1+0.0
LA 99.71+0.0 97.1+0.0 95.0+0.0 75.8+0.0
LA-LULA 99.6+0.0 97.1£0.0 94.940.0 75.6+£0.1

Log-likelihood 1 Brier score |,
-10%
-1 0.1
2] 0.05 1
—3 | & LA
- LA-LULA
0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
Angle Angle Angle Angle

Figure 4.11: Values of various uncertainty metrics as the rotation angle on MNIST images increases.

4.2.4.3 Calibration

Table 4.5 summarizes the calibration and generalization performance of LULA in terms of ECE
and test accuracy, respectively. We found that on “harder” datasets (SVHN, CIFAR-10, CIFAR-
100), LULA consistently improves the vanilla LA’s calibration, often even better than DE. How-
ever, on MNIST, both DE and LULA attain worse calibration than the vanilla LA. This might
be because the accuracy of the network on MNIST is already almost perfect, thus even an over-
confident classifier could yield a good ECE value—DE and LULA generally reduce confidence
estimates (cf. Table F.3 in the appendix) and thus yielding higher ECE values. Nevertheless, as
we shall see in the next section, LULA is in general better calibrated to outliers than the other
baselines on MNIST. As a final note, we emphasize that LULA preserves the predictive perfor-
mance of the base LA and thus MAP’s. This is important in practice: The allure of deep networks
is their high predictive performance, thus, “non-destructive” post-hoc methods are desirable.

87

4 Improving Non-Asymptotic Confidence Estimates

Log-Likelihood 1 MMC |,
104
—2 1 % 0.8 1
0.7 1
—4 DMAPDDE 0.6
[ra [JraLura

w w w w w 0.5 w w w w w
1 2 3 4 5 1 2 3 4 5

Severity Severity

Figure 4.12: Calibration performance at each severity level of the CIFAR-10-C dataset.

4.2.4.4 Dataset Shift Robustness

Dataset shift robustness tasks benchmark uncertainty calibration of a predictive model on cor-
ruptions or perturbations of the true dataset. To this end, we present various uncertainty metrics
of LULA on the MNIST-R dataset in Fig. 4.11. In all metrics considered, LULA improves not
only the vanilla LA upon which LULA is implemented but also the state-of-the-art baseline in
DE. Thus, even though LULA reduces calibration on the true MNIST dataset, it excels in making
the network robust to outliers.

We furthermore present the results on the corrupted CIFAR-10 dataset in Fig. 4.12. It can be
seen that on average, LULA improves the vanilla LA, making it competitive to DE. In fact, on
higher corruption levels, LULA can achieve better performance than DE, albeit marginally so.
Nevertheless, this is important since standard BNNs have been shown to underperform compared
to DE (Ovadia et al., 2019).

4.2.4.5 OOD Detection

While dataset shift robustness tasks measure performance over outliers that are close to the
true data, OOD detection tasks test performance on outliers that are far away from the data
(e.g. SVHN images as outliers for the CIFAR-10 dataset). Table 4.6 summarizes results. For
each in-distribution dataset, LULA consistently improves the base LA, both in terms of its con-
fidence estimates on OOD data (MMC) and its detection performance (FPR95). Furthermore,
LULA in general assigns lower confidence to OOD data than DE. This suggests that, far from
the data, LULA is more calibrated than DE. While LULA is better than DE in the detection
of OOD data on CIFAR-10, DE yields a stronger FPR95 performance than LULA in general.
Nevertheless, we stress that LULA is more cost-efficient than DE since it can be applied to any
MAP-trained network post-hoc. Moreover, unlike DE which requires us to train multiple (in our
case, 5) independent networks, LULA training is far cheaper than even the training time of a

single network—see next section. Table 4.7: Wall-clock time in seconds for augmenting

As stated in Section 4.2.3, LULA is the WideResNet-16-4 network with 512 LULA units and
orthogonal to prior variance tuning meth- training them for ten epochs with 2000 validation data.
ods commonly done in Laplace approx-
imations. Hence, in Table 4.6 we also MNIST SVHN CIFAR-10 CIFAR-100
show the OOD detection perf()nnance of Construction 0.005 0.005 0.004 0.006
LULA when applied to the LLLA base- Training 20.898 22.856 22.222 21.648

88

4.3 Out-of-Distribution Training for BNNs

Table 4.6: OOD detection performance for each in-distribution dataset in terms of MMC and FPR9S.
Values are averages over six OOD test sets and five prediction runs. Best values among each pair of the
vanilla and LULA-equipped methods are in bold. Best overall values are underlined.

MNIST SVHN CIFAR-10 CIFAR-100
MMC |

MAP 80.440.0 72.940.1 74.240.1 64.540.1
MAP-Temp 82.2:0.0 63.420.0 60.50.0 48.240.1
DE 73.840.0 58.340.1 66.340.0 46.840.0
DE-Temp 84.1+0.0 59.040.1 62.040.0 46.540.1
LA 78.740.1 72.140.1 70.740.2 53.440.2
LA-LULA 46.0+0.8 60.940.2 63.8+0.4 41.04+0.5
LLLA 61.00.4 47.340.3 42.840.4 46.54+0.5
LLLA-LULA 56.940.8 52.14+0.4 35.14+0.3 33.1+0.7
OE 35.240.0 18.00.0 53.440.0 51.840.0
OE-LULA 22.6+0.2 20.140.2 52.040.1 44.54+0.2
FPRYS |

MAP 5.00.0 25.940.1 53.140.2 80.1+0.1
MAP-Temp 5.020.0 25.640.1 47.040.2 77.140.1
DE 4.240.0 11.940.1 47.640.0 59.340.1
DE-Temp 4.540.0 16.420.1 44.840.0 72.340.1
LA 4.940.0 25.540.2 48.54+0.5 78.34+0.5
LA-LULA 5.840.5 21.14+0.4 39.5+1.4 71.9+1.3
LLLA 5.8+0.5 22.0+1.8 23.740.5 75.440.9
LLLA-LULA 4.540.1 19.4+0.5 22.940.8 68.4+1.7
OE 5.540.0 1.740.0 27.440.0 59.640.1
OE-LULA 51403 1.740.0 26.74+0.2 58.5+0.4

line. We observe that LULA consistently improves LLLA. The same observation can also be
seen when LULA is applied on top of a Laplace-approximated state-of-the-art OOD detector
(OE): LULA also consistently improves OE even further.

4.2.4.6 Cost

Table 4.7 shows the computational overhead of LULA (wall-clock time, in seconds) on a single
NVIDIA V100 GPU. The cost of augmenting the WideResNet-16-4 network with 512 LULA
units is negligible. The training time of these units is around 20 seconds, which is also negligible
compared to the time needed to do MAP training.

4.3 Out-of-Distribution Training for BNNs

Both the Bayesian and frequentist deep learning communities address similar UQ functionality,
but it appears that even recent Bayesian neural networks (BNNs, Osawa et al., 2019; Tomczak
et al., 2020; Dusenberry et al., 2020; Izmailov et al., 2021a;b, etc.) tend to underperform com-
pared to the state-of-the-art frequentist UQ methods (Hendrycks et al., 2019; Lee et al., 2018b;
Hein et al., 2019; Meinke & Hein, 2020; Bitterwolf et al., 2020, etc.). Figure 4.13 shows this

&9

4 Improving Non-Asymptotic Confidence Estimates

100

(]

S 80

]

€ 60 |

o

C 40

S 20| loe [pE

= Ove Qra
0 | | |

MNIST SVHN CIFAR-10 CIFAR-100

Dataset

Figure 4.13: Average confidence on uniform OOD test data (lower is better). LA, VB, DE, and OE stand
for the Laplace approximation, variational Bayes, Deep Ensemble, and Outlier Exposure, respectively.
All methods have similar accuracy and confidence on all the in-distribution test sets, but OE is the only
method that achieves low confidence on these outliers.

observation: the frequentist Outlier Exposure method (Hendrycks et al., 2019) performs much
better than BNNs and even Deep Ensemble (Lakshminarayanan et al., 2017), which has been
considered as a strong baseline in Bayesian deep learning (Ovadia et al., 2019).

This section thus seeks to answer the question of “how can we bring the performance of
BNNSs on par with that of recent frequentist UQ methods?”” Our working hypothesis is that the
disparity between them is not due to some fundamental advantage of the frequentist viewpoint.
Rather, it is due to the more mundane practical fact that recent frequentist UQ methods leverage
OOD data in their training process, via the so-called “OOD training” technique. The benefits of
this technique are well-studied, both for improving generalization (Zhang & LeCun, 2017) and
more recently, for OOD detection (Lee et al., 2018b; Hein et al., 2019; Meinke & Hein, 2020;
Bitterwolf et al., 2020). But while OOD data have been used for tuning the hyperparameters
of BNNs (Kristiadi et al., 2020), it appears that even recently proposed deep Bayesian methods
have not considered OOD training. A reason for this may be that it is unclear how one can
incorporate OOD data in the Bayesian inference itself.

We explore four options—some are philosophically clean, others are heuristics—of incorpo-
rating OOD data into Bayesian inference. These methods are motivated by the assumptions
that the data (i) have an extra “none class”, (ii) are entirely represented by “soft labels”, or (iii)
have mixed “hard” and “soft labels”. Moreover, we also (iv) investigate an interpretation of the
popular OE loss as a likelihood that can readily be used in Bayesian inference. We compare
the four of them against strong baselines in various UQ tasks and show that BNNs equipped
with these likelihoods can outperform a recent OOD-trained frequentist baseline. Our empirical
findings thus validate the hypothesis that OOD training is the cause of BNNs underperformance.
We hope that the proposed approaches, especially the simple yet best-performing “none-class”
method, can serve as strong baselines in the Bayesian deep learning community.

4.3.1 Why Bayesian neural networks underperform

Suppose f : R” x R¢ — R is a neural network with parameter § € R¥. Let U be the data
region, i.e. a subset of the input space R” where the distribution p(x) assigns non-negligible
mass. Suppose V := R"” \ U is the remaining subset of the input space R” that has low mass
under p(x), i.e. it is the OOD region. It has recently been shown that any point estimate of
F can induce an arbitrarily overconfident prediction on V' (Hein et al., 2019; Nguyen et al.,
2015). While Bayesian methods fixes this issue in the asymptotic regime (i.e. when the distance

90

4.3 Out-of-Distribution Training for BNNs

between a test point x € V' and the data region U tends to infinity; see Chapter 3), no such
guarantee has been shown for non-asymptotic regime which contains outliers that are relatively
close to U. In fact, empirical evidence shows that BNNs often yield suboptimal results in this
regime, as Fig. 4.13 shows.

In an adjacent field, the frequentist community has proposed a technique—referred to here as
OOD training—to address this issue. The core idea is to “expose” the network to a particular
kind of OOD data and let it generalize to unseen outliers. Suppose Dj, is a dataset and Dy
is a collection of myy points sampled from some distribution on V. Then, one can incorporate
these OOD samples into the standard MAP objective via an additional objective function £ that
depends on the network and D, but not the dataset D. We thus do the following:

argmax log pca(D|0) + log p(8) + L(6; Do), (4.10)
6

where log pcy denotes the Categorical log-likelihood, i.e. the negative of the softmax cross-
entropy loss and log p(8) is the log-prior. For instance, Hendrycks et al. (2019) define £ to
be the negative cross-entropy between the softmax output of f under Dy, and the uniform
discrete distribution. Intuitively, (4.10) tries to find a parameter vector of f that induces well-
calibrated predictions both inside and outside of U. In particular, ideally, the network should
retain the performance of the MAP estimate in U, while attaining the maximum entropy or
uniform confidence prediction everywhere in V. Empirically, this frequentist robust training
scheme obtains state-of-the-art performance in OOD detection benchmarks (Hendrycks et al.,
2019; Meinke & Hein, 2020; Bitterwolf et al., 2020, etc.).

While some works have employed OOD data for tuning the hyperparameters of BNNs Chap-
ter 3, ultimately OOD data are not considered as a first-class citizen in the Bayesian inference
itself. Furthermore, while one can argue that theoretically, BNNs can automatically assign high
uncertainty over V' and thus robust to outliers, as we have previously discussed, empirical evi-
dence suggests otherwise. Altogether, it thus now seems likely that indeed the fact that BNNs
are not exposed to OOD data during training is a major factor contributing to the discrepancy in
their UQ performance compared to that of the state-of-the-art frequentist methods.

4.3.2 OOD training for Bayesian neural networks

Motivated by the hypothesis laid out in the previous section, our goal here is to come up with an
OOD training scheme for standard BNN inference while retaining a reasonable Bayesian inter-
pretation. To this end, we explore four different ways of incorporating OOD data in Bayesian
inference by making different assumptions about the data and hence the likelihood, starting from
the most philosophically clean to the most heuristic.’

Method 1: Extra “None Class”

The most straightforward yet philosophically clean way to incorporate unlabeled OOD data
is by adding an extra class, corresponding to the “none class”—also known as the “dustbin”
or “garbage class” (Zhang & LeCun, 2017). That is, we redefine our network f as a function

50ne might be tempted to treat £ in (4.10) as a log-prior. However not only does this mean that we have a
(controversial) data-dependent prior, but also it introduces implementation issues, e.g. the KL-divergence term in
VB’s objective cannot be computed easily anymore.

91

4 Improving Non-Asymptotic Confidence Estimates

R” xRA+d _, Rk+1 \where d is the number of additional parameters in the last layer associated
with the extra class. Note that this is different from the “background class” method (Zhang &
LeCun, 2017; Wang & Aitchison, 2021) which assumes that the extra class is tied to the rest of
the classes and thus does not have additional parameters. We choose to use the “dustbin class”
since Zhang & LeCun (2017) showed that it is the better of the two.

Under this assumption, we only need to label all OOD data in D,,; with the class k + 1 and add
them to the true dataset D. That is, the new dataset is D:=DU {(x"k+1),..., (xf,;‘(fm, k +
1)}, where LI denotes disjoint union. Under this setting, we can directly use the Categorical
likelihood, and thus, a BNN with this assumption has a sound Bayesian interpretation.

Method 2: Soft Labels

In this method, we simply assume that the data have “soft labels”, i.e. the labels are treated as
general probability vectors, instead of restricted to integer labels (Thiel, 2008).5 Thus, we can
assume that the target y is a A®=D _yalyed random variable. Under this assumption, since one-
hot vectors are also elements of A%*~1 (they represent the k corners of A®~1) we do not have
to redefine D other than to one-hot encode the original integer labels.

Now let us turn our attention to the OOD training data. The fact that these data should be
predicted with maximum entropy suggests that the suitable label for any x°" € Dy is the
uniform probability vector u := (1/k, ..., 1/k) of length k—the center of A®~1_ Thus, we
can redefine Dy as the set {(x;’“t, u)}znz"”l‘, and then define a new joint dataset D:=DIl Dout
containing both the soft-labeled in- and out-distribution training data. Note that without the
assumption that y is a simplex-valued random variable, we cannot assign the label u to the OOD
training data, and thus we cannot naturally convey our intuition that we should be maximally
uncertain over OOD data.

Under the previous assumption, we have to adapt the likelihood. A straightforward choice
for simplex-valued random variables is the Dirichlet likelihood ppi(y | x,0) := Dir(y |
a(f(x;0))) where we have made the dependence of « to the network output f(x;6) explicit.
So, we obtain the log-likelihood function

k
log ppir(y | x.6) = log I'(a0)— Y log T'(0t; (f(x:6)))
i=1
. 4.11)
+) (e (f(x:0)) — 1) log yi.
i=1

where o 1= Zf;l a; (f(x;0)) and I is the Gamma function. Therefore, the log-likelihood for
D is given by

Moyt

m
log poir(D | x.6) = Y _log poir(y® | xP.0) + > log pic(u | x{™. 6),

i=1 i=1

which can readily be used in Bayesian inference.

%The term “soft label” here is different than “fuzzy label” (Kuncheva, 2000; El Gayar et al., 2006) where it is not
constrained to sum to one.

92

4.3 Out-of-Distribution Training for BNNs

One thing left to discuss is the definition of «(f(x; 8)). An option is to decompose it into the
mean and precision (Minka, 2000). We do so by writing «; (f(x;6)) = y softmax; (f(x;0))
foreachi = 1,...,k, where y is the precision (treated as a hyperparameter) and the softmax
output softmax(f(x; 8)) represents the mean—which is valid since it is an element of Ak=D),
The benefits are two-fold: First, since we focus solely on the mean, it is easier for optimization
(Minka, 2000). Indeed, we found that the alternatives, such as «; (f(x;60)) = exp(fi(x;6))
yield worse results. Second, after training, we can use the softmax output of f as usual without
additional steps, i.e. when making a prediction, we can treat the network as if it was trained
using the standard softmax-Categorical likelihood.

Method 3: Mixed Labels

There is a technical issue when using the Dirichlet likelihood for the in-distribution data: It
is known that the Dirichlet likelihood does not work well with one-hot encoded vectors and
that it is harder to optimize than the Categorical likelihood (Malinin & Gales, 2018). To see
this, notice in (4.11) that the logarithm is applied to y;, in contrast to softmax;(f(x;#)) in
the Categorical likelihood. If y is a one-hot encoded vector, this implies that for all but one
i € {l,...,k}, the expression log y; is undefined and thus the entire log-likelihood also is.
While one can mitigate this issue via e.g. label smoothing (Malinin & Gales, 2018; Szegedy
etal., 2016), ultimately we found that models with the Dirichlet likelihood generalize worse than
their Categorical counterparts (more in Section 4.3.4). Fortunately, the Dirichlet log-likelihood
(4.11) does not suffer from this issue when used for OOD data because their label u is the
uniform probability vector—in particular, all components of u are strictly larger than zero.

Motivated by these observations, we combine the best of both worlds in the stability of the
Categorical likelihood in modeling “hard” one-hot encoded labels (or equivalently, integer la-
bels) and the flexibility of the Dirichlet likelihood in modeling soft labels. To this end, we
assume that all the in-distribution data in D have the standard integer labels, while all the OOD
data in Dy, have soft labels. Then, assuming D=DlU Dout, we define the following “mixed”
log-likelihood:

Mout

m
log p(D | 0) := Zlog pea(y® | x@ 60) + Zlog poir(u | X, 6).

i=1 i=1

The implicit assumption of this formulation is that, unlike the two previous methods, we have
two distinct generative processes for generating the labels of input points in U and V. Data in D
can thus have a different “data type” than data in D,y;. This method can therefore be interpreted
as solving a multi-task or multi-modal learning problem.

Method 4: Frequentist-Loss Likelihood

Considering the effectiveness of frequentist methods, it is thus tempting to give a direct Bayesian
treatment upon them. But to do so, we first have to find a sound probabilistic justification of £
in (4.10) since not all loss functions can be interpreted as likelihood. We use the OE objective
(Hendrycks et al., 2019) as a use case.

93

4 Improving Non-Asymptotic Confidence Estimates

1.0 1.0 1.0 1.0 1.0
0.8 0.8 0.8 0.8 0.8
~ 0.6 “+ 0.6 & 0.6 ‘+ 0.6 & 0.6
0.4 0.4 0.4 0.4 0.4
02 0.2 02 0.2 0.2
0.0 0.0 0.0 0.0 0.0
1.0 1.0 1.0 1.0 1.0
0.8 0.8 0.8 0.8 0.8
0.6 . 0.6 . 0.6 . 0.6 \ 0.6
0.4 0.4 0.4 0.4 0.4
02 0.2 02 0.2 02
0.0 0.0 0.0 0.0 0.0
(a) Freq. OE (b) LA+NC (c) LA+SL (d) LA+ML (e) LA+OE

Figure 4.14: Confidence estimate of the frequentist OE baseline (a) and the discussed Bayesian OOD-
training methods (b-e). For the BNNs, we use the Laplace approximation (LA). The suffixes “+NC”,
“+SL, “+ML”, and “+OE” refer to the “none class”, “soft labels”, “mixed labels”, and “OE likelihoods”
methods, respectively. The bottom row shows the zoomed-out versions of the top one. The OOD training
data is sampled from Unif[—6, 6]2. While OE yields calibrated uncertainty near the training data (a), it
is overconfident far from them. Meanwhile, Bayesian methods are less overconfident far away from the
data (b-e).

First, recall that OE’s OOD objective—the last term in (4.10)—is given by

Log(0; Dow) := —Exou~p,, (H (softmax(f (x°": 0)),u))

k
1 '”Z Z . (4.12)
Tk Mout ;3 j=1 fogsoftmasy (/0500

where u := (1/k,...,1/k) € A®=1 is the uniform probability vector of length k and H is the
functional measuring the cross-entropy between its two arguments. Our goal here is to interpret
(4.12) as a log-likelihood function: we aim at finding a log-likelihood function log p(Doy: | €)
over Dy that has the form of Log. This is sufficient for defining the overall likelihood over D
and D, since given this function and assuming that these datasets are independent, we readily
have a probabilistic interpretation of the log-likelihood terms in (4.10): log p(D, Doy | 6) =

log pcar(D | 6) + log p(Dout | 0).

We begin with the assumption that the Categorical likelihood is used to model both the in- and
out-of-distribution data—in particular, we use the standard integer labels for both D and Dy.
Now, recall that the OOD data ideally have the uniform confidence, that is, they are equally
likely under all possible labels. But since we have assumed hard labels, we cannot use u directly
as the label for x°"* € Dyy. To circumvent this, we redefine the OOD dataset D,y by assigning
all k possible labels to each x°", based on the intuition that f should be “maximally confused”
about the correct label of x°U.

Dout 1= {0 1),y K)o, (R 1), (0 K (4.13)

94

4.3 Out-of-Distribution Training for BNNs

Thus, given mqy, unlabeled OOD data, we have |Doy| = k moy OOD data points in our OOD
training set. So, the negative log-Categorical likelihood over Dy, is given by

Mout k

—log p(Doy | 0) = Z Z log softmax; (f(x{""; 9)). (4.14)

i=1j=1

Comparing this to (4.12), we identify that log p(Dgy |) is exactly Log, up to a constant factor
1/(k myy), which can be thought of as a tempering factor to p(Dyy, | #). We have thus obtained
the probabilistic interpretation of OE’s objective—this likelihood can then be soundly used in a
Bayesian inference—albeit arising from applying a heuristic (4.13) to the data.

Remark Here, we consider the question of whether there is an inherent advantage of using
OOD-trained BNNs instead of the standard OOD-trained network. One answer to this question
is given by the recent finding that Bayesian methods naturally yield low uncertainty in regions
far away from the data Chapter 3. In contrast, OOD-trained point-estimated networks do not
enjoy such a guarantee by default and must resort to e.g. generative models (Meinke & Hein,
2020). We illustrate this observation synthetically in Fig. 4.14.

4.3.3 Related Work

OOD training for BNNs has recently been used for tuning the hyperparameters of LAs Chapter 3
and Section 4.2. However, it appears that OOD training is not commonly utilized by BNNs
in the Bayesian inference itself. Wang & Aitchison (2021), at the same time window as this
work, also proposed OOD training for BNNs by justifying the presence of OOD training data
as a consequence of the data curation process. Nevertheless, their method is different than all
the methods proposed here and only validated on a single BNN. Meanwhile, we explore four
distinct methods and extensively validate them on various BNNs, see Section 4.3.4.

From an adjacent field, adversarial training for BNNs has recently been studied. In particular,
Liu et al. (2019) specifically employ VB and modify the first term of the ELBO to take into
account the worst-case perturbation of each data point, which can be thought of as a particular
type of OOD data. Unlike theirs, our methods are for general OOD data and are agnostic to the
approximate inference method.

Non-Bayesian Dirichlet-based models have recently been studied for UQ (Sensoy et al.,
2018). Similar to our proposed “soft labels” and “mixed labels” likelihoods, Malinin & Gales
(2018; 2019); Nandy et al. (2020) use the Dirichlet distribution as the output of a non-Bayesian
network and employ OOD training via a custom, non-standard loss. Their methods’ Bayesian
interpretation is therefore unclear. In contrast, for modeling soft labels, we simply use the stan-
dard Dirichlet log-likelihood function, which is well-studied in the context of generalized linear
models (Gueorguieva et al., 2008). Our methods thus retain a clear Bayesian interpretation when
used in BNNs.

4.3.4 Experiments

Baselines We use the following strong, recent baselines to represent non-Bayesian methods:’
(i) standard MAP-trained network (MAP), (ii) Deep Ensemble (DE, Lakshminarayanan et al.,

"Deep Ensemble can also be seen as a Bayesian method, but it was originally proposed as a frequentist method.

95

4 Improving Non-Asymptotic Confidence Estimates

Table 4.8: Test accuracy (1) / ECE (), averaged over five prediction runs. Best values in each categories
(separated by horizontal lines) are in bold.

MNIST F-MNIST SVHN CIFAR-10 CIFAR-100
MAP 99.440.0/6.440.0 92.440.0/13.94+0.0 97.44+0.0/8.9£0.0 94.840.0/10.040.0 76.7+0.0/14.3+0.0
DE 99.54+0.0/8.6+0.0 93.6+0.0/3.6+0.0 97.6+0.0/3.5£0.0 95.7+0.0/4.5+0.0 80.0+0.0/1.9£0.0
OE 99.440.0/5.3+0.0 92.3+0.0/12.1£0.0 97.44+0.0/10.6£0.0 94.6+0.0/13.240.0 76.7+0.0/15.04+0.0
VB 99.5+£0.0/11.24+0.3 92.4£0.0/3.7+0.2 97.5+0.0/5.7+0.2 94.940.0/5.84+0.2 75.4+0.0/8.3+0.0
+NC 99.4£0.0/12.6+0.3 92.240.0/3.3+0.1 97.5£0.0/4.1+0.1 94.4£0.0/5.5£0.1 74.1£0.0/10.740.1
+SL 99.5+£0.0/10.5+0.3 93.1+£0.0/6.3+0.1 97.6+0.0/9.3+0.2 93.0£0.0/11.040.1 71.4£0.0/13.04+0.0
+ML 99.3£0.0/11.84+0.2 92.0£0.0/2.540.1 97.6+0.0/4.24+0.0 95.0+£0.0/4.94+0.2 75.4£0.0/10.440.0
+OE 99.4£0.0/10.04+0.2 92.3£0.0/3.0+0.2 97.6+0.0/5.7+0.2 94.8+£0.0/4.6+0.2 74.2£0.0/8.94+0.0
LA 99.440.0/7.6%0.1 92.5+0.0/11.3£0.2 97.44+0.0/3.3£0.3 94.8+0.0/7.5+0.3 76.6+0.1/8.3+0.1
+NC 99.4£0.0/5.44+0.7 92.4+0.0/8.5+0.3 97.3+£0.0/4.6+0.2 94.0£0.0/6.6+0.3 76.2+0.0/6.1+0.0
+SL 99.7+£0.0/12.1+1.1 93.2+0.0/3.2+0.3 97.5+£0.0/7.4+0.2 93.6+0.0/10.24+0.2 72.3£0.1/7.1+0.2
+ML 99.4£0.0/7.5+1.0 92.5+£0.0/5.94+0.2 97.4+0.0/2.94+0.2 94.8+0.0/6.94+0.3 76.5+0.1/4.41+0.1
+OE 99.4£0.0/4.84+0.7 92.3£0.0/7.4%0.1 97.4£0.0/3.240.1 94.6+£0.0/8.8+0.1 76.7+0.1/4.41+0.1

2017), and (iii) Outlier Exposure (OE, Hendrycks et al., 2019). Note that DE and OE are among
the established state-of-the-art frequentist UQ methods.

For standard Bayesian methods, i.e. those considering only D in the inference, we use (iv)
the all-layer diagonal Laplace approximation on top of the MAP network (LA) and (v) the
last-layer mean-field VB (VB, Graves, 2011; Blundell et al., 2015). We mainly use only these
simple Bayesian methods to validate that the proposed likelihood could make even these crudely
approximated BNNs competitive to the strong baselines. Results with more advanced BNNs are
in Table 4.12.

To represent our methods, we again use the same LA and VB but with the modifications
proposed in Section 4.3.2. We denote these modified methods LA+X and VB+X, respectively.
Here, X is the abbreviation for the proposed methods, i.e. NC for “none class” (Method 1), SL
for “soft label” (Method 2), ML for “mixed label” (Method 3), and OE for “OE likelihood”
(Method 4).

Finally, we use the LeNet and WideResNet-16-4 architectures, trained in the usual manner—
see Appendix G.2. Source code is available at https://github.com/wiseodd/bayesian_

ood_training.

Datasets As the in-distribution datasets, we use: (i) MNIST, (ii) Fashion-MNIST (F-MNIST),
(iii)) SVHN, (iv) CIFAR-10, and (v) CIFAR-100. For each of them, we obtain a validation set of
size 2000 by randomly splitting the test set. For methods requiring OOD training data, i.e. OE,
LA+X, and VB+X, we use the 32x32 downsampled ImageNet dataset (Chrabaszcz et al., 2017)
as an alternative to the 80M Tiny Images dataset used by Hendrycks et al. (2019); Meinke &
Hein (2020), since the latter is not available anymore.® For OOD detection tasks, we use various
unseen (i.e. not used for training or tuning) OOD test sets as used in (Meinke & Hein, 2020;
Hein et al., 2019), both real-world (e.g. E-MNIST) and synthetic (e.g. uniform noise). For text
classification, we use the Stanford Sentiment Treebank (SST, Socher et al., 2013) and the TREC
dataset (Voorhees, 2001). We detail of all OOD test sets in Appendix G.1. We furthermore
test the methods in a dataset-shift robustness task using the corrupted CIFAR-10 (CIFAR-10-C)
dataset (Ovadia et al., 2019; Hendrycks & Dietterich, 2019).

Shttps://groups.csail.mit.edu/vision/TinyImages/.

96

4.3 Out-of-Distribution Training for BNNs

Table 4.9: OOD data detection in terms of FPR95. Values are averages over six OOD test sets and five
prediction runs—Ilower is better. The best values of each category are in bold. Details are in Table G.1 in
the appendix.

Methods MNIST F-MNIST SVHN CIFAR-10 CIFAR-100
MAP 17.7 69.4 224 524 81.0
DE 10.6 61.4 10.1 323 73.3
OE 54 16.2 2.1 22.8 54.0
VB 25.7 63.3 22.0 36.5 71.6
+NC 7.5 15.0 14 28.0 49.9
+SL 2.7 4.2 1.8 40.4 62.3
+ML 7.4 19.6 14 29.1 50.2
+OE 6.8 224 1.5 29.8 53.3
LA 19.4 68.7 17.1 53.6 81.3
+NC 6.6 8.3 1.5 20.1 474
+SL 2.2 4.1 1.0 385 60.9
+ML 55 14.3 1.1 21.8 52.5
+OE 54 17.0 1.1 23.3 539

Metrics To measure OOD detection performance, we use the standard FPR95 metric, which
measures the false positive rate at 95% true positive rate. Other metrics such as average con-
fidence and area under the ROC curve are presented in the appendix. Meanwhile, to measure
dataset-shift robustness and predictive performance, we use test accuracy and expected calibra-
tion error (ECE) with 15 bins (Naeini et al., 2015).

4.3.4.1 Generalization and Calibration

We present the generalization and calibration performance in Table 4.8. We note that generally,
all methods discussed in Section 4.3.2 attain comparable accuracy to, and are better calibrated
than the vanilla MAP/OE models. However, the “soft label” method tends to underperform
in both accuracy and ECE—this can be seen clearly on CIFAR-100. This issue appears to
be because of the numerical issue we have discussed in Section 4.3.2. Note that this issue
seems to also plague other Dirichlet-based methods (Malinin & Gales, 2018; 2019). Overall, it
appears that Bayesian OOD training with NC, ML, and OE is not harmful to the in-distribution
performance—they are even more calibrated than the frequentist OE.

4.3.4.2 OOD Detection

We present the OOD detection results on image classification datasets in Table 4.9.° As indicated
in Fig. 4.13, OE is in general significantly better than even DE while retaining the computational
efficiency of MAP. The vanilla Bayesian baselines, represented by VB and LA, achieve worse
results than DE (and thus OE). But, when OOD training is employed to train these BNNs using
the four methods we considered in Section 4.3.2, their performance improves. We observe
that all Bayesian OOD training methods generally yield better results than DE and become
competitive to OE. In particular, while the “soft label” method (SL) is best for “easy” datasets

9Refer to Appendix G.3 for the detailed, non-averaged results for Tables 4.9 to 4.12, along with additional metrics.

97

4 Improving Non-Asymptotic Confidence Estimates

Table 4.10: OOD data detection on text classification tasks. Values are averages over five prediction runs
and additionally, three OOD test sets for FPR95. Details are in the appendix (Tables G.7 and G.8).

ECE FPR95
Methods SST TREC SST TREC
MAP 20.8 17.2 100.0 96.3
DE 2.5 10.6 100.0 242
OE 13.0 94 0.0 0.0
LA 21.0 17.3 100.0 96.4
+NC 17.9 18.6 0.0 0.0
+SL 17.5 10.4 95.3 0.8
+ML 114 11.5 84.6 0.0
+OE 12.8 84 0.0 0.0

Table 4.11: Average ECE and FPR95 under models trained with synthetic noises as D,,;. Both values are
averaged over five prediction runs, and additionally six OOD test sets for FPR95. See Tables G.5 and G.6
in the appendix for details.

ECE FPRY5
Methods SVHN CIFAR-10 CIFAR-100 SVHN CIFAR-10 CIFAR-100
MAP 8.9 10.0 14.3 224 524 81.0
OE 8.9 11.5 16.1 11.4 31.0 60.1
LA 33 7.5 8.3 17.1 53.6 81.3
+NC 5.0 8.3 3.8 10.5 26.4 64.5
+SL 13.5 16.0 4.0 93.7 379 68.6
+ML 7.4 7.2 33 14.4 284 61.0
+OE 3.8 7.2 8.6 10.1 35.3 56.4

(MNIST, F-MNIST), we found that the simplest “none class” method (NC) achieves the best
results in general.

In Table 4.10, we additionally show the results on text classification datasets. We found
that the OOD training methods consistently improve both the calibration and OOD-detection
performance of the vanilla Bayesian methods, making them on par with OE. As before, the
“none class” method performs well in OOD detection. This is a reassuring result since NC is
also the most philosophically clean (i.e. requires fewer heuristics) than the other three methods
considered.

A common concern regarding OOD training is the choice of Dyy. As an attempt to address
this, in Table 4.11 we provide results on OOD detection when the model is trained using a syn-
thetic noise dataset. The noise dataset used here is the “smooth noise” dataset (Hein et al., 2019),
obtained by permuting, blurring, and contrast-rescaling the original training dataset. We found
that even with such a simple OOD dataset, we can still generally obtain better OOD detection
results than OE, as shown by the FPR9S5 values. Moreover, the combination of Bayesian formal-
ism and OOD training is beneficial in calibrating the in-distribution uncertainty: We found that
using this Dy to train OE yields worse-calibrated results than even the vanilla MAP model, as
the ECE values show. In contrast, OOD-trained LA yields better ECE results in general.

98

4.3 Out-of-Distribution Training for BNNs

[Jmap [Jok [JpE [JvB [JvB+nc [JvB+sL [JvB+ML [JvB+OE [JlLa [lLa+nc Jra+st Jrasmr Jra+oE

Severity

40

ECE |

20 1

Figure 4.15: Dataset shift performance on the corrupted-CIFAR-10-C dataset, following Ovadia et al.
(2019). Values are ECE—lower is better.

Finally, we show that OOD training is beneficial for other BNNs. In Table 4.12, we consider
two recent (all-layer) BNNs: a VB with the flipout estimator (Flipout, Wen et al., 2018) and
the cyclical stochastic-gradient Hamiltonian Monte Carlo (CSGHMC, Zhang et al., 2020). Evi-
dently, OOD training improves their OOD detection performance by a large margin. Moreover,
OOD training also improves the performance of DE.

4.3.4.3 Dataset-Shift Robustness

In this UQ task, OOD training is beneficial for both MAP and the vanilla Bayesian methods
(VB, LA), making them competitive to the state-of-the-art DE’s performance in larger severity
levels, see Fig. 4.15. Moreover, the OOD-trained VB and LA are in general more calibrated than
OE, which shows the benefit of the Bayesian formalism vis-a-vis the point-estimated OE. This
indicates that both being Bayesian and considering OOD data during training are beneficial.

E though it is the best in OOD detec-
ven though 1t 1s the best 1 etee Table 4.12: Average ECE and FPR95 with more so-

tion, h?re we observe that NC is less cali- phisticated base models. “C-10" stands for CIFAR-
brated in terms of ECE than its counterparts. 10, while “C-100” for CIFAR-100

This might be due to the incompatibility of

calibration metrics with the additional class: ECE FPR95

When the data are corrupted, they become Methods C-10 C-100 C-10 C-100
clqser tq the OOD dé‘lt..':l, and thus NC tends to Flipout 10.9 19.8 65.0 85 4
assign higher probability mass to the lastclass 4+NC 8.2 13.8 40.9 56.2
which does not COITrespond to any of the true ~ ~g5MmC 17 40 603 810
classes (contrast this to other the approaches). +NC 6.2 2.4 25.0 43.0
Therefore, in this case, the conﬁdence over "o 45 19 33 733
the true class becomes necessarily lower— NC 4.8 1.7 17.0 44.4

more so than the other approaches. Consid-
ering that calibration metrics depend on the confidence of the true class, the calibration of NC
thus suffers. One way to overcome this issue is to make calibration metrics aware of the “none
class”, e.g. by measuring calibration only on data that have low “none class” probability. We
leave the investigation for future research.

99

4 Improving Non-Asymptotic Confidence Estimates

4.3.4.4 Costs

The additional costs associated with all the OOD-training methods presented here are negligible:
Like other non-Bayesian OOD-training methods, the only overhead is the additional minibatch
of OOD training data at each training iteration—the costs are similar to when considering a
standard training procedure with double the minibatch size. Additionally for LA, in its Hessian
computation, one effectively computes it with twice the number of the original data. However,
this only needs to be done once post-training.

100

Chapter 5
Conclusion

Uncertainty estimation and calibration are important functionalities for safe predictive systems,
including neural networks. Yet, despite their ubiquitousness, they generally yield badly cali-
brated, overconfident predictions. This thesis offered several low-cost Bayesian solutions for
improving the predictive uncertainty quantification performance of neural networks.

Chapter 2 showed that it is now easier than ever to apply the Bayesian paradigm in deep neural
networks, thanks to recent advances in Laplace approximations. This is facilitated further by the
simple, easy-to-use laplace—torch library.

Chapter 3 provided an application of Laplace approximations (and Gaussian-based posterior
approximations in general) for mitigating overconfidence in ReLLU networks that occur far away
from the training data. One can show that even a simple Laplace approximation applied only at
the last layer of a deep network helps. Furthermore, the latter half of Chapter 3 shows that one
can completely fix the asymptotic overconfidence problem by essentially adding infinitely many
additional ReLU features to the network, which can be done efficiently thanks to its Gaussian
process formulation.

Finally, Chapter 4 proposed low-cost methods that can be applied on top of Laplace approxi-
mations. First, one can improve the weight-space approximation quality of a pre-trained Laplace
approximation by refining it with simple normalizing flows. While cheap, the resulting refined
posterior can be competitive with the more expensive Hamiltonian Monte Carlo method. Sec-
ond, one can also train only the predictive uncertainty of a Laplace approximation by introducing
further degrees of freedom to the original parameter space, which in turn gives the possibility
to find a point estimate that induces the same predictive mean, but with more a desirable local
geometry around it. Last but not least, Bayesian neural network classifiers can be improved
further by including outliers during training. This can be done by simply assuming an extra
class to the underlying network. All these methods were able to improve the calibration and
out-of-distribution data detection of standard Laplace approximations.

The fact that these simple, low-cost methods can mitigate overconfidence in deep networks
and improve Bayesian neural networks further is encouraging: It gives us more confidence in
our journey towards safe and reliable, yet high-performing predictive systems.

101

Appendix A
Derivations

A.1 The Probit Approximation

The probit function ® is the cumulative distribution function of the standard Gaussian distribu-
tion V(x| 0,1) on R, i.e., ®(z) := [Z_ N(x | 0, 1) dx. It can conveniently be written in terms
of the error function

2 z
erf(z) := —/ exp(—x?) dx (A.1)
77 o
by
®(2) 1(1+ f(z)) (A2)
z) == erfl — | |. .
2 V2
Proposition A.1 (The Probit Integral). If N (x | jt,02) be a Gaussian on R and a, b € R then
ap+b
O(ax +b)N(x | pn,o? dszID(—). (A.3)
| @@ +5) NG | .o?) e

Proof. The standard property of the error function says that

/ erf(ax + b)N(x | u,0%) dx = erf(ﬂ)
R
So,

ax +b

V1+24262)"
_ 2
(7))./\/'(x|,u0)dx

o
o) ()

11 (ap +b)/ V2
= 5 + —erf
V1 + 2/ 3202

=)
(61”:-—{6_1[)02)

102

A.1 The Probit Approximation

and the proof is complete. O

This integral is very useful for Bayesian inference since it enables us to approximate the
following integral that is ubiquitous in Bayesian binary classifications

fa(z)/\/(z | m,s?)dz,
R

where 0(z) := 1/(1 + exp(—z)) is the logistic function.

The key idea is to notice that the probit and logistic function are both sigmoid functions. That
is, their graphs have a similar “S-shape”. Moreover, their images are both [0, 1]. However, they
are a bit different—the probit function is more “horizontally stretched” compared to the logistic
function.

So, the strategy to approximate the integral above is as follows: (i) horizontally “contract” the
probit function and then (ii) use Proposition 3 to get an analytic approximation to the integral.
For the first step, this can be done by a simple change of coordinate: stretch the domain of
the probit function with a constant A, i.e., z — Az. There are several "good" values for A,
but commonly it is chosen to be A = \/n_/8, which makes the probit function have the same
derivative as the logistic function at zero. That is, we have the approximation o (z) ~ ®(Az) =

d(/7/82).

Corollary A.2. If N'(z | m, s?) is a Gaussian on R, then

g m
/RCI)()LZ)N(Z | m,s*)dz = @(—m)

Proof. By Proposition 3, we have

2 _ Ap)
/RdJ()LZ)./\/’(Z | m,s?)dz = @(—m

- q’(mx—’%)

We have thus arrived at the claim. O

Now we are ready to obtain the probit approximation.

Proposition A.3 (The Probit Approximation). If N (z | m, s?) is a Gaussian on R and o (z) ~

oz z m,s dZ ~ 0 e — .

Proof. Let A = /m/8. Using Corollary 4 and substituting ®(z) = J()Fl Z):

2 ~~ L
/I;G(Z)N(Z | m,s%)dz ~ Cb(m)

103

A Derivations

(=5)
=0l —
it

Y 2 T'm
- /1 + 252)

Substituting A% = 7/8 into the last equation yields the desired result. O

A.2 The Multiclass Probit Approximation

Let p(z) := N(z | u, X) be the distribution a random variable z € R¢. The multi-class probit
approximation (MPA) is defined by

I
softmax(z z)dz ~ softmax ,
/]RC @ r() (\/1 —I—Jr/8diag(2))

where the vector division is defined component-wise. Its derivation, based on Lu et al. (2020) is
as follows.

Notice that we can write the i -th component of softmax(z) as 1/(1+)_ i exp(—(zi —zj))).

So, foreachi = 1,...,c, using z;; := z; — zj, we can write
1 _ 1
L+ 3 sexp(=zij) 1—(K-D+Y,, —+—
l+exp(—zij)
1

= 1 .
2_K + Z]?él U(Z,'j)

Then, we use the following approximations:

1. E(f(x)) ~ f(E(x)) for a non-zero function f,

2. the mean-field approximation N'(z | u, X) ~ N(z | u,diag(X)), and thus we have
Zjj ‘= Zj — Zj NN(Z,']' | i — Wy, X+ Ejj), and

3. using the (binary) probit approximation (see Appendix A.1), with a further approximation:

i — MU
o(Zi)N @ij | i —pj, Zii + Xjj)dzij ~ o
A (1]) (l] |/’Ll /’LJ i JJ) 1 <\/1+7T/82ll+2]])

.o i B 1)
VI+7/8%; J1+xn/8%;)

104

A.2 The Multiclass Probit Approximation

we obtain
N 1
~ 1
2-K+ Zj7éi Eo(zi;)
1

~ 1
2_K+Zj7éi M M
G(«/1+”/8Eii_«/‘+”/82jj)
1

_ i _ Ky
1+Zj7$i exp((«/1-{—7‘[/82[1‘ \/1+7t/82jj))
exp(ui/ 1+ /8 Eii)
Z;f:l exp(;/ /1 + /8 Xj;)

/ softmax; (2) N'(z | u, X)
RC

We identify the last equation above as the i-th component of softmax(#).

A/ 14+m/8 diag(X)

105

Appendix B
Appendix of Chapter 2

B.1 Components of Laplace-Approximated Neural Networks

Recall from Section 1.2.1 and Section 1.3.1 that the goal of a Laplace approximation on a BNN
fo is to approximate the intractable posterior

p(0 D)=

! 1
Tp 0p@as PP 10O = ZhE:D).

given a dataset D := {(x;, y;)}7";, where p(D | 0) := [[/Z; p(yi | fo(xi)) and p(6)
are a likelihood and a prior, respectively. This is done by first finding the mode Gyiap and
then “surrounding” it with a Gaussian with covariance equals the inverse of the Hessian A :=
Vgﬁ(@; D)|gyup» Where L(0;D) := —logh(8;D). Generally, any prior with twice differen-
tiable log-density can be used. But, due to the popularity of the weight decay regularizer (Sec-
tion 1.2.1), we assume that the prior is a zero-mean Gaussian p(f) = N (@ | 0,y%1) unless
stated otherwise.! The Hessian V;E(D; 6)|6,.,, then depends both on the (simple) log-prior and
the (complicated) log-likelihood:

n
A = VFLD: 0oy =~y 2La— Y V3log p(yi | fo(xi))loyse- (B.1)

i=1

A naive implementation of the Hessian is infeasible because the second term in (B.1) scales
quadratically with the number of network parameters, which can be in the millions (He et al.,
2016). In recent years, several works have addressed scalability, as well as other factors that
affect approximation quality and predictive performance of the LA. In the following, we identify,
review, and discuss three key components that allow LAs to scale and perform well on modern
deep architectures. See Fig. 2.2 for an overview—note that the fourth component is discussed in
Section 1.3.4.

B.1.1 Subset of Weights

The naive impelementation of a LA on all weights of a deep network is often intractable. Fortu-
nately, recent works (Kristiadi et al., 2020; Daxberger et al., 2021b, see also Section 2.3.2) show
that the LA can be just as effective when applied only on a subset of the network’s weights.

'One can also consider a per-layer or even per-parameter weight decay, which corresponds to a more general, but
still comparably simple Gaussian prior. In particular, the Hessian of this prior is still diagonal and constant.

106

B.1 Components of Laplace-Approximated Neural Networks

B.1.1.1 Last-Layer Laplace

Let fp : R" — R¥ be an L-layer NN, and assume that the first L. — 1 layers of fj is a feature

map, denoted by ¢ : R” — R".-! where ¢ := e(éj)) 0.0 9((11)). Given MAP-trained
parameters Gyap, we fix 0W . 0LD tg their MAP-estimated values. This yields a linear
model

fowr(x) = W (x) + b (B.2)

where now 6L the only parameter of this model. Note that, this model can also be seen as a
linear model with nonlinear feature extractor ¢.

Under the previous assumption, we can perform a Laplace approximation:
p(@P | D) ~ NP | 60, 51y, (B.3)

where the covariance matrix ¥ in this case is generally much smaller than the standard

Laplace approximation on the whole 6. See Appendix B.1.2 for the detail on how to compute
PN

B.1.1.2 Subnetwork Laplace

The last-layer Laplace can be generalized by considering a Laplace approximation of an arbitrary
subset of the network’s parameter. This is motivated by recent findings that neural networks can
be heavily pruned without sacrificing test accuracy (Frankle & Carbin, 2019), and that in the
neighborhood of a local optimum, there are many directions that leave the predictions unchanged
(Maddox et al., 2020).

Let 0% be an arbitrary subset of 6 and let) := 6 \). Given a pre-trained parameter

Onap, we fix 07 to its MAP-estimated value 91\(/[r AP and perform a Laplace approximation only
on 0. In other words, we have the following posterior approximation over the whole 6:

PO D)~ NOW | 6530, 2 T 80 — buar) = 45(0). (B.4)
feo)

where §(z — a) denotes the Dirac delta function centered at a.

The importance of this construction is that the size of the subset 0©)—i.e. the subnetwork
size—can be considered as a hyperparameter that can be controlled. Typically, 8¢ will be set
such that its size is much smaller than the d, the size of 6. In particular,Q(s) can be set such that
it is tractable to compute and store the full covariance matrix over the subnetwork. This allows
us to capture rich dependencies across the weights within the subnetwork. However, in principle
one could also employ one of the (less expressive) factorizations of the Hessian described in
Appendix B.1.2.

Daxberger et al. (2021b) propose to choose the subnetwork such that the subnetwork posterior
in (B.4) is as close as possible (w.r.t. some discrepancy measure) to the Laplace approximation
over the full parameter g(6) = N(6 | 6map, X). As the subnetwork posterior is degenerate
due to the involved Dirac delta functions, common discrepancy measures such as the KL di-

107

B Appendix of Chapter 2

vergence are not well defined. Therefore, Daxberger et al. (2021b) propose to use the squared
2-Wasserstein distance, which in this case takes the following form:

1/2
Wa(q(0), q5(0))? = Tr(E + 36 _ 2(2(S)1/2 x 2“)1/2)) , (B.5)

where the (degenerate) subnetwork covariance matrix X) is equal to the full covariance matrix
X but with zeros at the positions corresponding to the weights in o)

However, finding the subset of weights 0 of size dg that minimizes (B.5) is combinatori-
ally hard, as the contribution of each weight depends on every other weight. Daxberger et al.
(2021b) therefore assume that the weights are independent, resulting in the following simplified
objective:

d
Wa(q(9).45(0))> ~ > 62 (1—m;) . (B.6)
i=1

where 01-2 = X, is the marginal variance of the i-th weight under ¢ (), and m; = 1if §; €
(with slight abuse of notation) or 0 otherwise is a binary mask indicating which weights are part
of the subnetwork (see Daxberger et al. (2021b) for details). The objective in (B.6) is trivially
minimized by choosing a subnetwork containing the ds weights with the highest O'iz values—i.e.
those with largest marginal variances.

B.1.2 Hessian Factorization

Practically speaking, the Hessian Vgﬁ(@; D)|g,,,p at the MAP estimate Oyiap is not guranteed to
be positive-semidefinite—the requirement for the Laplace approximation—due to the imperfec-
tion in neural network optimization. To alleviate this issue, one can use a positive-semidefinite
approximation to the Hessian, called the Fisher information matrix (or simply the Fisher). For
brevity, given a datum (x, y), we denote s(x, y) to be the gradient of the log-likelihood at Oyap,
ie.
s(x.y) 1= Vglog p(y | fo(x)l6ys-

The Fisher is then defined by

n
F =Y Epoisotan (s0ie s) 7). (B.7)
i=1
To distinguish between this matrix and its variants, we shall refer to it as the full Fisher.

Note that the full Fisher matrix F is as large as the exact Hessian of the network, so it is costly.
Thus, here, we review several factorization schemes that makes the computation and storage of
the Fisher efficient, starting from the simplest.

108

B.1 Components of Laplace-Approximated Neural Networks

B.1.2.1 Diagonal

In this factorization, we simply assume that the Hessian A is simply a diagonal matrix with
diagonal elements equal the diagonal of the Fisher, i.e. A ~ —diag(F)TI — AI. Since we can
write?

m
diag(F) = Z Ep(ylfeMAP(xi)) (s(xi,) © s(xi,),
i=1
this factorization is efficient: Not only does it require only a vector of length D to represent F'
but also it incurs only a O(d) cost when inverting A—down from O(d?3).

B.1.2.2 KFAC

The KFAC factorization can be seen as a midpoint between the two extremes: diagonal factor-
ization, which might be too restrictive, and the full Fisher, which is computationally infeasible.
The key idea is to model the correlation between weights in the same layer but assume that
any pair of weights from two different layers are independent—this is a more sophisticated as-
sumption compared to the diagonal factorization since there, it is assumed that all weights are
independent of each other. For any layer £ = 1,..., L, denoting ny as the number of hid-
den units at the £-th layer, let W(® e R"¢*"e=1 be the weight matrix of the ¢-th layer of the
network, a® the £-th hidden vector, and g®® € R”¢ the log-likelihood gradient w.r.t. a®.
For each £ = 1,...,L, we can then write the outer product inside expectation in (B.7) as
s(xi, Y)s(xi,)T = aDag®OT @ ¢ ¢OT Rurthermore, assuming that ¢~ is indepen-
dent of g, we obtain the approximation of the {-th diagonal block of F, which we denote by

F®:.
FO E(a(e—l)aw—l)T) ® E(g(E)g(e)T) — AED g GO, (B.8)

where we represent both the sum and the expectation in (B.7) as [E for brevity.

From the previous expression we can see that the space complexity for storing F ® is reduced
to O(n% + n%_l), down from O(n%n%_l). Considering all L layers of the network, we obtain
the layer-wise Kronecker factors {A®) }5;01 and {G(e)}EL=1 of the log-likelihood’s Hessian. This
corresponds to the block-diagonal approximation of the full Hessian.

One can then readily use these Kronecker factors in a Laplace approximation. For each layer
¢, we obtain the £-th diagonal block of A—denoted A©—by

VRS (A“‘” + ﬁl) ® (G“) + «/)TI) =vOgUu®.

Note that we take the square root of the prior precision to avoid “double-counting” the effect of
the prior. Nonetheless, this can still be a crude approximation (Martens & Grosse, 2015; Immer
et al., 2021b). This particular Laplace approximation has been studied by Ritter et al. (2018a;b)
and can be seen as approximating the posterior of each W© with the matrix-variate Gaussian
distribution (Gupta & Nagar, 1999): p(W® | D) ~ MNW©® | W y©-1 y©-1)
Hence, sampling can be done easily in a layer-wise manner:

WO~ p(Wh D) = WO =wQ, + O3 gy O

2The operator © denotes the component-wise product.

109

B Appendix of Chapter 2

where E ~ MN(0, In,, In,_,).

where we have denoted by I}, the identity b x b matrix, for b € N. Note that the above matrix
inversions and square-root are in general much cheaper than those involving the entire A. Sam-
pling E is not a problem either since MN (0, Ip,,, In,_,) is equivalent to the standard (n¢ny_)-
variate Normal distribution. As an alternative, Immer et al. (2021b) suggest to incorporate the
prior exactly using an eigendecomposition of the individual Kronecker factors, which can im-
prove performance.

B.1.2.3 Low Rank

Instead of only approximating each block by a low-rank structure, the entire Hessian or GGN
can also be approximated by a low-rank structure (Sharma et al., 2021; Maddox et al., 2020).
Eigendecomposition of F is a convenient way to obtain a low-rank approximation. The eigen-
decomposition of F is given by QL QT where the columns of Q € RP*P are eigenvectors of
F and L = diag(/) is a D-dimensional diagonal matrix of eigenvalues. Assuming the eigenval-
ues in £ are arranged in a descending order, the optimal k-rank approximation in Frobenius or
spectral norm is given by truncation (Eckart & Young, 1936): let Q € RP*k pe the matrix of
the first k eigenvectors corresponding to the largest k eigenvalues 1 € R¥. That is, we truncate
all eigenvectors and eigenvalues after the k largest eigenvalues. The low-rank approximation is
then given by R
F ~ Qdiag(l) Q.

The rank k can be chosen based on the eigenvalues so as to retain as much information of the
Hessian (approximation) as possible. Further, sampling and computation of the log-determinant
can be carried out efficiently.

B.1.3 Hyperparameter Tuning

In this section we focus on tuning the prior variance/precision hyperparameter for simplicity.
The same principle can be used for other hyperparameters of the Laplace approximation such
that observation noise in the case of regression.

Post-Hoc Here, we assume that the steps of the Laplace approximation—MAP training and
forming the Gaussian approximation—as two independent steps. As such, we are free to choose
different prior variance y? in the latter part, irrespective to the weight decay hyperparame-
ter used in the former. Here, we review several ways to optimize y2 post-hoc. Ritter et al.
(2018a) proposes to tune y2 by maximizing the posterior-predictive over a validation set Dy, :=

(xn, yn):’lv;"l. That is we solve the following one-parameter optimization problem:

Nyal

y2 = argmaleog p(yi | xi, D). (B.9)
v? =1

110

B.1 Components of Laplace-Approximated Neural Networks

Table B.1: Qualitative comparison of different Hessian approximations. The KFAC Hessian approxima-
tion performs similar to FULL Gauss-Newton but is almost as fast as DIAG. We use online marginal
likelihood method (Immer et al., 2021a) to train a small convolutional network on FMNIST and measure
performance at test time. We repeat for three seeds to estimate the standard error. The OOD-AUROC is
averaged over EMNIST, MNIST, and KMNIST. The prediction time is taken as the average over all in
and out-of-distribution data sets. We use the MC predictive with 100 samples.

test log likelihood test accuracy OOD-AUROC prediction time (s)
DIAG -0.302+0.005 0.89440.002 0.832+0.011 29.5+0.2
KFAC -0.282+0.004 0.899+0.002 0.836+0.004 30.6+0.1
FULL -0.285+0.004 0.898+0.002 0.876+0.003 62.8+1.1

However, Kristiadi et al. (2020) found that the previous objective tends to make the Laplace
approximation overconfident to outliers. Hence, they proposed to add an auxiliary term that

Hout
depends on an OOD dataset Dy 1= (x.(om)> - to (B.9), as follows

1

PRyal Nout
y2 =argmax Y _log p(v | 1. D) +2Y_H(p(i | . D)). (B.10)

where H is the entropy functional and A € (0, 1] is a trade-off hyperparameter. Intuitively, we
choose y? that balances the calibration on the true dataset and the low-confidence on outliers.
Moreover, other losses could be constructed to tune the prior precision for optimal performance
w.r.t. some desired quantity. Finally, inspired by Immer et al. (2021a) (further details below in
Online) one can also maximize the Laplace-approximated marginal likelihood (2.6) to obtain
yf, which eliminates the need for the validation data.

Online Contrary to the post-hoc tuning above, here we perform a Laplace approximation and
tune the prior variance simultaneously as we perform a MAP training (Immer et al., 2021a). The
key is to form a Laplace-approximated posterior every B epochs of a gradient descent, and use
this posterior to approximate the marginal likelihood, cf. (2.6). By maximizing this marginal
likelihood, we can find the best hyperparameters. Thus, once the MAP training has finished, we
automatically obtain a prior variance that is already suitable for the Laplace approximation. Note
that, this way, only a single MAP training needs to be done. This is in contrast to the classic,
offline evidence framework (MacKay, 1992b) where the marginal likelihood maximization is
performed only when the MAP estimation is done, and these steps need to be iteratively done
until convergence. As a final note, similar to the post-hoc marginal likelihood above, this online
Laplace does not require a validation set and has an additional benefit of improving the network’s
generalization performance (Immer et al., 2021a).

111

B Appendix of Chapter 2

B.2 Predictive Uncertainty Quantification Experiments

B.2.1 Training Details

We use LeNet (LeCun et al., 1998) and WideResNet-16-4 (WRN, Zagoruyko & Komodakis,
2016) architectures for the MNIST and CIFAR-10 experiments, respectively. We adopt the
commonly-used training procedure and hyperparameter values.

MAP We use Adam and Nesterov-SGD to train LeNet and WRN, respectively. The initial
learning rate is 0.1 and annealed via the cosine decay method (Loshchilov & Hutter, 2017) over
100 epochs. The weight decay is set to 5 x 107, Unless stated otherwise, all methods below
use these training parameters.

DE We train five MAP network (see above) independently to form the ensemble.

VB We use the Bayesian-Torch library (Krishnan & Esposito, 2020) to train the network. Tha
variational posterior is chosen to be the diagonal Gaussian (Graves, 2011; Blundell et al., 2015)
and the flipout estimator (Wen et al., 2018) is employed. The prior precision is set to 5 x 107 to
match the MAP-trained network, while the KL-term downscaling factor is set to 0.1, following
(Osawa et al., 2019).

CSGHMC We use the publicly available code provided by the original authors (Zhang et al.,
2020).> We use their default (i.e. recommended) hyperparameters.

SWAG For the SWAG baseline, we follow Maddox et al. (2019a) and run stochastic gradient
descent with a constant learning rate on the pre-trained models to collect one model snapshot
per epoch, for a total of 40 snapshots. At test time, we then make predictions by using 30 Monte
Carlo samples from the posterior distribution; we correct the batch normalization statistics of
each sample as described in Maddox et al. (2019a). To tune the constant learning rate, we used
the same approach as in Eschenhagen et al. (2021), combining a grid search with a threshold on
the mean confidence. For MNIST, we defined the grid to be the set { le-1, Se-2, 1e-2, 5e-3, 1e-3
}, yielding an optimal value of 1e-2. For CIFAR-10, searching over the same grid suggested that
the optimal value lies between Se-3 and le-3; another, finer-grained grid search over the set {
Se-3, 4e-3, 3e-3, 2e-3, 1e-3 } then revealed the best value to be 2e-3.

Other baselines Our choice of baselines is based on the most common and best performing
methods of recent Bayesian DL papers. Despite its popularity, Monte Carlo (MC) dropout
(Gal & Ghahramani, 2016) has been shown to underperform compared to more recent methods
(see e.g. Ovadia et al. (2019)). A recent VI method called Variational Online Gauss-Newton
(VOGN) (Osawa et al., 2019) also seems to underperform. For example, Fig. 5 of Osawa et al.
(2019) shows that on OOD detection with CIFAR-10 vs. SVHN, MC-dropout and VOGN only
achieve AUROC1 values of 81.9 and 80.0, respectively, while last-layer-LLA obtains a substan-
tially better value of 91.9 (they use ResNet-18, which is comparable to our model).

3https://github.com/rugizhang/csgmeme

112

B.2 Predictive Uncertainty Quantification Experiments

Table B.2: MNIST OOD detection results.

Confidence | AUROC 1
Methods EMNIST FMNIST KMNIST EMNIST FMNIST KMNIST
MAP 83.6+0.3 64.240.5 77.3+0.3 93.54+0.3 98.94+0.0 97.0+0.1
DE 75.84+0.2 55.44+0.4 65.94+0.3 95.1+0.0 99.240.0 98.31+0.0
BBB 79.1+£0.4 67.5£1.6 73.1+£0.4 92.3+£0.2 98.2+0.2 97.0+0.2
CSGHMC 76.2+1.6 63.6+1.9 67.9+1.5 93.440.2 97.7+0.2 97.110.1
SWAG 64.91+0.3 84.0+£0.2 78.51+0.3 98.94+0.0 93.61+0.3 97.110.1
LA 74.84+0.4 58.8+£0.5 69.0+£0.4 93.440.3 98.5£0.1 96.6£0.1
LA* 62.0+0.5 49.6+0.6 56.7+0.5 94.31+0.2 98.340.1 96.6+0.2

Table B.3: CIFAR-10 OOD detection results.

Confidence | AUROC 1
Methods SVHN LSUN CIFAR-100 SVHN LSUN CIFAR-100
MAP 77.5£2.9 71.3£0.6 79.3£0.1 91.8+£1.2 94.5+0.2 90.1+0.1
DE 62.8+0.7 62.6+£0.4 70.8+£0.0 95.4£0.2 95.3£0.1 91.4+0.1
BBB 60.240.7 53.8+1.1 63.8+£0.2 88.5+0.4 91.9+0.4 84.9£0.1
CSGHMC 69.8+0.8 65.2+0.8 73.1£0.1 91.2+0.3 92.6+0.3 87.91+0.1
SWAG 69.3+£4.0 622423 73.0£0.4 91.6£1.3 94.0£0.7 88.2+0.5
LA 70.6+3.2 63.84+0.5 72.610.1 92.0+1.2 94.6+0.2 90.1£0.1
LA* 58.0£3.1 50.0+0.5 59.0+0.1 91.9+1.3 95.0£0.2 90.2+0.1

B.2.2 Detailed Results

We provide the detailed (i.e. non-averaged) OOD detection results in Tables B.2 and B.3.

B.2.3 Additional Details on Wall-clock Time Comparison

Concerning the wall-clock time comparison in Fig. 2.6, we would like to clarify that for LA,
we consider the default configuration of 1aplace—torch. As the default LA variant uses the
closed-form probit approximation to the predictive distribution and therefore neither requires
Monte Carlo (MC) sampling nor multiple forward passes, the wall-clock time for making pre-
dictions is essentially the same as for MAP. This is contrast to the baseline methods, which are
significantly more expensive at prediction time due to the need for MC sampling (VB, SWAG)
or forward passes through multiple model snapshots (DE, CSGHMC).

Importantly, note that is an advantage exclusive to our implementation of LA (i.e. with a
GGN/Fisher Hessian approximation or with the last-layer LA) that it can be used without sam-
pling (i.e. using the probit or Laplace bridge predictive approximations). This kind of approx-
imation is incompatible with the other baselines (i.e. DE, CSGHMC, SWAG, and VB) since
these methods just yield samples/distributions over weights while our LA variants implicitly
yield a Gaussian distribution over logits due to the linearization of the NN induced by the use
of the GGN/Fisher (see Immer et al. (2021b) for details) or the use of only the last layer. While
one could still apply linearization to other methods, this would not be theoretically justified, in
contrast to GGN-/last-layer-LA.

113

B Appendix of Chapter 2

Finally, the reason we benchmark our deterministic, probit-based version is that we found it
to consistently perform on par or better than MC sampling. If we predict with the LA using
MC samples on the logits, the runtime is only around 20% slower than the deterministic probit
approximation, which is still significantly faster than all other methods.

In summary, we believe that the ability to obtain calibrated predictions with a single forward-
pass is a critical and distinctive advantage of the LA over almost all other Bayesian deep learning
and ensemble methods.

B.3 WILDS Experiments

For this set of experiments, we use WILDS (Koh et al., 2020), a recently proposed benchmark
of realistic distribution shifts encompassing a variety of real-world datasets across different data
modalities and application domains. In particular, we consider the following WILDS datasets:

e CAMELYON17: Tumor classification (binary) of histopathological tissue images across
different hospitals (ID vs. OOD) using a DenseNet-121 model (10 seeds).

e FMOW: Building / land use classification (62 classes) of satellite images across different
times and regions (ID vs. OOD) using a DenseNet-121 model (3 seeds).

o C1vILCOMMMENTS: Toxicity classification (binary) of online text comments across dif-
ferent demographic identities (ID vs. OOD) using a DistilBERT-base-uncased model (5
seeds).

e AMAZON: Sentiment classification (5 classes) of product reviews across different review-
ers (ID vs. OOD) using a DistilBERT-base-uncased model (3 seeds).

o POVERTYMAP: Asset wealth index regression (real-valued) across different countries and
rural/urban areas (ID vs. OOD) using a ResNet-18 model (5 seeds).

Please refer to the original paper for more details on this benchmark and the above-mentioned
datasets. All reported results in Fig. 2.7 show the mean and standard error across as many seeds
as there are provided with the original paper (see the list of datasets above for the exact numbers).

For the last-layer Laplace method, we use either a KFAC or full covariance matrix (depending
on the size of the last layer; in particular, we use a KFAC covariance for FMOW and full covari-
ances for all other datasets) and the linearized Monte Carlo predictive distribution with 10,000
samples.

For the deep ensemble, we simply the aggregate the pre-trained models provided by the origi-
nal paper. This yields ensembles of 5 neural network models, which is a commly-used ensemble
size (Ovadia et al., 2019). Since these models were trained in different ways (e.g. using different
domain generalization methods, see Koh et al. (2020) for details), their combinations can be
viewed as hyperparameter ensembles (Wenzel et al., 2020b).

Note that the temperature scaling baseline is only applicable for classification tasks, and there-
fore we do not report it for the POVERTYM AP regression dataset.

We tune the temperature parameter for temperature scaling, the prior precision parameter for
Laplace, and the noise standard deviation parameter for regression (i.e. for the POVERTYMAP
dataset) by minimizing the negative log-likelihood on the in-distribution validation sets provided
with WILDS.

114

B.4 Continual Learning Experiments

B.4 Continual Learning Experiments

We benchmark Laplace approximations in the Bayesian continual learning setting on the per-
muted MNIST benchmark which consists of 10 consecutive tasks where each task is a permu-
tation of the pixels of the MNIST images. Following common practice (Ritter et al., 2018b;
Nguyen et al., 2018; Osawa et al., 2019), we use a 2-hidden layer MLP with 100 hidden units
each and 28 x 28 = 784 input dimensions and 10 output dimensions for the MNIST classes.
We adopt the implementation of the continual learning task and the model by Pan et al. (2020).
In the following, we will briefly outline the Bayesian approach to continual learning (Nguyen
et al., 2018) and explain how a diagonal and KFAC Laplace approximation can be employed
in this setting. Further, we describe how this can be combined with the evidence framework to
update the prior online alleviating the need for a validation set, which is unlikely to be available
in real continual learning scenarios.

B.4.1 Bayesian Continual Learning

The Bayesian approach to continual learning can be simply described as iteratively updating the
posterior after each task. We are given ¢ data sets D := {D; }521 and have a neural network
with parameters 6. In line with the standard supervised learning setting outlined in Section 2.1,
we have a prior on parameters p(9) = N (@ | 0,y2I) and a likelihood p(D | 6) realized by a
neural network. The posterior on the parameters after all tasks is then

p0 | D)x p(Ds|0)...p(D2| 0)p(Dy | 0)p(0). (B.11)

This factorization gives rise to a recursion to update the posterior after i — 1 data sets to the
posterior after i data sets:

pO | Di,....Di) x p(Di |)p(8 | D1,...,Di-1). (B.12)

The normalizer in (B.12) is given by the marginal likelihood p(D; | Dy,...,Dj—1) and we
will use it for optimizing the variance y? of p(6). Incorporating a new task is the same as
Bayesian inference in the supervised case but with an updated prior, i.e., the prior is the previous
posterior distribution on 6. The Laplace approximation provides one way to approximately infer
the posterior distributions after each task (Huszar, 2018; Ritter et al., 2018b; Pan et al., 2020).
Alternatively, variational inference can be used (Nguyen et al., 2018; Osawa et al., 2019).

B.4.2 The Laplace Approximation for Continual Learning

The Laplace approximation facilitates the recursive updates ((B.12)) that arise in continual learn-
ing. In this context, it was first suggested with a diagonal Hessian approximation by Kirkpatrick
et al. (2017, EWC) and Huszar (2018) corrected their updates. Ritter et al. (2018b) greatly im-
proved the performance by using a KFAC Hessian approximation instead of a diagonal. The
Laplace approximation to the posterior after observing task 7 is a Gaussian N (91&)@, @) we
obtain Byap by optimizing the unnormalized log posterior distribution on 6 as annotated in

115

B Appendix of Chapter 2

(B.11) for every task, one after another. The Hessian of the same unnormalized log posterior
also specifies the posterior covariance >,

. - B -1
TO = (= V3log p(D; | Dy — X5y VElog p(D; | O)lgor + v 2L)

log prior Hessian

log-likelihood Hessian previous log-likelihood Hessians
(B.13)
This summation over Hessians is typically intractable for neural networks with large parame-
ter vectors € and hence diagonal or KFAC approximations are used (Kirkpatrick et al., 2017,
Huszér, 2018; Ritter et al., 2018b). For the diagonal version, the addition of Hessians and
log prior is exact. For the KFAC version, we follow the alternative suggestion by Ritter et al.
(2018b) and add up Kronecker factors which is an approximation to the sum of Kronecker prod-
ucts. However, this approximation is what underlies KFAC even in the supervised learning case
where we add up factors per data point over the entire data set. Lastly, we adapt y during training
on each task ¢ by optimizing the marginal likelihood p(D; | D, ...Dij—1), i.e., by differentiat-
ing it with respect to y. This can be done by computing the eigendecomposition of the summed
Kronecker factors (Immer et al., 2021a) and allows us to 1) adjust the regularization suitably per
task and 2) avoid setting a hyperparameter thereby alleviating the need for validation data.

116

Appendix C
Appendix of Section 3.2

C.1 Adversarial Examples

The adversarial datasets (“Adversarial” and “FarAwayAdv”, cf. Table 3.2) are constructed as
follows. For “Adversarial”: We use the standard PGD attack (Madry et al., 2018) on a uniform
noise dataset of size 2000. The objective is to maximize the confidence of the MAP model
(resp. ACET and OE below) inside of an £°° ball with radius € = 0.3. The optimization is
carried out for 40 iterations with a step size of 0.1. We ensure that the resulting adversarial
examples are in the image space. For “FarAwayAdv”: We use the same construction, but start
from the “far-away” Noise datasets as used in Table 3.2 and we do not project the resulting
adversarial examples onto the image space.

C.2 Bayesian Methods on Top of State-of-the-art OOD Detectors

We can also apply all methods we are considering here on top of the state-of-the-art models
that are specifically trained to mitigate the overconfidence problem, namely ACET (Hein et al.,
2019) and outlier exposure (OE) (Hendrycks et al., 2019). The results are presented in Tables C.3
and C.4. In general, applying the Bayesian methods improves the models further, especially in
the asymptotic regime.

C.3 Frequentist Calibration

Although calibration is a frequentist approach for predictive uncertainty quantification, it is nev-
ertheless interesting to get an insight on whether the properties of the Bayesian predictive distri-
bution lead to a better calibration. To answer this, we use a standard metric (Naeini et al., 2015;
Guo et al., 2017): the expected calibration error (ECE). We use the same models along with the
same hyperparameters as we have used in the previous OOD experiments. We present the results
in Table C.1. We found that all the Bayesian methods are competitive to the temperature scaling
method, which is specifically constructed for improving the frequentist calibration.

117

C Appendix of Section 3.2

Table C.1: Expected calibration errors (ECE).

MNIST CIFAR10 SVHN CIFAR100

MAP 6.7+0.3 13.1+0.2 10.1+0.2 8.1+0.3
+Temp. 11.4+£2.2 3.6+0.6 2.1+0.5 6.4+0.5
+LLLA 6.9+0.3 3.6+0.6 5.24+0.8 4.8+0.3
+DLA 15.54+0.2 6.910.1 8.3+0.0 4.7+0.3
+KFLA 9.740.3 7.940.1 6.54+0.1 5.6+0.4
ACET 5.9+0.2 15.84+0.4 11.940.2 10.1+:0.4
+Temp. 11.0£1.5 3.7+0.8 2.34+04 6.4+0.4
+LLLA 6.1+0.2 12.34+0.7 9.3+0.5 6.9+0.3
+DLA 6.2+0.3 4.3+0.3 2.0+0.1 6.0+0.3
+KFLA 6.1+0.3 4.3+0.2 2.14+0.1 4.6+0.2
OE 14.7+1.2 15.84+0.3 11.040.1 25.0+0.2
+Temp. 9.0+2.3 23.34+0.7 3.7+0.7 19.440.2
+LLLA 6.5+0.6 14.6+0.2 4.14+0.3 249+0.4
+DLA 9.1+0.6 15.84+0.3 7.2+0.1 29.04+0.2
+KFLA 10.1£0.9 15.940.3 6.440.1 29.04+0.2

Table C.2: Adversarial OOD detection results.
MAP +Temp. +LLLA +DLA +KFLA

MMC AUR MMC AUR MMC AUR MMC AUR MMC AUR

MNIST - Adversarial 100.04£0.0 03400 100.0£0.0 68441 100.0£0.0 53+0.1 996402 20409 913£12 69.2+3.5
MNIST - FarAwayAdy 100.04£0.0 01400 100.0+£0.0 68441 999400 93+0.6 853414 530438 556420 97.4+03
CIFARIO - Adversarial ~ 100.04£0.0 0.0£0.0 100.0+£0.0 004+00 997400 9.1+0.1 9934+0.1 9.0+1.0 992400 58404
CIFARIO - FarAwayAdv ~ 99.5£0.0 88+0.0 992400 7.94+0.1 174401 100.0+0.0 61324 89410 612+13 87.8+0.8
SVHN - Adversarial 100.0£0.0 0.04£0.0 100.0£0.0 0.0+00 97.6£0.0 32.5+03 98.6£0.0 68403 98.6+0.1 9.6+0.4
SVHN - FarAwayAdv 997400 7.7+£0.0 995400 69+0.1 27.5£01 99.6£0.0 61714 924409 61.0£12 94.4+03
CIFARI00 - Adversarial ~ 100.04£0.0 0.0£0.0 100.0+£0.0 00+00 100.0£0.0 02400 100.0£0.0 0.1£00 100.0£0.0 0.0+0.0
CIFARI00 - FarAwayAdv 100.04£0.0 13200 99.9+0.0 12400 59+0.0 999400 420415 839409 423+18 80.8+1.2

118

C.3 Frequentist Calibration

Table C.3: OOD detection results when applying post-hoc Bayesian methods on top of models trained
with ACET (Hein et al., 2019).

MAP +Temp. | +LLLA +DLA +KFLA

MMC AUR MMC AUR| MMC AUR MMC AUR MMC AUR
MNIST - MNIST 98.9+0.0 - 995400 -| 98.9+0.0 - 98900 - 98900 -
MNIST - EMNIST 501400 969400 709+1.8 96.5+0.1| 59.0£0.0 969+£0.0 59.0+0.0 96.9+0.0 59.1+0.0 96.9%0.0
MNIST - FMNIST 102£0.0 100.0£0.0 10.3£00 100.0:£0.0 | 10200 100.0+£0.0 10.2+0.0 100.0+0.0 10.230.0 100.0:0.0
MNIST - Noise (§ = 2000) ~ 100.0£0.0 0.0+0.0 100.0£0.0 21.9+9.2 | 100.0£0.0 03+02 99.9+0.0 0.3+02 100.0£0.0 0.2+0.1
MNIST - Adversarial 10.0£0.0 100.0£0.0 10.0+£0.0 100.0+0.0 | 10.1£0.0 100.0£0.0 10.0+0.0 100.0£0.0 10.0£0.0 100.0::0.0
MNIST - FarAwayAdv 100.0£0.0 0.0£0.0 100.0£0.0 21.9+9.2 | 100.0+£0.0 0.1£0.0 100.0£0.0 0.2:+00 100.0£0.0 0.1£0.0
CIFARI0 - CIFAR10 97.3£0.0 - 95202 -| 96.7£0.1 - 94700 - 94900 -
CIFARI0 - SVHN 62.840.0 96.1£0.0 529407 965+£0.0 | 59.5£05 96.1+0.1 531+0.1 962+0.1 53701 96.2+0.0
CIFAR10 - LSUN 721400 928400 62.6+0.7 932+0.1| 689+0.6 928+0.1 59.9+0.6 938+02 60402 93.7%0.1
CIFARIO - Noise (8§ = 2000) 100.0£0.0 0.0+0.0 100.0£0.0 0.0+£0.0 | 16.0+£0.0 100.0+0.0 71717 92.3+07 658+18 94.420.5
CIFARIO0 - Adversarial 78.1£00 831201 7L1£0.5 84.1+0.1| 76.8+00 83201 67.9+£0.4 88.5+02 67.7+0.3 88.8+0.2
CIFARI0 - FarAwayAdv 100.0£0.0 0.0£0.0 100.0+£0.0 0.0£0.0| 16.0£0.0 100.0+£0.0 72.5+24 921207 70.7+19 93.1+0.5
SVHN - SVHN 98.50.0 - 97302 -| 98.3+0.0 - 96.7+00 - 96200 -
SVHN - CIFAR10 659400 95.6£0.0 58.5+£0.8 957400 | 64.0+£03 957400 49.8+0.1 97.5+0.0 d83+0.1 97.420.0
SVHN - LSUN 280400 99300 24.6+£03 99.4:+00| 27.8+£0.1 993+£00 228406 99.6+0.0 2L7+0.6 99.6+0.0
SVHN - Noise (8 = 2000) 179402 100.0+0.0 16.0+0.3 100.0+£0.0 | 15000 100.0+0.0 451£2.1 99.0+02 41.6£13 99.1£0.1
SVHN - Adversarial 10.4£0.0 100.0+0.0 103£0.0 100.0+£0.0 | 10.8+0.0 100.0£0.0 104+0.0 100.0+£0.0 104200 100.0+0.0
SVHN - FarAwayAdv 17.6£0.0 100.0£0.0 15702 100.0+£0.0 | 15.0:£0.0 100.0+0.0 44.9£2.6 99.0+02 44.8+15 98.8+0.1
CIFAR100 - CIFAR100 82.0£0.1 - 78105 -| 79.6+0.1 - 78701 - 76301 -
CIFAR100 - SVHN 571400 77.840.1 49.5+£0.8 787+0.1| 527£0.1 784+0.1 524+00 77.7+01 d95H0.0 774202
CIFAR100 - LSUN 551400 78.8+0.1 483£07 79.0+0.1| 50.6+0.1 79.5+0.1 49.8+0.1 79301 d6.8+0.2 79.2+0.2
CIFARI00 - Noise (§ = 2000) 99.3£0.1 42402 992401 3.8+02| 54+0.0 100.0+0.0 58513 761+£09 51.8+11 77.6+0.9
CIFAR100 - Adversarial 15£0.0 100.0£0.0 1.4+0.0 100.0+0.0 | 15+0.0 100.0£0.0 1.4+0.0 100.0£0.0 1400 100.0:0.0
CIFAR100 - FarAwayAdv 99.7+0.0 3400 99.6£0.0 3.1£00| 54+00 100.0£0.0 S57.7£15 76.6+10 57914 73.4£10

Table C.4: OOD detection results when applying post-hoc Bayesian methods on top of models trained
with outlier exposure (OE) (Hendrycks et al., 2019).

MAP +Temp. ‘ +LLLA +DLA +KFLA

MMC AUR MMC AUR ‘ MMC AUR MMC AUR MMC AUR
MNIST - MNIST 99.6+0.0 - 99.4+0.1 -197.8+0.8 - 99.4+0.0 - 99.4+0.0 -
MNIST - EMNIST 842+0.0 96.0£0.1 77.1£2.6 96.3+0.1 | 67.3£3.1 943+0.7 79.6+0.0 95.6+0.1 79.1+£0.0 95.940.1
MNIST - FMNIST 27.940.0 99.94+0.0 22.841.5 99.940.0 | 25.6+1.6 99.9+0.0 27.5+0.1 99.9+0.0 27.3+£0.0 99.9+0.0
MNIST - Noise (§ = 2000) 99.940.0 26440.2 99.940.0 5.0+2.4 | 66.0+£0.6 959404 58.4+03 97.6+£0.3 49.84+0.3 99.3+0.1
MNIST - Adversarial 40.5+£0.0 98.8+0.0 352+1.1 99.1+0.0 | 38.7+0.0 98.1+£0.0 38.1£0.0 98.7+£0.0 35.84+0.1 99.240.0
MNIST - FarAwayAdv 100.0£0.0 25.54+0.2 100.0£0.0 3.6+2.4 | 66.6+0.1 95.7+0.1 59.2+03 972402 50.5+0.3 99.3+0.1
CIFARI10 - CIFAR10 89.4+0.1 - 925404 - 89.240.1 - 89.3+0.1 - 89.3+0.1 -
CIFAR10 - SVHN 10.8+0.0 98.8+0.0 11.2+0.1 98.8+0.0 | 10.9+0.0 98.7+0.0 10.84+0.0 98.84+0.0 10.8+0.0 98.840.0
CIFAR10 - LSUN 10.4+£0.0 98.6+0.0 10.7£0.1 98.6+0.0 | 10.6£0.0 98.5+£0.1 10.4+0.0 98.6+0.0 10.4+0.0 98.61+0.0
CIFARI10 - Noise (§ = 2000) 99.1£0.1 6.5£0.6 99.4+0.1 7.6+0.7 | 25.0£0.1 93.6+0.1 77.9+£1.0 79.5£2.0 72.7£15 84.6%12
CIFARI10 - Adversarial 98.51+0.0 24400 98.8+0.0 2.6+0.2 | 98.5+0.0 2.440.0 98.5+0.0 2.4+£0.0 98.5+0.0 2.4+£0.0
CIFAR10 - FarAwayAdv 99.54+0.0 52400 99.8+0.0 6.2+0.3 | 25.1+0.1 93.6+0.1 79.4+1.1 784+£19 78.1%14 79.6+1.7
SVHN - SVHN 97.44+0.0 - 958403 - 95.7£0.2 - 92.5+0.0 - 93.5+0.0 -
SVHN - CIFAR10 10.2+0.0 100.04+0.0 10.14+0.0 100.040.0 | 14.3£0.6 99.9+0.0 10.840.0 100.0+0.0 10.8+0.0 100.0+0.0
SVHN - LSUN 10.1£0.0 100.0£0.0 10.1£0.0 100.0£0.0 | 142+0.6 99.9£0.0 10.84+0.0 100.0+0.0 10.94+0.1 100.04-0.0
SVHN - Noise (§ = 2000) 99.74+0.0 3.0+£0.2 99.640.1 2.7+0.2 | 16.24+0.0 99.7+0.0 31.5+1.4 98.4+02 33.0£1.3 98.4+0.2
SVHN - Adversarial 449400 98.2+0.0 34.4+0.7 98.5+0.0 | 34.24+0.0 98.5+£0.0 17.9+£0.2 99.5+0.0 18.2+0.2 99.6+0.0
SVHN - FarAwayAdv 99.9+0.0 2440.0 99.8+£0.0 2.240.0 | 16.3£0.0 99.7+0.0 32.1+£1.2 98.3+02 31.7£1.6 98.6+0.2
CIFAR100 - CIFAR100 59.6+0.2 - 71.8+0.5 - | 54.9+0.2 - 51.5+02 - 52.0+02 -
CIFAR100 - SVHN 3.6+0.0 93.5+0.1 72402 934401 | 3.6+0.2 929405 3.6+£0.0 932+0.1 3.6+0.0 93.440.1
CIFAR100 - LSUN 2.6+£0.0 95.440.1 5.0£0.1 953%0.1| 2.940.1 94.6+0.2 2.5+£0.1 959+0.2 2.5+0.1 95.9+0.2
CIFAR100 - Noise (§ = 2000) 100.040.0 1.3£0.0 100.0£0.0 7.3£0.7 | 25.3+0.1 64.5+£0.2 89.7£1.9 250427 824+14 33.5+13
CIFAR100 - Adversarial 95.6+0.0 21.7+0.1 96.7+0.0 24.6+0.4 | 67.3+0.1 40.24+0.2 89.840.3 239403 89.8+0.2 24.9+02
CIFAR100 - FarAwayAdv 100.0£0.0 1.3£0.0 100.0£0.0 7.3+0.7 | 25.3+0.1 64.5+0.2 89.4+1.6 256422 89.1+19 272422

119

Appendix D
Appendix of Section 3.3

D.1 Training Details

For LeNet, we use Adam optimizer with an initial learning rate 1 x 10~ while for ResNet, we
use SGD with an initial learning rate of 0.1 and momentum 0.9. In both cases, the optimization
is carried out for 100 epochs using weight decay 5 x 10~ on a single GPU. We also reduce the
learning rate by a factor of 10 at epochs 50, 75, and 90. Test accuracies are in Table D.5.

D.2 Experiments

D.2.1 Asymptotic Regime

As a gold standard GP baseline, we compare against the method of Qiu et al. (2020) (with our
DSCS kernel). We refer to this baseline simply as GP-DSCS. The base methods, which RGPR
is implemented on, are the following recently-proposed BNNs: (i) Kronecker-factored Laplace
(KFL, Ritter et al., 2018a), (ii) stochastic weight averaging-Gaussian (SWAG, Maddox et al.,
2019a), and (iii) stochastic variational deep kernel learning (SVDKL, Wilson et al., 2016b). All
the kernel hyperparameters for RGPR are set to a constant value of 1 x 107!° since we focus on
the asymptotic regime. In all cases, MC-integral with 10 posterior samples is used for making
predictions. We construct a test dataset artificially by sampling 2000 uniform noises in [0, 1]V
and scale them with a scalar « = 2000. The goal is to achieve low confidence over these
far-away points.

The results are presented in Table D.1. We observe that the RGPR-augmented methods are
significantly better than their respective base methods. In particular, their confidence estimates
are significantly lower than those of the vanilla methods, becoming closer to the confidence of
the gold-standard GP-DSCS baseline. This indicates that RGPR makes BNNs better calibrated
in the asymptotic regime.

D.2.2 Non-Asymptotic Regime
D.2.2.1 Dataset shift

In Table D.2 we present the non-normalized numerical results to complement Fig. 3.11. RGPR
in general improves the vanilla LLL.

120

D.2 Experiments

Table D.1: RGPRs compared to their respective base methods on the detection of far-away outliers.
Values are average confidences. Error bars are standard errors over three prediction runs. For each
dataset, the best value over each vanilla and RGPR-imbued method (e.g. KFL against KFL-RGPR) are in
bold.

Methods CIFAR10 SVHN
GP-DSCS 22.04+0.2 22.1£0.3
KFL 64.5+0.7 63.4+1.5
KFL-RGPR 29.94+0.3 27.5+0.0
SWAG 63.5+1.8 50.24+4.2
SWAG-RGPR 29.31+0.2 27.5+0.0
SVDKL 46.44+0.3 49.1+0.2
SVDKL-RGPR 22.0+0.1 22.1+0.1

Table D.2: CIFAR10-C results. Values are mean over all corruptions.

NLL ECE Brier Confidence Accuracy
MAP 1.066 0.226 0.402 0.887 0.739
Temp. 0914 0.147 0.378 0.842 0.739
DE 0.909 0.110 0.354 0.840 0.752
GP-DSCS 1.096 0.232 0.413 0.888 0.734
LLL 0.872 0.080 0.363 0.800 0.739
LLL-RGPR-LL 0.870 0.079 0.363 0.796 0.738
LLL-RGPR-OOD 0.869 0.095 0.363 0.717 0.738

D.2.2.2 OOD detection

We expand Table 3.5 in Table D.6. In the same table, we additionally show the mean confidence
values (Hendrycks & Gimpel, 2017, MMC,). For CIFAR10, SVHN, and CIFAR100, we test
each model against FMNIST (called FMNIST3D) to measure the performance on grayscale
OOD images. Finally, we also show the OOD detection performance via additional AUROC
and area under precision-recall curve (AUPRC) metrics in Table D.7.

Additionally, we compare RGPR with recent non-Bayesian baselines: (i) the Mahalanobis
detector (Lee et al., 2018c) and (ii) deterministic uncertainty quantification (DUQ) (Van Amers-
foort et al., 2020). Values are taken directly from the original papers—they used the same
architecture as in this paper. Table D.3 shows that a RGPR-equipped BNN is better than the
Mahalanobis detector. Moreover, LLL-RGPR-OOD is competitive to DUQ, but without the
drawback of reducing test accuracy.

D.2.2.3 Hyperparameter tuning
We present the optimal hyperparameters (UIZ)ILZ_O1 in Table D.8. We observe that using higher

representations of the data is beneficial, as indicated by non-trivial hyperparameter values on all
layers across all networks and datasets.

121

D Appendix of Section 3.3

Table D.3: RGPR against recent non-Bayesian baselines. The OOD detection metric is AUROC.

CIFAR10 vs. LSUN CIFAR10 vs. SVHN

Mabhalanobis 89.2 91.5
LLL-RGPR-OOD 92.6 95.8
Test Acc. CIFAR10 vs. SVHN

DUQ (A =0) 94.2 86.1
DUQ (A = 0.5) 93.2 92.7
LLL-RGPR-OOD 94.3 92.6

Table D.4: Expected calibration errors (ECE).

MNIST CIFAR10 SVHN CIFAR100
MAP 6.7 13.1 10.1 8.1
Temp. Scaling 11.4 3.6 2.1 6.4
ACET 5.9 15.8 11.9 10.1
OE 14.7 15.8 11.0 25.0

D.2.2.4 Natural images for tuning

We present OOD detection results via different Dy, for tuning o2, in Table D.9. Specifically,
we use the ImageNet32x32 dataset (Chrabaszcz et al., 2017), which represents natural image
datasets, and is thus more sophisticated than the noise dataset used in the main text. Neverthe-
less, we observe that the OOD detection performance is comparable to that of the noise dataset,
justifying the choice of Dy, we have made in the main text.

D.2.2.5 Calibration is at odds with OOD detection

As noted in the main text, we observe that employing OOD data for tuning o2 degrades the
in-distribution calibration (as measured by the ECE metric) of RGPR. In Table D.4 (taken from
Table 5 of Kristiadi et al. (2020)), we can see that even recent OOD training methods with many
more parameters than RGPR such as ACET (Hein et al., 2019) and OE (Hendrycks et al., 2019)
degrade the in-distribution ECE. However, note that ACET and OE represent state-of-the-art
OOD detectors. Hence, it is reasonable to conclude that this issue does not seem to be inherent
to RGPR.

D.2.2.6 Regression

To empirically validate our method and analysis (esp. Proposition 3.13), we present a toy re-
gression results. The outlier dataset is constructed by sampling 1000 points from the standard
Gaussian and scale them with ¢ = 2000. The metric used is the predictive error bar (standard
deviation). Following the standard practice (see e.g. Sun et al. (2019)), we use a two-layer ReLU
network with 50 hidden units. The Bayesian methods used are LLL, KFL, SWAG, and stochastic
variational GP (SVGP, Hensman et al., 2015) using 50 inducing points. Finally, we standardize
the data and the hyperparameter for RGPR is set to 0.001 so that Proposition 3.12 is satisfied.

122

D.2 Experiments

Table D.5: Accuracy and calibration error.

Methods MNIST CIFAR10 SVHN CIFAR100
Acc. 1

MAP 99.4 94.3 97.1 76.7
Temp. Scaling 99.4 94.3 97.1 76.7
Deep Ens. 99.6 95.3 97.4 79.5
GP-DSCS 99.3 93.9 97.0 76.6
LLL 99.4 94.3 97.0 76.7
LLL-RGPR-LL 99.2 94.4 97.0 76.7
LLL-RGPR-OOD 99.1 94.3 96.9 76.6
ECE |

MAP 5.4 13.9 13.3 6.4
Temp. Scaling 9.9 6.7 7.5 4.7
Deep Ens. 12.5 2.8 1.3 1.9
GP-DSCS 4.5 144 13.6 8.2
LLL 14.0 2.8 12.9 4.7
LLL-RGPR-LL 15.8 3.6 13.1 5.7
LLL-RGPR-OOD 19.6 12.5 15.9 15.8

The results are presented in Table D.10. We can observe that RGPR retain high confidence
estimates over inlier data and yield much larger error bars compared to the base methods.

123

D Appendix of Section 3.3

Table D.6: OOD data detection results in terms of MMC and FPR@95 metrics. All values are averages
and standard errors over 10 prediction trials.

MAP Temp. Scaling Deep Ens. GP-DSCS LLL | LLL-RGPR-LL LLL-RGPR-OOD
Datasets MMC| FPR| MMC| FPR| MMC| FPR| MMC| FPR| MMC| FPR|| MMC| FPR| MMC| FPR|
MNIST 99.2 - 99.5+0.0 - 991 - 992400 - 97.4200 -||97.00.0 - 96.120.0 -
EMNIST 781 245 834400 249400 741 214 776400 247400 627400 233+0.1|55.7+£0.0 21.940.1 49.4-0.0 21.740.1
KMNIST 731 143 793400 14.1£00 631 56 722400 132400 527400 63200 17.1200 04£0.0 15.6+0.0 0.0+0.0
FMNIST 798 268 850400 27.3+£00 717 113 79.14+00 255+0.1 64.6+0.0 19.1£02 | 18.1£00 13400 155+£00 0.0+0.0
GrayCIFARI0 857 3.6 934400 43+£00 727 0.0 852400 35+0.0 611400 05400 1514200 0.0£0.0 15100 0.00.0
UniformNoise 1000 100.0 100.0£0.0 100.0£0.0 99.9 100.0 100.0+0.0 100.0+0.0 95.7+0.0 99.7+0.0 || 15.1£0.0 0.0+0.0 15.1£0.0 0.0+0.0
CIFAR10 97.0 - 95.0£0.0 - 956 - 96.90.0 - 93.420.0 - || 93.10.0 - 85.920.0 -
SVHN 625 293 537400 256+£00 597 370 69.040.0 40.0:£0.1 47.0+0.0 24.840.1|(46.740.0 25.1+0.1 40.6+0.0 23.3+02
LSUN 745 527 659400 487£00 656 503 766200 551403 58.5+0.1 44.1£0.7||57.420.1 42.940.6 48.5+0.1 40.00.5
CIFAR100 794 615 724400 594£00 707 580 80.040.0 625+0.1 66.0+0.0 58.2402 653400 582+0.2 55.6+0.0 54.740.2
FMNIST3D 714 453 628400 41.0£00 630 441 726200 47.9+0.2 534400 347402526200 345+02 36.6+0.0 16.4203
UniformNoise 647 262 547401 195403 739 860 758%0.1 553+04 39.1+0.1 2.840.1|(37.940.1 22402 32.0+0.1 17403
SVHN 985 - 97.6£0.0 - 978 - 985+0.0 - 92,4200 - ||92.240.0 - 88.020.0 -
CIFARI0 704 183 647400 18.0+£00 572 119 709400 19.8+0.0 41.7+0.0 15.0+0.1 || 41.240.0 14.940.1 34.9+0.0 14.7+0.1
LSUN 717 187 660400 190£00 560 10.0 722400 20.1£0.2 42.940.1 162405 |42.040.1 155402 32.3+0.1 11.9403
CIFAR100 713 204 657400 20.1£00 576 126 71.8+0.0 222400 432400 17.740.1 || 42.540.0 17.540.1 35.2+0.0 16.0+0.1
FMNIST3D 725 219 669400 21.7£00 619 200 728400 229400 45300 21.540.1|38.920.0 12.6+0.1 16.8+0.0 0.040.0
UniformNoise 689 140 627400 13.6+£02 481 38 688+0.1 149402 41.0+0.1 12.5405|(39.540.1 11404 27.3+0.1 41402
CIFAR100 813 - 789400 - 802 - 822400 - 744400 - || 73.40.0 - 62.840.0 -
SVHN 535 789 49.1400 783+£00 447 655 468400 682+0.0 42.6+0.0 77.4202 42,0400 782403 34.9+0.0 79.7402
LSUN 507 747 46.6+00 750400 471 760 536400 76.8+0.1 39.6+0.1 73.5+0.5|38.040.1 73.7+£0.3 30.3+0.0 75.740.6
CIFARI0 533 783 493400 78.0£00 513 769 56.0+0.0 78.8+0.0 44.140.0 77.9402 | 43.0£0.0 78.3£0.3 34.9+0.0 79.1402
FMNIST3D 389 608 348400 60.0+£0.0 381 596 443200 655+0.1 30.0£0.0 58.620229.040.0 58.6+0.3 16.8+0.0 38.740.3
UniformNoise 294 558 257400 555404 451 949 316401 49.9+0.1 22.0+0.1 47.040.4 | 17.1£0.1 24.0+0.8 14.3+0.0 29.6+0.5

Table D.7: OOD data detection results in terms of AUROC and AUPRC metrics. All values are averages
and standard errors over 10 prediction trials.

MAP Temp. Scaling Deep Ens. GP-DSCS LLL || LLL-RGPR-LL LLL-RGPR-OOD
Datasets AUROC | AUPRC | AUROC | AUPRC | AUROC | AUPRC| AUROC| AUPRC | AUROC | AUPRC |||AUROC | AUPRC | AUROC | AUPRC |
MNIST - - - - - - - - - - - - - -
EMNIST 95.0 89.6 949400 89.5+0.0 95.7 912 948400 89.0+0.0 942400 868+0.0| 945+0.0 87.6+00 945400 87.8+0.0
KMNIST 96.0 930 96.140.0 93.5%0.0 983 976 964200 937400 984200 983+0.0| 99.8400 99.8+00 998400 99.8+0.0
FMNIST 922 858 922400 86200 9.6 940 927400 865£0.0 968400 969£0.0| 997400 997400 99.8+00 99.840.0
GrayCIFARI0 98.0 985 978400 98.420.0 99.0 994 98000 98.6£0.0 985500 99.0£0.0| 99.9400 1000400 99.8+0.0 99.9+0.0
UniformNoise 0.1 598 04400 60.140.0 426 765 01400 598400 84.6+0.1 963+0.0| 99.9+0.0 100.0+0.0 99.8+0.0 100.0+0.0
CIFAR10 - - - - - - - - - - - - - -
SVHN 95.7 910 96.120.0 91.240.0 95.2 920 936400 856£0.0 963+0.0 921+00| 962400 919400 958400 90.2+0.0
LSUN 91.8 99.6 92240.0 99.6%0.0 92.8 997 90700 99.6+0.0 927+0.0 99.7+0.0| 92.8+0.0 99.7+00 92.6+0.0 99.7+0.0
CIFAR100 87.3 837 874400 83.4+0.0 90.1 89.5 86300 824400 88.0+0.0 847+0.0| 879400 845400 87.040.0 82.9+0.0
FMNIST3D 929 922 93300 925+0.0 94.0 945 923£0.0 91.6+0.0 947400 945+0.0| 947+00 945400 97.4+00 97.5+0.0
UniformNoise 96.7 992 97.1£0.0 99.3+0.0 9238 984 942400 987400 988400 99.7+0.0| 989400 997400 989400 99.8+0.0
SVHN - - - - - - - - - - - - - -
CIFAR10 95.4 970 954200 96.940.0 97.5 989 950400 967400 973400 98940.0| 973400 989400 974400 99.0+0.0
LSUN 95.6 999 956200 99.940.0 98.0 1000 951200 999400 974200 100.0£0.0|| 97.420.0 100.0£0.0 98.0+0.0 100.00.0
CIFAR100 945 964 945200 96.420.0 97.3 987 941200 961400 968400 98.7%£0.0| 969400 987400 97.140.0 98.840.0
FMNIST3D 942 964 942400 96440.0 96.5 985 94.1%0.0 964400 96.0+0.0 982+0.0| 97.840.0 992400 99.9+0.0 100.0+0.0
UniformNoise 9.8 997 96940.1 99.740.0 98.9 999 967+0.1 997400 97.7£0.0 99.8+0.0| 97.940.0 99.8+0.0 98.8+0.0 99.9+0.0
CIFAR100 - - - - - - - - - - - - - -
SVHN 78.8 637 79300 64.240.0 84.6 732 844400 733400 803+0.0 66.6+0.0| 799400 657400 78.0+0.0 58.7+0.0
LSUN 81.1 99.1 81240.0 99.120.0 $3.2 992 80.3£0.0 99.1£0.0 825+0.1 99.2+0.0| 829+0.1 992400 823400 99.2+0.0
CIFAR10 78.7 778 789400 77.940.0 80.1 79.6 78100 772400 789400 77.6£0.0| 789400 777400 77.9400 75.6:0.0
FMNIST3D 87.4 869 87.84£0.0 87.3£0.0 89.0 895 857400 854400 885400 88.1+£00| 88.6+00 882400 933200 93.140.0
UniformNoise 934 985 93500 98.5+0.0 86.4 969 933200 98.5£0.0 942400 98.7%0.0| 96300 992400 958400 99.10.0

124

D.2 Experiments

Table D.8: Optimal hyperparameter for each layer (or residual block for ResNet) on LLL.

Datasets Input Layer 1 Layer 2 Layer 3 Layer 4
LiL

MNIST 3.3939¢-08 5.4485e-07 1.1377e-07 2.3509¢-03 -
SVHN 9.3995e-04 1.3767e-04 1.1347e-04 2.2835e-04 3.9480e-05
CIFARI10 0.0036 0.0005 0.0008 0.0018 0.0028
CIFAR100 0.0094 0.0093 0.0019 0.0049 0.0144
Loop (Synthetic)

MNIST 1.7384e-05 1.6409¢-06 1.3555e-07 2.5206e-03 -
SVHN 8.2850e+00 6.2021e-03 9.1418e-03 4.7633e-03 1.3424e-02
CIFAR10 4.6957e+01 8.4602¢-04 1.3050e-03 5.9322e-03 1.9222¢-03
CIFAR100 2.6372e+01 2.8527e-03 8.7588e-04 4.5595e-03 2.5490e-01
Loop (32x32 ImageNet)

MNIST 3.5457e-08 5.9255e-07 1.1685e-07 2.4544¢-03 -
SVHN 1.1849¢-03 1.3038e-01 3.5909¢-04 3.8309¢-04 8.2367e-05
CIFAR10 0.0236 0.9079 0.0030 0.0049 0.0053
CIFAR100 0.0152 0.9533 0.0051 0.0094 0.2049

Table D.9: UQ performance with ImageNet32x32 as Dy;.

Methods MNIST CIFAR10 SVHN CIFAR100
ECE |

LLL-RGPR-LL 15.8 3.6 13.1 5.7
LLL-RGPR-OOD 19.6 12.5 15.9 15.8
LLL-RGPR-OOD ImageNet 15.8 20.3 18.8 19.3
FPR@95 |

LLL-RGPR-LL 39 29.6 13.8 65.8
LLL-RGPR-OOD 3.6 24.2 9.6 63.0
LLL-RGPR-OOD ImageNet 39 39.5 7.3 61.0

Table D.10: Regression far-away outlier detection. Values correspond to predictive error bars (averaged
over ten prediction trials), similar to what shades represent in Fig. 3.6. “In” and “Out” correspond to
inliers and outliers, respectively.

housing concrete energy wine
Methods In | Out 1 In | Out 1 In | Out 1 In | Out 1
LLL 0.405 823.215 0.324 580.616 0.252 319.890 0.126 24.176
LLL-RGPR 0.407 2504.325 0.329 3394.466 0.253 2138.909 0.129 1948.813
KFL 1.171 2996.606 1.281 2518.338 0.651 1486.748 0.291 475.141
KFL-RGPR 1.165 3909.140 1.264 4258.177 0.656 2681.780 0.292 2031.481
SWAG 0.181 440.085 1.192 2770.455 0.418 1066.044 0.181 717.357
SWAG-RGPR 0.186 2403.366 1.146 4693.273 0.428 2647.922 0.187 1947.677
SVGP 0.641 2.547 0.845 3.100 0.367 2.237 0.092 0.983

SVGP-RGPR 0.641 1973.506 0.845 1932.061 0.367 1931.299 0.095 1956.027

125

Appendix E
Appendix of Section 4.1

E.0.1 Training

We use the Pyro library (Bingham et al., 2019) to implement the normalizing flow (NF) used
for the refinement. The NF is trained by maximizing the evidence lower bound using the Adam
optimizer (Kingma & Ba, 2015) and the cosine learning rate decay (Loshchilov & Hutter, 2017)
for 20 epochs, with an initial learning rate of 0.001. Following (Izmailov et al., 2021b), we do
not use data augmentation.

For the HMC baseline, we use the default implementation of NUTS in Pyro. We confirm
that the HMC used in our experiments are well-converged: The average Gelman-Rubin R’s
are 0.998, 0.999, 0.997, and 1.096—below the standard threshold of 1.1—for the last-layer
F-MNIST, last-layer CIFAR-10, last-layer CIFAR-100, and all-layer F-MNIST experiments,
respectively.

For the MAP, VB, and CSGHMC baselines, we use the same settings as Daxberger et al.
(2021a): We train them for 100 epochs with an initial learning rate of 0.1, annealed via the cosine
decay method (Loshchilov & Hutter, 2017). The minibatch size is 128, and data augmentation
is employed. For MAP, we use weight decay of 5 x 10~*. For VB and CSGHMC, we use the
prior precision corresponding to the previous weight decay value.

For the LA baseline, we use the laplace—torch library (Daxberger et al., 2021a). The
diagonal Hessian is used for CIFAR-100 and all-layer F-MNIST, while the full Hessian is used
for other cases. Following the current best-practice in LA, we tune the prior precision with post
hoc marginal likelihood maximization (Daxberger et al., 2021a).

Finally, for methods which require validation data, e.g. HMC (for finding the optimal prior
precision), we obtain a validation test set of size 2000 by randomly splitting a test set. Note that,
these validation data are not used for testing.

E.0.2 Datasets

For the dataset-shift experiment, we use the following test sets: Rotated F-MNIST and Cor-
rupted CIFAR-10 (Hendrycks & Dietterich, 2019; Ovadia et al., 2019). Meanwhile, we use the
following OOD test sets for each the in-distribution training set:

o F-MNIST: MNIST, K-MNIST, E-MNIST.
e CIFAR-10: LSUN, SVHN, CIFAR-100.
e CIFAR-100: LSUN, SVHN, CIFAR-10.

126

Table E.1: In-distribution calibration performance.

F-MNIST CIFAR-10 CIFAR-100
Methods Acc. Brier | ECE | Acc. P Brier | ECE | Acc. Brier | ECE |
MAP 90.4+0.1 0.1445£0.0008 11.7+£0.3 94.8£0.1 0.0790+0.0004 10.5£0.2 76.5+0.1 0.3396+£0.0012 13.74+0.2
LA 90.4+0.0 0.1439£0.0008 11.1+0.2 94.8+0.0 0.0785+0.0004 9.8+£0.3 75.6+0.1 0.3529+0.0009 9.7+0.1
LA-Refine-1 ~ 90.4+0.1 0.1386+£0.0007 5.2+0.2 94.7+0.0 0.0776£0.0003 4.3+0.2 75.940.1 0.3445+0.0010 8.0+0.2
LA-Refine-5 90.4+0.1 0.1375£0.0009 3.24£0.1 94.8£0.1 0.0768+0.0004 4.3+0.2 76.24+0.1 0.3311£0.0007 4.5+0.2
LA-Refine-10 90.5+0.1 0.1376£0.0008 3.6+0.1 94.94+0.1 0.0765+0.0004 4.4+0.2 76.1+0.1 0.3312+£0.0008 4.4+0.1
LA-Refine-30 90.44+0.1 0.1376+£0.0009 3.5£0.1 94.94+0.1 0.0765+£0.0004 4.4+0.1 76.14+0.1 0.3315+£0.0007 4.2+0.2
HMC 90.44+0.1 0.1375£0.0009 3.4£0.0 94.9+0.1 0.0765+0.0004 4.3+0.1 76.4+0.1 0.3283+0.0007 4.6+0.1

Table E.2: Calibration of all-layer BNNs on F-MNIST. The

architecture is two-layer ReLU fully-

connected network with 50 hidden units.

Methods MMD | Ace. 1 NLL | Brier | ECE |
LA 0.278+0.003 88.040.1 0.3597+0.0009 0.18+0.0006 7.710.1
LA-Refine-1 0.19440.006 87.6+0.1 0.3564£0.0015 0.1807+£0.0006 6.1+0.1
LA-Refine-5 0.1940.006 87.6+0.1 0.3483+0.0012 0.178140.0005 4.940.3
LA-Refine-10 0.186+0.006 87.740.1 0.3459+0.0008 0.177140.0004 4.7+0.3
LA-Refine-30 0.183+0.006 87.8+0.1 0.3432+0.0014 0.176+0.0007 4.6+0.3
HMC - 89.74+0.0 0.2908+0.0002 0.150240.0001 4.540.1

E.0.3 Image classification

To complement Table 4.3 in the main text, we present results for additional metrics (accuracy,
Brier score, and ECE) in Table E.1. We see that the trend Table 4.3 is also observable here. In
Table E.2, we observe that refining an all-layer posterior improves its predictive quality further.!

In Table E.3, we present the detailed, non-averaged results to complement Table 4.4. More-
over, we also present dataset-shift results on standard benchmark problems (Rotated F-MNIST
and Corrupted CIFAR-10). In both cases, we observe that the performance of the refined poste-
rior approaches HMC’s.

IThe network is a two-layer fully-connected ReLU network with 50 hidden units.

127

E Appendix of Section 4.1

Table E.3: Detailed OOD detection results. Values are FPR95. “LA-R” stands for “LA-Refine”.

Datasets VB* CSGHMC* LA LA-R-1 LA-R-5 LA-R-10 LA-R-30 HMC
FMNIST

EMNIST 83.4+0.6 86.5+0.5 84.7+£0.7 854+£0.8 87.6+0.6 87.6+0.6 87.6+£0.6 87.2£0.6
MNIST 76.0£1.6 75.8£1.8 779+£0.8 77509 79.6+£1.0 79.6£1.0 79.6£1.1 79.0+0.9
KMNIST 71.3£0.9 74.4+£0.5 78.5£0.6 783+0.8 79.9+0.9 79.9+09 79.9+09 79.44+0.9
CIFAR-10

SVHN 66.1+£1.2 59.8+1.4 38.3+29 40.1+£34 382432 36.5+3.0 35.8+£29 36.0£3.0
LSUN 53325 51.7£1.5 51.1+£1.1 46.9+0.5 46.7£0.6 46.9+0.7 47.1£0.5 46.7£0.8
CIFAR-100 69.3£0.2 64.6+£0.3 58.2+0.8 56.1£0.6 55.7+0.8 5534+0.6 552+0.5 55.3£04
CIFAR-100

SVHN 81.7+0.7 759+£1.5 82.2+0.8 77.7£1.2 781%13 77915 783+£1.6 78.2+£1.6
LSUN 76.6£1.8 79.3£1.8 75.5£1.6 751+£12 75714 759+£12 758£13 75.5%1.7

CIFAR-10 84.2+0.4 82.8£0.3 81.0+£0.3 79.1£0.4 79.5+£04 795404 79.6£04 79.7£0.2

Rotated F-MNIST Corrupted CIFAR-10

—@— MAP

1.5 {—+—1a

—6— LA-Refine-1

| —¢— LA-Refine-5
—— LA-Refine-10
—&A— LA-Refine-30
0.5 { —a—HMC

‘ ‘ ‘ o
0 50 100 150 0 1
Rotation Angle (Degree) Corruption Intensity

Figure E.1: Calibration under dataset shifts in terms of NLL—lower is better.

128

Appendix F
Appendix of Section 4.2

F.1 UCI Regression

To validate the performance of LULA in regressions, we employ a subset of the UCI regression
benchmark datasets. Following previous works, the network architecture used here is a single-
hidden-layer ReLU network with 50 hidden units. The data are standardized to have zero mean
and unit variance. We use 50 LULA units and optimize them for 40 epochs using OOD data sam-
pled uniformly from [—10, 10]”. For LA and LULA, each prediction is done via MC-integration
with 100 samples. For the evaluation of each dataset, we use a 60-20-20 train-validation-test
split. We repeat each train-test process 10 times and take the average.

In Table F.1 we report the average predictive standard deviation for each dataset. Note that this
metric is the direct generalization of the 1D uncertainty estimates in Fig. 4.8 to multi-dimension.
The test outliers are sampled uniformly from [—10, 10]”. Note that since the inlier data are
centered around the origin and have unit variance, they lie approximately in a Euclidean ball
with a radius of 2. Therefore, these outliers are far away from them. Thus, naturally, high
uncertainty values over these outliers are desirable. Uncertainties over the test sets are generally
low for all methods, although LULA has slightly higher uncertainties compared to the base LA.
However, LULA yield much higher uncertainties over outliers across all datasets, significantly
more than the baselines. Moreover, in Table F.2, we show that LULA maintains the predictive
performance of the base LA. Altogether, they imply that LULA can detect outliers better than
other methods without costing the predictive performance.

F.2 Image Classification

We present the detailed results on OOD detection in terms of MMC, FPR95 (Tables F.3 and F.4),
and additionally area under ROC (AUROC) and precision-recall (AUPRC) curves (Tables F.5
and F.6). We use standard datasets: EMNIST, KMNIST, FMNIST, and LSUN. Furthermore, we
use the following artificial datasets:

e GRAYCIFARI10: obtained by converting CIFAR-10 test data into grayscale images.

e UNIFORMNOISE: obtained by uniformly sampling from the hypercube [0, 1]”.

e SMOOTHEDNOISE: obtained by permuting, blurring, and contrast re-scaling the original
test images (Hein et al., 2019).

e FMNIST3D: obtained by converting the grayscale FMNIST images into 3-channel im-
ages.

129

F Appendix of Section 4.2

Table F.1: UQ performances on UCI datasets. Values are the average (over all data points and ten training-
prediction trials) predictive standard deviations. Lower is better for test data and vice-versa for outliers.
By definition, MAP does not have (epistemic) uncertainty.

Test set |, Outliers 1
Dataset DE LA LA-LULA DE LA LA-LULA
Housing 5.82 1.26 1.37 145.33 222.76 377.92
Concrete 8.11 10.44 16.89 964.63 30898.92 83241.42
Energy 4.40 1.05 1.08 126.11 1070.09 5163.53
Kin8nm 0.10 0.14 0.18 2.12 0.80 2.12
Power 19.85 2.85 3.20 12235.87 4148.98 221287.80
Wine 0.64 1.15 1.22 28.57 186.76 21383.17
Yacht 5.17 2.08 2.78 187.41 5105.69 13119.99

Table F.2: Predictive performances on UCI regression datasets in terms of average test log-likelihood.
The numbers reported are averages over ten training-prediction runs along with the corresponding stan-
dard deviations. The performances of LULA are similar to LA’s. The differences between their exact
values are likely due to MC-integration.

Dataset MAP DE LA LA-LULA
Housing -2.79440.012 -3.04540.009 -3.506+0.055 -3.49540.047
Concrete -3.409+0.036 -3.95140.062 -4.730£0.205 -4.3654+0.094
Energy -2.27040.128 -2.673£0.015 -2.707£0.030 -2.698+0.014
Kin8nm -0.923+0.000 1.086+0.022 -0.965+0.003 -0.96940.003
Power -3.15440.002 -54.804+7.728 -3.2734£0.015 -3.27740.024
Wine -1.190+0.014 -1.038+0.018 -1.624+0.075 -1.630£0.092
Yacht -1.835+0.053 -3.2724+0.079 -2.509+0.367 -2.663+0.276

We observe that LULA consistently improves the base LA. Especially, LULA makes the con-
fidence estimates over OOD data lower without introducing underconfidence on in-distribution
data.

130

F.2 Image Classification

Table F.3: Detailed MMC results. Values are averages over five prediction runs.

Dataset MAP MAP-Temp DE DE-Temp LA LA-LULA LLLA LLLA-LULA OE OE-LULA
MNIST 99.8 99.8£0.0 99.7 99.84£0.0 99.7£0.0 98.3£0.0 99.3£0.0 99.2+0.0 99.4£0.0 71.5£0.4
EMNIST 84.6 86.240.0 828 87.440.0 84.1+0.0 56.6+0.5 73.7£0.2 67.4£0.3 81.24+0.0 31.7+0.2
KMNIST 71.3 73.8£0.0 67.8 76.1£0.0 70.5£0.0 34.7£0.4 56.4£0.3 45.6£0.5 66.5+£0.0 23.7£0.1
FMNIST 76.7 79.0£0.0 69.6 80.1£0.0 75.7£0.0 37.6£0.9 57.3+0.3 50.3£1.2 32.6+0.0 22.440.1

GrayCIFARIO 68.2 71.0£0.0 554 66.7£0.0 66.9£0.0 32.4+0.6 46.2+0.2 42.5+0.7 10.240.0 22.1+0.2
UniformNoise 82.0 83.7+0.1 674 94.6+0.1 757+04 29.4+0.7 36.0+0.9 39.6+1.2 10.1£0.0 21.7£0.7

Noise 99.4 99.7£0.0 99.5 99.94£0.0 99.4+0.0 85.6£1.5 96.4£0.2 95.9£0.6 10.440.0 14.2+0.1
SVHN 98.5 97.1£0.0 98.1 97.5£0.0 98.5+0.0 97.5+0.0 91.8£0.5 95.9+0.1 98.4£0.0 98.4£0.0
CIFAR10 72.5 62.4£0.0 58.7 58.1£0.0 71.8£0.0 60.840.1 48.5£0.2 52.3+£0.4 10.7£0.0 13.3£0.2
LSUN 737 63.9£0.0 59.0 59.6+0.0 73.0£0.0 61.5+0.2 48.2+0.3 52.5£0.5 10.3+0.0 12.840.3
CIFAR100 73.4 63.5+0.0 60.0 59.6+0.0 72.7£0.0 61.6+0.1 48.9£0.2 52.9+0.4 11.3£0.0 14.0£0.3
FMNIST3D 74.6 64.8+0.0 64.1 61.4£0.0 74.0+0.0 65.2+0.2 53.3+0.4 57.6+£0.4 10.6+0.0 13.7£0.2
UniformNoise 79.1 70.840.1 546 63.8£02 77.84+02 62.5+0.6 43.91+0.5 51.640.3 10.040.0 12.440.3
Noise 64.2 55.1£0.2 533 51.7£0.2 63.5£0.2 53.6+0.1 41.3£0.2 45.8+£0.4 55.3+0.1 54.31+0.1
CIFAR10 97.2 94.840.0 96.1 95.7£0.0 96.9+0.0 96.2+0.0 90.6£0.0 83.440.2 97.3£0.0 97.0£0.0
SVHN 70.6 57.240.0 572 52.6+0.0 67.7£0.1 63.2+0.3 42.1£0.5 35.040.5 56.1£0.0 53.3+0.1
LSUN 74.8 61.5£0.0 65.6 61.8+0.0 73.4£0.0 68.7£0.2 51.3£0.3 40.5+£0.4 66.2£0.0 64.440.1
CIFAR100 78.1 67.1£0.0 712 68.3+£0.0 77.3£0.0 73.4%0.1 56.610.1 46.6+0.2 78.1£0.0 76.6£0.0
FMNIST3D 68.8 53.7£0.0 60.7 54.7+£0.0 66.5£0.1 61.24+0.1 40.4£0.4 32.940.3 61.4£0.0 59.2+0.0
UniformNoise 88.0 71.5+0.1 89.3 82240.0 79.5£0.6 62.6+1.6 30.7+0.6 25.240.2 10.1£0.0 12.2+0.1
Noise 64.5 52.240.2 537 52.6%0.1 59.6+0.2 53.84£0.3 35.5+0.4 30.3+0.4 48.6+0.3 46.4£0.2
CIFAR100 85.7 76.8£0.0 81.5 80.6+0.0 80.4+0.0 72.6+0.1 75.7£0.1 63.8+£0.2 86.5+0.0 81.24+0.1
SVHN 61.3 42.0£0.0 475 422400 52.940.1 40.7£0.5 46.8+0.6 33.0+0.8 63.7£0.0 54.6£0.2
LSUN 64.9 47.840.0 51.7 493400 56.0£0.2 46.1+£0.1 49.1+£0.4 37.5+0.8 58.4£0.0 50.8+0.3
CIFAR10 67.2 51.8£0.0 56.1 544400 58.9+£0.1 49.8+0.1 52.6+0.1 41.6£0.2 68.8+£0.0 59.7+0.1
FMNIST3D 56.4 35.7£0.0 458 39.240.0 49.0%0.1 40.1£0.3 42.7£0.2 32.64+0.3 53.940.0 46.2+0.2
UniformNoise 68.3 56.5+0.1 29.5 43.7£0.1 453+£05 33.0+0.8 36.5+0.9 24.7£0.8 1.7£0.0 1.7£0.0
Noise 68.7 55.3£0.2 50.5 502403 58.1£0.2 36.3£1.0 51.2£1.0 29.0+1.4 64.5£0.2 53.8+0.4

Table F.4: Detailed FPROS results. Values are averages over five prediction runs.

Dataset MAP MAP-Temp DE DE-Temp LA LA-LULA LLLA LLLA-LULA OE OE-LULA
MNIST - - - - - - - - - -
EMNIST 239 240400 223 224400 239400 23.6402 24.040.2 23.540.1 275400 23.54+0.6
KMNIST 24 2.440.0 1.8 23400 24400 08400 1.840.2 1.040.1 51400 3.6+04
FMNIST 24 2.440.0 1.1 18400 23+£00 0.8+0.0 1.540.1 0.940.1 0.240.0 1.840.2
GrayCIFARIO 0.1 0.0£0.0 00 00£00 00£00 00+00 0.0%0.0 0.04£0.0 0.0£00 08402
UniformNoise 1.1 1.00.0 00 02400 03+00 00400 0.040.0 0.040.0 00400 09405
Noise 0.1 0.140.0 02 02401 0.14£00 94430 7.6422 14403 0.04£00 02402
SVHN - - - - - - - - - -
CIFARI10 240 232400 113 141400 238+£0.1 207402 23.7£18 19.640.4 0.04£00 0.0+0.0
LSUN 257 253400 110 163+0.0 255402 213405 222422 19.740.8 0.04£00 0.0+0.0
CIFAR100 255 248400 133 168400 253+£0.1 219402 243£16 20.5+£0.4 02400 0.10.0
FMNIST3D 297 289400 225 225400 29.8+0.1 294403 33.0£16 29.240.3 00400 0.0+0.0
UniformNoise 332 34.1£03 54 184403 317403 195+1.1 14.042.1 15.64+0.6 0.04£00 0.0+0.0
Noise 17.5 170405 7.8 100£05 17.140.5 13.6403 147417 12.140.7 103401 102402
CIFAR10 - - - - - - - - - -
SVHN 417 354400 250 201400 389402 37.6£0.5 19.6+0.8 20.4+1.3 228400 20.940.1
LSUN 507 457400 453 393400 509402 489405 41.9402 37.4+1.1 383+£00 384402
CIFAR100 60.1 559400 546 517400 597403 587402 514404 50.440.4 58.0+£00 57.5402
FMNIST3D 404 313400 352 27.0400 39.0403 363403 19.14+0.6 174404 30.0£00 292402
UniformNoise ~ 89.0 81.6+0.5 999 993+0.1 739417 313459 0.120.1 0.740.3 00400 0.0+0.0
Noise 366 31.8+05 257 316402 289404 243£07 9.9+0.7 11.0£1.0 154402 14.0403
CIFAR100 - - - - - - - - - -
SVHN 738 679400 621 582400 733403 68.840.6 724409 67.540.9 759400 74.1403
LSUN 81.7 817400 73.0 753400 824406 82.14£04 81.7£0.6 81.04£0.8 69.740.0 71.0+0.8
CIFAR10 830 81.5£00 772 782400 829402 828403 823+02 82.740.2 824400 81.5402
FMNIST3D 702 595400 643 588400 70.6+02 69.140.6 69.140.3 67.840.9 63.1400 62.94+0.4
UniformNoise ~ 97.7 100.0£0.0 157 99.5+0.1 89.14+1.1 712443 76.943.1 57.545.6 0.04£00 0.0%0.0
Noise 742 720405 633 638404 716405 57.1£18 69.940.5 543416 66.6£03 61.620.8

131

F Appendix of Section 4.2

Table F.5: Detailed AUROC results. Values are averages over five prediction runs.

Dataset MAP MAP-Temp DE DE-Temp LA LA-LULA LLLA LLLA-LULA OE OE-LULA
MNIST - - - - - - - - - -

EMNIST 895 89.5400 89.8 89.640.0 89.5400 90.6+02 89.6:0.1 90.3£0.0 929400 93.240.1
KMNIST 989 989400 99.1 989400 989400 99.5+£00 99.3+0.0 99.54£0.0 98.6£0.0 98.940.1
FMNIST 988 98.840.0 992 99.0+£0.0 989400 993+0.0 99.3+0.0 99.340.1 99.74£0.0 99.240.0
GrayCIFARIO 997 99.6+0.0 998 99.8£0.0 997400 99.6£0.0 99.840.0 99.740.0 100.0£0.0 99.3+0.0
UniformNoise ~ 99.1 992400 99.8 99.1£0.0 99.5+£0.0 99.840.0 100.0£0.0 99.840.0 100.0£0.0 99.440.1
Noise 974 973400 969 968400 974400 963403 96.7+0.1 96.740.1 100.0+£0.0 99.940.0
SVHN - - - - - - - - - -

CIFAR10 952 953400 977 972400 953£00 962+0.1 955+03 96.5+£0.0 100.0£0.0 100.0£0.0
LSUN 949 949400 979 969400 949400 960+0.1 958+03 96.5+0.1 100.0£0.0 100.0£0.0
CIFAR100 946 946200 972 965400 947400 958+0.0 953+03 96.2:20.0 100.04£0.0 100.040.0
FMNIST3D 942 943200 962 960400 942400 944401 93.0+05 94.340.1 100.04£0.0 100.0:£0.0
UniformNoise ~ 93.8 93401 985 965400 941401 96.6+02 97.4402 97.3+0.1 100.04£0.0 100.040.0
Noise 96.6 96.6+0.1 983 97.940. 96.6+0.1 974400 972403 97.70.1 97.940.1 97.940.1
CIFAR10 - - - - - - - - - -

SVHN 946 953200 966 971400 949400 950+£0.1 96.9+0.1 96.6:£0.2 97.0£0.0 97.240.0
LSUN 925 935400 937 943400 925400 928401 932+0.1 93.940.2 949400 94.940.0
CIFAR100 90.0 90.6£00 911 91.6+£0.0 90.1£0.0 90.1£0.0 90.2+0.1 90.0-£0.1 90.14£0.0 90.240.0
FMNIST3D 947 958400 953 963+0.0 949400 953+0.0 97.0£0.1 97.240.1 959400 96.040.0
UniformNoise ~ 91.5 926400 88.6 91.0£0.0 93.6+£0.1 962403 99.440.1 99.340.0 100.0£0.0 100.040.0
Noise 952 95740. 966 9594+0.1 96.040. 967+0.1 98.1+0.1 98.040.1 97.140.1 97.4+0.1
CIFAR100 - - - - - - - - - -

SVHN 802 839400 850 867400 80.5+0.1 83.5+04 80.7+£04 84.10.7 80.1£0.0 80.240.2
LSUN 78.1 80.1£0.0 825 827400 785+02 79.14£0.1 79.4+0.4 79.84£0.9 837400 83.2402
CIFARI0 754 764400 787 78.6+0.0 755+0.1 754402 75.840.1 75.340.2 754400 75.8+0.0
FMNIST3D 84.1 882400 866 89.1£00 83.7+£0.1 841402 843402 84,5403 864400 86.2+0.1
UniformNoise 787 75.540.1 968 88.5+00 88.14£04 912406 90.440.6 93.04£0.6 100.040.0 100.0:£0.0
Noise 693 715402 809 781402 743403 862409 755409 87.0+1.4 75.14£02 78.540.4

Table F.6: Detailed AUPRC results. Values are averages over five prediction runs.

Dataset MAP MAP-Temp DE DE-Temp LA LA-LULA LLLA LLLA-LULA OE OE-LULA
MNIST - - - - - = - = - =

EMNIST 673 672400 670 665+£00 67.3£02 69.7£07 679404 69.140.3 845400 81.0403
KMNIST 979 979400 984 980400 98.0£00 995400 99.240.1 99.4:0.0 98.6£0.0 99.0£0.0
FMNIST 983 984£00 989 985+00 984400 993200 99.1+0.0 99.3£0.1 99.74£0.0 99.3+0.0
GrayCIFARIO 997 99.740.0 999 99.840.0 99.740.0 99.740.0 99.840.0 99.7:£0.0 100.0£0.0 99.440.0
UniformNoise ~ 99.8 99.84£0.0 100.0 99.8+0.0 99.940.0 100.0£0.0 100.04£0.0 100.0£0.0 100.0£0.0 99.940.0
Noise 995 994400 994 993400 995400 99240.1 99.3+£0.0 99.3£0.0 100.0£0.0 100.020.0
SVHN - - - - - = - 2 - =

CIFAR10 978 978400 99.1 988400 97.8400 983200 98.1402 98.5:0.0 100.00.0 100.020.0
LSUN 999 999400 100.0 100.0£0.0 99.9400 99.94£00 99.9:+0.0 1000400 100.0£0.0 100.040.0
CIFAR100 974 973£00 988 984£00 974400 98.0£00 97.9+02 98.3£0.0 100.0£0.0 100.020.0
FMNIST3D 974 974400 985 983400 973400 975400 96.8+03 97.4+0.0 100.0£0.0 100.020.0
UniformNoise 994 993400 999 997400 994400 99.74£0.0 99.840.0 99.8-:0.0 100.0£0.0 100.020.0
Noise 997 997400 998 998400 997400 99.84£00 99.8:+0.0 99.8::0.0 99.8£0.0 99.8+0.0
CIFAR10 - - - - - > - > - .

SVHN 915 922400 945 950£00 919400 92040.1 943402 93.940.3 943+£00 94.6+0.0
LSUN 99.7 997400 997 99.8+£0.0 99.7400 997400 99.7+0.0 99.7:£0.0 99.8£0.0 99.8+0.0
CIFAR100 903 90.6+£00 912 91.6+£00 903£0.0 903+£0.0 89.640.1 89.10.1 903+£0.0 90.3+0.0
FMNIST3D 953 961400 957 96.6£00 955400 957400 97.040.1 97.240.1 96.1£0.0 96.2+0.0
UniformNoise ~ 98.1 984400 975 98.14£00 98.6+00 992401 99.9:+0.0 99.8::0.0 100.0£0.0 100.020.0
Noise 988 989400 99.1 99.0+£00 99.0£00 992400 99.5+0.0 99.5:0.0 992400 99.3+0.0
CIFAR100 - - - - - = - 5 - =

SVHN 678 72300 731 754400 674402 717£10 66.5+0.9 71.9£1.6 69.4£00 683203
LSUN 99.0 99.1£00 992 992400 99.0400 99.0£0.0 99.0+£0.0 99.040.1 9934£0.0 99.2+0.0
CIFAR10 747 752400 778 77.6£00 744401 738402 74.6+03 73.140.4 753400 75.3%0.1
FMNIST3D 850 885400 875 89.6+0.0 843+0.1 842402 84.5+02 843403 87.1£0.0 86.6+0.1
UniformNoise ~ 947 940+£0.0 993 974400 972+0.1 98.0+£02 97.84+0.2 98.4£0.1 100.0£0.0 100.0:£0.0
Noise 902 91.0£0.1 942 92.840.1 922401 962403 925404 96.440.5 92.14£0.1 933+02

132

Appendix G
Appendix of Section 4.3

G.1 OOD Test Sets

For image-based OOD detection tasks, we use the following test sets on top of MNIST, F-
MNIST, SVHN, CIFAR-10, and CIFAR-100:

e E-MNIST: Contains handwritten letters (“a”-“z”’)—same format as MNIST (Cohen et al.,
2017).

e K-MNIST: Contains handwritten Hiragana scripts—same format as MNIST (Clanuwat
etal., 2018).

e LSUN-CR: Contains real-world images of classrooms (Yu et al., 2015).

o CIFAR-GR: Obtained by converting CIFAR-10 test images to grayscale.

e F-MNIST-3D: Obtained by converting single-channel F-MNIST images into images of
three channels—all these three channels have identical values.

e UNIFORM: Obtained by drawing independent uniformly-distributed random pixel.

e SMOOTH: Obtained by permuting, smoothing, and contrast-rescaling the original (i.e. the
respective in-distribution) test images (Hein et al., 2019).

Meanwhile, for text classification, we use the following OOD test set, following (Hendrycks
et al., 2019):

e MULTI30K: Multilingual English-German image description dataset (Elliott et al., 2016).

e WMT16: Machine-translation dataset, avaliable at http: //www.statmt .org/wmt14/
translation-task.html.

e SNLI: Collection of human-written English sentence pairs manually labeled for balanced
classification with the labels entailment, contradiction, and neutral (Bowman et al., 2015).

Finally, for dataset-shift robustness tasks, we use the standard dataset:

e CIFAR-10-C: Contains 19 different perturbations—e.g. snow, motion blur, brightness
rescaling—with 5 level of severity for a total of 95 distinct shifts (Hendrycks & Dietterich,
2019; Ovadia et al., 2019).

G.2 Training Details

Non-Bayesian For MNIST and F-MNIST, we use a five-layer LeNet architecture. Meanwhile,
for SVHN, CIFAR-10, and CIFAR-100, we use WideResNet-16-4 (Zagoruyko & Komodakis,
2016). For all methods, the training procedures are as follows. For LeNet, we use Adam with
initial learning rate of 1 x 10~ and annealed it using the cosine decay method (Loshchilov &

133

G Appendix of Section 4.3

Hutter, 2017) along with weight decay of 5 x 10~ for 100 epochs. We use a batch size of 128
for both in- and out-distribution batches, amounting to an effective batch size of 256 in the case
of OOD training. The standard data augmentation pipeline (random crop and horizontal flip)
is applied to both in-distribution and OOD data. For WideResNet-16-4, we use SGD instead
with an initial learning rate of 1 x 10~! and Nesterov momentum of 0.9 along with the dropout
regularization with rate 0.3—all other hyperparameters are identical to LeNet. Finally, we use 5
ensemble members for DE.

Bayesian For both LA, VB, and their variants (i.e. LA+X and VB+X), we use the identical
setup as in the non-Bayesian training above. Additionally, for LA and LA+X, we use the diago-
nal Fisher matrix as the approximate Hessian. Moreover, we tune prior variance by minimizing
the validation Brier score. All predictions are done using 20 MC samples. For VB and VB+X,
we use a diagonal Gaussian variational posterior for both the last-layer weight matrix and bias
vector. Moreover, the prior is a zero-mean isotropic Gaussian with prior precision 5 x 107 (to
emulate the choice of the weight decay in the non-Bayesian training). The trade-off hyperpa-
rameter 7 of the ELBO is set to the standard value of 0.1 (Osawa et al., 2019; Zhang et al., 2018).
We do not use weight decay on the last layer since the regularization of its parameters is done
by the KL-term of the ELBO. Lastly, we use 5 and 200 MC samples for computing the ELBO
and for making predictions, respectively.

Text Classification The network used is a two-layer Gated Recurrent Unit (GRU, Cho et al.,
2014) with 128 hidden units on each layer. The word-embedding dimension is 50 and the maxi-
mum vocabulary size is 10000. We put an affine layer on top of the last GRU output to translate
the hidden units to output units. Both the LA and VB are applied only on this layer. We use a
batch size of 64 and Adam optimizer with a learning rate of 0.01 without weight decay, except
for LA in which case we use weight decay of 5 x 107, The optimization is done for 5 epochs,
following (Hendrycks et al., 2019).

G.3 Additional Results

The detailed, non-averaged results for the FPR95 metric are in Table G.1. Furthermore, ad-
ditional results with the area under ROC curve (AUROC), area under precision-recall curve
(AUPRC), and mean confidence (MMC) metrics are in Tables G.1 to G.4, respectively. For the
full results for models trained with the SMOOTH noise dataset as Dy are in Tables G.5 and G.6.
Furthermore, the full results of the NLP experiment is in Tables G.7 and G.8. Finally, de-
tailed, non-averaged results for sophisticated models (Flipout and CSGHMC) are in Tables G.9
and G.10.

134

G.3 Additional Results

Table G.1: OOD data detection in terms of FPR95. Lower is better. Values are averages over five
prediction runs.

VB LA
Datasets MAP OE DE Plain NC SL ML OE Plain NC SL ML OE
MNIST
F-MNIST 11.8£0.0 0.0£0.0 5.3+0.0 12.5+£0.1 0.1£0.0 0.0£0.0 0.440.0 1.1£0.0 12.0£0.0 0.240.0 0.0£0.0 0.1£0.0 0.0£0.0
E-MNIST 35.6+0.0 264+0.0 30.4+0.0 345+0.1 34.7£0.1 14.340.1 34.240.1 31.440.1 35840.1 30.6+0.0 12.6+0.1 26.8+0.1 26.7+0.1
K-MNIST 14.4£0.0 5.94£0.0 7.7£0.0 14.0£0.1 10.5£0.1 2.1£0.0 9.740.1 8.5£0.0 14.5%0.1 8.9+£0.0 0.7£0.0 5.8%0.0 5.94£0.0
CIFAR-Gr 02400 0.0+0.0 0.0£0.0 0.2+0.0 0.0£0.0 0.0£0.0 0.0+£0.0 0.040.0 0.24+0.0 0.0£0.0 0.0+£0.0 0.0+0.0 0.0+0.0
Uniform 44.3+0.0 0.0£0.0 19.840.0 93.1£0.2 0.0+0.0 0.00.0 0.0£0.0 0.0£0.0 54.2+04 0.00.0 0.0£0.0 0.0£0.0 0.0£0.0
Smooth 0.0+£0.0 0.0+0.0 0.0£0.0 0.0£0.0 0.00.0 0.00.0 0.0+£0.0 0.0+0.0 0.0£0.0 0.00.0 0.0£0.0 0.0+0.0 0.0+0.0
F-MNIST
MNIST 73.5£0.0 38.5+0.0 65.8£0.0 66.8+£0.1 43.5%0.1 9.5+£0.0 50.1+0.1 57.2+0.1 722+0.2 25.6+0.1 11.5£0.1 38.9£03 39.940.1
E-MNIST 73.6£0.0 21.0£0.0 58.6%0.0 68.1+0.1 18.7£0.0 5.0£0.0 340400 40.6£0.0 722402 6.0£0.0 4.6+0.1 14.7£0.1 23.140.1
K-MNIST 73.7£0.0 37.4+£0.0 47.2£0.0 62.6+£0.1 28.0£0.1 10.6£0.0 33.44+0.0 36.7+0.0 715402 18.2%0.1 8.7£0.1 325402 38.7£0.3
CIFAR-Gr 87.240.0 0.0+£0.0 86.6+0.0 75.34£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0+£0.0 87.7£0.1 0.0£0.0 0.0£0.0 0.04£0.0 0.0£0.0
Uniform 81.3£0.0 0.0£0.0 86.3£0.0 87.3+0.1 0.0£0.0 0.00.0 0.0£0.0 0.0£0.0 81.0£0.2 0.00.0 0.0£0.0 0.0£0.0 0.1£0.0
Smooth 26.8£0.0 0.0£0.0 24.2+0.0 19.6+£0.0 0.0£0.0 0.040.0 02400 0.1+0.0 27.340.1 0.00.0 0.0+£0.0 0.0+0.0 0.0+0.0
SVHN
CIFAR-10 189+0.0 0.1£0.0 9.54+0.0 15.0£0.0 0.3+0.0 0.10.0 0.0+£0.0 0.1+0.0 15440.1 0.440.0 0.0+£0.0 0.0+0.0 0.1+0.0
LSUN-CR 19.7£0.0 0.0£0.0 8.3+0.0 17.2£0.2 0.00.0 0.0£0.0 0.0+£0.0 0.0£0.0 155%0.1 0.00.0 0.0£0.0 0.0£0.0 0.0£0.0
CIFAR-100 21.840.0 0.24+0.0 11.60.0 18.1£0.0 0.5+0.0 0.54+0.0 0.1+£0.0 02400 17.640.1 0.60.0 02400 02400 0.1+0.0
FMNIST-3D 26.7+0.0 0.0£0.0 17.5%0.0 24.5+0.1 0.00.0 0.60.0 0.0+£0.0 0.0+0.0 27.240.1 0.10.0 0.0£0.0 0.0£0.0 0.0+0.0
Uniform 30.0£0.0 0.0£0.0 6.410.0 48.2£0.0 0.0£0.0 0.00.0 0.0£0.0 0.0+0.0 17.040.1 0.00.0 0.0£0.0 0.0£0.0 0.0+0.0
Smooth 17.3£0.0 12.0£0.0 6.910.0 9.1£0.0 7.7£0.0 9.54+0.0 8.3+0.0 8.4+0.0 10.1£0.1 8.1£0.1 59400 6.640.1 6.4+0.0
CIFAR-10
SVHN 34.540.0 10.0£0.0 33.9%0.0 33.54+0.0 30.6+£0.1 594400 18.3£0.1 33.940.1 355+0.1 127402 47.2+0.3 8.7£0.1 10.840.0
LSUN-CR 53.3£0.0 28.0£0.0 44.0£0.0 49.4+04 259+02 43.7£0.1 36.840.1 348402 53.84+0.6 17.5+£0.3 41.2+09 30.1£0.5 28.4+04
CIFAR-100 61.24+0.0 57.840.0 52.54+0.0 58.4+0.1 585+0.1 63.3+0.0 56.840.1 57.14+0.1 61.44+0.1 59.6+0.2 622402 60.4+0.2 57.9+0.1
FMNIST-3D 42.440.0 26.840.0 30.7+0.0 374£0.0 19.0£0.1 43.94£0.0 32.240.1 29.6+0.1 432402 154%0.1 36.8+0.2 24.2+0.1 27.8+0.1
Uniform 87.7£0.0 0.0£0.0 0.0£0.0 13.8+0.1 0.0£0.0 0.040.0 0.0+£0.0 0.0+0.0 92.840.1 0.00.0 0.0+£0.0 0.0+0.0 0.0+0.0
Smooth 35.1£0.0 14.2£0.0 32.9£0.0 264+0.0 34.0+£02 31.9£00 30.3+£0.0 23.1£0.1 34.940.1 155302 43.6+0.2 7.5+0.0 14.940.1
CIFAR-100
LSUN-CR 82.0£0.0 64.3£0.0 75.3£0.0 73.8£0.2 62.3+£0.5 76.3£0.1 65340.1 67.6+0.3 82.8+0.5 559+0.5 75.6+0.7 653+£0.5 64.1£1.0
CIFAR-10 79.8£0.0 81.9£0.0 76.4+0.0 78.2+£0.1 81.4£0.1 82.840.0 79.5+0.1 79.0+£0.0 79.54+0.1 80.9+0.2 81.7+0.1 80.8+0.1 80.0£0.1
FMNIST-3D 65.840.0 58.5+0.0 61.840.0 57.1£0.1 41.0£0.2 72.04+0.1 51.7£0.1 56.0+0.1 66.1£0.1 58.6+0.3 69.0£0.2 59.240.1 59.3+0.3
Uniform 97.6£0.0 0.0£0.0 94.3£0.0 100.0£0.0 0.0£0.0 0.00.0 0.0£0.0 0.0£0.0 98.840.1 0.0£0.0 0.0£0.0 0.1£0.0 0.0£0.0
Smooth 79.5£0.0 65.2+0.0 58.7£0.0 79.1£0.0 64.840.1 80.24+0.1 54.440.1 64.0£0.0 79.240.1 41.6+0.2 78.0+0.1 57.1£0.3 66.2+0.1

Table G.2: OOD data
prediction runs.

detection in terms of AUROC. Higher is better. Values

are averages over five

VB LA
Datasets MAP OE DE Plain NC SL ML OE Plain NC SL ML OE
MNIST
F-MNIST 97.3£0.0 99.9+0.0 98.7£0.0 97.4£0.0 99.9£0.0 99.9£0.0 99.8+0.0 99.6+0.0 97.4£0.0 99.94£0.0 99.9+£0.0 99.940.0 99.9+0.0
E-MNIST 89.1£0.0 93.7£0.0 90.4+0.0 89.9+0.1 90.4+0.0 95.7£0.0 91.1£0.0 92.1£0.1 89.1+0.0 91.2£0.0 949400 933+0.0 93.6+0.0
K-MNIST 96.9+£0.0 98.5+£0.0 98.1£0.0 96.9£0.0 97.8+£0.0 98.8+0.0 98.0+£0.0 98.2+0.0 96.9£0.0 97.94£0.0 99.2+£0.0 985+0.0 98.5+0.0
CIFAR-Gr 99.6+£0.0 100.0+0.0 99.8+0.0 99.6+£0.0 100.0+£0.0 100.0£0.0 100.0+0.0 100.0£0.0 99.6+0.0 100.0+£0.0 100.0£0.0 100.0+£0.0 100.040.0
Uniform 95.04£0.0 100.0+0.0 95.840.0 90.54£0.0 100.0+£0.0 100.0£0.0 100.0+0.0 100.0£0.0 94.64+0.0 100.0+£0.0 100.0£0.0 100.0£0.0 100.040.0
Smooth 100.0£0.0 100.0£0.0 100.0£0.0 100.0£0.0 100.0£0.0 100.0£0.0 100.0£0.0 100.0£0.0 100.0£0.0 100.0£0.0 100.0£0.0 100.0£0.0 100.0£0.0
F-MNIST
MNIST 79.7£0.0 92.9+0.0 83.0£0.0 85.3+0.0 87.9£0.0 98.6+0.0 86.7+0.0 86.240.0 80.3+0.0 942+£0.0 98.2+0.0 929400 92.5+0.0
E-MNIST 81.8+0.0 96.5+0.0 87.5+£0.0 85.1£0.0 95.6+0.0 99.2+0.0 92.0+£0.0 91.3£0.0 82.3+£0.0 98.9+£0.0 99.3£0.0 97.6+0.0 96.1+£0.0
K-MNIST 83.1£0.0 94.4+0.0 91.7£0.0 86.9£0.0 94.3£0.0 98.4£0.0 93.5+0.0 93.3£0.0 83.9£0.0 96.9+0.0 98.7+£0.0 94.9+0.0 94.1+£0.0
CIFAR-Gr 82.240.0 100.0+0.0 83.6£0.0 87.540.0 100.0+£0.0 100.0£0.0 100.0+£0.0 100.0£0.0 81.44£0.0 100.0+£0.0 100.0£0.0 100.0£0.0 100.040.0
Uniform 85.5£0.0 100.0£0.0 85.7£0.0 85.8+£0.0 100.0£0.0 100.0£0.0 100.0£0.0 100.0£0.0 85.3£0.0 100.0£0.0 100.0£0.0 100.0£0.0 100.0£0.0
Smooth 95.7£0.0 100.0+0.0 96.4£0.0 97.24£0.0 100.0£0.0 100.0£0.0 100.0+£0.0 100.0£0.0 95.5£0.0 100.0+£0.0 100.0£0.0 100.0+£0.0 100.0+0.0
SVHN
CIFAR-10 96.2+0.0 100.0+£0.0 97.9£0.0 95.6+£0.0 99.9£0.0 99.94£0.0 100.0£0.0 100.0£0.0 97.1£0.0 99.94£0.0 100.0£0.0 100.0£0.0 100.0£0.0
LSUN-CR 95.7£0.0 100.0+0.0 97.7£0.0 95.9+0.0 100.0+£0.0 100.0£0.0 100.0+0.0 100.0£0.0 97.0£0.0 100.0+£0.0 100.0£0.0 100.0+£0.0 100.0+0.0
CIFAR-100 95.5+0.0 99.940.0 97.4+0.0 94.7£0.0 99.940.0 99.840.0 100.0+0.0 99.940.0 96.5+0.0 99.940.0 99.94£0.0 100.040.0 100.0£0.0
FMNIST-3D 95.5£0.0 100.0£0.0 97.1£0.0 91.4£0.0 100.0£0.0 99.84£0.0 100.0£0.0 100.040.0 95.6£0.0 100.0£0.0 99.9+0.0 100.0£0.0 100.0£0.0
Uniform 94.3£0.0 100.0+0.0 98.2+0.0 80.2£0.0 100.0+£0.0 100.0£0.0 100.0+£0.0 100.0£0.0 96.84£0.0 100.0+£0.0 100.0£0.0 100.0+£0.0 100.0+0.0
Smooth 96.5+0.0 97.6£0.0 98.4+0.0 97.5£0.0 97.7£0.0 95.9£0.0 97.5£0.0 97.7£0.0 97.7£0.0 98.440.0 98.1£0.0 98540.0 98.7+0.0
CIFAR-10
SVHN 95.6+0.0 98.2+0.0 95.6+0.0 95.7£0.0 95.8+0.0 89.0£0.0 97.2£0.0 95.6+0.0 95.5+0.0 97.8+0.0 92.7+£0.0 98.7+£0.0 98.1+£0.0
LSUN-CR 91.840.0 95.940.0 93.7£0.0 91.5£0.0 96.1£0.0 92.540.0 94.1£0.0 94.440.0 92.0£0.0 97.540.0 93.8+0.1 95.740.0 96.0+0.1
CIFAR-100 89.8+0.0 90.1£0.0 91.3£0.0 88.6+0.0 88.2+0.0 85.9£0.0 88.3+£0.0 88.94+0.0 89.94+0.0 89.84+0.0 86.240.0 89.7+£0.0 90.0+0.0
FMNIST-3D 94.4£0.0 96.2+0.0 95.8+0.0 94.5+£0.0 97.2£0.0 92.9£0.0 95.1£0.0 95.9£0.0 94.3£0.0 97.7£0.0 94.0£0.0 96.6+0.0 96.1£0.0
Uniform 93.0£0.0 100.0+0.0 99.5+0.0 97.6£0.0 100.0+£0.0 100.0£0.0 100.0+0.0 100.0£0.0 92240.0 100.0+£0.0 100.0£0.0 100.0+£0.0 100.040.0
Smooth 94.3£0.0 97.6£0.0 95.6£0.0 96.0£0.0 95.3£0.0 94.8+0.0 95.4£0.0 96.2£0.0 94.6£0.0 97.6£0.0 93.9+0.0 988+0.0 97.6+0.0
CIFAR-100
LSUN-CR 78.4+0.0 85.3+0.0 83.840.0 81.3£0.1 87.9£0.0 80.1£0.0 85.6+0.0 85.340.1 78.840.1 89.1+0.0 82.0+£0.3 86.3+0.1 85.9+0.2
CIFAR-10 77.4£0.0 77.1£0.0 79.8+0.0 77.7£0.0 76.8+£0.0 76.3+£0.0 77.8£0.0 77.3£0.0 77.8£0.0 775+£0.0 76.6+£0.0 77.6+0.0 77.7+£0.0
FMNIST-3D 85.3+£0.0 86.2+0.0 87.6£0.0 87.7£0.0 91.5+£0.0 84.0£0.0 89.6+0.0 87.9£0.0 85.2+0.0 87.0+£0.0 85.7+£0.0 86.3+£0.0 86.0+£0.0
Uniform 80.1£0.0 100.0+0.0 87.7£0.0 64.840.0 100.0£0.0 100.0£0.0 100.0+0.0 100.0£0.0 82.6+0.1 100.0+£0.0 100.0£0.0 ~ 99.9+£0.0 100.0£0.0
Smooth 77.0£0.0 76.6£0.0 82.94£0.0 69.4£0.0 74.5£0.0 80.3£0.0 83.2£0.0 78.3£0.0 79.4£0.1 91.7£0.0 78.1£0.0 86.410.1 77.7£0.1

135

G Appendix of Section 4.3

Table G.3: OOD data detection in terms of AUPRC. Higher is better. Values are averages over five
prediction runs.

VB LA
Datasets MAP OE DE Plain NC SL ML OE Plain NC SL ML OE
MNIST
F-MNIST 96.94£0.0 99.940.0 98.7+£0.0 97.5£0.0 99.9+0.0 99.84£0.0 99.840.0 99.6+£0.0 97.0£0.0 99.94£0.0 99.9+0.0 99.9+£0.0 99.9+0.0
E-MNIST 742400 86.7£0.0 772400 76.3+0.2 77.8£0.1 83.3£0.0 80.6£0.2 82.5+02 74.1£0.1 79.6£0.0 78.8%0.1 85.5+0.0 86.4+0.0
K-MNIST 96.5£0.0 98.5+£0.0 98.0+£0.0 964+00 97.5£0.0 972400 97.8£0.0 98.1+£0.0 96.6+£0.0 97.8£0.0 98.9+0.0 98.4+0.0 98.4+0.0
CIFAR-Gr 99.7£0.0 100.0+£0.0 99.840.0 99.6+£0.0 100.0£0.0 100.0+£0.0 100.0£0.0 100.0+£0.0 99.6£0.0 100.0+£0.0 100.0£0.0 100.0+0.0 100.0£0.0
Uniform 96.7£0.0 100.0£0.0 97.3£0.0 93.4+0.0 100.0£0.0 100.0£0.0 100.0+£0.0 100.0£0.0 ~ 96.5+0.0 100.0£0.0 100.0£0.0 100.0£0.0 100.00.0
Smooth 100.0£0.0 100.0£0.0 100.0£0.0 100.0£0.0 100.0£0.0 100.0£0.0 100.0£0.0 100.0+£0.0 100.0£0.0 100.0+£0.0 100.0£0.0 100.0+£0.0 100.0£0.0
F-MNIST
MNIST 75.3£0.0 922400 79.0£0.0 83.1%£0.1 84.0£0.1 98.4+0.0 83.9£0.1 84.1£0.1 76.3£0.0 92.5+0.0 98.0£0.0 923+0.0 91.9£0.0
E-MNIST 66.9+£0.0 92700 76.4+0.0 74.0+0.3 88.7£0.1 98.2+0.0 82.8+£0.0 82.5+0.1 67.8+0.0 96.8+£0.0 98.4+0.0 94.8+£0.0 92.0+0.0
K-MNIST 81.7£0.0 944400 91.1£0.0 85.240.1 93.1£0.0 98.1+£0.0 92.54+0.0 92.6+£0.0 82.8+0.0 96.2+0.0 98.6+0.0 947400 94.2+0.0
CIFAR-Gr 85.5£0.0 100.0£0.0 87.2+0.0 89.6+£0.0 100.0£0.0 100.0£0.0 100.0£0.0 100.0£0.0 84.940.0 100.0£0.0 100.0£0.0 100.0£0.0 100.0£0.0
Uniform 88.1£0.0 100.0+£0.0 88.9+0.0 89.2+£0.0 100.0£0.0 100.0£0.0 100.0£0.0 100.0+0.0 87.9+£0.0 100.0£0.0 100.0£0.0 100.0£0.0 100.0+0.0
Smooth 953+0.0 100.0+£0.0 96.1£0.0 96.9+£0.0 100.0£0.0 100.0+£0.0 100.0£0.0 100.0+£0.0 95.1£0.0 100.0+0.0 100.0£0.0 100.0+0.0 100.0£0.0
SVHN
CIFAR-10 98.3+£0.0 100.0+£0.0 99.1£0.0 96.9+£0.0 99.9+0.0 99.9+£0.0 100.0£0.0 100.0+£0.0 98.8+£0.0 100.0+£0.0 100.0£0.0 100.0+£0.0 100.0£0.0

LSUN-CR 99.94£0.0 100.0+£0.0 100.0£0.0 99.94£0.0 100.0£0.0 100.0+£0.0 100.0£0.0 100.0+£0.0 100.0£0.0 100.0+£0.0 100.0£0.0 100.0+0.0 100.0£0.0
CIFAR-100 97.7£0.0 100.0£0.0 98.84+0.0 96.4+0.0 99.9£0.0 99.94+0.0 100.0+£0.0 100.0£0.0 ~ 98.3£0.0 99.9+0.0 100.0£0.0 100.0£0.0 100.00.0
FMNIST-3D 98.1£0.0 100.0+£0.0 ~ 98.8+0.0 ~ 93.5£0.0 100.0£0.0 99.9+£0.0 100.0£0.0 100.0+£0.0 982+0.0 100.0+£0.0 100.0£0.0 100.0£0.0 100.0£0.0

Uniform 97.3£0.0 100.0+0.0 99.3+0.0 82.840.0 100.0+£0.0 100.0£0.0 100.0+0.0 100.0£0.0 98.74£0.0 100.0+£0.0 100.0£0.0 100.0+£0.0 100.040.0
Smooth 98.5+0.0 98.9+0.0 99.4£0.0 98.6+0.0 98.6+0.0 96.5£0.0 98.4+0.0 98.7£0.0 99.1£0.0 99.3£0.0 98.7£0.0 99.4£0.0 99.5+0.0
CIFAR-10

SVHN 93.3+£0.0 96.5+0.0 93.3£0.0 93.3£0.0 92.840.0 77.6£0.0 94.540.0 92.840.0 93.3£0.0 95.940.0 852400 97.0£0.0 96.4+0.0

LSUN-CR 99.7£0.0 99.8£0.0 99.7£0.0 99.6+£0.0 99.8£0.0 99.7£0.0 99.7+£0.0 99.7£0.0 99.7£0.0 99.9+0.0 99.7£0.0 99.84+0.0 99.84+0.0
CIFAR-100 89.9£0.0 90.0+£0.0 91.3£0.0 86.7+£0.0 857+0.0 82.8+0.0 853+0.0 86.9+00 90.0£0.0 90.0+£0.0 82.4+0.0 89.8£0.0 90.0+0.0
FMNIST-3D 95.14£0.0 96.4+0.0 96.1£0.0 947400 97.0£0.0 92.8+0.0 950+0.0 96.1+£0.0 95.0+0.0 97.6+£0.0 93.4+0.0 96.7+£0.0 96.3+0.0

Uniform 95.5£0.0 100.0£0.0 99.6+0.0 98.0£0.0 100.0£0.0 100.0£0.0 100.0£0.0 100.0£0.0 95.0£0.0 100.0£0.0 100.0£0.0 100.0£0.0 100.0£0.0
Smooth 94.4£0.0 97.5+£0.0 95.8+0.0 95.7+£0.0 95.5+£0.0 93.9£0.0 95.1£0.0 95.9£0.0 94.7£0.0 97.6+£0.0 93.9+£0.0 98.6+0.0 97.4+0.0
CIFAR-100

LSUN-CR 99.0£0.0 99.4+0.0 99.3£0.0 99.0£0.0 99.5+0.0 99.1£0.0 99.3£0.0 99.3£0.0 99.0£0.0 99.5£0.0 99.240.0 99.4£0.0 99.4+0.0
CIFAR-10 77.2£0.0 77.0£0.0 79.3£0.0 76.8+0.0 77.1£0.0 75.4£0.0 77.4£0.0 77.1£0.0 77.3£0.0 77.1£0.0 75.8+£00 77.2£0.0 77.1£0.0
FMNIST-3D 85.7£0.0 86.0£0.0 88.2+0.0 87.6£0.0 90.9£0.0 84.840.0 89.3+0.0 87.6£0.0 85.6+0.0 87.1+£0.0 86.5+0.0 86.3+0.0 85.7+0.0
Uniform 84.6+£0.0 100.0£0.0 91.5£0.0 73.3£0.0 100.0£0.0 100.0£0.0 100.0£0.0 100.0£0.0 87.1£0.1 100.0£0.0 100.0£0.0 ~ 99.9+0.0 100.0£0.0
Smooth 75.4£0.0 71.0£0.0 80.3+0.0 67.4+0.1 69.8+0.1 81.4+0.0 79.9£0.1 74.9£0.0 78.5+0.1 90.9+£0.0 78.3+£0.0 85.4+0.1 73.940.1

Table G.4: Confidences in terms of MMC, averaged over five prediction runs. Lower is better for OOD
datasets.

VB LA
Datasets MAP OE DE Plain NC SL ML OE Plain NC SL ML OE

MNIST 99.1 99.4 99.3 98.7 98.2 99.1 98.2 98.6 99.0 99.3 99.2 99.2 99.3
F-MNIST 66.3£0.0 22.0+0.0 64.9+00 70.4%£00 6.1£0.0 204400 21.2+0.0 27.3£00 652+0.0 7.7£0.0 21.0£0.0 20.7£0.0 22.2£0.0
E-MNIST 82.3+0.0 79.3+0.0 80.9+0.0 78.6£0.0 74.0£0.0 75.9+0.0 73.0+£0.0 739400 81.1£0.0 79.6£0.0 80.4+0.0 76.5£0.0 78.1+£0.0
K-MNIST 73.3£0.0 657£0.0 69.7£0.0 67.6+0.0 51.8+£0.0 61.240.0 50.3+0.0 524+00 71.840.0 643£0.0 66.3+0.0 62.3£0.0 64.3£0.0
CIFAR-Gr 48.0+£0.0 10.0£0.0 43.1£0.0 452+0.0 0.0£0.0 10.0£0.0 10.1£0.0 10.1£0.0 47.3£0.0 0.0£0.0 10.1£0.0 104£0.0 10.240.0

Uniform 96.8+0.0 10.0+£0.0 97.4+0.0 97.840.0 0.1£0.0 10.0£0.0 10.1+£0.0 10.1£0.0 96.5+£0.0 0.0£0.0 10.24+0.0 10.3£0.0 10.2£0.0
Smooth 129£0.0 10.1£0.0 12.6£0.0 12.7£0.0 0.3£0.0 21.6£0.0 102£0.0 10.2£0.0 12.8+0.0 0.5£0.0 20.5£0.0 10.1£0.0 10.1£0.0
F-MNIST 96.1 96.0 94.8 93.6 91.0 95.0 91.2 92.9 95.7 94.9 935 94.5 94.7
MNIST 82.84+0.0 60.1£0.0 74.3+£0.0 70.9£0.0 50.04£0.0 329400 572400 63.7+0.0 809400 33.8+0.1 33.9£0.0 55.9+0.1 57.940.0

E-MNIST 82.5+0.0 45.0£0.0 70.0+0.0 71.5£0.0 25000 255+0.0 444400 50.7£0.0 80.6£0.0 9.4+0.0 243£0.0 36.24+0.0 44.7£0.0
K-MNIST 82.5+0.0 60.1£0.0 64.0£0.0 68.4+0.0 37.0£0.0 33.5£0.0 44.8+0.0 48.0+0.0 80.04+0.0 28.1£0.0 32.0£0.0 52.6+£0.0 57.3%£0.0
CIFAR-Gr 89.1£0.0 10.0+0.0 84.6+£0.0 73.1+0.0 0.0+£0.0 10.0£0.0 10.1£0.0 10.2+0.0 88.6+0.0 0.0+£0.0 10.8+£0.0 10.3+0.0 10.3£0.0

Uniform 85.5+0.0 13.2£0.0 823+0.0 794+00 0.6+0.0 102£0.0 10.6£0.0 11.1£0.0 84.2£0.0 0.0£0.0 10.9£0.0 12.24+0.0 15.0£0.0
Smooth 48.0£0.0 10.5+£0.0 44.0+0.0 42.0+0.0 1.0£0.0 11.0£0.0 11.94£0.0 10.7+£0.0 474400 0.34+0.0 11.6+0.0 10.4+£0.0 10.8%0.0
SVHN 98.6 98.6 98.1 91.7 973 98.4 97.1 97.6 97.9 98.0 97.9 97.8 97.3

CIFAR-10 69.0£0.0 11.6+0.0 57.3£0.0 61.3+0.0 3700 154£0.0 11.1£0.0 11.7£0.0 60.7£0.0 3.6+0.0 124£0.0 12.1£0.0 12.5£0.0
LSUN-CR 69.8+0.0 102+0.0 57.7£0.0 63.9£0.0 0.1£0.0 10.8+£0.0 10.2£0.0 10.2+0.0 61.5£0.1 0.0+£0.0 11.0£0.0 10.3£0.0 10.7£0.0
CIFAR-100 70.3+0.0 124+£0.0 58.8%+0.0 63.5+£0.0 43400 17.3+£0.0 11.6£0.0 123+0.0 62.3+£0.0 4.1+0.0 13.4+0.0 12.7£0.0 13.44+0.0
FMNIST-3D 73.6£0.0 11.0£0.0 62.5+£0.0 67.8£0.0 1.5£0.0 17.6£0.0 10.840.0 11.5£0.0 68.0£0.0 1.8£0.0 155£0.0 10.9£0.0 12.00.0

Uniform 775400 103£0.0 57.1£0.0 82.2+0.0 0.1£0.0 10.0+£0.0 10.1+£0.0 10.2+0.0 65.7%0.1 0.0£0.0 104+0.0 10.3+£0.0 10.74+0.0
Smooth 68.840.0 52.1+0.0 51.3£0.0 5554+0.0 423+£0.0 62.7£0.0 45.6+0.0 44.0£0.0 5834+0.1 43.9+0.0 449400 44.6+0.1 40.84£0.0
CIFAR-10 96.7 96.9 95.9 95.7 94.5 96.0 95.1 95.5 96.4 94.9 95.8 96.1 96.1
SVHN 6524+0.0 457+0.0 60.840.0 59.5£0.0 49.7£0.0 73.3£0.0 45.0+0.0 558%+0.0 63.54+0.0 36.8+0.1 64.7£0.0 33.0+£0.0 44.0+0.0

LSUN-CR 73.940.0 58.7+0.0 652+0.0 6824+0.0 41.1+£0.1 64.34+0.0 56.7+£0.0 57.1£0.0 71.6+0.0 292402 61.7+04 53.6+£03 552403
CIFAR-100 77.2+0.0 76.1£0.0 69.840.0 72.4£0.0 67.7£0.0 759+0.0 69.8£0.0 70.5+0.0 754£0.0 67.3£0.0 743£0.0 73.2£0.0 72.6+0.0
FMNIST-3D 67.74£0.0 55.94£0.0 58.5+0.0 60.4+0.0 327400 64.3+0.0 54.5£0.0 52.3£0.0 66.0£0.0 274400 57.6+0.0 4854+0.0 53.1£0.1

Uniform 82.1£0.0 10.3+0.0 40.7£0.0 52.240.0 0.1£0.0 10.2+0.0 10.7£0.0 10.1+£0.0 81.9£0.1 0.0+£0.0 10.2£0.0 10.3+0.0 10.3£0.0
Smooth 64.3£0.0 452+0.0 572+0.0 54.0+£0.0 51.4+0.0 53.3£0.0 53.0+0.0 49.3+£0.0 62.5+£0.0 32.6+£0.0 59.5+0.1 26.4+0.0 43.5£0.0
CIFAR-100 84.7 85.1 80.9 69.0 66.2 80.1 67.1 67.1 81.6 80.3 71.0 79.1 79.4
SVHN 52.840.0 43.94+0.0 43.8£0.0 27.34+0.0 31.0+£0.0 462400 249+0.0 269+0.0 46.94+0.0 33.7£0.1 42.1+0.0 34.840.0 37.9£0.1

LSUN-CR 62.7£0.0 51.3+0.0 48.8+0.0 33.3x0.1 21.1£0.0 49.7£0.0 26.5%0.0 264£0.1 57.0£0.1 36.4+£0.1 43.5+0.5 40.9+0.1 42.6%03
CIFAR-10 62.94+0.0 63.7+0.0 53.4+0.0 39.0£0.0 36.9£0.0 55.3+0.0 372400 374400 57.3+0.0 557+0.0 50.84£0.0 53.840.0 54.0+0.0
FMNIST-3D 51.840.0 482+£0.0 42.54+0.0 24.8+0.0 159400 445+0.0 20.6£0.0 22.6+0.0 47.1£0.0 40.7£0.0 38.4+0.0 40.3£0.0 41.44+0.0
Uniform 64.2+£0.0 1.4£0.0 45.0£0.0 594400 0.0£0.0 2.2+£0.0 1.2+0.0 1.2+0.0 54.4+0.1 0.0£0.0 1.5+£0.0 4.4+£0.1 1.5£0.0
Smooth 61.7£0.0 58.94+0.0 47.3+£0.0 49.3+0.0 384+0.0 50.6+0.0 28.7+0.0 34.84£0.0 54.840.1 30.4+0.1 49.1+0.0 40.2+0.1 51.5£0.1

136

G3

Additional Results

Table G.5: Test accuracy (1) / ECE ({) of models trained with random noises (Hein et al., 2019) as Dy,
averaged over five prediction runs.

MNIST F-MNIST SVHN CIFAR-10 CIFAR-100

MAP 99.4£0.0/6.44+0.0 92.4£0.0/13.94+0.0 97.4+0.0/8.94+0.0 94.8+£0.0/10.0+0.0 76.7£0.0/14.3+0.0
DE 99.5+£0.0/8.6+0.0 93.6£0.0/3.6+0.0 97.6+0.0/3.5+0.0 95.7£0.0/4.5+0.0 80.040.0/1.9£0.0
OE 99.61+0.0/6.440.0 92.64+0.0/12.7+0.0 97.54+0.0/8.9£0.0 94.740.0/11.54+0.0 76.5+0.0/16.1+0.0
VB 99.5£0.0/11.24+0.3 92.4£0.0/3.7+0.2 97.5+0.0/5.7+0.2 94.940.0/5.84+0.2 75.4£0.0/8.3+0.0
+NC 99.4£0.0/10.640.1 92.3£0.0/3.00.1 97.4+0.0/4.24+0.2 94.9£0.0/5.1£0.1 74.0£0.1/8.84+0.1
+SL 99.6+£0.0/12.440.1 93.240.0/12.440.1 97.3+£0.0/12.84+0.0 91.5£0.0/18.54+0.1 1.0£0.1/0.1£0.0
+ML 99.4£0.0/11.6+0.2 92.1£0.0/2.4%0.1 97.6£0.0/3.31+0.1 95.1£0.0/3.6+0.2 75.240.0/9.84+0.0
+OE 99.5£0.0/10.24+0.2 92.5£0.0/3.24+0.1 97.5£0.0/5.040.1 94.940.0/6.84+0.2 74.1£0.0/8.04+0.0
LA 99.440.0/7.6%0.1 92.5+0.0/11.3£0.2 97.44+0.0/3.3£0.3 94.840.0/7.5+0.3 76.6+0.1/8.3+0.1
+NC 99.3+0.0/10.14£0.8 92.54+0.0/2.8£0.1 96.3+0.0/5.0£0.1 94.940.0/8.3+0.3 75.940.1/3.8%£0.1
+SL 99.6+£0.0/11.1+0.4 93.04+0.0/9.1£0.1 18.84+0.0/13.5£0.1 91.5+0.0/16.040.2 72.240.0/4.0£0.1
+ML 99.5+£0.0/5.5+0.2 92.3£0.0/9.3+0.1 97.5+£0.0/7.44+0.3 94.8+£0.0/7.24+0.3 76.8+0.1/3.3+0.2
+OE 99.6+0.0/6.6+0.3 92.3£0.0/2.040.1 97.5+0.0/3.84+0.2 94.6+0.0/7.24+0.3 76.3£0.0/8.6+0.1

Table G.6: OOD data detection under models trained with random noises (Hein
Values are FPR95, averaged over five prediction runs—Ilower is better.

et al., 2019) as Dyy.

VB LA
Datasets MAP OE DE Plain NC SL ML OE Plain NC SL ML OE
MNIST
F-MNIST 11.8£0.0 6.8+0.0 5.3£0.0 12.5+0.1 6.54+0.0 0.7£0.0 11.940.1 10.3£0.1 12.0+0.0 8.2+0.0 0.0£0.0 6.3+0.0 6.8+£0.0
E-MNIST 35.6+0.0 30.7+£0.0 30.440.0 34.540.1 35.14+0.1 17.94£0.0 37.3+0.1 34340.1 35.8+0.1 34.24+0.0 15340.1 31.0+£0.0 30.7+0.0
K-MNIST 14.440.0 7.8+0.0 7.740.0 14.0£0.1 14.5+0.1 1.1+£0.0 15.840.1 14.0£0.1 14.5+£0.1 10.6+0.0 0.7+0.0 8.5+0.0 7.8+£0.0
CIFAR-Gr 0.2+0.0 0.0+0.0 0.0+£0.0 0.24+0.0 0.0+0.0 0.0+0.0 0.0+£0.0 0.1+0.0 0.2+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+£0.0
Uniform 44.3+0.0 0.7£0.0 19.8+0.0 93.1+0.2 0.0+0.0 0.0+0.0 1.940.1 1.840.0 54.24+0.4 0.7£0.0 0.0+0.0 0.6+£0.0 0.8+0.0
F-MNIST
MNIST 73.54+0.0 62.2+0.0 65.840.0 66.8+0.1 62.2+£0.0 30.4%0.1 59.1+£0.1 60.4£0.1 722402 60.8£0.2 243+0.3 554402 57.4+03
E-MNIST 73.6+0.0 50.2+£0.0 58.6+0.0 68.1+0.1 43.940.0 25.7+0.0 54.7%0.1 54.6+£0.1 722402 44.2+0.1 225402 39.6+0.2 48.3+03
K-MNIST 73.7+£0.0 47.44+0.0 47.240.0 62.60.1 31.440.1 19.1£0.0 35.6+0.1 38.14£0.1 71.5+£0.2 33.94+0.2 209402 31.7+£0.2 43.0+£04
CIFAR-Gr 87.240.0 0.5+0.0 86.6+0.0 75.3+0.0 0.1+0.0 0.2+0.0 0.8+0.0 1.1+£0.0 87.7+0.1 0.7+0.0 0.2+0.0 0.7+0.0 1.0+0.0
Uniform 81.3+0.0 26.0+£0.0 86.3+0.0 87.3+0.1 47.1+£0.2 0.0+0.0 0.1+£0.0 49+0.0 81.0+0.2 43.440.7 0.0+0.0 22.0+0.2 38.1+0.9
SVHN
CIFAR-10 18.9+£0.0 13.8+0.0 9.54+0.0 15.0£0.0 13.0£0.1 16.5+0.0 8.4+0.0 11.5£0.0 15.4%0.1 8.4£0.0 94.8+1.6 14.9+0.1 11.4%0.1
LSUN-CR 19.7£0.0 9.0£0.0 8.3£0.0 17.2+0.2 10.5+0.1 8.8+0.1 5.440.1 9.1£0.1 15.5%0.1 8.3+£0.3 954440 12.6+0.2 8.2+0.1
CIFAR-100 21.84+0.0 15.6+£0.0 11.6+0.0 18.1£0.0 148+0.1 17.9+£0.0 10.240.0 12.4£0.0 17.6+0.1 11.7£0.0 93.940.7 16.6+0.1 13.4+0.1
FMNIST-3D 26.7+0.0 29.840.0 17.5+0.0 24.54+0.1 31.14£0.0 30.4+0.0 30.0+0.1 25340.0 27.2+0.1 34.6+0.1 95.1+0.8 23.3+0.1 27.7+0.1
Uniform 30.04+0.0 0.0+£0.0 6.440.0 48.2+0.0 0.0+0.0 0.0+0.0 0.0+£0.0 0.0+£0.0 17.040.1 0.0+£0.0 90.2+0.6 19.040.1 0.0+£0.0
CIFAR-10
SVHN 34.5+0.0 7.3+£0.0 33.940.0 33.5+0.0 11.1£0.0 20.6+0.0 11.0£0.0 9.74£0.0 35.5%0.1 6.6+0.0 26.0+£0.3 7.5+0.0 8.310.1
LSUN-CR 533£0.0 49.0+0.0 44.0£0.0 49.440.4 46.7+0.1 61.7£0.0 45.7+0.2 476103 538+0.6 48.9%0.5 549+04 519403 483+£0.5
CIFAR-100 6124+0.0 582+0.0 52.5+0.0 58.4+0.1 57.7£0.1 71.1+£0.0 56.3+£0.1 56.6+£0.1 61.4%+0.1 59.3+0.2 70.7+£0.3 57.6£0.1 59.0+0.3
FMNIST-3D 42.440.0 449400 30.7+£0.0 37.440.0 39.540.1 62.7£0.0 43.3+0.1 44.0+£0.1 432402 40.2+0.1 57.84£0.4 40.8+0.1 46.4+0.3
Uniform 87.7£0.0 26.7+0.0 0.0+£0.0 13.840.1 100.04£0.0 57.3+0.1 98.0+0.0 100.0+£0.0 92.8+0.1 3.540.1 17.7£0.4 129403 49.840.9
CIFAR-100
LSUN-CR 82.0+0.0 79.7+£0.0 75.340.0 73.840.2 80.9+0.3 91.5£85 77.9+0.1 71.1+£04 82.840.5 82.0+0.8 78.5+0.8 72.840.9 79.7+0.8
CIFAR-10 79.8£0.0 80.5+£0.0 76.44+0.0 78.240.1 81.3+0.0 93.9+1.1 80.0£0.1 81.4+0.1 79.5+£0.1 80.6+0.2 82.1£0.1 78.8+£0.2 80.24+0.2
FMNIST-3D 65.840.0 66.9+£0.0 61.840.0 57.1%0.1 69.3£0.1 93.6x1.1 63.1£0.1 61.9£0.1 66.1+0.1 71.2+0.2 82.0£0.1 644304 67.9£0.2
Uniform 97.6+0.0 73.3+£0.0 943+0.0 100.0+0.0 99.7£0.0 954%1.4 99.5+£0.0 99.84+0.0 98.8+0.1 88.4+0.5 100.0£0.0 88.9+0.5 54.0£0.6
Table G.7: Accuracy and ECE on text classification tasks, averaged over five prediction runs.
Methods SST TREC
MAP 78.1+£0.0/20.8£0.0 76.0+0.0/17.2£0.0
DE 82.9+0.0/2.5£0.0 80.6+0.0/10.6+0.0
OE 78.6+0.0/13.0£0.0 68.8+0.0/9.4+0.0
LA 78.0+0.0/21.0£0.4 75.94+0.1/17.3£0.3
+NC 78.0+0.0/17.9£0.1 43.4+0.0/18.6+0.2
+DL 69.2+0.2/17.5£0.7 45.0+0.2/10.4+0.8
+ML 48.9+0.3/11.4£0.2 55.84+0.1/11.5£0.3
+OE 78.5£0.0/12.8+0.4 68.1+0.1/8.4+0.7

137

G Appendix of Section 4.3

Table G.8: OOD data detection on text classification tasks. Values are FPR95, averaged over five predic-
tion runs—lower is better.

LA

Datasets MAP OE DE Plain NC SL ML OE
SST

SNLI 100.0+£0.0 0.0£0.0 100.0+£0.0 100.0+0.0 0.0£0.0 97.0+0.3 89.6+0.7 0.0+£0.0
Multi30k 100.0+£0.0 0.0+0.0 100.0+0.0 100.0£0.0 0.0£0.0 99.5+£0.0 83.5£1.5 0.0+£0.0
WMTI16 100.0+:0.0 0.0£0.0 100.0£0.0 100.04+0.0 0.0+£0.0 89.3+0.6 80.7%£1.4 0.04+0.0
TREC

SNLI 99.74+0.0 0.0£0.0 31.0£0.1 99.74+0.0 0.0£0.0 0.740.3 0.04+0.0 0.0+0.0
Multi30k 100.04£0.0 0.0+0.0 14240.0 100.0+£0.0 0.040.0 0.84+0.5 0.0+£0.0 0.0+0.0
WMT16 89.2+0.0 0.04+0.0 27.3+0.0 89.3+£0.0 0.0£0.0 0.8+0.7 0.0+0.0 0.0£0.0

Table G.9: Test accuracy (1) / ECE (]) of more sophisticated base models, averaged over five prediction
runs.

CIFAR-10 CIFAR-100
Flipout 91.3+0.0/10.9£0.2 70.4+0.1/19.8+£0.2
+NC 89.7£0.1/8.2+0.2 67.1£0.1/13.8+0.1
CSGHMC 93.9£0.0/1.7£0.0 74.0£0.0/4.0£0.0
+NC 92.2+£0.0/6.2+0.0 71.6£0.0/2.4+0.0
DE 95.7£0.0/4.5+0.0 80.0+0.0/1.9+0.0
+NC 94.9+0.0/4.8+£0.0 79.0+0.0/1.7£0.0

Table G.10: OOD data detection with more sophisticated base models. Values are FPR95, averaged over
five prediction runs.

Flipout CSGHMC DE

Datasets Plain NC Plain NC Plain NC
CIFAR-10

SVHN 72.1+£0.3 39.6+0.2 56.8+0.0 16.4+0.0 33.940.0 8.1£0.0
LSUN-CR 63.7£1.0 37.540.2 56.7+0.0 24.0£0.0 44.0+0.0 18.3£0.0
CIFAR-100 74.54+0.2 70.4£0.1 63.44+0.0 63.1£0.0 52.54+0.0 51.7£0.0
FMNIST-3D 65.0£0.2 38.240.1 51.04+0.0 14.840.0 30.7£0.0 10.340.0
Uniform 53.8+0.6 0.0+0.0 87.0£0.0 0.0+0.0 0.0+0.0 0.0+0.0
Smooth 61.1£0.2 59.6+0.2 47.1+0.0 31.940.0 32.940.0 13.6£0.0
CIFAR-100

LSUN-CR 85.8+0.6 55.6+0.4 79.3+0.0 38.0£0.0 75.34+0.0 54.0£0.0
CIFAR-10 86.1+0.3 87.0+0.2 82.1+0.0 84.240.0 76.4+0.0 78.5+£0.0
FMNIST-3D 73.44+0.4 65.84+0.2 67.0+0.0 45.54+0.0 61.84+0.0 50.0£0.0
Uniform 99.74+0.0 0.0+0.0 93.84+0.0 0.0+0.0 94.34+0.0 0.0+0.0
Smooth 82.0+0.3 72.5+0.3 83.0+0.0 47.2+0.0 58.74+0.0 39.3+0.0

138

Reference

Amari, S.-I. Natural gradient works efficiently in learning. Neural computation, 10(2):251-276,
1998.

Arora, R., Basu, A., Mianjy, P., and Mukherjee, A. Understanding deep neural networks with
rectified linear units. In /CLR, 2018.

Barber, D. Bayesian Reasoning and Machine Learning. Cambridge University Press, 2012.
Bernardo, J. M. and Smith, A. F. Bayesian Theory. John Wiley & Sons, 2009.

Bingham, E., Chen, J. P, Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R.,
Szerlip, P., Horsfall, P., and Goodman, N. D. Pyro: Deep universal probabilistic programming.
JMLR, 20(1), 2019.

Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006.

Bitterwolf, J., Meinke, A., and Hein, M. Certifiably adversarially robust detection of out-of-
distribution data. In NeurIPS, 2020.

Blight, B. and Ott, L. A Bayesian approach to model inadequacy for polynomial regression.
Biometrika, 62, 1975.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. Weight uncertainty in neural
networks. In ICML, 2015.

Botev, A., Ritter, H., and Barber, D. Practical gauss-newton optimisation for deep learning. In
ICML, 2017.

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. A large annotated corpus for learning
natural language inference. In EMNLP, 2015.

Brier, G. W. et al. Verification of forecasts expressed in terms of probability. Monthly weather
review, 78(1), 1950.

Brosse, N., Riquelme, C., Martin, A., Gelly, S., and Moulines, E. On last-layer algorithms
for classification: Decoupling representation from uncertainty estimation. arXiv preprint
arXiv:2001.08049, 2020.

Chapelle, O. and Li, L. An empirical evaluation of thompson sampling. In NIPS, 2011.

Chen, T., Fox, E., and Guestrin, C. Stochastic gradient hamiltonian monte carlo. In /CML, 2014.

139

Reference

Cho, K., Van Merriénboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and
Bengio, Y. Learning phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

Cho, Y. and Saul, L. K. Kernel methods for deep learning. In NIPS, 2009.

Chrabaszcz, P., Loshchilov, 1., and Hutter, F. A downsampled variant of imagenet as an alterna-
tive to the cifar datasets. arXiv preprint arXiv:1707.08819, 2017.

Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., and Ha, D. Deep
learning for classical Japanese literature. arXiv preprint arXiv:1812.01718, 2018.

Cohen, G., Afshar, S., Tapson, J., and Van Schaik, A. EMNIST: Extending MNIST to handwrit-
ten letters. In International Joint Conference on Neural Networks, 2017.

Dangel, F., Kunstner, F., and Hennig, P. BackPACK: Packing more into backprop. In /ICLR,
2020.

Daxberger, E., Kristiadi, A., Immer, A., Eschenhagen, R., Bauer, M., and Hennig, P. Laplace
redux—effortless Bayesian deep learning. In NeurIPS, 2021a.

Daxberger, E., Nalisnick, E., Allingham, J. U., Antordn, J., and Hernidndez-Lobato, J. M.
Bayesian deep learning via subnetwork inference. In /ICML, 2021b.

Denker, J. S. and LeCun, Y. Transforming neural-net output levels to probability distributions.
In NIPS, 1990.

Dinh, L., Krueger, D., and Bengio, Y. NICE: Non-linear independent components estimation.
In ICLR Workshop, 2015.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121-2159, 2011.

Dusenberry, M., Jerfel, G., Wen, Y., Ma, Y., Snoek, J., Heller, K., Lakshminarayanan, B., and
Tran, D. Efficient and scalable Bayesian neural nets with rank-1 factors. In ICML, 2020.

Eckart, C. and Young, G. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3), 1936.

El Gayar, N., Schwenker, F., and Palm, G. A study of the robustness of KNN classifiers trained
using soft labels. In IAPR Workshop on Artificial Neural Networks in Pattern Recognition,
2006.

Elliott, D., Frank, S., Sima’an, K., and Specia, L. Multi30K: Multilingual English-German
image descriptions. In ACL Workshop on Vision and Language, 2016.

Eschenhagen, R., Daxberger, E., Hennig, P., and Kristiadi, A. Mixtures of Laplace approxima-
tions for improved post-hoc uncertainty in deep learning. In NeurlPS Workshop of Bayesian
Deep Learning, 2021.

Foong, A. Y., Li, Y., Herndndez-Lobato, J. M., and Turner, R. E. In-between uncertainty in
Bayesian neural networks. arXiv, 2019.

140

Reference

Franchi, G., Bursuc, A., Aldea, E., Dubuisson, S., and Bloch, I. TRADI: Tracking deep neural
network weight distributions. arXiv preprint arXiv:1912.11316, 2019.

Frankle, J. and Carbin, M. The lottery ticket hypothesis: Finding sparse, trainable neural net-
works. In ICLR, 2019.

Gal, Y. and Ghahramani, Z. Dropout as a Bayesian approximation: Representing model uncer-
tainty in deep learning. In ICML, 2016.

Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D., and Wilson, A. G. GPyTorch: Blackbox
matrix-matrix Gaussian process inference with GPU acceleration. In NIPS, 2018.

Garriga-Alonso, A. and Fortuin, V. Exact Langevin dynamics with stochastic gradients. arXiv
preprint arXiv:2102.01691, 2021.

Gast, J. and Roth, S. Lightweight probabilistic deep networks. In CVPR, 2018.

Gelman, A. and Rubin, D. B. Inference from iterative simulation using multiple sequences.
Statistical Science, 7(4), 1992.

Gelman, A., Jakulin, A., Pittau, M. G., Su, Y.-S., et al. A weakly informative default prior
distribution for logistic and other regression models. The annals of applied statistics, 2(4),
2008.

George, T., Laurent, C., Bouthillier, X., Ballas, N., and Vincent, P. Fast approximate natural
gradient descent in a Kronecker factored eigenbasis. In NIPS, 2018.

Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature, 521(7553),
2015.

Gibbs, M. Bayesian Gaussian Processes for Regression and Classification. PhD thesis, Univer-
sity of Cambridge, 1998.

Goodfellow, 1. J., Mirza, M., Xiao, D., Courville, A., and Bengio, Y. An empirical investigation
of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211,
2013.

Graves, A. Practical variational inference for neural networks. In NIPS, 2011.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Scholkopf, B., and Smola, A. A kernel two-sample
test. JMLR, 13(1), 2012.

Gueorguieva, R., Rosenheck, R., and Zelterman, D. Dirichlet component regression and its
applications to psychiatric data. Computational Statistics & Data Analysis, 52(12), 2008.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On calibration of modern neural networks.
In ICML, 2017.

Gupta, A. K. and Nagar, D. K. Matrix variate distributions. Chapman and Hall/CRC, 1999.

Havasi, M., Snoek, J., Tran, D., Gordon, J., and Herndndez-Lobato, J. M. Refining the varia-
tional posterior through iterative optimization. Entropy, 23(1475), 2021.

141

Reference

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In CVPR,
2016.

Hein, M., Andriushchenko, M., and Bitterwolf, J. Why ReLU networks yield high-confidence
predictions far away from the training data and how to mitigate the problem. In CVPR, 2019.

Hendrycks, D. and Dietterich, T. Benchmarking neural network robustness to common corrup-
tions and perturbations. In /CLR, 2019.

Hendrycks, D. and Gimpel, K. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In /CLR, 2017.

Hendrycks, D., Mazeika, M., and Dietterich, T. Deep anomaly detection with outlier exposure.
In ICLR, 2019.

Hennig, P., Stern, D., Herbrich, R., and Graepel, T. Kernel topic models. In AISTATS, 2012.

Hensman, J., Matthews, A., and Ghahramani, Z. Scalable variational Gaussian process classifi-
cation. In AISTATS, 2015.

Hernéndez-Lobato, J. M. and Adams, R. Probabilistic backpropagation for scalable learning of
Bayesian neural networks. In International Conference on Machine Learning, pp. 1861-1869,
2015.

Heskes, T. On “natural” learning and pruning in multilayered perceptrons. Neural Computation,
12(4), 2000.

Higham, N. J. A Survey of Componentwise Perturbation Theory, volume 48. American Mathe-
matical Society, 1994.

Hinton, G., Srivastava, N., and Swersky, K. RMSProp: Divide the gradient by a running average
of its recent magnitude. Neural networks for machine learning, Coursera lecture 6e, 2012.

Hinton, G. E. and Van Camp, D. Keeping the neural networks simple by minimizing the de-
scription length of the weights. In COLT, 1993.

Hobbhahn, M., Kristiadi, A., and Hennig, P. Fast predictive uncertainty for classification with
Bayesian deep networks. 2022.

Hoffman, M. D., Gelman, A., et al. The No-U-Turn sampler: Adaptively setting path lengths in
Hamiltonian Monte Carlo. JMLR, 15(1), 2014.

Humt, M., Lee, J., and Triebel, R. Bayesian optimization meets laplace approximation for
robotic introspection. In IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS) Long-Term Autonomy Workshop, 2020.

Huszar, F. Note on the quadratic penalties in elastic weight consolidation. In Proceedings of the
National Academy of Sciences, 2018.

Hutter, F., Kotthoff, L., and Vanschoren, J. Automated Cachine Learning: Methods, Systems,
Challenges. Springer Nature, 2019.

142

Reference

Immer, A., Bauer, M., Fortuin, V., Ritsch, G., and Khan, M. E. Scalable marginal likelihood
estimation for model selection in deep learning. In ICML, 2021a.

Immer, A., Korzepa, M., and Bauer, M. Improving predictions of Bayesian neural nets via local
linearization. In AISTATS, 2021b.

Izmailov, P., Maddox, W. J., Kirichenko, P., Garipov, T., Vetrov, D., and Wilson, A. G. Subspace
inference for Bayesian deep learning. In UAI, 2019.

Izmailov, P., Nicholson, P., Lotfi, S., and Wilson, A. G. Dangers of Bayesian model averaging
under covariate shift. In NeurIPS, 2021a.

Izmailov, P., Vikram, S., Hoffman, M. D., and Wilson, A. G. What are Bayesian neural network
posteriors really like? In ICML, 2021b.

Khan, M. E. E., Immer, A., Abedi, E., and Korzepa, M. Approximate inference turns deep
networks into Gaussian processes. In NeurIPS, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. In /CLR, 2015.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan, K.,
Quan, J., Ramalho, T., Grabska-Barwinska, A., et al. Overcoming catastrophic forgetting in
neural networks. Proceedings of the National Academy of Sciences, 114(13), 2017.

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang, M., Balsubramani, A., Hu, W.,
Yasunaga, M., Phillips, R. L., Gao, L., et al. WILDS: A benchmark of in-the-wild distribution
shifts. arXiv preprint arXiv:2012.07421, 2020.

Korattikara, A., Rathod, V., Murphy, K., and Welling, M. Bayesian dark knowledge. In NIPS,
2015.

Krishnan, R. and Esposito, P. Bayesian-Torch: Bayesian neural network layers for uncertainty
estimation. https://github.com/IntellLabs/bayesian-torch, 2020.

Kristiadi, A. Last-layer Laplace approximation code examples. https://github.com/
wiseodd/last_layer_laplace, 2020.

Kristiadi, A., Hein, M., and Hennig, P. Being Bayesian, even just a bit, fixes overconfidence in
ReL.U networks. In ICML, 2020.

Kristiadi, A., Hein, M., and Hennig, P. Learnable uncertainty under Laplace approximations. In
UAI 2021.

Kuleshov, V., Fenner, N., and Ermon, S. Accurate uncertainties for deep learning using cali-
brated regression. In Proceedings of the 35th International Conference on Machine Learning,
2018.

Kuncheva, L. Fuzzy Classifier Design. Springer Science & Business Media, 2000.

Kunstner, F., Balles, L., and Hennig, P. Limitations of the empirical fisher approximation for
natural gradient descent. In NeurIPS, 2019.

143

Reference

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple and scalable predictive uncertainty
estimation using deep ensembles. In NIPS, 2017.

Laplace, P.-S. Mémoires de mathématique et de physique, tome sixieme. 1774.
LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain damage. In NIPS, 1990.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 1998.

Lee, J. and Humt, M. Official code: Estimating model uncertainty of neural networks in sparse
information form, icml2020. https://github.com/DLR-RM/curvature, 2020.

Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Pennington, J., and Sohl-Dickstein, J. Deep
neural networks as Gaussian processes. In /CLR, 2018a.

Lee, J., Humt, M., Feng, J., and Triebel, R. Estimating model uncertainty of neural networks in
sparse information form. In /CML, 2020.

Lee, K., Lee, H., Lee, K., and Shin, J. Training confidence-calibrated classifiers for detecting
out-of-distribution samples. In /CLR, 2018b.

Lee, K., Lee, K., Lee, H., and Shin, J. A simple unified framework for detecting out-of-
distribution samples and adversarial attacks. In NIPS, 2018c.

Liang, S., Li, Y., and Srikant, R. Enhancing the reliability of out-of-distribution image detection
in neural networks. In /CLR, 2018.

Liu, X., Li, Y., Wu, C., and Hsieh, C.-J. Adv-BNN: Improved adversarial defense through robust
Bayesian neural network. In /ICLR, 2019.

Loshchilov, I. and Hutter, F. SGDR: Stochastic gradient descent with warm restarts. In /CLR,
2017.

Lotfi, S., Izmailov, P., Benton, G., Goldblum, M., and Wilson, A. G. Bayesian model selection,
the marginal likelihood, and generalization. arXiv preprint arXiv:2202.11678, 2022.

Louizos, C. and Welling, M. Structured and efficient variational deep learning with matrix
Gaussian posteriors. In ICML, 2016.

Louizos, C. and Welling, M. Multiplicative normalizing flows for variational Bayesian neural
networks. In ICML, 2017.

Lu, Z., Ie, E., and Sha, F. Uncertainty estimation with infinitesimal jackknife, its distribution
and mean-field approximation. arXiv preprint arXiv:2006.07584, 2020.

MacKay, D. J. Bayesian interpolation. Neural computation, 4(3), 1992a.

MacKay, D. J. The evidence framework applied to classification networks. Neural Computation,
4(5), 1992b.

MacKay, D. J. A practical Bayesian framework for backpropagation networks. Neural Compu-
tation, 4(3), 1992c.

144

Reference

MacKay, D. J. Probable networks and plausible predictions—a review of practical Bayesian
methods for supervised neural networks. Network: computation in neural systems, 1995.

MacKay, D. J. Choice of basis for laplace approximation. Machine Learning, 33(1), 1998.

Maddox, W. J., Izmailov, P., Garipov, T., Vetrov, D. P., and Wilson, A. G. A simple baseline for
Bayesian uncertainty in deep learning. In NeurIPS, 2019a.

Maddox, W. J., Izmailov, P., Garipov, T., Vetrov, D. P, and Wilson, A. G. Code repo for "A
Simple Baseline for Bayesian Deep Learning". https://github.com/wjmaddox/swa_
gaussian, 2019b.

Maddox, W. J., Benton, G., and Wilson, A. G. Rethinking parameter counting in deep models:
Effective dimensionality revisited. arXiv preprint arXiv:2003.02139, 2020.

Madras, D., Atwood, J., and D’ Amour, A. Detecting extrapolation with local ensembles. In
ICLR, 2020.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards deep learning models
resistant to adversarial attacks. In /CLR, 2018.

Malinin, A. and Gales, M. Predictive uncertainty estimation via prior networks. In NIPS, 2018.

Malinin, A. and Gales, M. Reverse KL-divergence training of prior networks: Improved uncer-
tainty and adversarial robustness. In NIPS, 2019.

Maroiias, J., Hamelijnck, O., Knoblauch, J., and Damoulas, T. Transforming Gaussian processes
with normalizing flows. In AISTATS, 2021.

Martens, J. New insights and perspectives on the natural gradient method. JMLR, 21(146), 2020.

Martens, J. and Grosse, R. Optimizing neural networks with Kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408-2417, 2015.

Meinke, A. and Hein, M. Towards neural networks that provably know when they don’t know.
In ICLR, 2020.

Miller, A. C., Foti, N. J., and Adams, R. P. Variational boosting: Iteratively refining posterior
approximations. In /ICML, 2017.

Minka, T. Estimating a Dirichlet distribution, 2000.

Naeini, M. P, Cooper, G., and Hauskrecht, M. Obtaining well calibrated probabilities using
Bayesian binning. In AAAI, 2015.

Nair, V. and Hinton, G. E. Rectified linear units improve restricted Boltzmann machines. In
ICML, 2010.

Nandy, J., Hsu, W., and Lee, M. L. Towards maximizing the representation gap between in-
domain & out-of-distribution examples. In NeurIPS, 2020.

Neal, R. M. Bayesian learning for neural networks, volume 118. Springer Science & Business
Media, 2012.

145

Reference

Neal, R. M. et al. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte
Carlo, 2(11), 2011.

Nguyen, A., Yosinski, J., and Clune, J. Deep neural networks are easily fooled: High confidence
predictions for unrecognizable images. In CVPR, 2015.

Nguyen, C. V., Li, Y., Bui, T. D., and Turner, R. E. Variational continual learning. In /CLR,
2018.

Ober, S. W. and Rasmussen, C. E. Benchmarking the neural linear model for regression. arXiv
preprint arXiv:1912.08416, 2019.

O’Hagan, A. Curve fitting and optimal design for prediction. Journal of the Royal Statistical
Society: Series B (Methodological), 40, 1978.

Osawa, K. ASDL: Automatic second-order differentiation (for Fisher, gradient covariance, Hes-
sian, Jacobian, and kernel) library. https://github.com/kazukiosawa/asdfghjkl,
2021a.

Osawa, K. ASDL: Automatic second-order differentiation (for Fisher, gradient covariance, Hes-
sian, Jacobian, and kernel) library. https://github.com/kazukiosawa/asdfghjkl,
2021b.

Osawa, K., Swaroop, S., Khan, M. E. E., Jain, A., Eschenhagen, R., Turner, R. E., and Yokota,
R. Practical deep learning with Bayesian principles. In NeurIPS, 2019.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., Dillon, J., Lakshminarayanan,
B., and Snoek, J. Can you trust your model’s uncertainty? Evaluating predictive uncertainty
under dataset shift. In NeurIPS, 2019.

Pan, P, Swaroop, S., Immer, A., Eschenhagen, R., Turner, R. E., and Khan, M. E. Continual
deep learning by functional regularisation of memorable past. In NeurIPS, 2020.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., and Lakshminarayanan, B. Nor-
malizing flows for probabilistic modeling and inference. JMLR, 22(57), 2021.

Park, M., Horwitz, G., and Pillow, J. W. Active learning of neural response functions with
Gaussian processes. In NIPS, 2011.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., et al. PyTorch: An imperative style, high-performance deep
learning library. In NeurIPS, 2019.

Platt, J. et al. Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. Advances in large margin classifiers, 10(3):61-74, 1999.

Qiu, X., Meyerson, E., and Miikkulainen, R. Quantifying point-prediction uncertainty in neural
networks via residual estimation with an I/O kernel. In ICLR, 2020.

Rahaman, R. and Thiery, A. H. Uncertainty quantification and deep ensembles. arXiv preprint
arXiv:2007.08792, 2020.

146

Reference

Rasmussen, C. E. and Williams, C. K. 1. Gaussian processes in machine learning. 2005.
Rezende, D. and Mohamed, S. Variational inference with normalizing flows. In ICML, 2015.

Rippel, O. and Adams, R. P. High-dimensional probability estimation with deep density models.
arXiv preprint arXiv:1302.5125, 2013.

Riquelme, C., Tucker, G., and Snoek, J. Deep Bayesian bandits showdown: An empirical
comparison of Bayesian deep networks for thompson sampling. In ICLR, 2018.

Ritter, H., Botev, A., and Barber, D. A scalable Laplace approximation for neural networks. In
ICLR, 2018a.

Ritter, H., Botev, A., and Barber, D. Online structured Laplace approximations for overcoming
catastrophic forgetting. In NIPS, 2018b.

Robbins, H. E. An empirical bayes approach to statistics. In Proceedings of the 3rd Berkeley
Symposium on Mathematical Statistics and Probability, 1956.

Schraudolph, N. N. Fast curvature matrix-vector products for second-order gradient descent.
Neural computation, 14(7), 2002.

Sensoy, M., Kaplan, L., and Kandemir, M. Evidential deep learning to quantify classification
uncertainty. In NIPS, 2018.

Sharma, A., Azizan, N., and Pavone, M. Sketching curvature for efficient out-of-distribution
detection for deep neural networks. arXiv preprint arXiv:2102.12567, 2021.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., and Catanzaro, B. Megatron-LM:
Training multi-billion parameter language models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary, M., Prabhat,
M., and Adams, R. Scalable Bayesian optimization using deep neural networks. In ICML,
2015.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A. Y., and Potts, C. Recursive
deep models for semantic compositionality over a sentiment treebank. In EMNLP, 2013.

Spiegelhalter, D. J. and Lauritzen, S. L. Sequential updating of conditional probabilities on
directed graphical structures. Networks, 20(5), 1990.

Sun, S., Zhang, G., Shi, J., and Grosse, R. Functional variational Bayesian neural networks. In
ICLR, 2019.

Szegedy, C., Vanhoucke, V., loffe, S., Shlens, J., and Wojna, Z. Rethinking the Inception archi-
tecture for computer vision. In CVPR, 2016.

Thiel, C. Classification on soft labels is robust against label noise. In International Conference
on Knowledge-Based and Intelligent Information and Engineering Systems, 2008.

Titsias, M. K., Schwarz, J., Matthews, A. G. d. G., Pascanu, R., and Teh, Y. W. Functional
regularisation for continual learning with Gaussian processes. In /CLR, 2020.

147

Reference

Tomczak, M., Swaroop, S., and Turner, R. Efficient low rank Gaussian variational inference for
neural networks. In NeurIPS, 2020.

Torralba, A., Fergus, R., and Freeman, W. T. 80 Million Tiny Images: A large data set for
nonparametric object and scene recognition. [IEEE Transactions on Pattern Analysis and
Machine Intelligence, 30(11), 2008.

Van Amersfoort, J., Smith, L., Teh, Y. W,, and Gal, Y. Uncertainty estimation using a single
deep deterministic neural network. In ICML, 2020.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. Attention is all you need. In NIPS, 2017.

Voorhees, E. M. Overview of the TREC-9 question answering track. In 7ext REtrieval Confer-
ence (TREC), 2001.

Wahba, G. Improper priors, spline smoothing and the problem of guarding against model errors
in regression. Journal of the Royal Statistical Society: Series B (Methodological), 40, 1978.

Wahba, G. Spline Models for Observational Data. SIAM, 1990.

Wang, K.-C., Vicol, P, Lucas, J., Gu, L., Grosse, R., and Zemel, R. Adversarial distillation of
Bayesian neural network posteriors. In /ICML, 2018.

Wang, X. and Aitchison, L. Bayesian OOD detection with aleatoric uncertainty and outlier
exposure. arXiv preprint arXiv:2102.12959v2, 2021.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic gradient langevin dynamics. In
ICML, 2011.

Wen, Y., Vicol, P, Ba, J., Tran, D., and Grosse, R. Flipout: Efficient pseudo-independent weight
perturbations on mini-batches. In /CLR, 2018.

Wenger, J., Kjellstrom, H., and Triebel, R. Non-parametric calibration for classification. arXiv
preprint arXiv:1906.04933, 2019.

Wenzel, F., Roth, K., Veeling, B. S., Swiatkowski, J., Tran, L., Mandt, S., Snoek, J., Salimans,
T., Jenatton, R., and Nowozin, S. How good is the Bayes posterior in deep neural networks
really? ICML, 2020a.

Wenzel, F., Snoek, J., Tran, D., and Jenatton, R. Hyperparameter ensembles for robustness and
uncertainty quantification. In NeurIPS, 2020b.

Williams, C. K. and Barber, D. Bayesian classification with Gaussian processes. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 20(12), 1998.

Wilson, A. G. and Izmailov, P. Bayesian deep learning and a probabilistic perspective of gener-
alization. In NeurIPS, 2020.

Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing, E. P. Deep kernel learning. In AISTATS,
2016a.

148

Reference

Wilson, A. G., Hu, Z., Salakhutdinov, R. R., and Xing, E. P. Stochastic variational deep kernel
learning. In NIPS, 2016b.

Wilson, J. T., Borovitskiy, V., Terenin, A., Mostowsky, P., and Deisenroth, M. P. Efficiently
sampling functions from Gaussian process posteriors. In /CML, 2020.

Wu, A., Nowozin, S., Meeds, E., Turner, R. E., Hernandez-Lobato, J. M., and Gaunt, A. L.
Deterministic variational inference for robust Bayesian neural networks. In ICLR, 2019.

Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., and Xiao, J. LSUN: Construction of
a large-scale image dataset using deep learning with humans in the loop. arXiv preprint
arXiv:1506.03365, 2015.

Zagoruyko, S. and Komodakis, N. Wide residual networks. In BMVC, 2016.

Zhang, G., Sun, S., Duvenaud, D., and Grosse, R. Noisy natural gradient as variational inference.
In ICML, 2018.

Zhang, R., Li, C., Zhang, J., Chen, C., and Wilson, A. G. Cyclical stochastic gradient MCMC
for Bayesian deep learning. In /CLR, 2020.

Zhang, X. and LeCun, Y. Universum prescription: Regularization using unlabeled data. In
AAAIL 2017.

149

Index

backpropagation, 6

Bayesian neural network, 8
Laplace bridge, 14
linearization, 12
Monte Carlo integration, 12
multiclass probit approximation, 14
predictive distribution, 12
probit approximation, 13

Bernoulli distribution, 3

calibration, 18
Brier score, 19
expected calibration error, 18
negative log-likelihood, 19
Categorical distribution, 3
negative log-likelihood, 7
confidence, 18
cross-entropy loss, 6

Dirac delta, 8
Dirichlet distribution, 4

entropy, 10
evidence, 8
evidence lower bound, 10

Gaussian distribution, 2
covariance, 2
mean, 2
negative log-likelihood, 7
probit function, 3

Gaussian process, 15
kernel, 15
kernel matrix, 16
posterior, 16

gradient descent, 6
preconditioning, 6

150

step size, 6
stochastic gradient descent, 6

hyperbolic tangent, 5
Kullback-Leibler divergence, 10

Laplace approximation, 9, 24
laplace-torch, 27
cross-validation, 26
diagonal, 25
evidence, 24
KFAC, 25
last-layer, 25
linearized Laplace, 26
low-rank, 26
marginal likelihood, 24

marginal likelihood maximization, 26

subnetwork, 25
link function, 6
LULA, 82

MAP estimation, 7

marginal likelihood, 8

Markov chain, 11

Markov chain Monte Carlo
Hamiltonian Monte Carlo, 11
Markov assumption, 11
Markov chain, 11
stationary distribution, 11
transition probability, 11

Markov chain onte Carlo, 11

Monte Carlo integration, 10

neural network, 4
depth, 4
normalizing flow, 17

Index

planar flow, 17
radial flow, 17

one-hot encoding, 3

OOD detection, 19
AUPRC, 20
AUROC, 20
FPR95, 20

OOD training, 91
mixed labels, 93
none class, 91
outlier exposure, 93
soft labels, 92

out-of-distribution data, 19

overfitting, 7

probability, 1
Bayes’ rule, 1
change of variable formula, 17
conditional probability, 1
likelihood, 2
parametric distribution, 2
posterior, 2
prior, 2
probabilistic inference, 2
product rule, 1
sum rule, 1

regularization, 7

RelU, 5

ReLU network, 37
linear region, 37
piecewise affine, 37

ReLU-GP residual, 56
cubic spline kernel, 55
double-sided cubic spline kernel, 56
ReLU feature, 54

softmax, 6
sum squared error loss, 5
supervised learning, 5

unsupervised learning, 5

weight decay, 7

151

