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Abstract

The central paradigm of machine learning (ML) is the idea that computers can learn the strategies
needed to solve a task without being explicitly programmed to do so. The hope is that given data,
computers can recognize underlying patterns and figure out how to perform tasks without extensive
human oversight. To achieve this, many machine learning problems are framed as minimizing a
loss function, which makes optimization methods a core part of training ML models.

Machine learning and in particular deep learning is often perceived as a cutting-edge technology,
the underlying optimization algorithms, however, tend to resemble rather simplistic, even archaic
methods. Crucially, they rely on extensive human intervention to successfully train modern neural
networks. One reason for this tedious, finicky, and lengthy training process lies in our insufficient
understanding of optimization methods in the challenging deep learning setting. As a result,
training neural nets, to this day, has the reputation of being more of an art form than a science and
requires a level of human assistance that runs counter to the core principle of ML.

Although hundreds of optimization algorithms for deep learning have been proposed, there is
no widely agreed-upon protocol for evaluating their performance. Without a standardized and
independent evaluation protocol, it is difficult to reliably demonstrate the usefulness of novel
methods. In this thesis, we present strategies for quantitatively and reproducibly comparing deep
learning optimizers in a meaningful way. This protocol considers the unique challenges of deep
learning such as the inherent stochasticity or the crucial distinction between learning and pure
optimization. It is formalized and automatized in the PyrHon package DeepOBS and allows fairer,
faster, and more convincing empirical comparisons of deep learning optimizers.

Based on this benchmarking protocol, we compare fifteen popular deep learning optimizers to gain
insight into the field’s current state. To provide evidence-backed heuristics for choosing among the
growing list of optimization methods, we extensively evaluate them with roughly 50,000 training
runs. Our benchmark indicates that the comparably traditional Apam optimizer remains a strong
but not dominating contender and that newer methods fail to consistently outperform it.

In addition to the optimizer, other causes can impede neural network training, such as inefficient
model architectures or hyperparameters. Traditional performance metrics, such as training loss
or validation accuracy, can show if a model is learning or not, but not why. To provide this
understanding and a glimpse into the black box of neural networks, we developed Cockrrrt, a
debugging tool specifically for deep learning. It combines novel and proven observables into a live
monitoring tool for practitioners. Among other findings, Cockrir reveals that well-tuned training
runs consistently overshoot the local minimum, at least for significant portions of the training.

The use of thorough benchmarking experiments and tailored debugging tools improves our
understanding of neural network training. In the absence of theoretical insights, these empirical
results and practical tools are essential for guiding practitioners. More importantly, our results show
that there is a need and a clear path for fundamentally different optimization methods to make
deep learning more accessible, robust, and resource-efficient.






Zusammenfassung

Das zentrale Prinzip des maschinellen Lernens (ML) ist die Vorstellung, dass Computer die notwendi-
gen Strategien zur Losung einer Aufgabe erlernen konnen, ohne explizit dafiir programmiert worden
zu sein. Die Hoffnung ist, dass Computer anhand von Daten die zugrunde liegenden Muster erken-
nen und selbst feststellen, wie sie Aufgaben erledigen konnen, ohne dass sie dabei von Menschen
geleitet werden miissen. Um diese Aufgabe zu erfiillen, werden viele Probleme des maschinellen
Lernens als Minimierung einer Verlustfunktion formuliert. Daher sind Optimierungsverfahren ein
zentraler Bestandteil des Trainings von ML-Modellen.

Obwohl das maschinelle Lernen und insbesondere das tiefe Lernen oft als innovative Spitzentech-
nologie wahrgenommen wird, basieren viele der zugrunde liegenden Optimierungsalgorithmen
eher auf simplen, fast archaischen Verfahren. Um moderne neuronale Netze erfolgreich zu trai-
nieren, bedarf es daher haufig umfangreicher menschlicher Unterstiitzung. Ein Grund fiir diesen
mithsamen, umstédndlichen und langwierigen Trainingsprozess ist unser mangelndes Verstandnis
der Optimierungsmethoden im anspruchsvollen Rahmen des tiefen Lernens. Auch deshalb hat das
Training neuronaler Netze bis heute den Ruf, eher eine Kunstform als eine echte Wissenschaft zu
sein und erfordert ein MafS an menschlicher Beteiligung, welche dem Kernprinzip des maschinellen
Lernens widerspricht.

Obwohl bereits Hunderte Optimierungsverfahren fiir das tiefe Lernen vorgeschlagen wurden,
gibt es noch kein allgemein anerkanntes Protokoll zur Beurteilung ihrer Qualitdt. Ohne ein
standardisiertes und unabhéngiges Bewertungsprotokoll ist es jedoch schwierig, die Niitzlichkeit
neuartiger Methoden zuverldssig nachzuweisen. In dieser Arbeit werden Strategien vorgestellt,
mit denen sich Optimierer fiir das tiefe Lernen quantitativ, reproduzierbar und aussagekraftig
vergleichen lassen. Dieses Protokoll beriicksichtigt die einzigartigen Herausforderungen des
tiefen Lernens, wie etwa die inhdrente Stochastizitidt oder die wichtige Unterscheidung zwischen
Lernen und reiner Optimierung. Die Erkenntnisse sind im PyrHon-Paket DEepOBS formalisiert und
automatisiert, wodurch gerechtere, schnellere und iiberzeugendere empirische Vergleiche von
Optimierern ermoglicht werden.

Auf der Grundlage dieses Benchmarking-Protokolls werden anschlieffend fiinfzehn populére
Deep-Learning-Optimierer verglichen, um einen Uberblick iiber den aktuellen Entwicklungsstand
in diesem Bereich zu gewinnen. Um fundierte Entscheidungshilfen fiir die Auswahl einer Opti-
mierungsmethode aus der wachsenden Liste zu erhalten, evaluiert der Benchmark sie umfassend
anhand von fast 50000 Trainingsprozessen. Unser Benchmark zeigt, dass der vergleichsweise
traditionelle Apam-Optimierer eine gute, aber nicht dominierende Methode ist und dass neuere
Algorithmen ihn nicht kontinuierlich {ibertreffen kénnen.

Neben dem verwendeten Optimierer konnen auch andere Ursachen das Training neuronaler
Netze erschweren, etwa ineffiziente Modellarchitekturen oder Hyperparameter. Herkommliche
Leistungsindikatoren, wie etwa die Verlustfunktion auf den Trainingsdaten oder die erreichte
Genauigkeit auf einem separaten Validierungsdatensatz, konnen zwar zeigen, ob das Modell lernt
oder nicht, aber nicht warum. Um dieses Verstdndnis und gleichzeitig einen Blick in die Blackbox
der neuronalen Netze zu liefern, wird in dieser Arbeit Cockrir prasentiert, ein Debugging-Tool
speziell fiir das tiefe Lernen. Es kombiniert neuartige und bewéhrte Observablen zu einem Echtzeit-
Uberwachungswerkzeug fiir das Training neuronaler Netze. Cockpir macht unter anderem deutlich,



dass gut getunte Trainingsprozesse konsequent tiber das lokale Minimum hinausgehen, zumindest
tiir wesentliche Phasen des Trainings.

Der Einsatz von sorgféltigen Benchmarking-Experimenten und mafigeschneiderten Debugging-
Tools verbessert unser Verstandnis des Trainings neuronaler Netze. Angesichts des Mangels an
theoretischen Erkenntnissen sind diese empirischen Ergebnisse und praktischen Instrumente
unerldsslich fiir die Unterstiitzung in der Praxis. Vor allem aber zeigen sie auf, dass es einen Bedarf
und einen klaren Weg fiir grundlegend neuartigen Optimierungsmethoden gibt, um das tiefe
Lernen zugénglicher, robuster und ressourcenschonender zu machen.

vl
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Notation

This section provides a reference for the notation used throughout the thesis. We first list placeholder
symbols to indicate how we format symbols of the same type and mathematical operators. Under
Specific Symbols we then list particular objects that carry a consistent meaning. We, for example,
use upper case bold formatting for matrices, i.e. A, (which is shown under Numbers and Arrays)
while the matrix I specifically refers to the identity matrix (see Specific Symbols).

Numbers and Arrays

a A scalar number.
a A vector.

A A matrix.

a; The i-th element of vector a. We also write [-]; to denote selecting the i-th component
of an object.

Aj; Elementi, j of matrix A.
A;. Entire row i of matrix A. The notation for column is analogously.

The i-th vector from some set, e.g. the i-th example in the training data set or the
parameters after i iterations. We add the parenthesis to distinguish it from exponents.

Linear Algebra
AT Transpose of the matrix A.
A7l Inverse of the matrix A.

Tr(A) Trace of the matrix A.

det(A) Determinant of the matrix A.

diag(a) A square and diagonal matrix with the diagonal elements given by the vector a.
diag(A) A vector whose elements are given by the diagonal elements of the matrix A.
AOB Hadamard, i.e. element-wise, product of matrix A with B.

A®? Element-wise square of matrix A.

lall, L? norm of a.



Calculus

A

|A
{0,1,...,n}
f:A—DB
f(x;0)

fog
df
dx
of
ox

Vaf(x)
Lorfl
V2f(x) or H]
[ fx)dx
[a,b]

(a,b]

A set. Note, the notation for the expectation, i.e. E, would be the same as for a
set called “E”. To avoid confusion we refrain from naming any set “E” in this
thesis.

Cardinality of set A, i.e. the number elements in this set.
A set containing all natural numbers until n.
A function f from domain A to codomain B.

A parameterized function of x parameterized by 0. To lighten the notation,
we sometimes use fg(x) or omit 0 as a shorthand.

Composition of the functions f and g, i.e. f(g(:)).
Derivative of f with respect to x.

Partial derivative of f with respect to x.

Gradient of f with respect to x.

Jacobian matrix of the form % e R™" for f : R" — R™.
The Hessian matrix of f at point x.

Definite integral over the entire domain of x.

The (real) interval between and including a and b.

The (real) half-open interval excluding a but including b.

Probability Theory

P(x)

x~P
P(x[y)
Ex~p [f(x)]

Var [f(x)]
Cov [f(x), g(x)]
Dx1(P|IQ)
N(x;p, E)

Probability distribution over the (vector-valued) random variable x.
The random variable x is distributed according to P.
The conditional probability of x given y.

Expectation of f(x) if x is distributed according to P. If the distribution is
clear, we might drop it from the subscript and write Ey [ f (x)]. If it is clear
from the context which random variable the expectation is over, we omit
the subscript entirely, i.e. E [ f(x)].

Variance of f(x).
Covariance of f(x) and g(x).
Kullback-Leibler divergence of P and Q.

Gaussian distribution over the vector-valued random variable x with
mean vector g and covariance matrix X.

Xii



Specific Symbols

Ai(A)

Rl’l
Rdxn

[Dtrain

Dvatid
Dtest
N

B

f(x;0) or fo(x)

= < x

D =

o(x)
log(x)

o)

Xiii

The square identity matrix. The dimensionality is implied by the context
(or noted explicitly). The identity matrix has ones on the main diagonal
elements and zeros elsewhere.

The i-th eigenvalue of matrix A. Commonly the eigenvalues are ordered in

ascending order, i.e. {A1,..., Amax}-

The set of all real numbers. With R* we indicate the set of all non-negative
real numbers.

The set of all n-dimensional vectors of real numbers.

The set of all real valued matrices with d rows and 7 columns.

The set of all natural numbers, i.e. {0,1,2, ... }. Toindicate only the positive
natural numbers, i.e. {1,2,...} we use N*.

The training set. We drop the subscript if a distinction from the validation
or test set is irrelevant or it is clear from context.

The validation set.

The test set.

Size of the training set, i.e. N = |Diyain |-

A (mini-)batch of samples drawn from some larger set, e.g. i.i.d. samples
from the training data set. B(*) refers to the mini-batch that was drawn at
training step £.

Machine learning model mapping inputs x via its parameters 0 to predic-
tions 7.

Model parameters 0 € RP.

Input to the model, i.e. the features used for the model prediction, x € X C
RI.

Model predictions, e.g. the predicted class probabilities, § € Y € RC.

True labels or target vectors.

The learning rate of the iterative optimization method, e.g. SGD.

The (mini-)batch size used in the training algorithm.

. . . . . . 1
Logistic sigmoid function, i.e. 7=

Natural logarithm (base ¢) of x. Logarithms with different bases, e.g. the
binary logarithm with base 2, are denoted log, (x).

Landau big O notation.






Introduction

Deep learning has seen a significant increase in popularity in recent
years, causing a steady rise in both scientific publications and
public headlines. Often fueled by the ambitious goal of developing
machines that can think like humans or even provide super-human
intelligence, deep learning and the use of artificial neural networks
has crystallized as a technique that can tackle a wide range of
problems in several diverse domains. There are several areas and
applications where approaches based on deep learning have led to
serious performance increase, compared to traditional approaches:
The generation of photo-realistic images of fictional people [e.g.,

, , ], automatic speech recognition software [e.g., 9, ]
for digital assistants, computer programs for playing games such
as Go [e.g., ], chess [e.g., ] or Atari [e.g., 209, ], machine
translation systems [e.g., 151, ], or models for the prediction
of protein structure [154] have all benefited from the inclusion
artificial neural networks.

There are several reasons, why deep learning has emerged as
one of the most promising branches of science when it comes
to developing artificial intelligence (AI) specifically in the first
decades of the 21% century:

» Large data sets: The advent of big data, e.g. massive data
sets, facilitated by the ubiquitous use of computers and
the spread of the internet, has enabled machine learning
models to learn from vast amounts of data. Compared to
other machine learning models, deep neural networks are
particularly adept at leveraging these large data sets to infer
patterns. Publicly available data sets such as the popular
ImaceNEr [70] database for image classification and object
recognition, provided a popular playground for researchers
around the globe to train their models and evaluate newly
developed algorithms.

» More compute power: Processing these vast data sets natu-
rally also required large amounts of compute resources. Fol-
lowing Moore’s law! [210], compute power increased rapidly
in recent years, but it was primarily the shift to graphics pro-
cessing units (GPUs) that provided the necessary compute
power to apply neural networks to real-world applications.
GPUs, originally developed for graphics applications such
as consumer video games, allow parallel processing of many
comparatively simple independent operations, such as the
matrix-vector products in neural networks.

1.1 Detailed Outline . . .. 3
1.2 Publications

[61] Choi et al. (2020), “StarGAN v2:
Diverse Image Synthesis for Multi-
ple Domains”

[102] Goodfellow et al. (2014), “Gen-
erative Adversarial Nets”

[158] Karras et al. (2018), “Progres-
sive Growing of GANs for Improved
Quality, Stability, and Variation”

[9] Amodei et al. (2016), “Deep
Speech 2 : End-to-End Speech Recog-
nition in English and Mandarin”
[123] Hinton et al. (2012), “Deep Neu-
ral Networks for Acoustic Modeling
in Speech Recognition: The Shared
Views of Four Research Groups”
[268] Silver et al. (2016), “Mastering
the game of Go with deep neural
networks and tree search”

[269] Silver et al. (2018), “A general
reinforcement learning algorithm
that masters chess, shogi, and Go
through self-play”

[209] Mnih et al. (2015), “Human-
level control through deep reinforce-
ment learning”

[265] Schrittwieser et al. (2020),
“Mastering Atari, Go, chess and
shogi by planning with a learned
model”

[151] Johnson et al. (2017), “Google’s
Multilingual Neural Machine Trans-
lation System: Enabling Zero-Shot
Translation”

[323] Wu et al. (2016), “Google’s
Neural Machine Translation System:
Bridging the Gap between Human
and Machine Translation”

[154] Jumper et al. (2021), “Highly ac-
curate protein structure prediction
with AlphaFold”

[70] Deng et al. (2009), “ImageNet:
A Large-Scale Hierarchical Image
Database”

1: Moore’s law is the observation
that the number of transistors in an
integrated circuit doubles approxi-
mately every two years. This “law”
has predicted the available compute
power surprisingly accurately.



Chapter 1 Introduction

[210] Moore (1965), “Cramming
more components onto integrated
circuits”

[147]]Jia etal. (2014), “Caffe: Convolu-
tional Architecture for Fast Feature
Embedding”

[296] Tokui et al. (2015), “Chainer:
a Next-Generation Open Source
Framework for Deep Learning”

[73] Dieleman et al. (2015), “Lasagne:
First release.”

[241] Al-Rfou et al. (2016), “Theano:
A Python framework for fast compu-
tation of mathematical expressions”

[1] Abadi et al. (2015), “TensorFlow:
Large-Scale Machine Learning on
Heterogeneous Systems”

[228] Paszke et al. (2019), “Py-
Torch: An Imperative Style, High-
Performance Deep Learning Li-
brary”

[39] Bradbury et al. (2018), “JAX:
composable transformations of
Python+NumPy programs”

[160] Kelley (1960), “Gradient The-
ory of Optimal Flight Paths”

[183] Linnainmaa (1970), “The repre-
sentation of the cumulative round-
ing error of an algorithm as a Taylor
expansion of the local rounding er-
rors”

[248] Rumelhart et al. (1986),
“Learning representations by back-
propagating errors”

[317] Werbos (1982), “ Applications
of advances in nonlinear sensitivity
analysis”

[242] Robbins et al. (1951), “A
Stochastic Approximation Method”

[166] Kingma et al. (2015), “Adam:
A Method for Stochastic Optimiza-
tion”

[90] Fukushima (1980), “Neocogni-
tron: A self-organizing neural net-
work model for a mechanism of pat-
tern recognition unaffected by shift
in position”

[176] LeCun et al. (1989), “Backprop-
agation Applied to Handwritten Zip
Code Recognition”

[310] Waibel et al. (1989), “Phoneme
recognition using time-delay neural
networks”

» Flexible software frameworks: Lower-level libraries, such
as CUDA, provided a relatively easy way to perform general-
purpose computation on GPUs. But it was the introduction of
higher-level frameworks such as Carrk [147], CHAINER [296],
LasacNE [73], Taeano [241], TensorFrow [1], PyTorcH [228],
and JAX [39] that allowed the broader scientific community
to use neural networks. These libraries provided automatic
differentiation and abstracted lower-level operations, such
as specific deep learning layers, into easy-to-use and al-
most plug-and-play modules. This allowed researchers and
practitioners to build more complicated machine learning
pipelines by combining the individual ingredients, such as
model architectures, loss function, or data pre-processing
similar to modular building blocks. These deep learning
frameworks also simplified the sharing and incorporation of
pre-trained models.

» Algorithmic improvements: Several algorithmic improve-
ments have also contributed to the success of deep learning in
recent years. The invention of the backpropagation algorithm
(often simply called backprop) [160, 183, , 317], enabled
the efficient computation of the gradient of a loss function
with respect to the network’s parameters. The development
of stochastic optimization methods such as SGD [247] or later
Apawm [166] allowed these gradients to be used as learning
signals for efficient training in many applications. Advances
in neural network architectures, such as convolutional lay-
ers [90, 176, ], ReLU activations [89, 98, ], and more
recent, residual networks [117], or TRANSFORMER models [307]
further increased the performance and expressiveness of
deep learning approaches.

This renewed attention to deep learning naturally also led to
increased interest in their training methods. The training or opti-
mization methods of deep neural networks are a major part of the
deep learning pipeline and crucially responsible for the learning
process. Compared to the rather elaborate model architectures,
these training algorithms are comparably simple.? Yet, these meth-
ods come with a relatively unsatisfying user experience. In practice,
these methods have hyperparameters, such as the learning rate,
that need to be manually set, which is usually done either by ex-
pert intuition or by expensive parameter searches which basically
amounts to trial and error.

The fact, that these hyperparameters exist is most likely evidence
of our lack of understanding of neural network training. In fact,
optimization for deep learning might still be a very significant bot-
tleneck that hinders the performance of modern neural networks.?
Instead of having autonomous optimization methods that pro-



vide efficient training in a single training run, we rely on extensive
hyperparameter tuning and training heuristics.

Hundreds of methods have been proposed to make neural network
training more efficient or more convenient. In this thesis, we aim
to bring some structure to this crowded field. Firstly, we want to
clearly identify what constitutes a better deep learning optimizer.
Secondly, we empirically compare a selection of currently popular
methods. Finally, we propose a novel type of debugging tool
specifically designed to better understand the training process.

The goal of these efforts is to improve our understanding of neural
network training through rigorous benchmarking and targeted
debugging to open the black box of deep learning a little bit more.
The hope is that increased understanding will naturally lead to
ways of automating the training process and to more resource-
efficient, robust, and accessible neural network training.

Detailed Outline

Part I provides a summary of the key concepts and methods nec-
essary for the understanding of this thesis. Specific elements that
are used repeatedly in this work are explained in this background
part. These background chapters assume basic knowledge of e.g.
linear algebra, multivariate calculus, and statistics.

» Chapter 2 introduces the paradigm of machine learning.
Crucially it makes a clear statement that although optimiza-
tion is a critical component of machine learning, there are
important differences between optimization and learning.

» Chapter 3 will more formally introduce mathematical opti-
mization, specifically focusing on empirical risk minimization
a central principle underlying many machine learning tasks.
Furthermore, the chapter includes a description of popu-
lar optimization methods for machine learning and deep
learning, most of which will be empirically evaluated in this
work.

» Finally, Chapter 4 concludes this part by introducing the
essential concepts of deep learning such as typical layers or
model architectures.

Part II represents the main contributions of this thesis and is largely
based on peer-reviewed publications, see Section 1.2.

» In Chapter 5, we explore how to fairly and meaningfully
compare optimization methods for deep learning. The chap-
ter aims to understand and formalize how optimizers should

1.1 Detailed Outline

[89] Fukushima (1969), “Visual Fea-
ture Extraction by a Multilayered
Network of Analog Threshold Ele-
ments”

[98] Glorotetal. (2011), “Deep Sparse
Rectifier Neural Networks”

[217] Nair et al. (2010), “Rectified Lin-
ear Units Improve Restricted Boltz-
mann Machines”

[117]He et al. (2016), “Deep Residual
Learning for Image Recognition”

[307] Vaswani et al. (2017), “Atten-
tion Is All You Need”

2: SGD, one of the most popular
optimizers for training deep neural
networks, can comfortably be de-
scribed in a single line, see Update
Rule 3.3.2.

3: A specific example of this could
be model architectures that can-
not be trained using our current
methods. However, these models
might provide additional perfor-
mance gains over the contemporary
models that have co-evolved with
the used optimization methods. To
putit more bluntly, we might narrow
the set of machine learning models
to the ones our current models can
train efficiently.
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be properly evaluated to test their usefulness as training al-
gorithms for deep learning tasks. The three main challenges
for devising such a standardized benchmarking protocol
for deep learning are: (i) The stochasticity of deep learning,
which not only requires optimization methods to be tuned
but also necessitates multiple repetitions of training runs,
since the results of a single run can be critically affected by
noise. (ii) Many realistic deep learning problems can take
days or even weeks to run. The test problems for a benchmark
must therefore be carefully selected to cover a wide range
of problems, without increasing the runtime to the point
of being infeasible. The combination of the long training
time and the need for tuning, also means that optimization
for deep learning is a multi-objective problem: Optimiza-
tion methods can be “better” either by improving the final
performance, by reducing the training time needed for an
acceptable result, or by requiring fewer tuning runs. (iii) The
optimization methods in deep learning are used as training
algorithms. Although they operate on a training loss, the
most relevant measure for practitioners is usually a different
performance metric on the test set, such as the accuracy. This
crucial difference between optimizing and learning must be
considered when designing a benchmarking protocol for
deep learning optimizers.

Chapter 6 leverages the benchmarking protocol devised in
Chapter 5 and uses it to empirically compare fifteen popular
optimization methods for deep learning. With currently more
than a hundred optimization methods proposed for deep
learning, see Table 3.1, there is a need for an independent
third-party evaluation of deep learning optimizers. The major
challenge for such an empirical comparison is to identify and
reduce the possible dimensions that could be included in
such a benchmark. It is simply impossible to test all methods,
especially when considering different batch sizes, learning
rate schedules, tuning methods, and search spaces. The most
important task for this benchmark was to make a sensible
selection of each individual dimension in order to still achieve
a meaningful comparison.

In Chapter 7, we propose a new type of debugger specifically
designed for training neural networks. We take the idea of
a cockpit, as a useful aggregation of meaningful and well-
designed instruments, meant to aid a pilot in the complicated
process of flying a plane and apply it to the perhaps compa-
rably complicated process of training a deep neural network.
Here, the instruments of our Cockpit are novel observables
based on higher-order information about the gradient distri-
bution. By complementing the usual examination of learning



curves, e.g. monitoring the train and test loss, with these
novel instruments, we can obtain a more meaningful status
report for practitioners. Identifying relevant observables,
their efficient computation to enable real-time monitoring,
and showcasing their capabilities are central aspects of the
work presented in this chapter.

Part III summarizes the findings and conclusions from this thesis
and provides ideas for future work in this area. Some of the future
work mentioned in Section 8.2 represent current work in progress,
such as the benchmark outlined in Section 8.2.1, while others
describe possible natural extensions of the work described in this
thesis.

The appendix contains additional results, experiments, or code
examples of Chapters 5to 7.

Publications

Parts of the contents of this thesis are based on publications done
in close collaboration with colleagues. Listed below are the peer-
reviewed publications that this thesis builds upon together with
a listing of the individual co-author contributions. All involved
co-authors agreed to this listing.

Chapter 5 is based on the following peer-reviewed conference
publication:

DeepOBS: A Deep Learning Optimizer Benchmark Suite

Frank Schneider, Lukas Balles, and Philipp Hennig. “DeepOBS:
A Deep Learning Optimizer Benchmark Suite”. 7th International
Conference on Learning Representations, ICLR. 2019. [267]

The co-author contributions were as follows:

Ideas Experiments Analysis Writing

F. Schneider 50 % 75 % 80 % 60 %
L. Balles 30 % 15 % 10 % 15 %
P. Hennig 20 % 10 % 10 % 25 %

The following peer-reviewed conference publication forms the
basis for Chapter 6:

1.2 Publications
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Descending through a Crowded Valley — Benchmarking
Deep Learning Optimizers

Robin M. Schmidt, Frank Schneider, and Philipp Hennig. “De-
scending through a Crowded Valley - Benchmarking Deep
Learning Optimizers”. 38th International Conference on Machine
Learning, ICML. 2021. [261]

The co-author contributions were as follows:

Ideas Experiments Analysis Writing

R. Schmidt 15 % 65 % 15 % 30 %
F. Schneider 70 % 30 % 70 % 55 %
P. Hennig 15 % 5% 15 % 15 %

Chapter 7 draws on the following peer-reviewed conference pa-
per:

Cockpit: A Practical Debugging Tool for the Training of Deep
Neural Networks

Frank Schneider, Felix Dangel, and Philipp Hennig. “Cockpit:
A Practical Debugging Tool for the Training of Deep Neural
Networks”. Advances in Neural Information Processing Systems 34,
NeurIPS. 2021. [263]

The co-author contributions were as follows:

Ideas Experiments Analysis Writing
F. Schneider 45 % 40 % 40 % 45 %
F. Dangel 40 % 50 % 40 % 40 %
P. Hennig 15 % 10 % 20 % 15 %
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Machine Learning

In machine learning, a subfield of artificial intelligence (Figure 2.1),
knowledge is not explicitly programmed or hard-coded into the
software by the code’s author. Instead, the strategies needed to
perform a task are learned from data. A traditional translation sys-
tem, for example, might use hard-coded word-to-word translation
tables that were created by domain experts. In contrast, transla-
tion systems based on machine learning would instead leverage
continuous texts that are available in multiple languages, such as
documents from the European Parliament,’ to learn a function that
is able to transform one language into another.

This seemingly small shift of replacing hard-coded strategies with
learned ones has tremendous consequences. It allows computers
to solve tasks that are hard to formalize as rules but can instead
be solved with relatively little difficulty by pattern matching.
Describing what characterizes a handwritten “two”, for example,
is quite complicated. It seems impossible to define fixed rules
describing what pixel values an image of a handwritten “two”
must possess. Especially, when considering the wide range of
different handwritings or awkward angles of the photograph (see
Figure 2.2 for examples of handwritten digits from the MNIST
data set [177]). However, recognizing a handwritten digit is an easy
task for a human. Just like a human, who developed this skill by
seeing many examples of handwriting, artificial systems can learn
to classify handwritten digits by learning from a large corpus of
labeled examples.

Additionally, the same learning approach can be applied to domains
where even domain experts have trouble seeing meaningful pat-
terns. An example of this is protein folding. The three-dimensional
structure of a protein is crucial to understanding its biological
function. Determining a protein’s structure is currently mostly
determined experimentally, a costly and tedious process. Machine
learning approaches, such as ALpHaFoLD [154], use data to train a
model that predicts the three-dimensional protein structure from
its amino acid sequence. Estimating the structure of a single pro-
tein can thereby be achieved in days compared to the previous
experimental approaches that can take years.

In comparison with more traditional software, the quality of
a machine learning system crucially depends not only on the
underlying algorithms, but the data it was trained on. For any
real-world application there is only a limited amount of training

2.1 Supervised Learning . . 11

2.2 Learning Is More than
Optimization . . . . .. 16

2.3 Regularization

artificial intelligence

machine learning

deep learning

Figure 2.1: Relationship between
artificial intelligence, machine
learning, and deep learning. Ar-
tificial intelligence describes any
technique which enables comput-
ers to demonstrate intelligent behav-
ior, similar to humans or other an-
imals. Machine learning is a sub-
field of artificial intelligence that
gives machines the ability to per-
form tasks without being explicitly
programmed for them. Rule-based
systems are an example of artificial
intelligence without machine learn-
ing. Deep learning is a subfield of
machine learning that uses neural
networks as machine learning mod-
els. Using support vector machines,
decision trees or Gaussian processes
are examples of machine learning
systems without deep learning.

1: A part of the popular WMT 2016
data set [31] for machine translation
consist of the multilingual parallel
corpus of the proceedings of the Eu-
ropean Parliament.

[31] Bojar et al. (2016), “Findings
of the 2016 Conference on Machine
Translation”

[177] LeCun et al. (1998), “Gradient-
Based Learning Applied to Docu-
ment Recognition”

[154] Jumper et al. (2021), “Highly ac-
curate protein structure prediction
with AlphaFold”
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Figure 2.2: Handwritten versions
of the digit “two” can come in dif-
ferent shapes and forms. Encoding
rules that would categorize a hand-
written digit with its correct digit is
a challenging problem. One of the
earliest success stories of deep learn-

ing came from learning a classifier
from labeled data instead [177].

2: In a supervised learning approach
to the same task, each song would
be classified with a label describing
the genre it belongs to.

data available. Yet, the learned system should ideally generalize
to new and unseen data as well. The fact that a machine learning
system is trained on a specific data set but expected to perform well
for general data, is what separates learning from pure optimization
(see Section 2.2). This requires new methods to ensure that the
learned system is useful even when applied outside of its training
data. We discuss those methods in Section 2.3 and summarize
them under the term regularization.

Machine learning algorithms are often categorized according to
the type of task they aim to solve and the characteristics of the
available data or feedback. The most common machine learning
tasks include the following:

» Supervised learning: The data set in supervised learning
consists of (input) features and associated (output) labels
or targets. The goal of the machine learning system is to
learn a function that can predict the correct target, given
an input. For example, an image classification data set such
as MNIST contains images of handwritten digits with their
corresponding labels. Here, the label is the digit that the
handwritten line is representing, i.e. all images in Figure 2.2
would have the label  “2” . A supervised learning algorithm
can then be trained to predict the correct label given an input
image and thus classify handwritten digits, for example,
zip codes on letters for post offices. We will have a more
detailed look into supervised learning and its ingredients in
Section 2.1.

» Unsupervised learning: In unsupervised learning, an al-
gorithm is not provided with any labels. Instead, the goal
of the machine learning model is to learn useful properties
and occurring patterns of the given data. Given unlabeled
data, e.g. the metadata of a song or its properties such as
the average volume or tempo, unsupervised methods can
cluster them into classes of similar examples to detect mu-
sic genres or suggest similar music.> A major advantage
of unsupervised learning is that unlabeled data is usually
much easier to collect than labeled data, which often needs
to be annotated by human experts. Naturally, the boundaries
between supervised and unsupervised learning are fuzzy.
Semi-supervised learning, for example, uses a large amount
of unlabeled data with a small amount of labeled data.

» Reinforcement learning: In reinforcement learning, an au-
tonomous agent must learn to perform a task and is provided
with feedback in terms of a reward or a penalty. Instead of
having labeled data to learn from, it learns by experience
gained from trial and error. Reinforcement learning can, for
example, be used to create systems that can successfully
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play Atari video games. Here, the machine learning model
receives the pixels of the game as an input, decides on an
action, and uses the game’s score as a reward to learn a
successful strategy [e.g., 209].

In summary, machine learning can be described informally as using
data or experience to learn a model to perform a task as measured
by a performance metric. In the following sections, we will describe
and provide intuitive descriptions and examples for these four
important building blocks of any machine learning system. For
this, we will be using the concrete example of supervised machine
learning, which will also be the primary focus of this work.

Supervised Learning

The characteristic property of supervised learning is that we are
given both inputs x and corresponding labels y. Figure 2.3 illus-
trates input-output-pairs for some exemplary supervised learning
tasks, such as image classification, where the inputs x are images
and the associated labels y indicate the type of object in the im-
age. The goal is to learn a function fg that accurately models the
relationship between those inputs x and labels y. Given unseen
data, e.g. new images, the hope is that this learned function fg can
then accurately map them to the correct labels as well, e.g. classify
those unfamiliar images.

In the following sections, we will take a look at the specific tasks
that can be solved by supervised learning (Section 2.1.1). Every
machine learning task requires a (family) of models (Section 2.1.2)
that is trained on data (Section 2.1.3). To describe how well the
model is currently describing the relationship between the inputs
and the labels, we use a loss function or a performance metric
(Section 2.1.4). Although we will focus on intuitions and examples
from supervised learning, many of the properties and described
challenges extend to general machine learning applications. In
this chapter, we will mainly focus on the practical perspective
and re-visit many aspects in Chapter 3 from the more theoretical
point-of-view of optimization.

Tasks

The task that the machine learning model learns, is critically
determined by the content of the input-output pairs. Given the same
inputs, e.g. text paragraphs, the model could either learn to infer its
author (which would be categorized as a text classification task), sum
up its content (called text summarization), or describe the polarity

[209] Mnih et al. (2015), “Human-
level control through deep reinforce-
ment learning”
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Figure 2.3: Illustration of super-
vised learning. The task that the
model learns is largely influenced by
the input and output data. The same
input data, e. g., images of animals,
canlead to different tasks depending
on the output labels. Classes such
as "dog" or "cat" enables the model
to classify the animal present in the
picture. Text outputs, on the other
hand, could be used to automatically
caption the images. Similarly, the na-
ture of the task also depends on the
input. Using audio snippets of spo-
ken words as inputs along with a
string representation of the spoken
words would result in an automatic
speech recognition task. Machine
translation would instead require
the translated text as output labels.
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“Hallo?” “Hello?”

“Please?” “Yes!”

and emotions of the text (known as sentiment analysis). Which of

these it will learn depends on the type of labels provided.

Supervised learning tasks are often categorized according to the
type of the output labels:

Binary classification refers to tasks, where the correct outputs
can only be one of two choices, i.e. y € {0,1}. They are usually

labeled by one and zero to signal the membership to each group or
the presence or absence of a property. Typical examples of binary

classification problems include:

>

Quality control: A machine learning model could be used
to automatically detect, whether a manufactured item meets
the specified quality standards. Inputs could for example be
images of the product and the outputs indicate whether it
meets the specifications (y = 1) or not (y = 0).

Anti-spam filters: To detect unwanted emails, data of both
regular mails (y = 0) and spam mails (y = 1) can be collected
to learn a model. The inputs could contain metadata of the
email, such as the sender, the sending time, the inclusion
of URLs, or even the entire content of the email. Based
on these inputs, a machine learning model could learn to
automatically detect unwanted or nefarious messages.
Image classification: Binary classification can, for example,
be used to flag images that contain offensive contents. Here,
the model produces a prediction of whether an image should
be flagged (y = 1) based on the pixel values of said image.

Multiclass classification extends the idea of binary classification
to three or more classes, i.e. y € {1,...,C}. For computational
convenience, the labels are usually represented by a vector-valued
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label y that has a 1 at the correct class and is zero otherwise. For
T
example, the label vector y = (O 10 ... O) would indicate

the correct label to be class 2, which could e.g. stand for "apples"
in the context of image classification. This one-hot encoding cir-
cumvents the problem that an integer encoding, i.e. y € {1,...,C}
implies a natural ordered relationship between the classes, which
may not exist for categorical data, such as possible objects in im-
age classification. Multiclass classification includes the following
quintessential examples:

» Image classification: Multiclass image classification could
categorize images by their content. Possible classes given by
the labels would be | "cats" ,| "dogs" |, or | "human" |.

» Speech recognition: Given audio clips of spoken words or
sentences, the goal of Automatic Speech Recognition (ASR) is
to infer the text transcript of what was spoken.

» Video classification: Machine learning models could be
used to classify movies by their genres. The input data could
contain metadata such as the titles, directors, the running
time, or even (a subset) of the movie’s frame. The labels
would then give the most fitting genre, such as “film noir" ,

"adventure" , Or | "fantasy" .

Regression tasks predict continuous variables, i.e. ¥ € R. The
specific application often restricts the output domain further, e. .
restricting the predictions to lie within the positive real numbers.
Examples for regression tasks are:

» Predicting house prices: Based on features describing the
house, such as the number of rooms or its size, one might
predict the price of the building.

» Weather forecasting: The weather of the next few days can
be predicted based on atmospheric features such as humidity,
pressure, or past temperatures.

» Energy consumption: Predicting future energy consumption
can help manage the distribution of electricity in the power
grid. Based on the date, time, and other factors such as the
weather, one could predict the expected energy consumption.

Model

The family of machine learning models that is tasked with learning
a relationship between the given inputs and labels is usually
parameterized. This allows an optimization method (see Chapter 3)
to efficiently search over possible mappings and find the one that
provides the best matching. Defining this family of models is a
crucial step, as it defines the space of possible hypotheses. Only
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[34] Boser et al. (1992), “A training
algorithm for optimal margin classi-
fiers”

[64] Cortes et al. (1995), “Support-
vector networks”

[41] Breiman et al. (1984), “Classifi-
cation and Regression Trees”

[118] Hebb (1949), “Organization of
Behavior”

[204] McCulloch et al. (1943), “A log-
ical calculus of the ideas immanent
in nervous activity”

[319] Wolpert et al. (1997), “No free
lunch theorems for optimization”

3: Colloquially, the no free lunch theo-
rem states that (under certain con-
straints) every optimization tech-
nique will perform as well as every
other method if averaged over all
possible problems. Due to the close
relationship between optimization
and machine learning, this result
also extends to machine learning.
Roughly summarized, it means that
there is no single universally best
machine learning model [e.g., 101,
1.
[101] Goodfellow et al. (2016), “Deep
Learning”
[213] Murphy (2012), “Machine
Learning A Probabilistic Perspec-
tive”

if the hypothesis space includes a function that is capable of, at
least approximately, describing the relationship between inputs
and outputs, the machine learning system has the chance to learn
the task satisfactorily.

A variety of machine learning models have been proposed, all with
individual strengths and weaknesses. Among them are support
vector machines [34, 64], naive Bayes classifiers, decision trees [41],
or neural networks [118, ]. In this work, we will focus on
artificial neural networks (see Chapter 4), as their structure implies
interesting properties for optimization and deep neural nets were
able to achieve astounding performance in multiple areas in recent
years.

Naturally, there is no single machine learning model that works
best on all types of supervised learning tasks, a notion that is
also described by the no free lunch theorem [319].% Instead, the
tasks, the available training data, or the dimensionality of the
input space, among other things, have to be carefully considered
when selecting a model. A large model capacity, for example,
allows to describe complicated relationships but might be prone to
overfitting (see Section 2.2). Neural networks, for example, usually
provide superior performance in the regime of large training data
sets.

Data

Central to the learning process is the data. In supervised learning,
we are given a set of input-output pairs that can be used to train the
machine learning model. Ultimately, however, we are not interested
in the model’s performance on this known training data set, but
on new, previously unseen data. To this end, it is common to split
the available data into a training data set, a validation data set, and a
test set.

The training data is used to fit the parameters of the model, e. g. the
weights and biases of a neural network classifier. What separates
pure optimization from machine learning, however, is that we are
not interested in finding the solution that best describes the training
data, but general data of the same type. The benefit from a machine
learning model does not come from the ability to classify exactly
the images in a given data set but instead learn what constitutes
an image of a cat, for example. Even during the process of model
training, which mostly consists of finding the parameters of a
function fp that fits the given data well, we have to consider this
goal of generalization (see Section 2.2 for a more detailed view on
the differences between optimization and machine learning and
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Section 2.3 for a discussion of techniques to achieve generalization
capabilities during training).

To check whether our learned model works on unseen data and
therefore generalizes, we can investigate the model’s performance
on the test set. This independent set of data, from the same distribu-
tion as the training set, represents novel data to the model. As long
as the test set has truly only been used to assess the performance
of the learned model, it provides an unbiased evaluation of the
final model and a prediction for how well the model is able to infer
labels on novel data.

One might be tempted to use the model’s performance on this
test set to select from multiple models, e.g. trained models of
polynomials of varying degrees. However, this would invalidate
the test set’s ability to predict the performance on unseen data,
as the selection process itself can be seen as part of the training.
Instead, model selection or hyperparameter tuning, such as tuning
the number of layers in a neural net, or the learning rate of the
optimization method, are done on yet another separate data set,
the validation data set.*

Loss Functions and Performance Metrics

In the previous sections, we have used the somewhat vague notion
that the machine learning model should be able to “fit” the data
accurately. A loss function® formalizes what a “good fit” means
by condensing the behavior of the machine learning model into
a single scalar number. It penalizes “bad” or unwanted behavior
of the model and rewards good predictions. In other words, it
quantitatively measures how well the model fg can predict the
data. This reduction into a single scalar allows to compare and
rank different hypothesis models directly.

The choice of loss function is generally task-specific. For classifica-
tion, for example, the accuracy of a model is a natural measure for
the quality of the model. The accuracy of a model is described by
the proportion of correctly classified examples.® However, not all
machine learning scenarios have a straightforward and objective
choice of loss function. Should a system be penalized more for
frequent, but smaller-sized mistakes, or if it makes grave mistakes
but only rarely?

These design choices depend on the specific application and often
require human judgment. In medical domains, larger mistakes
could mean severe health consequences. In contrast, a manufacturer
that uses machine learning in its intermediate process might be
more satisfied having only a few but grave mistakes that can
be easily sorted out in quality control. A loss function measures

4: The validation set is sometimes
also called development set or simply
dev set.

5: Depending on the context, the
loss function is also called the objec-
tive function, criterion, cost function,
or error function.

6: Another often-used performance
measure is the error rate, which is
simply defined as (1 — accuracy) and
describes the proportion of exam-
ples classified incorrectly. This error
rate is also called the 0-1 loss.
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[102] Goodfellow et al. (2014), “Gen-
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[158] Karras et al. (2018), “Progres-
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Figure 2.4: Function and weight
view of a regression problem. (a)
shows the regression data (@), the
optimal fit (=), and two other pos-
sible hypothesis (=, =). (b) Each
hypothesis (® or ®) is defined by its
parameters 0p and 071 and has an
associated loss value (shown by the
background shading). The totality
of all possible hypotheses and their
loss values forms the loss landscape,
which in this case forms a quadratic
bowl or valley shaped landscape. Its
minimum () provides the optimal
fit to the data.
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whether or not a model performs “better”, but what is “better’
might not always be clear or at least dependent on the application.

In other cases, it is conceptually clear what “better” means, but
it is impractical to compute. GENERATIVE ADVERSARIAL NETWORKS
(GANs) |
images of non-existing people [e.g., 61, 158, 159]. Here, it is clear
that “better” models produce images that look more realistically,

], for example, have been used to create photorealistic

i.e. that are indistinguishable from real images when judged by
humans. This, however, is not computable and therefore impracti-
cal to use as a loss function. Instead, computable approximations
such as the FrécHET iNCEPTION DISTANCE (FID) are used.

Even if a measure is computable, it might not be feasible as a
loss function for training. Oftentimes the loss function needed
for efficient training carries restrictions, such as the requirement
for it to be differentiable. If the gradient of the loss with respect
to the model’s parameter is easily computable, gradient-based
optimization methods can be used to train large machine learning
models efficiently (see Section 3.2.1). As a result, the loss function
used for training is often only a surrogate function and an approxi-
mation of the quality measure we actually care about. However,
non-differentiable measures such as the accuracy or the FID can
still be used as performance metrics. These performance metrics
can be used to measure the performance of the model for model
comparison, hyperparameter tuning on a validation set, or quality
control. The fact that an optimization algorithm works uses a loss
function such as the cross-entropy loss, while the actual perfor-
mance metric of interest is something else, e. g. the classification
accuracy, is a crucial difference between machine learning and pure
optimization which will be discussed further in the next section,
Section 2.2.

In Section 4.2.3, we will take a closer look at two specific and
often-used loss functions in deep learning, the cross-entropy loss
for classification problems and the mean squared error loss for
regression tasks.

Learning Is More than Optimization

Learning and optimization are closely linked. Finding the specific
parameters of a parameterized machine learning model that fit
the given training data the best, can essentially be solved by
optimization. Each specific set of parameters can be associated
with a specific modeling hypothesis and given some training data,
also be associated with a training loss describing how well this
hypothesis describes the data. We can now take a look at all
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Degree: 1
Train Loss: 0.1842
Validation Loss: 0.1645

Degree: 4
Train Loss: 0.0049
Validation Loss: 0.0011

Degree: 15
Train Loss: 0.0000
Validation Loss: 0.3984

X X

(a) Underfitting (b) Appropriate fit

Figure 2.5: Under- and overfitting models. Given noisy training samples (®) from some ground truth function (

(c) Overfitting

), we

can fit different polynomials of varying degrees (—). We can see, that (a) a linear function is not expressive enough to
accurately describe the data and suffers from underfitting. (c) Using a polynomial of degree 15 on the other hand can fit
the data virtually perfectly but overfits to the training data. While it accurately describes the training data points, it fails to
learn the structure of the ground truth solution. Extra data points, that were excluded from training but used as validation
data (%) can identify the inability of both polynomials to generalize. (b) Using a polynomial of degree 4 describes not only
the training data but the validation data as well and thus provides an appropriate fit.

possible hypotheses, i.e. all possible parameter combinations, and
their associated loss values. While illustrating this loss landscape
is simple to do for a model with two parameters, see Figure 2.4,
it is infeasible for practical machine learning models with often
millions of parameters. Nevertheless, finding the best parameter
set always amounts to searching for the global minimum of the
loss landscape.

Generalization to Unseen Data

However, the central challenge of machine learning is to find
models and algorithms that perform well on new and previously
unseen data. The ability of a machine learning model to perform
well on unobserved inputs of the same type is called generalization
and constitutes perhaps the central problem of machine learning.
Figure 2.5 shows a fitting of three polynomials of different degrees.
The linear polynomial shown in Figure 2.5a is not expressive
enough to describe the given data and even its optimal set of
parameters results in a comparable large loss on the training data.
This phenomenon, known as underfitting, is often the result of
small model capacity” and can be identified by the model being
unable to obtain a low training loss.

In comparison, both a polynomial of degree 4 (shown in Figure 2.5b)
and degree 15 (shown in Figure 2.5¢) are able to correctly fit the
training data points. However, only the former really learned the
correct pattern of the ground truth. The polynomial of higher
degree, on the other side, overfits to the training data. While it
can accurately describe the training data, both its interpolation

7: A colloquial definition of model ca-
pacity is given by the model’s ability
to describe a wide variety of func-
tions. A polynomial of degree 1, for
example, will have a higher model
capacity than a polynomial of de-
gree n — 1, since it is able to fit more
functions accurately. More techni-
cally rigorous formulations of model
capacity, such as VC pmMensIoN [306],
exist, but have so far proven difficult
to extend meaningfully to the deep
learning setting [e.g., 343].

[306] Vapnik et al. (1971), “On the
Uniform Convergence of Relative
Frequencies of Events to Their Prob-
abilities”

[343] Zhang et al. (2017), “Under-
standing deep learning requires re-
thinking generalization”
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8: Zhang et al. [343] showed that
state-of-the-art convolutional neu-
ral networks can memorize entire
training sets of contemporary sizes.
The intriguing and so far unsolved
question of neural networks is why
common strategies lead to the net-
work learning the relevant patterns
of the data, even if it could memorize
the data instead.

[343] Zhang et al. (2017), “Under-
standing deep learning requires re-
thinking generalization”

9: This can, for example, be done
by reserving a part of the available
data solely for testing purposes. This
heldout data must not be used for
training, but only for checking the
model’s ability to generalize, see Sec-
tion 2.1.3.

10: The idea of selecting between
multiple models that approximately
fit the data is often guided by the
principle of Occam’s razor. Loosely
speaking, the principle states that
when faced with multiple hypothe-
ses resulting in the same prediction
quality, one should prefer the one
with the fewest assumptions.

and extrapolation behavior for unseen data from the ground
truth is poor. Models with a large capacity can overfit since they
can essentially memorize the training set instead of learning the
important patterns and structures of it.?

We can measure the generalization performance by measuring the
performance of the model on a test set that the model previously
had no access to.? The difference between the performance on the
training data and the test data is called the generalization gap or
the generalization error. Overfitting is present in models that have
a low training loss but a large test loss. In the example shown in
Figure 2.5, we can see that the polynomial of higher degree has a
significantly larger loss on this unseen data.

The focus on the generalization performance is a crucial difference
that separates machine learning from optimization. In our example,
both the polynomial of degree 4 and degree 15 were able to fit the
given data. From a pure optimization perspective, both models
performed approximately the same, and there is little reason to
prefer one over the other. Taking a more practical example, we can
compare a model that simply memorized the training data and a
second model that truly learned, like a human, what constitutes an
image of a cat. From the point of view of pure optimization, both
models have the same performance (on the training set, which
is the object the optimization algorithm interacts with). But both
models are certainly not equally useful as a machine learning

model.1°

As we will see in the next section, multiple techniques can help to
prevent models from overfitting and even the utilized optimization
method itself can influence how well a learned solution is able to
generalize (see Section 2.3.3). This difference between learning and
optimizing is a crucial characteristic that we have to take into account,
for example, when comparing different optimization methods for
their use in deep learning problems (Chapters 5 and 6).

The Bias-Variance Tradeoff

To better understand the occurrence of under- and overfitting, we
can study the relationship between the model capacity and its
training and test performance. Figure 2.6 illustrates a typical rela-
tionship, where training and test performance behave differently
when increasing the model’s capacity. The characteristic U-shape
is a result of the bias-variance tradeoff and can be understood by
decomposing the error of the machine learning model.

Let us assume a ground-truth function with noise y = f(x) + ¢,
where the noise ¢ has zero mean and variance o2. Our goal is to
learn a function fg that approximates the true function f as best



2.2 Learning Is More than Optimization

as possible as measured by the squared error (y — fg)z. We are
also given a training data set Dirain = {(x(l), y(l)), o, (V) y(N))}
which are assumed to be i.i.d. samples of some true data distribu-
tion Piye. We can decompose the expected error as:

EDursin~Prrue [(y —fe)z] = ([E [fe] —f)2

———
Bias?

(e [#] -5 |
Variance
+E [52] ,

~——
Irreducible error

+E

(2.1)

where all expectations are taken over different choices of the
training set Dyrain. The occurring three terms can be described as:

» Bias: The bias measures the difference between the expected
prediction and the true value. Models with high bias in-
correctly describe the data, e.g. when approximating a non-
linear function using linear models. The bias describes errors
caused by incorrect assumptions of the machine learning
model, missing the relevant relationship between the inputs
and outputs and thus underfitting.

» Variance: The variance describes how much the learned
model fluctuates when using different training data points.
This error can be seen as a result of modeling the noise rather
than the underlying structure and thus overfitting to the
noise

» Irreducible error: Since the ground-truth function contained
noise ¢, we cannot expect to model the function perfectly.
Instead, we have to accept an irreducible error that is given
by the variance o? of the noise. Intuitively, this means that
the larger the noise level of the data, the larger the expected
error on an unseen example.

Figure 2.8 illustrates the different terms of the expected error,
by fitting polynomials of varying degrees to different subsets of
the training data. Fitting a polynomial of degree 2 (shown in
Figure 2.8b) is not expressive enough to describe the ground-
truth function. The quadratic function fails to approximate the
function accurately, resulting in a high bias, but the variance
between different fits is relatively small. Using a polynomial of
an appropriate degree (Figure 2.8c shows degree 6, the same as
the ground-truth function) approximates the function well. Both
the bias and the variance are comparatively small. Increasing
the degree further (e.g. to degree 10, illustrated in Figure 2.8d)

Error

2 4 6 8 10 12 14 16 18 20
Capacity

Figure 2.6: Illustration of a typical
relationship between the capacity
and the errors. The training error (1)
continuously decreases with larger
model capacity. The fest error ini-
tially (') initially decreases as well,
but at some point, it increases again.
The shaded areas show a typical pro-
gression, while the colored dots and
crosses show specific training (®)
and test errors (%) when fitting a
polynomial of the given degree (a
measure of the capacity).

Underfitting] Overfitting
zone | zone
o i
o 1
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Figure 2.7: Illustration of the bias-
variance tradeoff. As the model ca-
pacity increases, bias (f) tends to
decrease. Simultaneously, variance
(") increases with increased capac-
ity. The resulting generalization er-
ror (¥), which is the sum of both
effects (plus an irreducible error
term) forms a characteristic U-shape,
which is also visible in Figure 2.6.



Chapter 2 Machine Learning

11: This “traditional” bias-variance
tradeoff seems to be at odds with the
observed performance of contempo-
rary large-scale machine learning
models such as deep neural net-
works with millions of parameters.
Belkin et al. [23] augment the classi-
cal view of the bias-variance tradeoff
with the double descent phenomenon.
In this double descent model, increas-
ing the model capacity further, be-
yond a point they coin the interpo-
lation threshold, reduces the test er-
ror once again. This double descent
phenomenon can be seen as an ex-
tension of the bias-variance tradeoff
and has been observed in a variety
of deep learning and other machine
learning models [e. ., 215].

[23] Belkin et al. (2019), “Reconciling
modern machine-learning practice
and the classical bias—variance trade-
off”

[218] Nakkiran et al. (2020), “Deep
Double Descent: Where Bigger Mod-
els and More Data Hurt”

also increases the variance. The predicted values fluctuate widely
depending on which data points were used (most notably in this
example for small x-values). We can see that models with higher
capacity, i.e. higher polynomial degree, show smaller bias, but
higher variance. Models with smaller capacity, i.e. polynomials
of smaller degree, exhibit the opposite, i.e. higher bias, but lower
variance. This bias-variance tradeoff is summarized in Figure 2.7
as a function of the model capacity.

Generalization to Performance Metrics

Beyond the generalization to previously unseen data, machine
learning models often have to deal with the generalization to a
different performance metric. As mentioned in Section 2.1.4, the
types of functions that can be used as loss functions for efficient
optimization methods can be limited. Deep learning, for example,
requires the loss functions to be differentiable, so that gradients
can be computed efficiently which in term allows first-order opti-
mization methods to find good solutions quickly. The performance
metric of interest, however, does not necessarily follow all these
restrictions. A prominent example is the accuracy used for image
classification. It describes the number of correctly classified images
and is thus a natural measurement of model quality. This 0-1 loss,
however, is not differentiable, and many machine learning models
for image classifications are trained with cross-entropy instead
(see Section 2.1.4).

This describes another example of how learning differs from
optimization. Although the model is trained to minimize the
training loss, we care about the test accuracy. In other words, although
we perform optimization, we care about the model’s ability to
learn. In Chapter 5, we encounter an example of this non-trivial
relationship between the model’s performance on the loss and
its performance in terms of the accuracy. Looking at the column
of P3 Fasuion-MNIST CNN in Figure 5.2 we can observe that
although the training loss consistently decreases over the course
of the training, the test loss quickly increases again. Usually, this is
seen as an indicator of overfitting and training should be stopped
before the test loss increases again. However, when looking at
the test accuracy, we can see that it continues to increase as well,
although the test loss would indicate a worse performance. This
phenomenon is discussed in more detail in Section 5.4 and shows
that generalizes does not only involve the step to unseen data (from
train to test) but also to the relevant performance metric (from
cross-entropy loss to accuracy).



Regularization

Regularization methods aim to address the challenges mentioned
in the previous sections. A common theme for regularization
approaches is that they express a preference for specific solu-
tions, either explicitly or implicitly. These methods all share the
goal of preferably selecting models that are particularly good at
generalizing to unseen data.

A simple approach to address overfitting is to control the model
capacity. This can, for example, be done by only including “simple”
polynomials such as linear or quadratic functions in the hypothesis
space of possible models. Similar to other regularization methods,
this can be seen as expressing an infinitely strong preference for
linear and quadratic models.

Just like there is no universally “best” machine learning algorithm,
there is no “best” regularization method. Instead, regularization
often requires some domain expertise and understanding of which
type of solutions should be preferred for a specific task. Some
strategies constrain the model (Section 2.3.1), some change the
training data (Section 2.3.2), or involve the optimization process
(Section 2.3.3). We will now look at often-used regularization
methods focusing on ones that are popular for deep learning. A
more detailed overview of regularization strategies can be found
in Goodfellow et al. [101].

Norm Penalty

A straightforward way to express a preference for specific solutions
is to penalize unwanted solutions, e.g. ones with large parameter
norms. Adding a norm penalty term to the loss that is proportional
to the norm of the parameters enforces a soft constrain on the
model itself:

L(fe) = L(fo) + AllOIl, (2.2)

where L is the loss function, L describes the regularized loss
function and A € [0, o) is the regularization strength. A is a
hyperparameter that determines the amount of regularization (see
Figure 2.9) and setting it to zero is equivalent to no regularization.
The regularization hyperparameter is usually tuned for a specific
problem with regularization typically only being applied to the
weights of a neural network layer, but not its biases [101].

Looking at Equation (2.2), we can see that optimizing L. simul-
taneously minimizes L and [|0||. Using a norm penalty means,
given the same loss, we prefer solutions with small parameters.

2.3 Regularization
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Figure 2.8: Illustration of bias and
variance at different model capac-
ities. (a) shows the ground-truth
function (=) and the available noisy
data points (®). Subfigures (b) to (d)
use models of increasing capacity
(degrees 2, 6, 10) fitted on random
subsets of the data (one random sub-
set is shown with red crosses (%)).
For each degree, we show three fits
based on different random subsets
(—) and the mean of 1000 fits with a
thicker line (=—). One standard devi-
ation is shown as a shaded area ().

[101] Goodfellow et al. (2016), “Deep
Learning”

[101] Goodfellow et al. (2016), “Deep
Learning”
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(a) No regularization, overfitting (b) Appropriate regularization (c) Large regularization, underfitting
°
®
®e
°. s
°
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Figure 2.9: Fitting a polynomial with different regularization strengths. (a) When fitting a high-degree polynomial (here
polynomial of degree 15) without regularization we overfit to the training data. (b) With an appropriate regularization
strength, we can get a learned model that not only fits the training data correctly but also truthfully describes the ground
truth function. Although the given polynomial is capable of describing more expressive functions, the added norm
penalty encouraged the model to select a simpler function. (c) If the norm penalty is too strong, the model underfits and
fails to describe even the training data.

Conversely, larger parameters are allowed, if they also further
decrease the original loss function.

The choice of norm used in Equation (2.2) crucially determines
the regularization effect. The most common choice is to use the
squared L? parameter norm, | 6||§ = Z?: 1 9?. Adding the L2
penalty is motivated by the fact that models with larger parameters
tend to describe more flexible and in some sense more complicated
functions. However, there is no clear measure for what describes
a simple function and the L? norm is just one of many possible
choices.

Another popular choice is the L! parameter norm, ||0||; = Zg 1164l
While regularization with both norms pulls the optimal parameters
closer to zero, their exact effects vary, depending on the norm,
see Figure 2.10. In comparison to the L? penalty, L! regularization
enforces sparsity.

The L! and L? regularization are simply special cases of using L?
parameter norms for regularization. However, they are by far the
most popular choices. Depending on the domain, L! regularization
is also known as Lasso regression'? [293] and L? regularization is
known as ridge regression [128] or TikHONOV regularization [295]. 12
regularization is sometimes also referred to as weight decay. It is
easy to see, where the name is coming from if one considers the
update rule of GRapIENT DEscenT (GD) when using the regularized

loss.!® The gradient of the regularized loss is

VoL(fo) = VoL(fo) + 210, (2.3)



and the update step of GD thus

0+ = 0 — (VoL(fo) +210"1), (2.4)
which we can re-write as
0 = (1-2n1)0"Y) — nVeL(fe) . (2.5)

Compared to an update step with GD on the unregularized loss (see
Equation (3.19)), the update now includes a shrinkage step of the
parameters. The L? regularization and the weight decay step as de-
] are, however,
only equivalent when using GD or StocHAsTiC GRADIENT DESCENT.
Loshchilov and Hutter [194] proposed a new optimization method
called AbaMW that uses weight decay regularization for the popu-

scribed in Equation (2.5) or by Hanson and Pratt [

lar Abam optimizer.

2.3.2 Data Augmentation

A simple way to prevent overfitting is to use more training data.
Intuitively, the more diverse data available for training, the easier
it is to find a model that will generalize to new data. The more
the training data set represents the entire distribution of possible
samples, the fewer truly unseen examples it has to process. However,
collecting more data can be a time-consuming — and sometimes
even infeasible — procedure.

Data augmentation can be a method to leverage the existing data
as much as possible, by creating new synthetic data. Figure 2.11
shows typical data augmentation techniques used for images, such
as random cropping, rotations, changes to the contrast, or adding
noise. If the perturbations are small enough, they do not alter
the corresponding label, i.e. a cat is still a cat, even when flipped
horizontally. These new synthetic images can extend the existing
training set and thus act as a regularizer.

The data augmentation highly depends on the data type. Augment-
ing the training data, by including rotated versions of the input
generally helps for images but does not work for language inputs.
But even within the same data type, one has to be careful to not
affect the correct class. Flipping an image of a hot dog vertically, for
example, results in another image showing a hot dog. Applying
the same augmentation to the digit “six”, however, would create a
“nine”. Data augmentation thus always requires a level of domain
expertise in order to define data augmentation techniques that
help extend the training set in a meaningful way, without changing
the associated labels.

23

2.3 Regularization

@p=05
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Figure 2.10: Visualization of dif-
ferent norms. Unit circles and
heatmaps of different p-values for
the LP norm. Unit vectors for norms
with smaller p-values lie closer to
an axis, thus these norms tend to
enforce sparsity.

12: Lasso stands for least absolute
shrinkage and selection operator.

[293] Tibshirani (1996), “Regression
Shrinkage and Selection via the
Lasso”

[128] Hoerl et al. (1970), “Ridge Re-
gression: Biased Estimation for Non-
orthogonal Problems”
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[295] Tikhonov (1943), “On the sta-
bility of inverse problems”

13: The update rule of GD is sim-
ply to update the parameters in the
direction of the negative gradient.
See Section 3.3.1 for a more detailed
discussion of GD and related opti-
mization methods.

[112] Hanson et al. (1988), “Compar-
ing Biases for Minimal Network Con-
struction with Back-Propagation”

[194] Loshchilov et al. (2019), “De-
coupled weight decay regulariza-
tion”

Figure 2.11: Different data augmen-
tations applied to the image of an
animal from the AFHQ data set [61].
The first row shows positional aug-
mentations, with the top left image
showing the original, top center a
horizontal flip, and the top right a ro-
tated version. The second row uses
color augmentation, with the images
showing (from left to right) bright-
ness, contrast, and saturation aug-
mentations. The bottom row intro-
duces noise to the images by apply-
ing a Gaussian blur (left), Gaussian
noise (center), and erasing random
parts of the image (right).

[61] Choi et al. (2020), “StarGAN v2:
Diverse Image Synthesis for Multi-
ple Domains”

Figure 2.13: Illustration of a sharp
versus a flat minimum. The figure il-
lustrates an (artificial) loss landscape
of a machine learning model with
two parameters. Both landscapes
contain a local minimum with a con-
siderably low loss value. The differ-
ence between the sharp and the flat
minimum is the wideness of the area
of low loss.
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2.3.3 Optimization’s Role in Regularization

The optimization procedure used to train the machine learning
model itself can have regularization effects. A simple but popular
approach is to stop training right before overfitting occurs. The
stopping criterion for this process, known as early stopping, is
usually based on the performance of the machine learning model on
some holdout data, the validation set.!* We often empirically observe
that the training loss decreases consistently, but the performance
metric on the validation set starts to increase at some point (see
Figure 2.12). If we stop training early at this point, we receive a
model with better validation set performance, and thus hopefully
a better performance on truly unseen test data.

Early stopping is a popular regularization technique in deep
learning since it is easy to implement and effective. The effects of
early stopping could be similar to the regularization effects of using
norm penalties (see Section 2.3.1) since the model’s parameters are
restricted in how far they can move from their initializing, given
the limited training time [e.g., 101].

It has long been theorized and discussed that the shape of the local
loss landscape around the model’s parameters influences their
generalization performance. The intuitive idea is that flat minima
generalize better since these solutions are relatively insensitive
to small variations. Flat minima are characterized as having a
comparably large neighborhood of similar low loss (see Figure 2.13).
In contrast, sharp minima are more likely to be the artifacts of the
limited finite training set, than the result of a general property of
the true risk landscape. The relationship between the flatness of
a minimum and its generalization capability has seen significant
research in recent years [e.g., 75, 125, 126, 148,162, 212].

SGD with smaller batch sizes or larger learning rates appears to
find flatter minima with better generalization properties [e.g., 146].
Using smaller batch sizes can be viewed as injecting more noise
into the learning process and thus regularizing the optimization
problem. Similarly, larger learning rates, intuitively, have a harder
time “falling into” sharper minima. Thus learning rates, that

(b) Wide minimum

(a) Sharp minimum



maximize the test set performances are commonly larger than ones
that minimize training loss. This indicates that small batch sizes or
larger learning rates have beneficial effects beyond requiring less
compute per step or reducing the number of total iterations. This
implicit bias of SGD to prefer certain solutions is thus a form of
regularization [275]. Some optimization methods, such as SAM
(SHARPNESS-AWARE MINIMIZATION) [86] or ENTROPY-SGD [50] make
this preference more explicit.

2.3 Regularization

14: Mahserecietal. [199] presented a
stopping criterion for early stopping
without the need for a validation set.
[199] Mahsereci et al. (2017), “Early
Stopping without a Validation Set”
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Figure 2.12: Early stopping can be
used to prevent overfitting. The
training loss (=) of a simple convo-
lutional neural network on MNIST
decreases as training progresses.
The test loss (=) initially decreases
as well but at some point plateaus
and even begins to increase again.
Stopping training earlier, at the point
of minimal test loss (- -), can provide
a solution with better generalization
capabilities. Note that due to the
stochastic nature of the training pro-
cess, both loss curves are noisy.

[101] Goodfellow et al. (2016), “Deep
Learning”

[75] Dinh et al. (2017), “Sharp Min-
ima Can Generalize For Deep Nets”
[125] Hochreiter et al. (1994), “Sim-
plifying Neural Nets by Discovering
Flat Minima”

[126] Hochreiter et al. (1997), “Flat
Minima”

[148] Jiang et al. (2019), “Fantastic
Generalization Measures and Where
to Find Them”

[162] Keskar et al. (2017), “On Large-
Batch Training for Deep Learning:
Generalization Gap and Sharp Min-
ima”

[212] Mulayoff et al. (2020), “Unique
Properties of Flat Minima in Deep
Networks”

[146] Jastrzebski et al. (2018), “Three
Factors Influencing Minima in SGD”

[275] Smith et al. (2021), “On the
Origin of Implicit Regularization in
Stochastic Gradient Descent”

[86] Foret et al. (2021), “Sharpness-
aware Minimization for Efficiently
Improving Generalization”

[50] Chaudhari et al. (2017),
“Entropy-SGD: Biasing gradient de-
scent into wide valleys”






Stochastic Optimization

A central component of any machine learning pipeline is its opti-
mization procedure. In machine learning, computers learn to solve
a given task based on available data instead of explicitly being
programmed for it (see Chapter 2). This effectively means that
some strategy needs to be selected out of a large set of possible
hypotheses. Selecting this strategy is done by an optimization
method, also called an optimizer, which aims at selecting the “best”
element with respect to some criterion among a set of possibilities.
In order to understand the optimization methods at the heart of
many machine learning applications, we can turn to the field of
mathematical optimization (Section 3.1).

In this work, we study empirical risk minimization problems (Sec-
tion 3.2), which include the scenario of supervised learning using
deep neural networks. Training neural networks in a supervised
fashion comes with some characteristic properties. Modern deep
learning systems have millions or even billions of parameters,
turning the underlying optimization problem into an extremely
high-dimensional problem. The use of large data sets that them-
selves have millions of data points requires the sub-sampling of
the data to allow efficient computation. This turns a regular opti-
mization problem into a stochastic one, where both the function
evaluations and the gradients are only observed with noise.

These properties cause many classical methods, originally devel-
oped for the noise-free setting, to become inefficient or unsuccessful.
Recent research has resulted in an overwhelming and ever-growing
list of new optimization methods for deep learning (see Section 3.3
and specifically Table 3.1). Navigating this large set of optimizers,
each with their own set of hyperparameters, is currently a main
challenge for many deep learning practitioners. Evaluating, com-
paring, and understanding these methods will be a core element
of this work.

Many of the optimization methods for deep learning have hyper-
parameters that must be set by the user. These hyperparameters,
most notoriously the learning rate, are often tuned and some-
times even dynamically changed during the training process. The
tuning method, as well as self-tuning methods, are discussed in
Section 3.4.

3.1 Mathematical Optimiza-

tion . .......... 28
3.2 Empirical Risk Minimiza-
tion . .......... 30

3.3 Optimization Methods 38
3.4 Hyperparameter Tuning 53

(a) One-dimensional loss function
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Figure 3.1: Illustration of loss func-
tions for mathematical optimiza-
tion. (a) A one-dimensional loss
function (=) with multiple local
minima (®) and local maxima (®).
The global minimum and maxi-
mum of this periodic function are
marked with a star (5, %). (b) A two-
dimensional loss function with mul-
tiple local minima, local maxima,
and saddle points.
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1: All global extrema are also local
extrema. Following Definition 3.1.2,
we can just extend 6 — oo.

2: Strict local minima are defined
similarly, but enforcing a strict in-
equality between the function val-
ues, i.e. L(0*) < L(0) instead.

3: To keep the presentation, we re-
frain from presenting the proofs of
the theorems. They can be found in
any standard textbook on optimiza-
tion, e.g. [38, , ].

[38] Boyd et al. (2004), “Convex Op-
timization”

[222] Nesterov (2018), “Lectures on
Convex Optimization”

[224] Nocedal et al. (2006), “Numer-
ical Optimization”

Mathematical Optimization

In mathematical optimization, we are tasked with finding an
extremum, i.e. either a minimum or a maximum, of some function
L(0). We can formalize an optimization problem in the following
way:

Definition 3.1.1 [Optimization Problem]

Given a function L(0) : A — R, find the element 8" € A
such that L(0*) < L(0) VY 0 € A (for minimization) or L(0*) >
L(O)Y 0 € A (for maximization). The element 0" is known as
the minimizer or maximizer of the function.

The function L that should be optimized is called loss function,
objective function, cost function, or risk depending on the context.
It is common, to focus on minimization since maximization of
L(0) is equivalent to minimization of —L(0). We can write the
minimization problem more concisely by

min L(0).

min (3.1)

In the following, we will assume that L is bounded, i.e. that the
minimum of the function is within (—oo0, c0).

Global and Local Minima

A relaxation of Equation (3.1) describes local minima.! Here, all the
function values are greater than or equal to the local minimum

only in some region around it, i.e. 2

Definition 3.1.2 [Local Minimum]
For a local minimum 6, there exists some 6 > 0 such that
V0 € A with ||@ — 0| < 6 it holds that L(0*) < L(0).

A local maximum is defined analogously. Figure 3.1 illustrates the
crucial difference between a local and a global minimum.

If our objective function L has a first derivative, we can state a

necessary condition for a minimum in terms of its gradient:>

Theorem 3.1.3 [Necessary Condition for Optimality]
If 8¢ € RP is a local minimum of a differentiable function
L:RP - R, then

Vo L(0")=0. (3.2)

A point where the gradient vanishes is called a stationary point.
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This, however, is only a necessary condition for a minimum. Station-
ary points of vanishing gradients could also be maxima, or saddle
points. At a saddle point, the gradient is zero but it is neither a
local minimum nor a local maximum. A point, which is a local
minimum along one axis, but a local maximum along another axis,
would be an example of such a saddle point, see Figure 3.2.

We can use the second derivative to distinguish between local
minima, local maxima, and saddle points. For this, we use the
definiteness of the Hessian:

Definition 3.1.4 [Definiteness of a Matrix]
A symmetric real matrix A € R%*? is called positive definite, if

¥ non-zero x € R?, xTAx > 0.

Ifonly x T Ax > 0 holds, we call the matrix positive semi-definite.
We denote these propertiesas A > 0 and A > 0.

Analogously, we call a matrix negative definite, if x"Ax < 0
holds and denote it with A < 0. A matrix, which is neither
positive (semi-)definite nor negative (semi-)definite is called
indefinite.

Theorem 3.1.5 [Sufficient Condition for Optimality]
If L : RP — R is twice-differentiable and 0* € RP satisfies

VoL(0") and V3L(0*)>0, (3.3)

then 0" is a strict local minimum of L.

Conversely, a sufficient condition for a strict local maximum en-
forces V%,L(B*) < 0. If the Hessian VéL is indefinite, then the
stationary point is a saddle-point.*

The definiteness of a matrix is connected to its eigenvalues. More
specifically, if a matrix is positive definite, all of its eigenvalues are
positive and if all eigenvalues are only non-negative, the matrix is
positive semi-definite. The eigenvalues themselves have a geometric
meaning. They describe the curvature of the local landscape in the
direction of the associated eigenvector. The larger an eigenvalue,
the more the function “bends upwards” in this direction and the
higher the curvature. Similarly, a negative eigenvalue implies a
“downward bend”, i.e. a locally concave function in the direction
of the eigenvector. This gives a geometric interpretation, why a
positive definite matrix, i.e. one where all eigenvalues are positive,
describes a local minimum, while a stationary point with both
positive and negative eigenvalues describes a saddle-point.

0.5
0.0
-05

1.0
0.5

0.0
—05 -05

0.5 -1.0

Figure 3.2: Illustration of a saddle
point. At the saddle point (@), the
gradient is zero. However, it is nei-
ther a local maximum nor a local
minimum. Instead, it is a local min-
imum in one direction and a local
maximum in the other direction.

4: If the matrix is either posi-
tive semi-definite or negative semi-
definite, this second-derivative test is
inconclusive.
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\—
0

Figure 3.3: A convex vs. a non-
convex function. Loosely speaking,
a convex function (=) constantly
“bends upward”. In contrast, a non-
convex function (—) can have mul-
tiple “ups and downs”.

0

Figure 3.4: A smooth vs. a non-
smooth function. The derivative
of a smooth function (=) is de-
fined everywhere. In contrast, a non-
smooth function (=) can have kinks
or steps.

0

Figure 3.5: A deterministic vs. a
stochastic function. Observing a de-
terministic function (=) with noise
results in a stochastic function (one
possible sample illustrated by —).

5: A popular example for this would
be image classification, where the
inputs x would be the raw pixel val-
ues of an image and the outputs y
would describe the occurrence of a
certain class in this image, e.g. y = 1
when the picture shows a cat and
y = 0if no cat is present in the im-
age. f” is in this example a perfect
cat-detector that can tell, with 100 %
accuracy, whether there is a catin a
given picture or not.

Classification of Optimization Problems

Typically, optimization problems are classified based on properties
of the objective function:

» Convex vs. non-convex optimization (Figure 3.3): For convex
functions, any line segment between any two points on
the graph of the function lies on or above the graph, i.e.
Vt € [0,1] and V61, 0, € A it holds that L(t01 + (1 —t)0;) <
tL(01) + (1 — t)L(02). Optimizing convex functions is much
easier than non-convex objectives since in that case, it can be
proven that any stationary point is also a global minimum.

» Smooth vs. non-smooth problems (Figure 3.4): In smooth
problems, the objective function L is differentiable. Since the
gradient is defined everywhere and the (negative) gradient
always points in the direction of the steepest ascent (descent),
it can be used to guide an optimization method. Depending
on the community, smooth problems can also require further
restrictions beyond being once-differentiable such as having
a bounded Hessian.

» Deterministic vs. stochastic functions (Figure 3.5): For
stochastic optimization functions, we can only observe the
function (and if applicable, the gradient) with noise. This
means that an optimization algorithm must deal with the
uncertainty introduced by the noisy observations.

There are additional ways to categorize an optimization problem
such as continuous vs. discrete optimization (in continuous op-
timization, the optimization variable is continuous as opposed
to integers, for example), constrained vs. unconstrained domains
(in unconstrained optimization, the domain is R"” for some 1 as
opposed to a strict subset of R" which is often formulated in terms
of inequalities, e.g. min L(0) subject to g(0) < 0), or linear vs.
non-linear objectives.

Optimization for deep learning is typically in the domain of
non-convex, stochastic, continuous, unconstrained, and non-linear opti-
mization.

Empirical Risk Minimization

Let’s consider the task of supervised learning for either regression
or classification where we want to learn a function f*(x) : X — Y
which is able to correctly predict the output y € Y given some
features x € X. > We are also given a non-negative and real-valued
loss function {(77, y) : Y X Y — R™ that quantifies how different
the predictions of a model 7 are from the true targets 1.°
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Turning this into a machine learning problem, we use a family
of model (or hypothesis) functions fg from some parameterized
hypothesis space F = {fg = f(x;0)| 0 € RP}. Our goal is now
to find the particular model or hypothesis from this fixed class
of functions F that best describes the relationship between the
inputs x and outputs y. Ideally, f* should be part of the model
space F. However, this assumption is often unrealistic in practice.
Nevertheless, for many practical applications, it is sufficient if 7
contains functions that serve as reasonable approximations to f*.

If we assume a joint probability distribution Pgye(x, v) that de-
scribes the true underlying data distribution, we can formulate the
true risk or expected loss 7 of a specific model as:

Definition 3.2.1 [True Risk or Expected Loss]
Consider a supervised learning problem. We define the true risk
Lp,..(fo) of a hypothesis or model fg as

Lptrue(fe) = [E(x,y)~Ptme(x,y) [€ (f(x} 9)/ y)] (3.4)
- / £(F(5;0), ) dPrelx, ).

The goal of the machine learning problem is to find the function
that minimizes this true risk: 8

fo =argminLp_ (fo). (3.5)
fee]:

Obviously, this true underlying population distribution Py is
inaccessible. Loosely speaking, the expectation in Equation (3.4)
is taken over the infinite set of “all possible input-output pairs”,
e.g. all possible images of handwritten digits and their associated
digit. If Pyye was known, minimizing Equation (3.4) would be a
computable optimization problem.

While the true distribution is unknown, we often have access to
a finite training set Dy = {(x(l), y(l)), oo, (), y(N))}, where
x) is the input of the i-th example in the set and y'” is the
corresponding label. We assume the pairs in the training set are
ii.d. samples from the true population distribution. This allows
us to convert the machine learning problem of finding a minimizer
to the true risk in Equation (3.4) into an optimization problem by
minimizing the empirical risk or empirical loss:

Definition 3.2.2 [Empirical Risk or Empirical Loss]
For a supervised learning problem, we define the empirical risk

6: In this chapter, we only consider
loss functions that take § and y as
arguments. It is rather trivial to ex-
tend the formulation to regularized
losses that include, for example, the
model parameters 0 as an argument.

7: The true risk is often just called
risk or sometimes expected risk, ex-
pected loss, or population risk.

8: Instead of defining the risk of
a function, i.e. Lp, (fg), we could
also express it as the risk of the pa-
rameters,i.e. Lp (0).Since the func-
tion is parameterized by 0, this is an
analogous view.
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Lp,,;,(fo) on the training set Dirin of a model fg as
LDtrain (fe) = [E(x,y)fvf)h_ain(x,y) [€ (f(x; 6)1 y)] (3'6)

1Y : :
= N Z e(f(x(l)’ 6)/ y(l)) o
F=1 S— e’
=:4@0)

Compared to the expected loss, we replaced the population distri-
bution Py with the empirical distribution ﬁtram defined by the
training set Dirain. Instead of Equation (3.5) we now optimize the
model parameters 0 to find a minimizer of the empirical risk:

A

fe* = argmin Lp,_, (fo) - (3.7)
ng]'-

The true goal, however, is still to find a minimizer of the true
risk. Ultimately, we are interested in finding models that work on
general samples from the true underlying distribution Pirye. An
image classifier for detecting vermin on crop plants, for example,
should be able to correctly classify images “in the wild”, not only
the ones that are in the training data. The assumption is that the
empirical risk Lp,,,, will approximate the true risk Lp,, sufficiently
well, such that a model minimizing the former will also perform
reasonably well on the latter. Whether or not this is the case, is
discussed under the question of generalization.

This description of empirical risk minimization leaves us with
several open questions:

» How do we select the hypothesis space F? In Section 4.1 we
will see that artificial neural networks represent a particularly
powerful and numerically appealing class of functions. For
the majority of this work, we will focus on algorithms for
training neural networks.

» How do we find a minimizer of the risk? Similar to the
empirical risk being used as an approximation, we can use
the empirical gradient of the loss as an estimation of the true
gradient (see Section 3.2.1). Section 3.3 will then describe
popular methods which use this stochastic gradient as a
learning signal to train neural networks in particular.

» How can we ensure that the selected model generalizes?
Which decisions influence whether a learned function can
accurately predict the output not only for examples in the
training data but also for unseen data? Questions like these
were already raised and partially answered in Sections 2.2
and 2.3. In Section 3.2.2 we will look at the generalization
performance again, this time through the lens of empirical
risk minimization.
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Gradient-Based Learning

For many machine learning models, including neural networks as
we will see in Section 4.1, we can efficiently compute the gradient
in addition to the loss value. While the loss value of the current
parameters can give us an estimation for how well the model
is performing, gradients provide us with a direction for how to
improve the model. This crucial information allows the use of
iterative gradient-based optimization methods.

Definition 3.2.3 [True Gradient]

Given a supervised learning problem, we define the true or
expected gradient gp_ . as the gradient of the true risk with
respect to the model parameters, i.e.

VoLpyu(fo) = Ex,1)~Pue(x,y) [Vol(f(x; 0), y)] (3.8)

: gptrue °

Mirroring the statements above, this true gradient is inaccessible,
since the true population distribution Pie is unknown. Instead,
we can again make use of the empirical data set Diin and its
empirical distribution ﬁtrain, to compute an estimate of the true
gradient, which we will call the empirical gradient.

Definition 3.2.4 [Empirical Gradient]
We can approximate the true gradient using an empirical data
set with the empirical gradient gp, . defined as

N s .
VoLo,(fo) = - > Vol(f?,6),y)  (39)
i=1

=3 g [Dtrain *

Data Sub-Sampling via Mini-Batches

Contemporary data sets can easily have millions of data points
and in those cases computing the empirical gradient can be ex-
pensive.” The empirical gradient itself, however, was only an
approximation of the quantity we actually care about, the true
gradient. Instead of approximating the true gradient with the
full training data set, we might as well use a smaller set of
data points to compute an approximation. For this, we define
a mini-batch, which is a sub-sampled set of the training data
with B = {(x(l), y(l)), o, (2B, y(B))} C Dirain.® The number of
elements in B is referred to as the batch size and we denote it as
|B| = B.

9: The following analysis is true not
only for the gradient but the loss,
as well. In practice, both the loss
and the gradient are computed on a
mini-batch.

10: Note, that we overload the no-
tation here. x(!) can both mean the
i-th element in the entire data set
or just within a single batch. Which
one it refers to is usually clear from
the context, e.g. the sum in Equa-
tion (3.9) is over elements from the
data set while Equation (3.10) uses
just elements within a batch.
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11: The remaining data points could
either be used in a smaller final batch
or be dropped for this division.

Using this mini-batch, we can now define the mini-batch gradi-
ent.

Definition 3.2.5 [Mini-Batch Gradient]
Given a mini-batch B of training samples, we can estimate the
empirical gradient via the mini-batch gradient gg, given by

B
VoLs(fo) = 5 >, Vol(F?,0),y")  (310)
i=1

=g} (0)

= 9B -

Denoted by g[g )(6) are the individual gradients, i.e. the gradient
vector resulting from a simple datum.

Comparing Definitions 3.2.4 and 3.2.5, it is easy to see that con-
ceptually, there is no real difference between approximating the
true gradient via the expected gradient or via the mini-batch gra-
dient. Both use an empirical set of data points sampled from the
true distribution. With the mini-batch gradient, however, we can
smoothly control the trade-off between approximation quality and
computational cost via the batch size: Larger batch sizes provide a
better approximation but require the more costly computation of
more examples.

The batch size is therefore often chosen to maximally utilize the
available memory of the hardware, but additional effects such
as the relationship between the batch size and the generalization
capabilities might be taken into account. The mini-batches are
often selected randomly by shuffling all the available training data
and separating it into | N/B] batches of size B that will be each used
for one iteration (see Section 3.3).1

Beyond the Gradient: Higher-Order Derivatives

We can, of course, use the same strategy that we have used for the
gradient, the first-order derivative, and apply it to higher-order
derivatives, such as the Hessian. The Hessian provides information
about the curvature that characterizes the local loss landscape
which can be used to more informatively steer the optimization
process. Defining the mini-batch Hessian works analogously to
the mini-batch loss or the mini-batch gradient:

Definition 3.2.6 [Mini-Batch Hessian]
Similar to the mini-batch gradient, we can define the mini-batch
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Hessian for a supervised learning problem as

B

Vila(fo) = 3 DI VALY, 0),y) (31
i=1
=:Hp.

The Hessian is a matrix of size H € RP*P. For many practical
machine learning problems, the number of parameters can easily
be in the millions, thus computing or even storing the Hessian
is infeasible. To make practical use of the Hessian, we require
approximations, which are briefly described in Section 3.3.2.

Beyond the Mean: Higher-Order Statistics

Similar to computing higher-order derivatives, we can also consider
higher-order statistical moments. Looking at the variance, instead
of the expectation as in Definition 3.2.1, provides us with the
variance of the true risk,

Definition 3.2.7 [True Risk Variance or True Loss Variance]
Given Definition 3.2.1, the variance of the true risk Ap,_ . (fo) € R
is given by

APtme(fG) = Var(x,y)~Ptme(x,y) [t’(f(x, 6)/ y)] (3~12)

- / (£ (F(x;8), 9) ~ Lo (f0)* dPisuelx, ) .

as well as an empirical approximation thereof:

Definition 3.2.8 [Empirical Risk Variance or Empirical Loss
Variance]

We can approximate the true loss variance, as defined by Defini-
tion 3.2.7, by the sample variance using some data set D:

1 D] . ’ ,
ID| -1 2 (é’(f(x(l), 0),y") - LID(fB)) = Ap.

i=1
(3.13)

APtrue (fe) =

Just like before, conceptually there is no real difference, whether we
use the full training data set D = Dyyin or just a single mini-batch
D = B for this approximation.

Of course, the variance can also be computed not only for the losses
but also for the gradients:

Definition 3.2.9 [True Gradient Variance]
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Given the true gradient of Definition 3.2.3, its variance is defined
as

P (fo) = Var(x )Pz, [Vl (f (x;0), y)] (3.14)
~ [ (0t (7x:), ) - Vol (fo)
(Va[ (f(x; 6)/ y) - VGLPtme(fG))T dptrue(x/ y) .

Definition 3.2.10 [Empirical Gradient Variance]
We can approximate the true gradient variance, as defined by
Definition 3.2.9, by the sample variance using some data set D:

1

L. (fo) » D=1 |201| (38) _gD) (glgv _gD)T = 2p. (3.15)

Leveraging these higher-order statistical quantities will be a central
aspect of Chapter 7. A straightforward use-case of the empirical
variance is to approximate the quality of our mini-batch gradient
estimate via the covariance matrix of the mini-batch gradient:

21/2 Al

P true EB
VVar [gp] = —= ~ — (3.16)
VB VB
This also shows that increasing the batch size has diminishing
returns. Increasing the batch size by a factor of 100 increases the
required computations by the same factor but reduces the standard
error of the gradient estimate only by a factor of Y100 = 10.

Optimization’s View on Generalization

We can use the principle of empirical risk minimization to take an-
other look at generalization (see Section 2.2). Defining the following

objects:
Symbol Definition Description
minLp, . The minimal achievable risk
by any predictor
fo =argming rLp,, (fo) Minimizer of the true risk
fe* =argming . r Lp,;, (fo) Minimizer of the empirical
risk
fg(n Current model function

We can decompose the difference between the risk of our current
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estimate and the lowest achievable risk as

LPtrue (fe(t)) - mln Lptrue = LPtrue (]?G(t)) - Lptrue (fé)

optimization error
+ Lptrue (fé) - Lptrue (fé)

estimation error

+ Lp,,.(fg) —minLp,,, - (3.17)

approximation error

The difference thus consists of three error terms:

» Approximation error: The approximation error is a result
of only considering a restricted class of model functions F
which does not necessarily include the “true minimizer”.
Increasing the model capacity tends to decrease the approxi-
mation error, as better approximations of the true minimizer
are included in the hypothesis space F. This is related to
the bias term mentioned in the bias-variance tradeoff (Sec-
tion 2.2.2).

» Estimation error: Increasing the model capacity often comes
at the cost of also increasing the estimation error. The es-
timation error is a result of optimizing the empirical risk
instead of the true risk. Since a high-capacity model is more
expressive, it is more likely to overfit to the given data, re-
ducing the empirical risk but often-times increasing the true
risk. Increasing the amount of training data, or using data
augmentation techniques (see Section 2.3.2), generally re-
duces the estimation error as it reduces the gap between the
empirical data set and the true population.

» Optimization error: The remaining term is the optimization
error. It describes the discrepancy between the globally
optimal solution in F and the (current) solution found by
the optimization method.

Balancing these three error terms is a central challenge of machine
learning in practice. Changing the model capacity, the number of
examples in the training set, or the runtime of the optimization
method all affect the total computation time, the three error terms,
and therefore the generalization capability of the machine learning
system [e.g., 37].

If we look at overfitting from the optimizer’s perspective, one
can observe that overfitting occurs over the course of the training
process, as seen, for example, in Figure 2.12. Since the optimizer
operates on the empirical risk, we can expect it to continuously
decrease the empirical risk throughout the optimization. But the
same must not be true for the true risk. We often observe that

[37] Bottou et al. (2007), “The Trade-
offs of Large Scale Learning”
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12: The update direction of an opti-
mizer is sometimes also called the
search direction, especially, when
the algorithm itself determines an
appropriate step size, e.g. by testing
multiple learning rates.

13: In Equation (3.18), we used a
scalar-valued step size, but many op-
timization methods, including some
described in Section 3.3.1, define
vector-valued step sizes that are mul-
tiplied element-wise with the up-
date direction. This is an abstract
change rather than a practical one.
Using an element-wise learning rate
is equivalent to changing the up-
date direction and using a scalar
step size. Whether the update rule
is presented as having a scalar learn-
ing rate or a vector-wise learning
rate (with different update vectors)
is mostly a stylistic choice that can
emphasize certain aspects.

14: In some cases, an iteration can be
defined differently. Line searches,
for example, probe different step
sizes to find a suitable one, be-
fore performing a parameter update.
This means that the loss function
(and the gradient) are evaluated mul-
tiple times before the next iterate is
computed. In deep learning, a loss
function evaluation is a costly pro-
cess and therefore it sometimes is
more helpful to compare the opti-
mization process per loss evaluation
instead of per parameter update.

initially the true risk decreases as well, but at some point increases
again, even when the empirical risk continues to decrease. At this
point, the learned solution overfits to the empirical data set which
harms the performance on the true population.

This reiterates the point that learning is crucially different from
optimization (see Section 2.2). Even more pointedly, the best opti-
mization method may not necessarily be the best training method.
An optimizer that quickly arrives at a reasonable solution might in
practice be preferable to an optimization algorithm that can achieve
a lower empirical risk if trained for a long time. Additional quali-
ties such as which local minimum the optimizer ends up in (see
Section 2.3.3), have to be considered when studying optimization
methods for deep learning.

Optimization Methods

An optimization method is any algorithm that aims to solve an
optimization problem, i.e. to find 0* such that 8" = mingea L(0)
(see Equation (3.1)). Which type of optimization method is used,
usually depends on the categorization of the optimization problem
(see Section 3.1.2). In deep learning, where we typically deal with
non-convex, stochastic functions, we commonly use first-order
iterative optimization methods.

Given an initial starting point ) € RP, iterative optimiza-
tion methods produce a sequence of approximate solutions
0W,0?), ..., where the next iterate 0**1) is computed by taking
a step of step size ") into an update direction'? s*) starting from
the current estimate 6 ) i.e.

o+ = g — s (3.18)
In the context of machine learning and deep learning, the step size
n® is also called the learning rate of the optimization algorithm.'?
Equation (3.18) is known as the update rule of the optimizer and
one update of the parameters following this equation is generally
considered one iteration of the algorithm.!* It is common to use
a different batch in each iteration, i.e. that each evaluation of the
loss function and its gradient is performed on a different batch, to
avoid overfitting. Once each available batch is used, this marks the
end of a single training epoch, signifying that every example in the
training data set was used once to inform the optimization methods.
Depending on, among other things, the size of the training data
set, contemporary neural networks are trained for hundreds of
epochs.
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The use of gradient (or even Hessian) information allows an effi-
cient search for the optimal model parameters without having to
explore the entire domain, which for modern neural networks with
tens or hundreds of millions of parameters is plainly impossible.
The drawback of using this derivative information to steer the
optimization process is that they tend to only find local minima. Em-
pirically, however, these local minima often perform well enough.
Finding a global minimizer may in fact not be desirable in cases
where the optimization problem is part of a machine learning
problem as it could provide worse generalization.

Because optimization methods play such a central role in machine
learning (and many other scientific domains), it is not surprising
that countless methods have been developed. Focusing only on
optimizers that have been suggested for or applied in deep learning,
we identify more than 150 optimization methods (see Table 3.1).

Algorithm 3.1 illustrates a sketch of a typical iterative optimizer for
deep learning. The crucial question, that will define an optimization
method, is how the learning rate and the update direction will be
determined. Although general quantities might be used to compute
both the learning rate and the update direction, it is common to
distinguish between methods that only use the gradient (first-order
methods, described in Section 3.3.1) and algorithms that include
Hessian information as well (second-order methods, described in
Section 3.3.2).

def IterativeOptimizer(evaluate_func, init_params, max_epochs):
params = init_params()
for epoch in range(max_epochs):
loss, gradients,... = evaluate_func()
s = compute_update_direction(gradients,...)
lr = compute_learning_rate(...)
params = params + lr * s
return params

First-order Methods

First-order iterative methods are the most common optimization
algorithms in deep learning. In this section, we will provide a
description of the most popular optimizers, including all fifteen
methods that are part of the optimizer benchmark in Chapter 6.

Stochastic Gradient Descent

As described in Section 3.2.1, we can compute the gradient of
the loss function to efficiently obtain a signal of how to (locally)
decrease the loss. The most straightforward method to leverage
this gradient information is the method of steepest descent also

Algorithm 3.1: Algorithmic sketch
of a typical iterative optimization
method for deep learning.
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Table 3.1: Table of deep learning optimizers. Note, that this extensive list is still far from being complete and shows only

a subset of all existing methods for deep learning.

Name Ref. Name Ref. Name Ref.
AcceleGrad [179] C-ADAM [303] PAGE [181]
ACClip [348] CADA [55] PAL [214]
AdaAlter [327] Cool Momentum [23] PolyAdam [226]
AdaBatch [71] CProp [231] Polyak [230]
AdaBayes/AdaBayes-SS [71 Curveball [120] PowerSGD /PowerSGDM [209]
AdaBelief [361] Dadam [220] Probabilistic Polyak [244]
AdaBlock [338] DeepMemory [320] ProbLS [200]
AdaBound [196] DGNOpt [185] PStorm [331]
AdaComp [51] DiffGrad ] QHAdam/QHM [197]
Adadelta [341] EAdam [336] RAdam [189]
Adafactor [267] EKFAC ] Ranger [321]
AdaFix [14] Eve [114] RangerLars [106]
AdaFom [56] Expectigrad ] RMSProp [294]
AdaFTRL [225] FastAdaBelief [356] RMSterov [60]
Adagrad [78] FRSGD [312] S-SGD [280]
ADAHESSIAN [333] G-AdaGrad ] SAdam [315]
Adai [329] GADAM [347] Sadam /SAMSGrad [298]
AdalLoss [290] Gadam [107] SALR [337]
Adam [166] GOALS ] SAM [86]
Adam* [190] GOLS-1 [155] SC-Adagrad /SC-RMSProp [211]
AdamAL [289] Grad-Avg [232] SDProp [139]
AdaMax [166] GRAPES ] SGD [242]
AdamBS [191] Gravilon [161] SGD-BB [287]
AdamNC [238] Gravity ] SGD-G2 [12]
AdaMod [74] HAdam [149] SGDEM [236]
AdamP/SGDP [121] HyperAdam [315] SGDHess [299]
AdamT [353] K-BFGS/K-BFGS(L) [100] SGDM [188]
AdamW [194] KF-QN-CNN [240] SGDR [193]
AdamX [200] KFAC [203] SHAdagrad [136]
ADAS [81] KFLR/KFRA ] Shampoo , 110]
AdaS [130] L4Adam/L4Momentum [243] SignAdam-++ [313]
AdaScale [152] LAMB [335] SignSGD [28]
AdaSGD [314] LaProp [362] SKQN/S4QN [332]
AdaShift [358] LARS [334] SM3 [11]
AdaSqrt [134] LHOPT ] SMG [301]
Adathm [279] LookAhead [349] SNGM [352]
AdaX/AdaX-W [180] M-SVAG ] SoftAdam [85]
AEGD [186] MADGRAD ] SRSGD [311]
ALI-G [29] MAS [173] Step-Tuned SGD [44]
AMSBound [196] MEKA ] SWATS [163]
AMSGrad [238] MTAdam [201] SWNTS [57]
AngularGrad [247] MVRC-1/MVRC-2 ] TAdam [140]
ArmijoLS [308] Nadam ] TEKFAC [91]
ARSG [57] NAMSB/NAMSG ] VAdam [164]
ASAM [171] ND-Adam [350] VR-SGD [266]
AutoLRS [150] Nero [192] vSGD-b/vSGD-g/vSGD-1 [259]
AvaGrad [256] Nesterov [221] vSGD-fd [258]
BAdam [252] Noisy Adam/Noisy K-FAC ~ [344] WNGrad [322]
BGAdam [18] NosAdam [135] YellowFin [346]
BPGrad [351] Novograd ] Yogi [340]
BRMSProp [7] NT-SGD [357]

BSGD [133] Padam ]
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called GrapienT DEscent (GD).”° This iterative first-order method
computes a new parameter estimate via

Update Rule 3.3.1 [GraDIENT DEscenT (GD)]

0+ =0 —nep, ., (3.19)

where 17 € R* is the step size or learning rate determining the update
size of each iteration and gp,,, is the gradient evaluated on all
training samples from Dyy,in. Determining an appropriate learning
rate presents a major challenge for deep learning, which we will
discuss in more detail in Section 3.4.

Using GD requires computing the gradient over the entire data set
for a single iteration of the optimization method. For large data
sets, this is computationally expensive and intractably slow. As
discussed in Section 3.2.1 one can also use an approximation of
the empirical gradient only using a single batch. This results in
an algorithm known as StocuasTic GRADIENT DEscenT (SGD),
where the update is performed by

Update Rule 3.3.2 [StocHASsTIC GRADIENT DESceENT (SGD)]

0" = 0" — ngpe . (3.20)

Here gg) denotes the gradient computed on the mini-batch drawn
atiteration t of the optimization routine."” If the batch size is chosen
appropriately one can obtain a reasonable approximation of the
true empirical gradient at a much cheaper cost of O(B) instead of
O(N). It is not unusual for contemporary data sets to have millions
or even billions of examples, yet successfully training a model is
possible using batch sizes on the order of fewer than a thousand
samples, i.e. B < N. This very effective reduction in cost makes
SGD one of the most popular optimization method for large-scale
machine learning and especially deep learning.

Momentum Methods

A known problem of SGD is that it oscillates when navigating
tight valleys or ravines [ 1.1 These landscapes are characterized
by having drastically different curvatures in different directions.
Figure 3.6 illustrates a two-dimensional loss function with one
high-curvature direction (—) and one low-curvature direction (—).
Considering only the component of the gradient pointing in the
direction of high curvature, we can observe that subsequent gradi-
ents repeatedly point in the opposite direction. For the direction of

15: GrADIENT DESCENT is often at-
tributed to Cauchy [45] but was most
likely independently invented mul-
tiple times.

[45] Cauchy (1847), “Méthode

générale pour la résolution des sys-
temes d’équations simultanées”

16: SGD can be traced back to Rob-
bins and Monro [242] with Kiefer
and Wolfowitz [165] describing the
method in its contemporary form.
[242] Robbins et al. (1951), “A
Stochastic Approximation Method”
[165] Kiefer et al. (1952), “Stochas-
tic estimation of the maximum of a
regression function”

17: Some
erature

works in the lit-

distinguish ~ between
StocHAsTIC GRADIENT DESCENT and
mini-batch gradient descent where
the former uses a single training
example to compute the gradient
estimate. In this work, we use
SGD and mini-batch gradient descent
synonymously, considering the
former a special case with B = 1.
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(a) SGD
00 T 4—
—0.5 A
-1.0 '__'4
-2 -1 0

(b) MoMENTUM

Figure 3.6: Illustration of
the difference between SGD
and MomenTtuM. (a) On a
two-dimensional deterministic
quadratic loss function with one
high-curvature (—>) and one
low-curvature direction (—) SGD
(=) oscillates heavily without much
progress towards the minimum ().
(b) MomentuM (=) accumulates
“velocity” in the low-curvature
direction and thus progresses
much more towards the minimum
compared to SGD.

[282] Sutton (1986), “Two prob-
lems with back propagation and
other steepest descent learning pro-
cedures for networks”

18: Valleys or ravines are also called
trenches, canyons, or canals in the lit-
erature.

19: There exist subtly different ver-
sions of the update rule for the
MoMENTUM optimization method.
PyTorcH, for example, uses a variant
where the learning rate is applied to
the momentum update v(®) instead
of applying it to the gradient which
can slightly alter the behavior when
learning rate schedules are used. A
common alternative description of
momentum is given by 8(t+1) =
0 —ngga +p(6" - 0¢~1).

low curvature, the situation is reversed. Here, successive gradients
point consistently in the same direction.

The observed learning signal in the low-curvature direction is
therefore very clear, while it is much more inconclusive in the high-
curvature direction. The magnitude of each Hessian eigenvalue
indicates the rate of change of the slope of the loss landscape in
the direction of its eigenvector, which makes it natural to trust the
gradient more in the low-curvature direction and thus take a larger
step. We can accomplish this by adding a "short-term memory" to
our update rule, which changes the update in each direction based
on the observation of past gradients: Y

Update Rule 3.3.3 [(Heavy Ball) MoMENTUM]

(3.21)
(3.22)

o® = pv(t_l) + 1gR®
ot = g(t) _ 5

The introduced parameter p € [0, 1) is called the momentum factor
that determines how much weight is given to older gradients and
how fast the information from older gradients decays. Common
values for p are 0.5,0.9,0.99 or even 0.999 [e.g., 99, 101], but it can
also be tuned similar to other optimization hyperparameters (see
Section 3.4.1) or even be scheduled [e.g., 273, 251, 311].
This optimization method was proposed by Polyak [230] and is
called (classical) MoMEeNTUM or heavy ball method due to relating
the update equation to momentum in physics.?’ Here, the newly
introduced variable v plays the role of the velocity with the negative
gradients at each iteration acting as a force moving the object
- the eponymous heavy ball - through the loss landscape. The
accumulation of successive gradients means that the MoMENTUM
optimizer will tend to keep traveling in the same direction. This
physics analogy can be helpful to gain an intuitive understanding
of how adding momentum affects the optimization trajectory. 2!

Nesterov [
momentum method described above. The resulting update rule is

] introduced a slight modification to the classical

now known as NesTEROv AcCELERATED GRADIENT (NAG) 22 and
is given by

Update Rule 3.3.4 [NEsTEROV ACCELERATED GRADIENT (NAG)]

B
o = pptD 4 T)% SIVel(F(x, 0 — potD),y0) (3.23)
P

g+ = g(t) _ 5t (3.24)
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Remembering that g = % Z?:l Vgﬂ(f(x(i), 0), y(i)) we can see
that the only difference between Update Rules 3.3.3 and 3.3.4
is where the gradient is evaluated (compare Equations (3.21)
and (3.23)). Since we know that we will use the velocity term
v®) to update the parameters, we can do this step first, and evalu-
ate the gradient at this point (see Figure 3.7).

In practice, the MomenTuM and NAG optimizers have been suc-
cessfully applied to deep learning. They tend to greatly improve
the training stability and speed of neural network training in par-
ticular for deep models using image data [e.g., 9, , 117, ,

, 284]. The observed improved performance over SGD on some
deep learning problems is often attributed to their ability to better
utilize small but consistent gradients, handle noisy gradients, and
navigate through ill-conditioned local loss landscapes.

AdaGrad

ApAGRAD (short for adaptive gradient method®®) introduced the
approach of re-scaling the learning rate element-wise. 2* Duchi
et al. [78] proposed to scale it inversely proportional to the square
root of the sum of the past squared gradient values:

Update Rule 3.3.5 [ADAGRAD]

s® = stD 4 guiy © gpoy (3.25)
oD =g - 1 g, (3.26)
s + ¢

where the square root and division are applied element-wise.
Here, the additional parameter ¢ > 0 is a small constant that was
originally introduced to avoid a division by zero.? This inverse
scaling results in a considerable decrease of the learning rate for
directions with large historic gradients and conversely relatively
moderate decline of the step size for directions with infrequent or
smaller gradients.

Originally, ADAGrAD was developed for convex optimization prob-
lems but has found application in the non-convex setting of deep
learning, for example for large-scale recommendation systems [219].
However, the accumulated squared gradients are always positive
which makes the denominator of the scaling continuously increase
during the training. Empirical results show that this results in a
too aggressive shrinking of the learning rate [101].

[99] Goh (2017), “Why Momentum
Really Works”

[101] Goodfellow et al. (2016), “Deep
Learning”

[273] Smith (2018), “A disciplined
approach to neural network hyper-
parameters: Part 1 — learning rate,
batch size, momentum, and weight
decay”

[281] Sutskever et al. (2013), “On the
importance of initialization and mo-
mentum in deep learning”

[311] Wang et al. (2020), “Scheduled
Restart Momentum for Accelerated
Stochastic Gradient Descent”

[230] Polyak (1964), “Some methods
of speeding up the convergence of
iteration methods”

20: (Classical) momentum, heavy ball
method, and Polyak’s momentum are
all names used for the method de-
scribed by Equation (3.22).

21: An alternative interpretation for
MowMeNTUM is based on assuming
that the step sizes are comparably
small. In this view, MoMENTUM accu-
mulates multiple batches of gradi-
ents and thus smoothes the gradient
updates, effectively using informa-
tion from a larger batch of gradients
for each parameter update.
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(a) Heavy Ball Momentum Update
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(b) Nesterov Momentum Update
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Figure 3.7: Illustration of the differ-
ent momentum updates. (a) In the
standard MomenTUuM method, the
gradient (—) is computed at the cur-
rent parameter position (0;). The
final update step (—) is a sum of
this gradient and the velocity step
(—). (b) NAG computes the gradient
(=) after applying the velocity step
(—). This results in a slightly differ-
ent update step (—) compared to the
classical MoMmENTUM since the gradi-
ents are evaluated at two different
locations.

[221] Nesterov (1983), “A method
for solving the convex program-
ming problem with convergence rate
O(1/k»)”

22: Nesterov accelerated gradient is
sometimes also called Nesterov mo-
mentum.

[9] Amodei et al. (2016), “Deep
Speech 2 : End-to-End Speech Recog-
nition in English and Mandarin”
[115] Heetal. (2017), “Mask R-CNN”
[117]He et al. (2016), “Deep Residual
Learning for Image Recognition”
[239] Redmon et al. (2016), “You
Only Look Once: Unified, Real-Time
Object Detection”

[281] Sutskever et al. (2013), “On the
importance of initialization and mo-
mentum in deep learning”

[284] Szegedy et al. (2015), “Going
Deeper With Convolutions”

23: The term adaptive gradient method
now usually subsumes all methods
that use an element-wise learning
rate, such as Apam or RMSProp.

RMSProp

The RMSPror algorithm (abbreviation of Root Mean Square Prop-
agation) proposed by Tieleman and Hinton [294]% tries to fix
the aggressive learning rate decay of AbAGrAD by introducing
an exponentially decaying average over the past squared gradi-

ents:

Update Rule 3.3.6 [RMSPror]

s(t) = ps(t_l) F (1 - p)gBa) OX 410 (3.27)
g+ — g(t) _ ++ O g - (3.28)
S &

This newly introduced decay rate p is usually set to 0.9 or 0.99.
An interesting variant of RMSPror was described by Graves [108]
which combines RMSProp with momentum. The RMSProp opti-
mizer has been applied to many deep learning problems, most
notably vision tasks [e.g., 131, , ].

Adadelta

ApapEeLTA [341] represents another method that was invented
to correct the aggressive learning rate schedule of AbaGrabp. It
was independently developed from RMSPror and includes the
same exponential moving average of the past squared gradients.
Additionally, it aims to replace the need for a manually defined
learning rate by using another exponential moving average, this
time of the squared parameter updates:

Update Rule 3.3.7 [ADADELTA]

s® = pst™ + (1 - p)gan © gpu (3.29)

d® = pd(t—l) o (1l — p)AZB (3.30)
Vd + ¢

Ag = S © gp® (3.31)

0+ = 90 — 1A . (3.32)

Here, we re-introduced the learning rate 1) that can be set to 1.0 to
recapture the original formulation. Empirically, it turned out that
ApaDpEeLTA Was not able to completely replace the need for tuning
learning rates and many popular deep learning frameworks offer
a learning rate for ApaDELTA as well.
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Adam

The Apam optimizer (derived from adaptive moment estimation) uses
estimates of the first and second moments of the gradients and can
be viewed as an extension of RMSPror [166].

Update Rule 3.3.8 [Apam]

m® = pymV + (1 - B1)ggo (3.33)
o = ‘Bzv(t_l) + (1 - B2)gr» © gpo (3.34)
(*)
m® =M (3.35)
1-— t
1
()
5 = 2 (3.36)
1-p
gt — g T om0 (3.37)
o0 + ¢

Compared to the RMSPropP optimizer, Apam includes momentum
and a bias correction for the two exponential moving averages.
Both the estimates of the first moment (the momentum term, Equa-
tion (3.33)) and of the (raw) second moment (see Equation (3.34))
are usually initialized by zero. This could result in a high bias early
during training when this initialization still has a considerable
effect compared to the observed gradients. Apam addresses this by
adding bias corrections for both estimations (see Equations (3.35)
and (3.36)).

Apawm uses two separate exponential decay rates denoted 1 and
B2 for both moving averages. Although this requires additional
hyperparameters, Apawm is often said to require less tuning, partly
because there are well-working default values for all hyperpa-
rameters [e.g., 101, 271]. Kingma and Ba [166] suggest 1072 for the
learning rate 17, 1 = 0.9, f2 = 0.999, and ¢ = 1078. Nevertheless,
for many practical applications tuning the learning is still helpful
and tuning 81, B2, or even ¢ has shown to offer further performance

gains [e.g., 60].

The Apam optimizer remains one of the most popular choices
for deep learning. It has found strong application for training
GAN:Ss [e.g., , , y ] and in natural language model-
ing [e.g., 42,72, ]. Apawm is often said to generalize worse than
SGD [e.g., 163, 318], but it has not been proven or explained con-
clusively and the debate on the generalization performance of
adaptive optimizers continues [e.g., 5, 1.

24: An analogous view is to inter-
pret these adaptive methods as chang-
ing the update direction or using a
diagonal preconditioner.

[78] Duchi et al. (2011), “Adaptive
Subgradient Methods for Online
Learning and Stochastic Optimiza-
tion”

25: Recently, the e¢-parameter has
been re-interpreted as a tunable hy-
perparameter. See the discussion in
Section 6.2.3. Note, that depending
on the implementation, ¢ is some-
times included in the square root.
This also extends to other optimiza-
tion algorithms with ¢-like parame-
ters.

[219] Naumov et al. (2019), “Deep
Learning Recommendation Model
for Personalization and Recommen-
dation Systems”

[101] Goodfellow et al. (2016), “Deep
Learning”

[294] Tieleman et al. (2012), “Lecture
6.5—RMSProp: Divide the gradient
by a running average of its recent
magnitude”

26: The RMSPropr method was fa-
mously presented as part of a
Coursera slide and is unpublished.
Nevertheless, it is one of the most
popular optimization methods for
deep learning and the slides accu-
mulated roughly 5.000 citations up
until now.

[108] Graves (2013), “Generating Se-
quences With Recurrent Neural Net-
works”

[131] Howard et al. (2019), “Search-
ing for MobileNetV3”

[283] Szegedy et al. (2017),
“Inception-v4, Inception-ResNet
and the impact of residual connec-
tions on learning.”

[288] Tan et al. (2019), “EfficientNet:
Rethinking Model Scaling for
Convolutional Neural Networks”
[341] Zeiler (2012), “ADADELTA: An
Adaptive Learning Rate Method”

[166] Kingma et al. (2015), “Adam:
A Method for Stochastic Optimiza-
tion”

[101] Goodfellow et al. (2016), “Deep
Learning”

[271] Sivaprasad et al. (2020), “Op-
timizer Benchmarking Needs to Ac-
count for Hyperparameter Tuning”
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[166] Kingma et al. (2015), “Adam:
A Method for Stochastic Optimiza-
tion”

[60] Choi et al. (2019), “On Empiri-
cal Comparisons of Optimizers for
Deep Learning”

[158] Karras et al. (2018), “Progres-
sive Growing of GANSs for Improved
Quality, Stability, and Variation”
[159] Karras et al. (2020), “Analyzing
and Improving the Image Quality of
StyleGAN”

[233] Radford et al. (2016), “Unsu-
pervised Representation Learning
with Deep Convolutional Genera-
tive Adversarial Networks”

[360] Zhu et al. (2017), “Unpaired
Image-To-Image Translation Using
Cycle-Consistent Adversarial Net-
works”

[42] Brown et al. (2020), “Language
Models are Few-Shot Learners”
[72] Devlin et al. (2019), “BERT: Pre-
training of Deep Bidirectional Trans-
formers for Language Understand-
ing”

[307] Vaswani et al. (2017), “Atten-
tion Is All You Need”

[163] Keskar et al. (2017), “Improv-
ing Generalization Performance by
Switching from Adam to SGD”
[318] Wilson et al. (2017), “The
Marginal Value of Adaptive Gradi-
ent Methods in Machine Learning”

[5] Agarwal et al. (2020), “Revisiting
the Generalization of Adaptive Gra-
dient Methods”

[354] Zhou et al. (2020), “Towards
Theoretically Understanding Why
SGD Generalizes Better Than Adam
in Deep Learning”

[76] Dozat (2016), “Incorporating
Nesterov Momentum into Adam”

[238] Reddi et al. (2018), “On the
Convergence of Adam and Beyond”

NAdam

Building on Apawm, Dozat [
NAG into the Apam optimizer. We can extend the update rule of
Apam (Equation (3.37)) by including Equations (3.33) and (3.35),
resulting in

] presented Nabpam which introduces

ﬁlm(t_l)
1- 6

Intuitively, we can see, that we are effectively still using the “old”
momentum term m~Y). Replacing it with the current momentum

N (1-p1)gso

o+ — gt) _ n t
1-p;

o) + ¢

(3.38)

vector m®) lets us introduce the accelerated momentum of NAG
into Apam, where the only change to its update rule is replacing
Equation (3.37) by

g+ — g _ __"1
o) + ¢

1 —
1ﬁ1(t)+( B1)8w®

g (3.39)

o8

AMSGrad

Reddi et al.
of Apam and constructed an example where Apam converges to a

] identified an issue with the convergence proof

highly sub-optimal solution. The effective learning rate of Apam
is given by 1/v5® + ¢. As a result, if ") decreases, the learning rate
increases, which can lead to poor convergence in certain settings.
AMSGRAD aims to fix this problem by not allowing v*) to decrease.
Adding this operation, the full update rule for AMSGRaD is given

by:

Update Rule 3.3.9 [AMSGRAD]

m®) = pym Y + (1 - B1)ggo (3.40)
o) = 527;(t_1) +(1-B2)gr® © gro (3.41)
()
S — M t (3.42)
1-B;
o = max(vtV, 0®) (3.43)
()
5 = Y t (3.44)
1 —
2
g+l —gth _ 1 a0 (3.45)

o0 + ¢
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AdaBound and AMSBound

An often stated observation is that adaptive optimization methods,
e.g. Apawm, generally offer fast progress. However, non-adaptive
methods such as SGD are said to reach a better final performance,
especially when measured on unseen data [e.g., 163, 318]. Luo
et al. [196] presented AbABounp and AMSBounDp as variants
of Apam and AMSGRraD respectively. By applying bounds to the
learning rates they could effectively smoothly transition from the
adaptive methods to SGD. The proposed methods clip the effective
learning rate — computed by either the Abam or AMSGRraAD update
rule — by a lower and an upper bound function. These bounding
functions are designed such that they start at zero and infinity,
respectively, and smoothly converge to a constant final learning
rate. For either Abam or AMSGRAD we can replace the update rule
to get AbaABounp or AMSBounbD:

Update Rule 3.3.10 [ApaABounp and AMSBounD]
Given the update rule of Abpam (Update Rule 3.3.8) or AMSGRAD
(Update Rule 3.3.9), modifying the final equation by

f](f) = clip (11 Vo + e, mi(t), qu(t)) (3.46)
6(t+1) — e(f) _ ﬁ(t) ® m(t) , (3.47)

results in the update rule of AbaABounp or AMSBounD, respec-
tively.

The function n;(t) is non-decreasing and starts from zero att = 0
and converges to some final learning rate n* with convergence
speed y. Analogously, ny(f) is a non-increasing upper bound
starting from infinity and converging to the same final learning
rate. Luo et al. [196] offer default bounding functions and state that
this bounding is designed to make their method more robust to

extreme learning rates.

Lookahead

The LookaHEAD optimizer [349] keeps two separate sets of param-
eters, called fast and slow weights. The update direction of the slow
weights 0(*) is chosen by “looking ahead” a few optimization steps
with the fast weights ¢*).” The update step of the fast weights
A¢®) is determined by an arbitrary inner optimization method, e.g.
by MomenTuM which we will denote LA(Mowm.) or using RApam to
get LA(RApawm) also called RANGER [
performs k steps of the inner update

]. Effectively LookAHEAD

(P(t) - (P(t) + A(P(t) , (3.48)

[163] Keskar et al. (2017), “Improv-
ing Generalization Performance by
Switching from Adam to SGD”

[318] Wilson et al. (2017), “The
Marginal Value of Adaptive Gradi-
ent Methods in Machine Learning”

[196] Luo et al. (2019), “Adaptive
Gradient Methods with Dynamic
Bound of Learning Rate”

[196] Luo et al. (2019), “Adaptive
Gradient Methods with Dynamic
Bound of Learning Rate”

[349] Zhang et al. (2019), “Looka-
head Optimizer: k steps forward, 1
step back”

27: The symbols for the fast and
slow weights are reversed compared
to the original paper to be consistent
with the rest of the chapter. Here,
0 denotes the parameters that are
used, e.g. when performing infer-
ence.

[321] Wright (2020), “Ranger”
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28: Naturally, LookaHEAD also in-
herits the hyperparameters of the
inner optimizer. We will denote the
learning rate of the inner optimizer
with 7)¢ to emphasize that it refers to
the update of the fast weights.

[189] Liu et al. (2020), “On the Vari-
ance of the Adaptive Learning Rate
and Beyond”

[198] Ma et al. (2021), “On the Ad-
equacy of Untuned Warmup for
Adaptive Optimization”

with the update step Aqb(t) determined by the inner optimizer.28

Following k updates of the fast weights, LookaHEAD performs the
outer update of the slow weights:

Update Rule 3.3.11 [LookAHEAD]

o+ — g 4 77(¢(t) _ Q(t)), (3.49)

After this update step in the direction where the fast weights have
moved after k updates, the fast weights are reset to the current
slow weights to be able to “explore” and “lookahead” for another
k steps.

RAdam

Liu et al. [159] noticed that during the very early stages of training
Apam’s adaptive learning rate can exhibit a large variance caused
by the small number of training samples processed so far. They
show that adding a heuristically inspired learning rate warmup
can help not only reduce this large variance but also lead to
improved convergence behavior. They propose RApam (derived
from rectified Apam) a variation of Apam that aims to have a
consistent variance.

Update Rule 3.3.12 [RApam]
RApam adapts the update rule of Abam (Update Rule 3.3.8) by

poo =2a-p) =1 (3:50)

p® = peo — 2t/ - ) (3.51)

w(t) _ (p(t) B 4)(P(t) B Z)POO (3.52)
(Poo —4)(poo — 2)p®

o) — o) _ 01 o p®) (3.53)

o) + ¢

where Equation (3.53) is only used if the variance of the adap-
tive learning rate is tractable. If p*) < 4, then the variance is
intractable and RApaw falls back to regular momentum, replacing
Equation (3.53) with

o+ — g _ nm(t)_ (3.54)

Ma and Yarats [195] state that RApam essentially performs four
steps of SGD with MomenTuwm, followed by Apam with a fixed
warmup schedule. Their analysis suggests that using Apam with a
linear learning rate warmup scheduled over 2(1 — §,)! iterations
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is functionally equivalent to using RApam for many practically
relevant settings.

AdaBelief

Zhuang et al. [36]1] propose a slight modification to the Apam
algorithm, where instead of estimating the raw second moment
(see Equation (3.34)), they compute the second central moment,
the variance. This variance describes how much the past gradients
in each batch deviate from the current direction, i.e. viewing the
momentum term m as the current prediction of the true gradient.
This describes how much one can “belief” this estimator. The full
update rule of the suggested method called ApDABELIEF can be
written as

Update Rule 3.3.13 [ADABELIEF]

m") = Bim" =V + (1 - B1)ggw (£:58)
o2
S(t) = 25(t_1) + (1 = 2) ) — m(t) (356)
by}
()
S - M t (3.57)
1- 1
()
s = S t (3.58)
1-p,
o g _ T om0 (3.59)
80 + ¢

Observing large and consistent gradients would then result in a
large momentum term and a small variance which would conse-
quently result in a large adapted learning rate. Conversely, an ob-
servation of large, but opposing gradients would cause ADABELIEF
to reduce the step size. Since Abam does not take into account the
sign of the gradients when computing the second raw momentum,
it would treat both cases similarly, selecting a small learning rate
in both cases.

Other

Two first-order methods that enjoy popularity in the regime of
large batch sizes, are LARS and LAMB. You et al. [334] noticed
that when using large batch sizes one also needs to use large
learning rates and training can become unstable. In those cases the
ratio between the norm of the parameter updates and the norm
of the parameters is large. To alleviate this, they proposed LARS
(short for Layer-wise Adaptive Rate Scaling) which uses a layer-wise
learning rate A() in addition to the regular global learning rate

[361] Zhuang et al. (2020), “Ad-
aBelief Optimizer: Adapting Step-
sizes by the Belief in Observed Gra-
dients”

[334] You et al. (2017), “Large
Batch Training of Convolutional Net-
works”



Chapter 3 Stochastic Optimization

29: To avoid overloading the nota-
tion, Equation (3.62) describes the
parameter update only for a single
layer, i.e. here 0 denotes only the
parameters belonging to layer I.

[335] You et al. (2020), “Large Batch
Optimization for Deep Learning;:
Training BERT in 76 minutes”

[215] Nado et al. (2021), “A Large
Batch Optimizer Reality Check: Tra-
ditional, Generic Optimizers Suffice
Across Batch Sizes”

[194] Loshchilov et al. (2019), “De-
coupled weight decay regulariza-
tion”

n so that the parameter update is independent of the gradient
magnitude. For a single layer /, the update rule of LARS can be

written as?’

Update Rule 3.3.14 [LAMB]

Ao 2 1991 (3.60)
llgao)

o® = potD 4 nADge, (3.61)

g+ — g(t) _ () (3.62)

LAMB (short for Layer-wise Adaptive Moments) [335] uses a very
similar strategy of normalizing the parameter updates but applies
it to Apam instead. Although LARS and LAMB are popular choices
when working in the regime of large batch sizes, Nado et al. [215]
showed that with careful tuning traditional optimization methods
such as NAG or Apam can achieve the competitive results of LARS
and LAMB even when operating with large batch sizes.

Often the terms weight decay and L? reqularization are used in-
terchangeably (see Section 2.3.1). Loshchilov and Hutter [194]
clarified that while, up to reparameterization of the regularization
strength, this is the case for SGD, it is not correct for Apam. Adding
weight decay to Apam results in a new optimization method called
ApamW that explicitly does a weight decay step when updating
the parameters

Update Rule 3.3.15 [ApamMW]

om® +100] .

(3.63)
o) + ¢

ot = () _ n

Here, compared to Apawm, the regularization of strength A enters
via the parameter updates instead of modifying the gradient via
g0 = 5 20, Vol(fo) + A6.

Second-order Methods

The benefits of using second-order derivative information in the
form of the Hessian are obvious. Using additional curvature
information can more accurately describe the (local) loss landscape,
making it easier to navigate it efficiently. Turning back to the
example that motivated MomenTUM (Figure 3.6), we can see that
SGD’s optimization issues arose from the drastic variation in
curvature for different directions. In this case, a method with
access to Hessian information could predict that the direction
of steepest descent does not provide the most promising update
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direction. Because of the difference in curvature, which is apparent
in the Hessian, the update direction could instead be shifted
more towards the direction of low curvature and thus toward the
minimum.

An additional advantage of second-order methods, that goes
beyond the more effective navigation in ill-conditioned problems, is
their possibility of reducing the need for hyperparameter selection.
This can be motivated by taking the second-order Taylor series
expansion of the loss L near 0

LO)~ L) +(0-6) g+ (0-6) H(0-6),

(3.64)
where g and H are the gradient and Hessian of L at the point 0.
Selecting 0 to minimize Equation (3.64) results in an update rule
known as NEWTON’s METHOD:

Update Rule 3.3.16 [NEwWTON’S METHOD]

0=0-H'g. (3.65)
If the loss function L is a deterministic positive definite quadratic
function, NEwroN’s METHOD Will find the exact minimum in a single
step.V If L is not quadratic, we can still use NEwToN’s METHOD by
iteratively applying Equation (3.65) as long as the Hessian remains
positive definite. However, additional steps and hyperparameters
are needed to account for the non-convexity of the loss landscape.

Comparing Equations (3.20) and (3.65) we can see that the inverse
Hessian H! replaces the learning rate 7. Looking at it geomet-
rically, we can see that at each iteration NEwToN’s METHOD fits a
parabola to the loss L(6) and then steps to this parabola’s mini-
mum. Using only the gradient, we are effectively using a first-order
approximation of the loss, which does not have a minimum and
we instead have to manually select a step size.!

Despite these clear advantages, second-order methods face many
practical challenges when it comes to deep learning. For a neural
network with D parameters, the Hessian matrix of the loss with
respect to the network’s parameters consists of D X D elements. For
modern models which can easily have millions of parameters, it is
infeasible to represent the entire Hessian, much less compute its
inverse at the costs of O(D?). Although using curvature information
can lead to requiring fewer iterations to reach an acceptable solution,
each iteration is more expensive to compute.

Luckily, we do not need to explicitly form the Hessian, since
we only ever use matrix-vector products of its inverse with a
vector (see Equation (3.65)). Instead of computing the parameter

30: NEwTON’s METHOD is a spe-
cial case of the Newton-Raphson
method for finding roots of real-
valued functions. Applying the
Newton-Raphson method to the gra-
dient of a function results in
NewTON’s METHOD described here.
Although both the Newton-Raphson
method and NEWTON’s METHOD are of-
ten attributed and indeed named
after Sir Isaac Newton, it is gener-
ally agreed upon that closely related
techniques were invented much ear-
lier and most likely multiple times
independently.

31: Alternatively, you can view first-
order methods as estimating the
Hessian via H ~ 1/yI.
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[202] Martens (2010), “Deep learn-
ing via Hessian-free optimization.”
[224] Nocedal et al. (2006), “Numer-
ical Optimization”

32: In the worst case, CG will con-
verge after D iterations, thus requir-
ing D matrix-vector products of the
Hessian. In practice, it is more effi-
cient to only use a few iterations of
CGin each training iteration and use
this approximate solution instead of
waiting for convergence of the CG
method. Since this inner solver is
truncated this method is known as
truncated-Newton.

[229] Pearlmutter (1994), “Fast Exact
Multiplication by the Hessian”
[264] Schraudolph (2002), “Fast Cur-
vature Matrix-Vector Products for
Second-Order Gradient Descent”
33: Adaptive gradient methods
such as ApaGraD can be seen as
performing a diagonal approxima-
tion of the Hessian. For example,
1/ys + ¢ in Equation (3.26) takes the
role of the diagonal of the Hessian
approximation.

34: Here, we use D for a generic data
set as it is true for both the empirical
training data set D = Dyrain as well
as a single batch D = B.

35: To simplify the notation, we ig-
nored the dependency of the loss
function on y and of the model on x
as they are irrelevant for construct-
ing the Hessian with respect to the
parameters 0.

update AO via this matrix-vector product, we can instead solve
the linear system HAO = —g, e.g. using the CONJUGATE GRADIENT
method (CG). Solving this system using CG only requires matrix-
vector products between the Hessian matrix H and an arbitrary
vector v and is therefore known as Hessian-free optimization [e.g.,

, ].3? For neural networks, we can leverage the automatic

differentiation functionality to efficiently compute Hv at the cost of
only a single additional forward and backward pass [229, 264].

Instead of using the exact Hessian in Equation (3.65), quasi-
Newton methods use approximations thereof to reduce the com-
putational cost per iteration. These approximations can, for ex-
ample, be in the form of (block-)diagonal, or low-rank approx-
imations which allow efficient inversion or be based solely on
first-order information.3> One approximation comes in the form of
the generalized Gauss-Newton matrix.

Generalized Gauss-Newton

Remember that the Hessian of the loss is given by

D]

V2 Lo(fo) = ] 2 Z Val(f(x?,0),y7). (3.66)

This requires the computation of the Hessian of a composition
of two functions, the model function f with f : RP — RM
and the loss function ¢ with £ : RM — R. Here, M is given by
the dimensionality of the network’s output that is subsequently
processed by the loss function. In image classification, for example,

the model function would output the (log) probability prediction
for each class thus M would be the number of classes.

We can re-write the Hessian matrix using the chain rule twice and
the product rule once into:3

[V3e(F(0))],

J 9 & 9 (9Uf(8)) Ifm
" 96; 26, /(0) = Z%( 0 fm a_el-)

M9 [(IUf(O)\ Ifu L I(f(O) I fu
( fim )aa 4 79f, 96,06

4 96;
(M *U(f(0)) Ifu | Ofw L IU(f(0) I*fu
of,

M

okt

=1

Ofudfa 90| 96; fm 90,00

M 9fn *(f(0) XL 9U(f(8) I*fu
m=1 20, 8fm 8fn afm aej d0; '

(3.67)

=
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Written in matrix notation

M
V3UF(O) =T THLT )+ > [Vl Vafu,
. m=1
=G

(3.68)

where ]g " is the M x D Jacobian of f and Hji the M x M Hes-
sian of the loss with respect to f. The generalized Gauss-Newton
(GGN) [e.g., ] matrix G is defined to be the first term of this
expression and provides an approximation of the Hessian. If the
second term vanishes then the GGN matrix is identical to the
Hessian. Crucially, the GGN matrix only models the Hessian of
the (outer) loss function ¢ but ignores the curvature introduced
by f. Note, the “split” between the inner function f and the outer
function £ is ambiguous and there exist multiple different approxi-
mations that can be called GGN that incorporate different amounts
of the overall curvature depending on the chosen split.

Second-order Methods for Deep Learning

Several notable second-order methods have been developed for
large-scale machine learning and in particular deep learning,
including L-BFGS [154], K-BFGS [100], K-FAC [203], KFRA [35],
], or ADAHESSIAN [333]. Nevertheless, first-
order methods still dominate in most deep learning applications.

Suamroo [10,

But this may also be due to the fact that the widely-used software
libraries, the available hardware, and even the models themselves
have been designed with these first-order methods in mind and
co-evolved with them. Naturally, this turns the adoption of second-
order methods into an uphill battle.

Hyperparameter Tuning

In machine learning, we are often confronted with hyperparame-
ters. Parameters and hyperparameters differ in that the former can
be derived during training, e.g. via gradient-based optimization
methods. Hyperparameters, on the other hand, describe the model
family or control the training process itself and cannot directly be
inferred during training. These hyperparameters are usually clas-
sified as model hyperparameters or Training hyperparameters>®. Model
parameters influence the model architecture, e.g. the number of
layers in a neural net, the number of neurons in a layer, or the type
of activation functions used. Training hyperparameters include the
learning rate, batch size, or other hyperparameters exposed by the
selected optimization algorithm but even the training algorithm
itself can be considered a hyperparameter. In this work, we focus

[264] Schraudolph (2002), “Fast Cur-
vature Matrix-Vector Products for
Second-Order Gradient Descent”

[184] Liu et al. (1989), “On the
Limited Memory BFGS Method for
Large Scale Optimization”

[100] Goldfarb et al. (2020), “Prac-
tical Quasi-Newton Methods for
Training Deep Neural Networks”

[203] Martens et al. (2015), “Op-
timizing Neural Networks with
Kronecker-Factored Approximate
Curvature”

[35] Botev et al. (2017), “Practi-
cal Gauss-Newton Optimisation for
Deep Learning”

[10] Anil et al. (2020), “Second Order
Optimization Made Practical”

[110] Gupta et al. (2018), “Sham-
poo: Preconditioned Stochastic Ten-
sor Optimization”

[333] Yao et al. (2020), “ADAHES-
SIAN: An Adaptive Second Order
Optimizer for Machine Learning”

36: Training hyperparameters are
sometimes called algorithm hyperpa-
rameters or optimization hyperparame-
ters
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37: Of course, we can also use other
performance metrics besides the
loss to evaluate our hyperparam-
eter choice. The advantage is that
the metrics used for model selection
or hyperparameter tuning need not
be differentiable. Therefore, metrics
such as accuracy or FID can be used
that may more accurately describe
what we consider a “better” model.
[25] Bengio (2012), “Practical recom-
mendations for gradient-based train-
ing of deep architectures”

[36] Bottou (2012), “Stochastic gradi-
ent descent tricks”

[273] Smith (2018), “A disciplined
approach to neural network hyper-
parameters: Part 1 — learning rate,
batch size, momentum, and weight
decay”
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Figure 3.8: Illustration of grid
search. For each hyperparameter, 6
different values are tested in the reg-
ularly spaced interval [0, 10] for a
total of 36 samples (3). The true ob-
jective function is shown by the con-
tour plot in the background.

38: Grid search is sometimes also
called parameter sweep.

on the study of optimization methods for training deep neural
networks and will, therefore, focus in this section mostly on the
training hyperparameters.

Regular model parameters are set directly by gradient-based learn-
ing methods during training, which is impossible or impractical to
do for hyperparameters. We can, however, compute the loss that
was achieved by a specific hyperparameter, such as a particular
choice of batch size.?” Searching for the hyperparameter setting
that provides the best performance on a validation set is known as
hyperparameter tuning and we describe examples of tuning meth-
ods in the next section. In practice, hyperparameters are usually
set by a combination of tuning and expertise.

The choice of hyperparameter can drastically affect the final model
performance. As a result, there exist many heuristics suggesting
how to set certain hyperparameters [e.g., 25, 36, ]. The learning
rate, for example, is often suggested to be set as large as possible
without resulting in the training diverging. Similarly, the batch size
is often set to fully utilize the GPU memory. There exist many more
and oftentimes much more intricate heuristics, such as adding
a learning rate warm-up to the training process (Section 3.4.3)
or different optimization methods that supposedly perform bet-
ter in certain areas (see Section 6.3). Further complicating the
hyperparameter choice is the fact that the optimal value of one
hyperparameter often depends on the selected value of another
hyperparameter. The optimal learning rate, for example, varies for
different choices of batch size. When combining all of these prop-
erties, it is no wonder that machine learning is often considered
more of an art than a science.

Tuning Methods

Hyperparameter tuning aims to find the specific choice of hyper-
parameters that results in the best performance, as measured by
some performance metric. In this section, we will only focus on
three common hyperparameter tuning approaches, grid search,
random search, and Bayesian optimization.

» Grid search (Figure 3.8): A straightforward approach to hy-
perparameter tuning is to try out a large number of possible
values across a grid.

This method requires a user-defined search space, e.g.
searching for learning rates in the interval [107%,10'] on a
logarithmic grid or trying batch sizes on the grid points
{16,32,64,128,256,512}. Grid search® then performs an
exhaustive search, trying out all possible combinations and
ranking them via the pre-defined performance measure,
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e.g. the accuracy on the validation set. The advantages of
grid search are that it is easily parallelizable as the runs
are independent. If enough computational resources are
available so that all runs can be run in parallel, grid search
provides an exhaustive search of the search space with
a waiting time equal to the training time of a single run.
Grid search scales exponentially with the search space’s
dimensions and can be inefficient since the set of suggested
hyperparameter values is independent of the problem and
the resulting performance landscape with respect to the
hyperparameters.

» Random search (Figure 3.9): Random search replaces the
grid points from grid search with randomly selected points.
Random search shares most of its advantages and disad-
vantages with grid search. However, it can outperform grid
search in cases where only a small number of the tuned
hyperparameters significantly affect the final performance.
In this case, random search offers better coverage of the
relevant dimensions [27].

» Bayesian optimization (Figure 3.10): In contrast to the other

methods, Bayesian optimization attempts to build a proba-
bilistic model of the performance landscape with respect to
the hyperparameters.
It iteratively evaluates promising hyperparameter settings
and updates the current model based on the newly observed
results. Contrary to grid or random search, Bayesian opti-
mization adapts to the given problem and is generally con-
sidered to require fewer evaluations to find well-performing
settings, due to its ability to reason about promising hyperpa-
rameter candidates. Bayesian optimization is inherently less
parallel as it requires the results of previous experiments to
update the current model. It also often introduces new hyper-
parameters such as the acquisition function®®, the prior40, the
kernel of the modeling function?!, etc. Examples of contem-
porary hyperparameter tuning approaches using Bayesian
optimization are SMAC [138], TPE [26], SPEARMINT [276], and
BOHB [53].

Self-Tuned Methods

An alternative, to setting the hyperparameters via external tun-
ing methods, is to use internal self-tuning methods. Instead of
effectively trying out several hyperparameter settings in a trial-
and-error fashion, self-tuned methods aim to find an appropriate
hyperparameter setting automatically during training. A prime
example of such methods are line-search approaches for setting the
learning rate of gradient-based training methods. Instead of trying

10 ’.1

0 5 10

Figure 3.9: Illustration of random
search. In total, 36 random samples
(%) are drawn uniformly. Compared
to grid search, more different values
for each hyperparameter are tested.

[27] Bergstra et al. (2012), “Random
Search for Hyper-Parameter Opti-
mization”

10 S

0 5 10

Figure 3.10: Illustration of Bayesian
optimization. Based on the previous
observations, Bayesian optimization
methods adapt to the objective func-
tion. It can be observed that this tun-
ing method exploits the local maxi-
mum in the top right (darker blue)
more than the two previous meth-
ods. Shown are 36 samples (%) that
were computed sequentially.

39: The acquisition function formal-
izes the trade-off between explo-
ration (trying out hyperparameter
settings with large uncertainty) and
exploitation (suggesting hyperpa-
rameters close to areas that have
proven to work well).

40: The prior defines the initial (un-
informed) modeling function.

41: Loosely speaking, the kernel de-
scribes the family of modeling func-
tions.
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out multiple constant learning rates and running them for an entire
training run, line-search approaches, test multiple learning rates
in each update iteration of the optimization algorithm. Line-search
approaches usually come with an acceptance condition that needs
to be fulfilled for an update step to be accepted, such as a need to
reduce the loss compared to the initial point of the iteration.

While self-tuned methods remove or at least reduce the need
for external hyperparameter tuning, they usually come with an
increased cost of a single training run. Especially in deep learning,
self-tuned methods often result in inferior performances compared
to extensively tuned models, albeit at a much smaller total cost.
Several self-tuned methods have been suggested for deep learning,
to among other things adaptively set the learning rate [e.g., 150,

, , , , ], the batch size [e.g., 21, 43, 67], or the
momentum parameter [e.g., 172, ].

Learning Rate Schedules

Besides tuning constant hyperparameters, it can also be beneficial
to schedule them so that their value changes during the training
process. Currently, this is most commonly done for the learning
rate, which is often decayed following some learning rate schedule.
The idea is that if the learning rate remains constant, one might end
up bouncing around the minimum at the end of the optimization
process in a state of diffusion, instead of reaching the optimum.
Decreasing the learning rate in the end, empirically tends to
improve the final performance. Table 3.2 provides an overview of
commonly used parameter schedules.

Scheduled hyperparameters are one of the more extreme cases
of decisions that deep learning practitioners have to deal with
when training neural networks. The previous sections presented
numerous optimization algorithms, each with their own set of
hyperparameters, which can be tuned using different tuning meth-
ods. It is not meant as an exhaustive list of all possible options
but showcases the agony of choice that one faces in practice in
deep learning. Subsequent chapters use thorough benchmarking
experiments (Chapters 5 and 6) and specialized debugging tools
(Chapter 7) to investigate which of these choices are critical to
ensure successful model training, how these choices affect the
training process and thereby attempt to bring some order to this
ever-growing list of methods.
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Table 3.2: Overview of commonly used parameter schedules. Note, while we list the schedules parameters, it isn’t clearly
defined what aspects of a schedule are (tunable) parameters and what is a-priori fixed. In this column, g denotes the
initial learning rate, 171, and 7yp the lower and upper bound, At indicates an epoch count at which to switch decay styles,
k denotes a decaying factor.

Name Ref. Illustration Parameters
Constant 1o
Step Decay constant factor —_ no, At1, ..., k
multi-step no,At1, ..., k,...
Smooth Decay linear decay [e.g., 101] x 10, (At, Mio)
polynomial decay \ 10, k, (Mo)
exponential decay ¥ no, k, (Mo)
inverse time decay [e.g., 36] \ no, k, (Nio)
cosine decay [193] \ 10, (Mo)
linear cosine decay [24] \ 10, (Mo)
Cyclical triangular [272] /\/\/\/\ Mo, Nup, At
triangular [272] /\/\/\/\ Mo, Tup, At, k
+ decay
triangular [272] /\/\/\/\ Mo, Nup, At
+ exponential decay
cosine [193] \\\\ Nup, At, (1M1o)
+ warm restarts
cosine [193] \ Nup, At, k, (M1o)
+ warm restarts \\
+ decay
Warmup constant warmup le.g., 117] - Mo, 0, At
gradual warmup [105] / 10, At, (M)

gradual warmup
+ multi-step decay

)
|

1o, At, Ats‘ceps, ki, ..., (mo)

gradual warmup [207] /\ 10, At, (o)

+ step number decay

slanted triangular [132] /\ 10, At, (o)

long trapezoid [330] / \ 10, Atup, Atdown, (1Mo)
Super-Convergence  Icycle [274] /\ Nup, AE, Atcutoft, (1Mio)







Deep Learning

Artificial neural networks (ANNSs)! are the machine learning model
used in deep learning and are inspired by biological neurons, e.g.
the human brain [118, , ]. In recent years, neural networks
have shown to be a particularly successful class of models which
allowed unprecedented accomplishments in a number of fields [e. .,

, 170, 268]. Thanks to the availability of large amounts of data,
increasing computing powers especially via GPUs, and algorithmic
improvements, neural networks are state of the art for tasks such as

speech recognition, image classification, or machine translation.

In this chapter, we take a look at what neural networks are (Sec-
tion 4.1), which typical layer types are used (Section 4.2), and how
these layers can be combined to form common neural network
architectures for different machine learning tasks (Section 4.3).

Artificial Neural Networks

Artificial neural networks are a family of machine learning models
mapping from an input space X C R! non-linearly to an output
space Y C RC. A neural network consists of numerous artificial
neurons that usually take multiple incoming signals and produce
a single output signal. The output signal might be broadcast to
multiple other neurons. Typically, an artificial neurons computes a
weighted sum of its incoming signal which is then passed through
a non-linear activation function. Mathematically, a single neuron
can be expressed as

2 = (072 1 p), (4.1)
[

= f(out)

where z(" € R"n is the vector of all incoming signals to the neuron,
0 € R"in are the weights of each input connection, b € Risa bias?,
and ¢ : R — R is the activation function. With 2(°"Y we denote
the result of the neuron prior to computing the activation, the
so-called pre-activation.

The modeling power of neural networks arises from combining
many of those neurons in an acyclical computational graph. It
is common to not count the number of neurons, i.e. the nodes
of the graph, but the number of parameters, i.e. the edges of
the graph®. Modern neural networks frequently have millions of

4.1 Artificial Neural Net-
works . ... ... ... 59

4.2 Neural Network Layers 64
4.3 Common Architectures 72

1: Artificial neural networks are of-
ten abbreviated simply as neural net-
works (NNs) or just neural nets.

[118] Hebb (1949), “Organization of
Behavior”

[204] McCulloch et al. (1943), “A log-
ical calculus of the ideas immanent
in nervous activity”

[245] Rosenblatt (1958), “The percep-
tron: a probabilistic model for infor-
mation storage and organization in
the brain.”

[154] Jumper et al. (2021), “Highly ac-
curate protein structure prediction
with AlphaFold”

[170] Krizhevsky et al. (2012), “Ima-
geNet Classification with Deep Con-
volutional Neural Networks”

[268] Silver et al. (2016), “Mastering
the game of Go with deep neural
networks and tree search”

2: To lighten the notation, we will
sometimes drop the bias as it can be
handily integrated into the weights,
by adding an additional incoming
signal with a fixed value of 1.

3: This equality between the num-
ber of parameters and the number of
edges in the computation graph is not
always true. Convolutional neural
networks, for example, have a higher
number of effective connections due
to parameter sharing.
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Figure 4.1: Illustration of a very simple neural network with nine parameters. Information “flows” from the input nodes
() via the hidden nodes (@) to the output nodes (®). The inputs x = (2 3)T could, for instance, be the (vectorized)
pixel values of an image which should be classified. In this architecture, the input values are broadcast to all neurons in
the hidden layer, which compute a weighted sum of all incoming signals. The current weights are denoted along the

O]
3,2
result of the weighted sum, the pre-activation, is denoted in the node. Crucially, a non-linear activation function is applied,

which for the hidden layer in this example is simply the ReLU function, i.e. max(0, Z), where Z is the pre-activation. The
result after the activation is written to the right of the neuron. A single output neuron weights the outputs of the hidden
neurons and applies another activation function, this time a sigmoid. The output of the network for this example is 0.96
which could, for instance, represent the probability that the given image contains a hot dog.

connection (=), e.g. ®, , = 0.2 represents that the third neuron in the hidden layer, weights the second input by 0.2. The

parameters and larger models can have billions or even trillions of

[84] Fedus et al. (2021), “Switch parameters [e. g., 04, ].
Transformers: Scaling to Trillion Pa-
rameter Models with Simple and
Efficient Sparsity”

[182] Lin et al. (2021), “M6-10T: A )
Sharing-Delinking Paradigm for Ef- the inputs to the neurons, then from neurons to other neurons,

ficient Multi-Trillion Parameter Pre-  and finally from neurons to the output. Such a computation of the

Figure 4.1 shows a simplified example of a neural network and
how in such a computational graph information “flows” first from

training” output values of the network, given input data, is called a forward
pass. The name forward pass stands in contrast to the backwards
pass that computes the gradient and will be discussed in the next
section.

In a typical neural networks structure, the neurons are not arranged
randomly in the computational graph but are organized in layers.
The term layer applies to an entire collection of neurons that
perform transformations on the same inputs. The overall network
signal then “travels” from layer to layer, before it reaches the output.
A central reasons for arranging the neurons in layers is that this
allows efficient computation of the forward (and backward) pass.
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Taking the example illustrated in Figure 4.1, we can see that all
neurons in the hidden layer can be computed in parallel since they
are independent of each other. Afterward, the output layer can be
computed once the hidden layer is done.

Similarly to stacking the neurons into layers, contemporary neu-
ronal networks stack multiple layers to form a deep neural network.
Deeper layers* can extract progressively higher-level information
or features from the input [e.g., 175]. To illustrate this, we can think
of logistic regression as a special case of a single-layer neural net-
work. Instead of performing the logistic regression on the original
raw input, we could extend this single-layer neural network to
multiple layers. Effectively, this means that we perform logistic
regression (performed by the last layer of our neural network) not
on the original raw input but instead on the learned output of the
previous neural network layers. This additional computation done
by these additional layers can transform the original data and build
representations that allow a logistic regressor to easily distinguish
the classes. One way to think about this is that the shallower layers
might extract lower-level information such as edges. Deeper layers
can then use these features to detect shapes or faces.” The lower
levels perform a form of feature engineering which previously was
mostly done manually.

The representational power of neural networks is therefore a
result of both its width, i.e. combining neurons into distinct layers,
and its depth, i.e. combining multiple layers into deep networks.
Increasing either the width or the depth also increases the capacity
of the network and such also the network’s capability to overfit.
Empirically though, bigger neural networks have shown to be able
to achieve superior performance, even if they have the ability to
memorize the entire training data set [343]. It remains unclear why
these neural networks learn meaningful patterns and generalize
instead of simply memorizing the data set. Parts of it might have
to do with the used optimization methods which bias the model
to solutions that learn rather than memorize (see Chapter 3), the
regularization techniques (see Section 2.3), or the bias introduced
by the structure of the model.

The type of computation described by Equation (4.1) is just one
of many possible computations that can be added to the compu-
tational graph of a neural network. Section 4.2 provides a list of
layer types common in deep learning. Various layer types, such as
convolutional layers, fully connected layers, or dropout layers can
be combined as long as they are differentiable and allow efficient
computation of the gradient (see next section). Section 4.3 will
provide examples for how these layer types are combined and
stacked to create popular neural network architectures.

4: The common convention is that
deeper layers are further from the
input, i.e. closer to the output. Anal-
ogously, shallower layers are close to
the input. This informal description
follows the idea that when neural
network got progressively deeper,
these additional layers got “stacked
on top” of the existing lower-level
layers.

[175] LeCun et al. (2015), “Deep
learning”

5: Geirhos et al. [93] showed that
neural networks most likely learn
textures not shapes.

[93] Geirhos et al. (2019), “ImageNet-
trained CNNs are biased towards
texture; increasing shape bias im-
proves accuracy and robustness.”

[343] Zhang et al. (2017), “Under-
standing deep learning requires re-
thinking generalization”
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6: The attribution of the backprop-
agation algorithm is non-trivial. Ef-
fectively, it reduces to the repeated
application of the chain rule. Both
Kelley [160] and Linnainmaa [183]
describe versions of the backpropa-
gation algorithm similar to its mod-
ern version. The first specific appli-
cation of the backprop for neural net-
works might be described by Werbos
[317]. It was popularized for deep
learning by Rumelhart et al. [248]
and proposed by LeCun [174] in its
current form.

[160] Kelley (1960), “Gradient The-
ory of Optimal Flight Paths”

[174] LeCun (1985), “Une procedure
d’apprentissage pour reseau a seuil
asymmetrique”

[183] Linnainmaa (1970), “The repre-
sentation of the cumulative round-
ing error of an algorithm as a Taylor
expansion of the local rounding er-
rors”

[248] Rumelhart et al. (1986),
“Learning representations by back-
propagating errors”

[317] Werbos (1982), “ Applications
of advances in nonlinear sensitivity
analysis”

7: Figure 4.2 and much of the expla-

nation in this section is inspired by

the examples shown in the lecture
by the Stanford University.

Backpropagation: Computing the Gradients in a
Neural Network

As described in Section 3.2.1, we want to use efficient numerical
optimization algorithms to set the parameters of our model. Ideally,
they should describe the relationship in the data as best as possible,
i.e. they should achieve a low loss. To use these efficient first-order
optimization methods, we require access to the gradient of the loss
with respect to all the network’s parameters. In a computational
graph such as a neural network, the gradient can be efficiently
computed by an algorithm called backpropagation or simply
backprop.®

Similar to the forward pass, where we computed a complicated,
composite function by iteratively computing the individual parts,
we can compute the gradients in a backward pass by iteratively
considering each component. Figure 4.27 shows the computational
graph of a simple model of the form

fo(x) = ¢(07x), (4.2)

where ¢ is the sigmoid activation function, with ¢(x) = W.
The final loss of this simple model is given by

L(fo(x)) = y = fo(x), (4.3)

where v is the label corresponding to the inputs x.

We are now interested in how changing the model’s parameters
would affect the final loss, or more specifically, how we should
change the network’s parameters to achieve a lower loss. Mathe-
matically, this corresponds to computing the gradient g—é. For this,
we can apply the chain rule and compute it via

oL _ 9L 3fo i) o

200~ dfg 0 N @4

which splits the more complicated computation of 3_5 into two
simpler computations, the first of which is so easy, we can directly
write it down.

Instead of computing this for every parameter individually, we
want to re-use existing computation by leveraging the structure
encoded in the computational graph. Let us focus for now only
on the node “Mult;”, which computes the product of the model
parameter 01 and the input x1. For convenience, we will denote the
result of this computation with z = 0; - x1. It is easy to compute
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Figure 4.2: Illustration of the forward and backward pass in a computational graph. The circled nodes represent
computations, e.g. “Add” represents a node that adds its two inputs and returns the sum as its output. For reference,
multiple nodes of the same type are numbered, i.e. “Mult;”. In the forward pass, values are computed from the inputs
shown in orange, i.e. x = (2 3) T, The result of this computational graph also depends on the parameters of the model

0=(-2 O.S)T, shown in blue. The computed values of the forward pass are shown in light gray either on top of or to
the left of the corresponding arrow (=) and result in L = 0.92 which takes into account the label y = 1 (shown in gold).
In the backward pass (shown in red, below or right of the arrow (—)), we recursively apply the chain rule to compute the
derivative of each intermediate result and parameter with respect to the final output L. Effectively, the gradients “flow”
backwards from the output all the way to the parameters or the inputs of the graph.

the derivatives of z with respect to both its inputs:

0z dz
8_91 = X1 a—Xl = 61 . (45)

t 52, then itis also easy

to compute the derivative of the loss with respect to both inputs of
this “Mult;” node:

Let us assume, that we are given the gradien

L JdL dz _ JL JdL JL dz JL
=—x — =——=—0. (4.6)

861 T oz 891 0z dx1 dzdxi 0z
We can see that the derivative of the loss with respect to the inputs
of the node, e.g. 89 , is the product of a “local” gradient ;—921 and

0z
t Jo; isa result

an “incoming” gradient %. The “local” gradien
of the computation done by the node itself, while the “incoming”
gradient % describes the effect the output of said node has on the

rest of the computation.

Let us imagine that x1 is not provided by the inputs to the network,
but is instead a node itself. Similar to before, computing the
gradients for the inputs of this “x1” node would require both a
“local” gradient, determined by the computation done in this node,
and an “incoming” gradient gTLl' Equation (4.6) provides exactly
this “incoming” gradient for the node at x;. In other words, if
we start with some “incoming” gradient, we have a recipe for
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[228] Paszke et al. (2019), “Py-
Torch: An Imperative Style, High-
Performance Deep Learning Li-
brary”

[1] Abadi et al. (2015), “TensorFlow:
Large-Scale Machine Learning on
Heterogeneous Systems”

class MultiplyNode:
def forward(self, x, y):

self.x
self.y
Z =X *xYy
return z

def backward(self,
incoming_grad):

dx = self.y x
incoming_grad
dy = self.x x
incoming_grad
return [dx, dy]

Algorithm 4.1: Example implemen-
tation for a multiplication node
with forward and backward pass
for automatic differentiation.

propagating this gradient of the loss through the entire network.
All we need for this is a first “incoming” gradient to start with
and knowledge about how to compute the local gradient for each
individual node.

To get the first “incoming” gradient, we can start with the final
node in our graph which computes the loss. Trivially, the output of
this node has a gradient of 1, since g—é = 1. This provides us with
the first gradient that we can subsequently propagate backwards
through the network until we get the gradients at the parameters.
Figure 4.2 provides a specific example of this backpropagation
procedure with all its intermediate results. All that is required
is for each node to “know” how to compute its “local” gradient
(see Algorithm 4.1 for a example implementation). Fortunately,
]or
TensorFLow [1] can provide code for these nodes as basic compu-

automatic differentiation frameworks such as PYTorcH [

tational building blocks. Specifically, they provide entire neural
network layers, e.g. convolutional layers, that “know” how to
efficiently compute both their forward and backward passes.

Neural Network Layers

Layers are the building blocks of deep neural networks. In general,
layers are defined as receiving some input, transforming it and then
passing it on to another layer. By stacking multiple layers, neural
networks provide expressive and flexible modeling functions for
many machine learning tasks. Neural network layers can contain
learnable parameters, e.g. such as in a fully connected layer, but
this is not necessary, e.g. pooling layers. In the next section, we
will describe layer types that are commonly used as hidden layers,
i.e. layers that are between the input and the output layer. In
Section 4.2.2, we will take a closer look at possible activation
functions and will provide an overview of the many functions
that have been suggested. Section 4.2.3 is concerned with the loss
functions. Although they are not technically part of the neural
network, they are part of the larger computational graph.

Layer Types

The neurons in the hidden layers do most of the “heavy lifting”
in neural networks. As a result, numerous layer types have been
proposed in recent years. In the following, we will provide a short
description of the some of the most common types in contemporary
deep learning networks.
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Fully Connected layer

An example of a fully connected layer is shown in Figure 4.1. In
a fully connected layer® every neuron in the previous layer is
connected to every neuron in this layer. Effectively, it is a vectorized
version of the single neuron from Equation (4.1), and can be
described mathematically as

z(x) = p(Ox +b). 4.7)

It is parameterized by both a weight matrix ® € R™*"n and a bias
vector b € R™, where 1) is the number of neurons in this layer,
and 7, the number of incoming connections, e.g. the number of
neurons in the previous layer. Typical design choices for a fully
connected layer are the number of neurons in this layer and the
choice of activation function. Fully connected layers tend to be
computationally expensive and in modern networks are mostly
used at the end of the network, i.e. close to the network’s output.

Convolutional layer

Convolutional layers use a filters’ to compute feature maps from a
giveninput data. Originally, they have been designed for images [90,

], to leverage their spatial invariance, i.e. the fact that a cat
remains a cat, even when shifted by a few pixels in an image.
Figure 4.3 shows an example of how a convolutional layer computes
a feature map by performing a convolution of the input image
with its learnable filter. In this example, a 2 X 2 filter is shifted
over a 2 X 2 sub-array, called the receptive field, of the 5 X 5 input
image. Each pixel value in the input image is multiplied by the
associated value in the filter and all values are added to produce
the corresponding result in the feature map. Afterwards, the filter
shifts its position, e.g. by one pixel to the right, repeating the
process to compute the next value in the feature map. Note, that
the filter only has four parameters, but produces an entire output
array. If the filter was designed to, for example, detect edges, only
four parameters'® would be sufficient to provide a feature map
of detected edges for the entire image. The same would require
much more parameters, if performed by a fully connected layer.
Commonly multiple filters are used in parallel to compute multiple
feature maps independently from the same input image. Typical
design choices for a convolutional layer are the size of the kernel,
the stride, i.e. the number of pixels the kernel moves for each
operation, the number of filters, and padding options for how to
deal with the borders of the image.

8: A fully connected layer is also
called a dense layer, or sometimes
a linear layer. The linear layer usu-
ally does not include the activation
function, i.e. only the transformation
z=0x+b.

6]7]1
19[4

Input image

o>

3

Filter Feature map

Figure 4.3: Illustration of a convo-
lutional layer. An element of the
feature map is computed by multi-
plying the filter element-wise with
a portion of the input image and
summing it together.

9: The filter is often also called a
kernel.

[90] Fukushima (1980), “Neocogni-
tron: A self-organizing neural net-
work model for a mechanism of pat-
tern recognition unaffected by shift
in position”

[176] LeCun et al. (1989), “Backprop-
agation Applied to Handwritten Zip
Code Recognition”

10: Typically, the a convolutional
layer would also contain a bias. This
bias would add a single parameter
per filter.
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917
19]117]2 B
nn Max pooling

~JEa

Avg pooling

Input image

Figure 4.4: Illustration of the differ-
ent types of pooling layer. The pool-
ing operation illustrated here uses
a 2 X 2 kernel size and a stride of 2,
meaning that it will move two pixels
before computing the next output.

[355] Zhou et al. (1988), “Computa-
tion of optical flow using a neural
network”

[278] Srivastava et al. (2014),
“Dropout: A Simple Way to Prevent
Neural Networks from Overfitting”

[141] Ioffe et al. (2015), “Batch Nor-
malization: Accelerating Deep Net-
work Training by Reducing Internal
Covariate Shift”

11: Batch normalization is often abbre-
viated to batch norm.

Pooling

Pooling layers aim to downsample the feature maps therefor
providing a reduction of the spatial dimension. They work similar
to convolutional layers, where an operation, this time the pooling
operation computing a summary statistic of the receptive field,
sweeps across the entire input. Max pooling [355] layers, for
example, report the maximum output within a certain receptive
field. The second common type of pooling is the average pooling
layer which calculates the average, see Figure 4.4. Pooling layers
help to reduce the dimensionality of the propagated features and
can tell whether some feature is present, if it is not important where
exactly it is. Common hyperparameters of pooling layers are the
size of the pooling window, the stride, and the padding options.

Dropout

Dropout [
viding a cheap way of regularization (see Section 2.3). During
training, dropout sets certain inputs to a layer randomly to zero.

] is a special layer since its main advantage is pro-

The probability of setting inputs to zero is a hyperparameter of this
layer. The idea behind the regularization effect of dropout is that
by randomly dropping connections, no single node in the network
is solely responsible for the network’s prediction. The network
cannot rely on individual nodes, as they might be inactivated due
to the dropout layer, and must instead learn more robust and re-
dundant features. It provides an efficient way for model averaging
with neural networks, since it effectively trains multiple different
sub-networks jointly.

Batch Normalization

Ioffe and Szegedy [141] introduced batch normalization! to speed
up and stabilize neural network training by re-centering and re-
scaling the layer’s input. Batch normalization first performs a
normalization step of its B inputs {x, ..., x(B)} that are part of

the mini-batch:

(i) _
f(l): X FB/
1loéﬁe

where ug = % i 2@ and O'é = % Sicq(x® — iw)? are the empir-
ical mean and variance over the batch and ¢ is a small constant
added for numerical stability. To restore some of the represen-

(4.8)

tational power of the network, batch norm includes a learned
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transformation through the learned parameters y and g:

2V =yoi?+p. (4.9)
Crucially, this correlates the individual gradients in a mini-batch,
a fact, that we will encounter again in Chapter 7.

Empirically, batch normalization has shown to succesfully help
with neural network training, though the reasons for this remains
unclear. Originally, it was suggested to mitigate the problem of
internal covariate shift but this has been called into question by recent
investigations [e.g., 255]. More recently, other normalization layers
have been suggested such as layer normalization [13], instance

normalization [304] or group normalization [325].

Activation Functions

An integral part of a neural network architecture are its activation
functions. These activation functions link two layers, such as
two convolutional layers, to provide a non-linear transformation.
Using these non-linearities in the network allows the network
to compute non-trivial functions, since combining only layers
with linear operations would effectively collapse into a single
affine transformation.!? Non-linear activation function are therefor
necessary and crucial elements for the expressive power of modern
neural networks. Figure 4.6 provides a visual overview of popular
activation functions used in deep learning.

The binary step (or Heaviside) function is a rather simple activation
function that switches on a neuron if a certain threshold is passed.
Using this activation function, we can already build single layer
networks that replicate logical AND or OR gates (see Figure 4.5).
The derivative of this step function, however, is zero (and it is
non-differentiable at the step) and is thus impractical to use for
gradient-based learning (see Section 3.2.1). Instead, the logistic
sigmoid and the hyperbolic tangent function (tanh) were used in
early popular networks [e.g., 123,
RNN models [e.g., 59, 127].

] and are still used in many

However, the derivative becomes close to zero for both activation
functions when the magnitude of its input becomes large. This
leads to a problem known as vanishing gradients [124] where
this small gradient signal decreases exponentially as we propagate
these small derivatives down to all layers. Since the tanh function
is zero centered and it provides a stronger gradient signal, it is

generally preferred over the sigmoid function [101].

An approach to address this problem of vanishing gradients is to

use the Rectified Linear Unit (ReLU) [89, 98, 217], a piece-wise linear

[255] Santurkar et al. (2018), “How
Does Batch Normalization Help Op-
timization?”

[13] Ba et al. (2016), “Layer Normal-
ization”

[304] Ulyanov et al. (2017), “Instance
Normalization: The Missing Ingre-
dient for Fast Stylization”

[325] Wu et al. (2018), “Group Nor-
malization”
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Figure 4.5: Example of an AND gate
as a neural network. Using the bi-
nary step function as the activation
function ¢, we can build an AND
gate for the inputs x1 and x;. Set-
ting the bias, as well as the network
weights for both inputs to 1 and the
weight of the bias to —1.5 the out-
put y of the node is equivalent to an
AND gate. If instead the weight of
the bias term were set to —0.5, the
node would turn into an OR gate.

12: Consider the affine transforma-
tions g(x) = ax+band h(x) = cx+d.
The concatenation g(h(x)) = acx +
ad + b is simply another affine trans-
formation given by §(x) = dx + b
withd@ = acand b = ad +b.

[123] Hinton et al. (2012), “Deep Neu-
ral Networks for Acoustic Modeling
in Speech Recognition: The Shared
Views of Four Research Groups”
[177] LeCun et al. (1998), “Gradient-
Based Learning Applied to Docu-
ment Recognition”

[59] Cho et al. (2014), “Learning
Phrase Representations using RNN
Encoder-Decoderfor Statistical Ma-
chine Translation”

[127] Hochreiter et al. (1997), “Long
Short-Term Memory”

[124] Hochreiter (1991), “Unter-
suchungen zu dynamischen neu-
ronalen Netzen”

[101] Goodfellow et al. (2016), “Deep
Learning”
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(a) Linear (b) Binary Step/Heavyside (c) (Logistic) Sigmoid (d) Tanh
i
cogbooood /I‘—— ————— ll b -——— A ---
- < - e I’ . ’
(e) ELU (f) SELU (g) SERLU (h) GELU
______ 1 -_— - = = - —
(1) ReLU (j) ReLU 6 (k) Leaky ReLU (1) PReLU

(m) Softplus (n) Maxout (o) Swish (p) Mish

Figure 4.6: Overview of commonly used activation functions in neural networks. The activation function ¢(x) is shown
with a thick blue line (=), its derivative ¢’(x) is shown with a dashed red line (- -). All plots show the domain -3 to 3,
with the exception of ReLU 6 that was scaled to show the kink at x = 6. To highlight the difference between ReLU and
Leaky ReLU, we increased the leakage factor from its usual default of 0.01 to 0.1. For parametric activation functions, e.g.
PReLU or Swish, we show activations (—) and derivatives (- -) for several values of their learnable parameters.
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function defined by ¢(x) = max(0, x). It is easy and cheap to com-
pute and gradients can flow easily whenever the unit is activated.
The similarity of the ReLU activation function to the linear function
means that it retains many of the beneficial properties of the linear
function. ReLU remains the most used activation function in deep
neural networks, particular in convolutional neural networks for
image classification [e.g., 9, 117, 169, , , , ].

ReLU activations can suffer from the dying ReLU problem if
neurons are inactive for essentially all relevant inputs. Since the
gradient is zero in those cases, no learning can occur and without
any update the neuron becomes stuck and effectively “dies”. Leaky
ReLU addresses this by allowing a small, positive gradient for
negative inputs. Non-linear variants of ReLU such as the Soft-
plus [79], Exponential Linear Unit (ELU) [62], Scaled Exponential
Linear Unit (SELU) [167], Scaled Exponentially-Regularized Linear Unit
(SERLU) [345], or the Gaussian Error Linear Unit (GELU) [119] have
been suggested with GELUs particularly popular for TRANSFORMER
models such as GPT-3 and BERT [42, 72]. Another variant of ReLU
is the ReLU 6 activation [165] which clips the maximum activation
at 6, i.e. ¢(x) = min(max(0, x), 6). Krizhevsky [165] note that in
their tests, it encouraged the model to learn spares features and it
is used, for example in MosILENET [253].

Activation functions can itself have learnable parameters. Parametric
ReLUs (PReLU) [116], for example, turn the leakage coefficient of
Leaky ReLUs into a parameter of the model that can be learned jointly
with other neural network parameters. Similarly, Maxout [103]
is a learnable piece-wise linear function that can emulate both
ReLU and Leaky ReLU as special cases. Swish, described by
¢(x) = xo(fx), with ¢ the logistic sigmoid function and f a
learnable parameter, is an activation function found by automatic
search techniques [
which case it is identical to the Sigmoid Linear Unit SiLU [

]. It is often used with f fixed to one, in
]and
similar to the recently suggested Mish activation function [207].

The choice of activation function can have a significant impact
on the training speed and the final achievable prediction quality
(see, for example, Section 7.3.2). However, it is usually chosen
empirically, with ReLU being considered a default choice for many
architectures [101].

Loss Functions

We will now take a look at the cross-entropy loss and the mean squared
error loss as examples of common loss functions for classification
and regression in machine learning and deep learning.

[89] Fukushima (1969), “Visual Fea-
ture Extraction by a Multilayered
Network of Analog Threshold Ele-
ments”

[98] Glorotetal. (2011), “Deep Sparse
Rectifier Neural Networks”

[217] Nair et al. (2010), “Rectified Lin-
ear Units Improve Restricted Boltz-
mann Machines”

[9] Amodei et al. (2016), “Deep
Speech 2 : End-to-End Speech
Recognition in English and Man-
darin”

[117]He et al. (2016), “Deep Residual
Learning for Image Recognition”
[169] Krizhevsky et al. (2009),
“Learning multiple layers of
features from tiny images”

[270] Simonyan et al. (2015), “Very
Deep Convolutional Networks for
Large-Scale Image Recognition”
[283] Szegedy et al. (2017),
“Inception-v4, Inception-ResNet
and the impact of residual connec-
tions on learning.”

[284] Szegedy et al. (2015), “Going
Deeper With Convolutions”

[328] Xie et al. (2017), “Aggregated
Residual Transformations for Deep
Neural Networks”

[79] Dugas et al. (2000), “Incorporat-
ing Second-Order Functional Knowl-
edge for Better Option Pricing ”

[62] Clevert et al. (2016), “Fast and
Accurate Deep Network Learning by
Exponential Linear Units (ELUs)”

[167] Klambauer et al. (2017), “Self-
Normalizing Neural Networks”

[345] Zhang et al. (2018), “Effec-
tiveness of Scaled Exponentially-
Regularized Linear Units (SERLUs)”

[119] Hendrycks et al. (2016), “Gaus-
sian Error Linear Units (GELUs)”

[42] Brown et al. (2020), “Language
Models are Few-Shot Learners”
[72] Devlin et al. (2019), “BERT: Pre-
training of Deep Bidirectional Trans-
formers for Language Understand-
ing”

[168] Krizhevsky (2010), “Convo-
lutional Deep Belief Networks on
CIFAR-10”

[168] Krizhevsky (2010), “Convo-
lutional Deep Belief Networks on
CIFAR-10”

[253] Sandler et al. (2018), “Mo-
bileNetV2: Inverted Residuals and
Linear Bottlenecks”
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[116] He et al. (2015), “Delving Deep
into Rectifiers: Surpassing Human-
Level Performance on ImageNet
Classification”

[103] Goodfellow et al. (2013), “Max-
out Networks”

[235] Ramachandran et al. (2017),
“Searching for Activation Functions”

[50] Elfwing et al. (2018), “Sigmoid-
Weighted Linear Units for Neural
Network Function Approximation
in Reinforcement Learning”

[207] Misra (2019), “Mish: A Self Reg-
ularized Non-Monotonic Activation
Function”

[101] Goodfellow et al. (2016), “Deep
Learning”
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Figure 4.7: Illustration of the bi-
nary cross-entropy loss. The figure
shows the binary cross-entropy loss
for different predicted probabilities
7 of the machine learning model, if
the truelabel y = 1 (=) or if the true
label y = 0 (=). The loss vanishes
as the predicted probability of the
correct class approaches 1. In con-
trast, the loss increases rapidly for
larger incorrect probabilities, penal-
izing wrong but confident predic-
tions severely.

13: Although the KL divergence is
often intuited as a distance measure,
mathematical speaking it is not a
distance metric. Crucially, the KL
divergence does not fulfill the sym-
metry prerequisite of a metric, i.e.
DxrL(P||Q) # Dxvr(QIIP). Further-
more, it does not satisfy the triangu-
lar inequality.

Cross-entropy

Cross-entropy is a loss function used for classification tasks. For
the sake of simplicity, we start with binary classification.

Definition 4.2.1 [Binary Cross-Entropy]
The binary cross-entropy loss function, for a set of N examples,
is given by

1

L=~ 3 [11080) + (1~ y)1ogt ~99)] , (410

=1

where 7 is the model prediction and y® is the corresponding
true target label of example 1.

Since the true label is either 0 or 1 for a specific datum i, the loss
uses either only the first or only the second term within the sum.
It y(i) = 1, then the second term of Equation (4.10) is zero. The
individual loss of this example is then given by the log probability
that the model predicted, which is why the cross-entropy loss is
also sometimes called the log loss (see Figure 4.7). Consequently,
predictions of higher probability of the correct class will lead to a
lower loss. If y(i) = 0, then the first term in the sum is zero. Here,
the negative loss is given by the log probability that it is not part
of the class labeled by 1. A perfect model would achieve a binary
cross-entropy loss of 0.

We can generalize the binary cross-entropy to multiclass classifica-
tion tasks with C different classes:

Definition 4.2.2 [Categorical Cross-Entropy]
Extending Definition 4.2.1 to C different classes, we can define
the categorical cross-entropy as:

1 N [e y
L=-5 2 |20 v 03] , (1)
i=1 [ c=1

where ygi) is simply a binary indicator if class label c is the correct
class for observation i.

Since the labels are usually one-hot encoded, only one element of
y¥) is non-zero and the inner sum reduces to a single term, that of
the correct class.

Figure 4.8 illustrates the different distributions arising from the
true labels y and the predicted labels . To measure the difference
between these two distributions, we can use the KuLLBACK-LEIBLER
(KL) divergence:'®
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Definition 4.2.3 [KuLLBack-LEIBLER Divergence]

We define the KuLLBack-LeiBLER (KL) divergence as a difference
between two (discrete) distributions, P(x) and Q(x) over the
same random variable x, as

P(x)
Q(x)

] = Ex~p [log P(x) —log Q(x)] .
(4.12)

Die(PIIQ) = Ex-p [log

If we assume that P(x) is a fixed distribution, i.e. the true label
distribution, and we want to change Q(x), i.e. the predictive
distribution, to minimize the KL divergence, we are left with

nbin Dxr(P|IQ) = rrbin Ex~p [log P(x) —log Q(x)] (4.13)

=minEyp [log Q)] , (4.14)

which includes the general definition of the cross-entropy:

Definition 4.2.4 [Cross-Entropy]
The cross-entropy H between two probability distributions P(x)
and Q(x) is defined as

H(P,Q) = —Ex-p [log Q)] - (4.15)

Changing Q to minimize the cross-entropy is thus equivalent to

minimizing the KL divergence, assuming that P is fixed and not
part of the minimization process.

Mean Squared Error

A common and straightforward loss function for regression prob-
lems is the mean squared error (MSE) loss:

Definition 4.2.5 [Mean Squared Error]
The mean squared error (MSE) between a set of N model
predictions # and true labels y is computed as
2

L= l % (y(i) _ y(l')) (4.16)
N i=1

The mean squared error simply computes the squared difference
between the model’s prediction 7 and the true label y, as illustrated
in Figure 4.9. The MSE loss is always positive, due to the squaring,
and a perfect fitting would result in an MSE loss of zero. The
squaring ensures that large errors are penalized strongly, thus,
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Figure 4.8: Difference between the
predicted and the true label distri-
bution. For the true label distribu-
tion () all weight falls onto a single,
the correct, label. The predicted dis-
tribution (F) is spread out over multi-
ple classes, but in this case, still gives
the most weight to the correct label.
A second predictive distribution ('),
which gives less weight to the cor-
rect label has a higher cross-entropy
(H(N, ") = 1.63) than the original pre-
dictive distribution (H(l, §) ~ 0.55)
that is closer to the true label distri-
bution.
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Figure 4.9: Visualization of the
squared errors in a regression prob-
lem. The MSE considers the squared
differences (') between the data
points (®) and the regression model
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Figure 4.10: Illustration of a
fully connected neural network.
The width and opacity of the
connections are proportional to
the edge weights. Created with
NN-SVG [178].

[178] LeNail (2019), “NN-SVG:
Publication-Ready Neural Network
Architecture Schematics”

[142] Ivakhnenko et al. (1965), “Cy-
bernetic Predicting Devices”

[245] Rosenblatt (1958), “The percep-
tron: a probabilistic model for infor-
mation storage and organization in
the brain.”

[129] Hornik (1991), “Approxima-
tion capabilities of multilayer feed-
forward networks”

[195] Lu et al. (2017), “The Expres-
sive Power of Neural Networks: A

View from the Width”
Figure 4.11: Illustration of a

CONVOLUTIONAL NEURAL NETWORKS.
Starting from an image with three
color channels (shown as the depth),
multiple  convolutional layers
transform it into feature maps. At
the end, fully connected layers
provide the final computation just
before the output layer. Created
with NN-SVG [178].

putting a strong emphasis on describing all available data points
at least somewhat accurately, avoiding large outliers.

An alternative to the mean squared error loss putting less emphasis
on outliers would be the mean absolute error (MAE). Rather than
taking the squared difference, MAE takes the absolute differences,
rating the errors on a linear scale instead. As a compromise, the
Huber loss [137] provides a mixture of both, by effectively using the
MSE loss for small loss values and the MAE loss for larger loss
values.

Common Architectures

A neural network architecture describes the overall structure of the
neurons in the computational graph. It is therefore an umbrella
term for the used layers, the number of neurons in that layer,
or other hyperparameters. In this section, we want to describe
common architectures of deep learning models, some of which we
will re-visit in Chapter 5, when we aim to identify meaningful test
problems for benchmarking deep learning optimizers. This list is
far from exhaustive and is missing important architectures such as
], or
models used in GENERATIVE ADVERSARIAL NETWORKS (GANS) [102].

TRANSFORMERS [307], GNNS (GRAPH NEURAL NETWORKS) [104,

Fully Connected Neural Networks

Fully connected neural networks, or multilayer perceptrons
(MLPs) [142,
network, whose main computational layers are fully connected lay-
ers, see Figure 4.10. By stacking multiple such layers, linking them

] are a basic form of the feedforward neural

via non-linear activation functions, they can express increasingly
complex functions. MLPs with arbitrary width or depth are uni-
versal function approximators [e.g., 129, 195]. Compared to other
network architectures, fully connected ones tend to require much
more parameters. CONVOLUTIONAL NEURAL NETWORKS, described in
the next sections, for example, cleverly uses the inherent struc-
ture of images to reduce the required parameters. Recent work
by Tolstikhin et al. [297] put MLPs back into focus, showing that
they can attain competitive scores on relevant image classification

benchmarks.

Convolutional Neural Networks

Just as their name suggests, CONVOLUTIONAL NEURAL NETWORKS

(CNNs) [90, 176] use convolutional layers as their main compu-
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tational unit. This leverages the spatial information encoded in
images to reduce the number of parameters required to extract
meaningful information. Traditionally, convolutional layers are
combined with activation functions and pooling layers repeatedly,
before using fully connected layers to provide the final output, see
for example Figure 4.11. Figure 4.12 illustrates the typical architec-

ture of a CNN using the ALL.-CNN-C [277] as an example.

Residual Networks

Residual networks [117] introduce so-called residual or skip connec-
tions to neural networks. They slightly modify the usual structure of
one layer feeding directly into the next (see for example Figure 4.12).
Instead, it introduces an additional connection between two layers
that are several steps apart, see Figure 4.13. This connection “skips”
multiple layers and has been shown empirically to improve the
training process especially of deeper neural networks. Any neural
network that includes such a skip connection could be called a
residual network, most prominently the ResNer-50, ResNEer-101, and

ResNEeT-152 series presented in [117].

Recurrent Neural Networks

RECURRENT NEURAL NETWORKS (RNNs) are designed to process
sequences of variable length as inputs, such as a sequence of charac-
ters, e.g. for machine translation. In contrast to regular feed-forward
networks they do not assume that the inputs are independent of
each other. Instead, their hidden layers not only use the current
element of the sequence x'”) as an input, but also uses some extra
information from the hidden layers of the previous example to
influence the current output. If we consider, for example, the task
of translating and English sentence word-by-word into German,
it becomes clear while information from prior elements of the
sequence should be considered: The correct translation of the word
“second” could either be “zweiter” (as in “achieving second place”)
or “Sekunde” (as in “this thesis is ready in a second”) depending
on the context. By propagating this information from one word
to the next, see Figure 4.14, RECURRENT NEURAL NETWORKS can take
this context into account.

There are multiple different recurrent architectures that differ in
how the output and the propagated information are computed.
Among the most popular ones are LSTM (long short-term memory)

networks [127] or GRU (gated recurrent unit) networks [59].

[277] Springenberg et al. (2015),
“Striving for simplicity: The all con-
volutional net”
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‘ Pool (3 X 3) max pooling ‘
|
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Figure 4.12: Schematic illustration
of the layers in the ALL-CNN-C net-
work. Convolution layers (@) are in-
terspersed by pooling layer (®) and
activation functions (®).
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Figure 4.13: Illustration of a resid-
ual connection.

[117]He et al. (2016), “Deep Residual
Learning for Image Recognition”

[127] Hochreiter et al. (1997), “Long
Short-Term Memory”

[59] Cho et al. (2014), “Learning
Phrase Representations using RNN
Encoder-Decoderfor Statistical Ma-
chine Translation”
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Figure 4.14: Illustration of a
RECURRENT NEURAL NETWORK.  (a)
shows the unfolded version of a
basic RNN. The inputs x(t-1D) x(),

are individual elements of
the input sequence. (b) Since the
network re-uses the parameters of h
for each element in the sequence we
can visualize the network as having
a feedback mechanism.
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Figure 4.15: Illustration of an au-
toencoder network. The first part
of the network encodes the input
into a lower dimensional space. The
decoder then aims to reconstruct
the original input for this latent
space representation. Created with
NN-SVG [178].

[178] LeNail (2019), “NN-SVG:
Publication-Ready Neural Network
Architecture Schematics”

[305] Vahdat et al. (2020), “NVAE:
A Deep Hierarchical Variational Au-
toencoder”

Autoencoder

In an autoencoder, the first part of a network, called the encoder,
maps the input x € R’ to a much lower-dimensional space Z € R",
called the latent space. This latent space is usually much smaller
than the original input space, i.e. | < m.Subsequently, the decoder
part of the network aims to reconstruct the original image from
this latent vector z € Z. Both encoder and decoder are usually
trained jointly to minimize a reconstruction loss, such as the average
squared error between the input and output pixels of an image. The
encoding and decoding can be performed by any suitable neural
network architecture such as fully connected or convolutional
networks. The latent space serves as a bottleneck, visualized in
Figure 4.15, which can be used, e. . for compression.

VARIATIONAL AUTOENCODER (VAEs) share much of the architecture
with traditional autoencoders but the output of the decoder is not
interpreted directly as a vector in a latent space but as parameters of
a pre-defined distribution. The distribution is typically a Gaussian
distribution and the latent vector is subsequently sampled from
it and used as the input to the decoder. VARIATIONAL AUTOENCODER
can be used as a generative model, for example, to create realistic
images [e.g., 305].
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A Benchmark Suite for Deep
Learning Optimizers

There is significant past and ongoing research on optimization
methods for deep learning. Yet, perhaps surprisingly, there is no
generally agreed-upon protocol for the quantitative and repro-
ducible evaluation of such optimizers. In this chapter, we suggest
routines and benchmarks for stochastic optimization, with special
focus on the unique aspects of deep learning, such as stochastic-
ity, tunability and generalization. As the primary contribution,
we present DEepOBS, a PyrHON package for benchmarking deep
learning optimizers. The package addresses key challenges in
the quantitative assessment of stochastic optimizers, and auto-
mates most steps of benchmarking. The library includes a wide
and extensible set of ready-to-use realistic optimization problems,
such as training Residual Networks for image classification on
IMAGENET or character-level language prediction models, as well as
popular classics like MNIST and CIFAR-10. It comes with output
back-ends that directly produce IXIEX code for inclusion in aca-
demic publications. The standardization of the benchmark process
allows re-using existing results as baselines for novel optimiza-
tion methods, without having to run costly experiments. Using
the standardized evaluation protocol of DeepOBS, Chapter 6 will
follow up with an elaborate and detailed comparison of current
optimization methods. This chapter is largely based on [262].

Introduction

As deep learning has become mainstream, research on aspects
like architectures [109, 117, , , ] and hardware [52, ,
, 237] has exploded, and helped professionalize the field. In
comparison, the optimization routines used to train deep nets
have arguable changed only little. Comparably simple first-order
methods like SGD [242] (see Update Rule 3.3.2), its momentum
variants (MoMeNTUM) [221, ] (see Update Rules 3.3.3 and 3.3.4),
and Apawm [166] (see Update Rule 3.3.8) remain standards [101,
]. The low practical relevance of more advanced optimization
methods is not for lack of research, though. There is a host of papers
proposing new ideas for acceleration of first-order methods [e.g.,
, 193], incorporation of second-order information [e.g., 35, 1,
and automating optimization [e.g., , ], to name just a few
(see also Table 3.1 for a more complete collection of deep learning
optimization methods). One problem that some of these methods
faceis that they are algorithmically involved and difficult to recreate

5.1 Introduction

5.2 Benchmarking Deep
Learning Optimizers . . 81

5.3 Benchmark Suite

Overview . . . ... .. 84
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DeepOBS Suite . . . . 86
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by practitioners. If they are not provided in packages for popular
frameworks like TEnsorFrLow [1], PyTorcH [225], etc., they get little
traction. Another problem, which we hope to address here, is that
new optimization routines are often not convincingly compared
to simpler alternatives in research papers, so practitioners are left
wondering which of the many new choices is the best (and which

ones even really work in the first place).

Designing an empirical protocol for the assessment of deep learn-
ing optimizers is not straightforward, and the corresponding
experiments can be time-consuming. This is partly due to the
idiosyncrasies of the domain:

» Generalization: While the optimization algorithm (should)
only ever see the training-set, the practitioner cares about
performance of the trained model on the test set, see Sec-
tion 2.2. Worse, in some important application domains, the
optimizer’s loss function is not the objective we ultimately
care about. For instance in image classification, practitioners
often use a cross-entropy loss although the real interest may
be the percentage of correctly labeled images, the accuracy.
So which score should actually be presented in a comparison
of optimizers? Train loss, because that is what the optimizer
actually works on; test loss, because an overfitting optimizer
is useless, or test accuracy, because that’s what the human
user cares about?

» Stochasticity: Sub-sampling (batching) the data-set to com-
pute estimates of the loss function and its gradient introduces
stochasticity, see Section 3.2.1. Thus, when an optimizer is
run only once on a given problem, its performance may be
misleading due to random fluctuations. The same stochastic-
ity also causes many optimization algorithms to have one or
several tuning parameters (learning rates, etc.). How should
an optimizer with two free parameter be compared in a fair
way with one that has only one, or even no free parameters?

» Realistic settings, fair competition: There is a widely-
held belief that popular standards like MNIST [177] and
CIFAR-10 [169] are too simplistic to serve as a realistic place-
holder for a contemporary combination of large-scale data
set and architecture. While this worry is not unfounded,
researchers, ourselves included, have sometimes found
it hard to satisfy the demands of reviewers for ever new
data sets and architectures. Finding and preparing such
data sets and building a reasonable architecture for them
is time-consuming for researchers who want to focus on
their novel algorithm. Even when this is done, one then
has to not just run one’s own algorithm, but also various
competing baselines, like SGD, MomeNTUM, ADAM, etc. This
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step does not just cost time, it also poses a risk of bias, as
the competition invariably receives less care than one’s own
method. Reviewers and readers can never be quite sure that
an author has not tried a bit too much to make their own
method look good, either by choosing a convenient training
problem, or by neglecting to tune the competition.

To address these problems, we propose an extensible, open-source
benchmark specifically for optimization methods on deep learning
architectures. We make the following three contributions:

» A protocol for benchmarking stochastic optimizers. Sec-

tion 5.2 discusses and recommends best practices for the
evaluation of deep learning optimizers. We define three key
performance indicators: final performance, speed, and tun-
ability, and suggest means of measuring all three in practice.
We provide evidence that it is necessary to show the results
of multiple runs in order to get a realistic assessment. Finally,
we strongly recommend reporting both loss and accuracy,
for both training and test set, when demonstrating a new
optimizer as there is no obvious way those four learning
curves are connected in general.

DeerOBS, a deep learning optimizer benchmark suite.! We
have distilled the above ideas into an open-source PyrHon
package, written in TensorFLow [1]?, which automates most
of the steps presented in Section 5.2. The package provides
over twenty off-the-shelf test problems across four appli-
cation domains, including image classification and natural
language processing, and this collection can be extended and
adapted as the field makes progress. The test problems range
in complexity from stochastic two dimensional functions to
contemporary deep neural networks on data sets such as
ImaceNET. The package is easy to install in PytHoN, using
the pip toolchain. It automatically downloads data sets, sets
up models, and provides a back-end to automatically pro-
duce IXIEX code that can directly be included in academic
publications. This automation does not just save time, it also
helps researchers to create reproducible, comparable, and
interpretable results.

Showcase of its benchmarking capabilities. From the col-
lection of test problems, two sets, of four simple (“small”)
and four more demanding (“large”) problems, respectively,
are selected as a core set of benchmarks. Researchers can
design their algorithm in rapid iterations on the simpler set,
then test on the more demanding set. We argue that this
protocol saves time, while also reducing the risk of overfitting
in the algorithm design loop. In Section 5.4 we showcase
DEeepOBS by comparing the performance of SGD, SGD with

1: Code available at

[1] Abadi et al. (2015), “TensorFlow:
Large-Scale Machine Learning on
Heterogeneous Systems”

2: After publication of the original
manuscript [262], the framework
was extended to provide additional
support for PyTorch, which is de-
scribed in [16].

[262] Schneider et al. (2019), “Deep-
OBS: A Deep Learning Optimizer
Benchmark Suite”

[16] Bahde (2019), “Towards Mean-
ingful Deep Learning Optimizer
Benchmarks”
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of related works, including the sub-
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and Sivaprasad et al. [271]. Here, we
would like to put DeerOBS in the
context of its original publication.
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momentum (MoMeNTUM) and Apam on the small and large
benchmarks. This aims at demonstrating the output of the
benchmark suite. Chapter 6 uses DEepOBS and the presented
protocol to provide an exhaustive benchmark of more than
a dozen popular optimization methods for deep learning.
Thanks to the standardized benchmark process, these results
can be used as fair baselines when evaluating novel methods,
without the need to re-compute these baselines. We hope that
the benchmark suite will offer a common platform, allowing
researchers to publicize their algorithms, giving practitioners
a clear view of the state of the art, and helping the field to
more rapidly make progress.

Related Works

To our knowledge, there is currently no commonly accepted bench-
mark for optimization algorithms that is well adapted to the deep
learning setting.® This impression is corroborated by a more or
less random sample of recent research papers on deep learning
optimization [24,76,78,166,193,203, 238, 341], whose empirical sec-
tions follow no joint standard (beyond a popularity of the MNIST
data set). There are a number of existing benchmarks for deep
learning as such. However, they do not focus on the optimization
method. Instead, they are either framework or hardware-specific,
or cover deep learning as a holistic process, wrapping together
architecture, hardware and training procedure, The following are
among the most popular ones:

DAWNBench [63] The task in this challenge is to train a model for
ImaGeNET, CIFAR-10 or SQUAD [234] as quickly as possible
to a specified validation accuracy, tuning the entire tool-chain
from architecture to hardware and optimizer.

MLPerf 4[208] is another holistic benchmark similar to DAWN-
Bench. It has two different rule sets; only the ‘open’ set allows
a choice of optimization algorithm.

Deep Learning Frameworks (Comparison) [
times of different high-level frameworks.

DLBS |
learning models on various hardware systems with various

] compares run-
] is a benchmark focused on the performance of deep

software.

DeepBench [1Y] tests the speed of hardware for the low-level
operations of deep learning, like matrix products and convo-
lutions.

Fathom [3]is another hardware-centric benchmark, which among
other things assesses how computational resources are spent.

TBD |
frameworks.

] focuses on the performance of three deep learning
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None of these benchmarks are good test beds for optimization
research. Schaul et al. [259] defined unit tests for stochastic opti-
mization. In contrast to the present work, they focus on small-scale
problems like quadratic bowls and cliffs. In the context of deep
learning, these problems provide unit tests, but do not give a
realistic impression of an algorithm’s performance in practice.

Benchmarking Deep Learning Optimizers

This section expands the discussion from Section 5.1 of design
desiderata for a good benchmark protocol, and proposes ways
to nevertheless arrive at an informative, fair, and reproducible
benchmark.

Stochasticity

The optimizer’s performance in a concrete training run is noisy,
due to the random sampling of mini-batches and initial parameters,
see Section 3.2.1. There is an easy remedy, which nevertheless is
not universally adhered to: Optimizers should be run on the same
problem repeatedly with different random seeds, and all relevant
quantities should be reported as mean and standard deviation of
these samples. This allows judging the statistical significance of
small performance differences between optimizers, and exposes
the “variability” of performance of an optimizer on any given
problem. The obvious reason why researchers are reluctant to
follow this standard is that it requires substantial computational
effort. DeepOBS alleviates this issue in two ways: It provides
functionality to conveniently run multiple runs of the same setting
with different seeds. More importantly, it provides stored baselines
of popular optimizers, freeing computational resources to collect

statistics rather than baselines.’

Choice of Performance Metric

As described in Section 2.2, training a machine learning system is
more than a pure optimization problem. The optimizers’ immediate
objective is the training loss, but the users’ interest is in generaliza-
tion performance, as estimated on a held-out test set. It has been
observed repeatedly that in deep learning, different optimizers of
similar training-set performance can have surprisingly different
generalization [e.g., 515]. Moreover, the loss function is regularly
just a surrogate for the metric the user is ultimately interested in.
In classification problems, for example, we are interested in classi-
fication accuracy, but this is infeasible to optimize directly. Thus,

4: MLPerf has since transitioned
to be a part of the non-profit con-
sortium MLCommons. MLCoMmMoONs
has an Algorithmic Efficiency Work-
ing Group that is planning to hold a
competition specifically for training
algorithms. Section 8.2.1 provides
a more detailed description of this
competition and the working group,
of which the author of this thesis is
one of the two elected chairs.

[208] MLPerf (2018), “MLPerf.org”

[206] Microsoft Machine Learning
(2018), “Comparing Deep Learning
Frameworks: A Rosetta Stone Ap-
proach”

[122] Hewlett Packard Enterprise
(2017), “Deep Learning Benchmark-
ing Suite (DLBS)”

[19] Baidu Research (2016), “Deep-
Bench”

[3] Adolf et al. (2016), “Fathom: Ref-
erence workloads for modern deep
learning methods”

[359] Zhu et al. (2018), “TBD: Bench-
marking and Analyzing Deep Neu-
ral Network Training”

[259] Schaul et al. (2013), “No more
pesky learning rates”

5: Both, the results from Sec-
tion 5.3.4 and the more exhaustive
benchmark presented in Chapter 6
are available open source and can
be used as baselines.

[318] Wilson et al. (2017), “The
Marginal Value of Adaptive Gradi-
ent Methods in Machine Learning”
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there are up to four relevant metrics to consider: training loss, test
loss, training accuracy and test accuracy. We strongly recommend
reporting all four of these to give a comprehensive assessment of a
deep learning optimizer. For hyperparameter tuning, we use test
accuracy or, if that is not available, test loss, as the criteria. We also
use them as the performance metrics in Table 5.2.

For empirical plots, many authors compute train loss (or accuracy)
only on mini-batches of data, since these are computed during
training anyway. But these mini-batch quantities are subject to
significant noise. To get a decent estimate of the training-set per-
formance, whenever we evaluate on the test set, we also evaluate
on a larger chunk of training data, which we call a train eval set. In
addition to providing a more accurate estimate, this allows us to
“switch” the architecture to evaluation mode (e.g. dropout is not
used during evaluation).

Measuring speed

Relevant in practice is not only the quality of a solution, but also the
time required to reach it. A fast optimizer that finds a decent albeit
imperfect solution using a fraction of other methods’ resources can
be very relevant in practice. Unfortunately, since learning curves
have no parametric form, there is no uniquely correct way to define
“time to convergence”. In DEerOBS, we take a pragmatic approach
and measure the time it takes to reach an “acceptable” convergence
performance, which is individually defined for each test problem
from the baselines SGD, MoMmenTUM and Apam each with their
best hyperparameter setting.

Arguably the most relevant measure of speed is the wall-clock time
to reach this convergence performance. However, wall-clock run-
time has well-known drawbacks, such as dependency on hardware
or weak reproducibility. Many authors report performance against
gradient evaluations, since these often dominate the total compu-
tational costs. However, this can hide large per-iteration overheads.
We recommend first measuring wall-clock time of both the new
competitor and SGD on one of the small test problems for a few
iterations, and computing their ratio. This computation, which can
be done automatically using DeepOBS, can be done sequentially
on the same hardware. One can then report performance against
the products of iterations and per-iteration cost relative to SGD.

For many first-order optimization methods, such as SGD, SGD
with MoMENTUM or Apau, the choice of hyperparameters does not
affect the runtime of the algorithm. However, for more evolved
optimization methods, e.g. ones that dynamically estimate the
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Hessian, the hyperparameters can influence the runtime signifi-
cantly. In those cases, we suggest repeating the runtime estimate
for different hyperparameters.

Hyperparameter tuning

Almost all deep learning optimizers expose tunable hyperparame-
ters, e.g., learning rates or averaging constants. The ease of tuning
these hyperparameters is a relevant characteristic of an optimiza-
tion method. How does one “fairly” compare optimizers with
tunable hyperparameters?

A full analysis of the effects of an optimizer’s hyperparameters on
its performance and speed is tedious, especially since they often
interact. Even a simpler sensitivity analysis requires a large number
of optimization runs, which are infeasible for most users. Such
analyses also do not take into account if hyperparameters have
default values that work for almost all optimization problems and
therefore require no tuning in general. Instead we recommend that
authors find and report the best-performing hyperparameters for
each test problem. Since DeerOBS covers multiple test problems,
the spread of these best choices gives a good impression of the
required tuning. Additionally, we suggest reporting the relative
performance of the hyperparameter settings used during this
tuning process (Figure 5.3 shows an example). Doing so yields a
characterization of tunability without additional computations.

For the baselines presented in this chapter, we chose a simple
log-grid search to tune the learning rate. While this is certainly not
an optimal tuning method, and more sophisticated methods exists,
see Section 3.4, it is nevertheless used often in practice and reveals
interesting properties about the optimizers and their tunability.

DeepOBS supports authors in adhering to good scientific prac-
tice by removing various moral hazards. The baseline results for
popular optimizers (whose hyperparameters have been tuned by
us or, in the future, the very authors of the competing methods)
avoid “starving” the competition of attention. When using different
hyperparameter tuning methods, it is necessary to allocate the
same computational budget for all methods in particular when
comparing optimization methods of varying number of hyperpa-
rameters.

The fixed set of test problems provided by the benchmark makes it
impossible to (knowingly or subconsciously) cherry-pick problems
tuned to a new method. And finally, the fact that the benchmark
spreads over multiple such problem sets constitutes a mild but
natural barrier to “overfit” the optimizer method to established
architectures or data sets like MNIST.
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.tex files of learn-
ing curves for new
optimizer and the

baselines.
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Performance results
of the most popular
optimizers.

Optimizer perfor-
mance on a specific
test problem.
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of a deep learning
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Pre-processed and
batched data.

Data Downloading

Figure 5.1: Illustration of the dif-
ferent steps implemented in the
DeepOBS package and their out-
puts. The color of each block high-
lights the way a user mostly inter-
acts with this part. Blocks in @ sig-
nify classes, those in @ are used via
command line scripts. @ signals data
packaged with DeepOBS and @ de-
notes parts provided through tem-
plate scripts.

6: The results from the extensive
benchmark presented in the next
chapter, for example, can be used.
They provided extensively tuned re-
sults from fifteen popular training
algorithms.

7: The full documentation can be
found online at

8: At the moment, IMAGENET is not
part of this automatic procedure,
since IMAGENET requires registration
to download the data set, and is com-
parably large, thus impractical for
many users.

Benchmark Suite Overview

DeepOBS provides the full stack required for rapid, reliable, and
reproducible benchmarking of deep learning optimizers. At the
lowest level, a data loading (Section 5.3.1) module automatically
loads and pre-processes data sets downloaded from the net. These
are combined with a set of models (Section 5.3.2) to define test
problems. At the core of the library, runners (Section 5.3.3) take care
of the actual training, and log a multitude of statistics, e. ., training
loss or test accuracy. Baseline results from other optimization
methods can be used directly, provided they were computed using
the same protocol as suggested by DeepOBS.® The visualization
(Section 5.3.6) script maps the results directly to IXIEX output.

Future releases of DEepOBS will include a version number that fol-
lows the pattern MAJOR.MINOR.PATCH, where MAJOR versions
will differ in the selection of the benchmark sets, MINOR versions
signify changes that could affect the results. PATCHES will not
affect the benchmark results. All results obtained with the same
MAJOR.MINOR version of DeEerOBS will be directly comparable,
all results with the same MAJOR version will compare results on
the same problems.

We now give a brief overview of the functionality of DeepOBS.”

Data Loading

DEeePOBS can automatically download and pre-process all neces-
sary data sets.® Excluding ImaGeNET, the downloaded data sets
require less than one GB of disk space.

The DeepOBS data loading module then performs all necessary
processing of the data sets to return inputs and outputs for the deep
learning model (e.g. images and labels for image classification).
This processing includes splitting, shuffling, batching and data
augmentation. The data loading module can also be used to build
new deep learning models that are not (yet) part of DeerOBS.

Models

Together, data set and model imply a loss function and together,
they form an optimization problem. Table 5.2 provides an overview
of the data sets and models included in DeepOBS. We selected
problems for diversity of task as well as the difficulty of the
optimization problem itself. The list includes popular image classi-
fication models on data sets like MNIST, CIFAR-10 or IMAGENET,
but also models for natural language processing and generative


https://deepobs.readthedocs.io/
https://deepobs.readthedocs.io/
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Table 5.1: Overview of the test problems included in DeepOBS with their properties showing if the test problem
includes convolutional layers (Conv), recurrent neural network cells (RNN), dropout layers (Drop), batch normalization
layers (BN), or L? regularization (L?). The first column highlights the machine learning task that the model performs, i.e.
image classification ®, generative model ®, natural language processing ® or problems where the loss function is given

explicitly @. Test problems marked in  and

are part of the small and large benchmark set, respectively.

Data set Model Description Conv RNN Drop BN L2
® Noisy Beale Noisy version of the Beale function [22]
® 2D Noisy Branin Noisy version of the Branin function [40]
® Noisy Rosenbrock  Noisy version of the Rosenbrock function |
® Quadratic Deep 100-dimensional ill-conditioned noisy quadratic |
Log. Regr. Logistic regression
MNIST MLP Four layer fully connected network
[177] 2c2d Two conv. and two fully connected layers 4
® VAE Variational Autoencoder v 4
Fasnion Log. Regr. Logistic regression
MNIST MLP Four layer fully connected network
[326] 2c2d Two conv. and two fully connected layers 4
® VAE Variational Autoencoder v v
CIFAR-10 3c3d Three conv. and three fully connected layers 4 v
[169] VGGl6 Adapted version of VGG16 [270] v 4 4
VGG19 Adapted version of VGG19 v v v
3c3d Three conv. and three fully connected layers v/ 4
CIFAR-100 VGG16 Adapted version of VGG16 4 v v
[169] VGGI19 Adapted version of VGG19 v 4 4
All-CNN-C The all convolutional net from Springenberg et al. [277] v 4 v
Wide ResNet-40-4  Wide Residual Network [339] v v 7/
SVHN 3c3d Three conv. and three fully connected layers 4 4
[223] Wide ResNet-16-4  Wide Residual Network v v /
IMAGENET VGGl6 VGG16 v v 4
[70] VGG19 VGG19 v 4 v
Inception-v3 Inception-v3 network as described by Szegedy et al. [ 4 v v 7/
® Tolstoi CharRNN Recurrent Neural Network for character-level language modeling v v

models. Additionally, three two-dimensional problems and an
ill-conditioned quadratic problem are included. These simple tests
can be used as illustrative toy problems to highlight properties
of an algorithm and perform sanity-checks. Over time, we plan
to expand this list when hardware and research progress renders
small problems out of date, and introduces new research directions
and more challenging problems.’ The eight test problems that have
been selected for the small and large benchmark set are described in
more detail in Appendix A. All data sets, models and test problems
are described extensively in DEepOBS’s documentation.'”

Runners

The runners of the DeepOBS package handle training and the
logging of statistics measuring the optimizers performance. For
optimizers following the standard TensorFLow optimizer API it
is enough to provide the runners with a list of the optimizer’s
hyperparameters. We provide a template for this, as well as an
example of including a more sophisticated optimizer that can’t be
described as a subclass of the TEnsorFLow optimizer API.

9: Table 5.2 presents the set of test
problems at the time of publication.
In the meantime, Sivaprasad et al.
[271] extended it to include a sen-
timent classification task for text
data. Tsingunidis [302] studied how
GAN s can be integrated in DeepOBS,
adding four new test problems.

[271] Sivaprasad et al. (2020), “Op-
timizer Benchmarking Needs to Ac-
count for Hyperparameter Tuning”
[302] Tsingunidis (2020), “Bring the
GANSs into Action - Extending Deep-
OBS with novel test problems”

10: Available at

[22] Beale (1958), “On an iterative
method for finding a local minimum
of a function of more than one vari-
able”

[40] Branin (1972), “Widely conver-
gent method for finding multiple
solutions of simultaneous nonlinear
equations”


https://deepobs.readthedocs.io/
https://deepobs.readthedocs.io/
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[246] Rosenbrock (1960), “An auto-
matic method for finding the great-
est or least value of a function”

[50] Chaudhari et al. (2017),
“Entropy-SGD: Biasing gradient de-
scent into wide valleys”

[177] LeCun et al. (1998), “Gradient-
Based Learning Applied to Docu-
ment Recognition”

[326] Xiao et al. (2017), “Fashion-
MNIST: a Novel Image Dataset for
Benchmarking Machine Learning
Algorithms”

[169] Krizhevsky et al. (2009),
“Learning multiple layers of features
from tiny images”

[270] Simonyan et al. (2015), “Very
Deep Convolutional Networks for
Large-Scale Image Recognition”

[277] Springenberg et al. (2015),
“Striving for simplicity: The all con-
volutional net”

[339] Zagoruyko et al. (2016), “Wide
Residual Networks”

[223] Netzer et al. (2011), “Reading
digits in natural images with unsu-
pervised feature learning”

[70] Deng et al. (2009), “ImageNet:
A Large-Scale Hierarchical Image
Database”

[285] Szegedy et al. (2016), “Rethink-
ing the Inception Architecture for
Computer Vision”

11: This section serves mostly as a
demonstration of DEepOBS’s capa-
bilities and illustrates the benefits of
a standardized comparison. Chap-
ter 6 uses the evaluation protocol of
DeerOBS to provide a standardized
and extensive benchmark of fifteen
optimization methods to draw more
evidence-backed conclusions on the
current state of deep learning opti-
mizers.

Baselines

DeepOBS can also use pre-computed baselines results. These al-
low comparing a newly developed algorithm to the competition
without computational overhead, and without risk of conscious
or unconscious bias against the competition. The results from the
showcase in Section 5.3.4 can be used as well as those from the
more exhaustive benchmark described in Chapter 6. The baselines
can be updated continuously, with further optimizers, assuming
the methods perform competitively and they follow a common
evaluation protocol.

Estimate Runtime

DeepOBS provides an option to quickly estimate the runtime
overhead of a new optimization method compared to SGD. It
measures the ratio of wall-clock time between the new optimizer
and SGD. By default this ratio is measured on five runs each, for
three epochs, on a fully connected network on MNIST. However,
this can be adapted to a setting which fairly evaluates the new
optimizer, as some optimizers might have a high initial cost that
amortizes over many epochs.

Visualizations

The DeerOBS visualization module reduces the overhead for the
preparation of results, and simultaneously standardizes the presen-
tation, making it possible to include a comparably large amount of
information in limited space. The module produces  .tex files with
PGFPLOTS code for all learning curves for the proposed optimizer as
well as the most relevant baselines (Section 5.4 includes an example
of this output).

Demonstrating the DeepOBS Suite

To showcase DeepOBS and provide an example of its output, we
evaluate three popular deep learning optimizers (SGD, MoMENTUM
and Apawm) on the eight test problems that are part of the small
(problems P1 to P4) and large (problems P5 to P8) benchmark
set.!! The experiments were conducted with version '1.1.0 of
DeerOBS. All experiments used 0.99 for the MoMENTUM parameter
and default parameters for Abam (1 = 0.9, f2 = 0.999, ¢ = 1078).
The learning rate 1 was tuned for each optimizer and test problem
individually, by evaluating on a logarithmic grid from nmin, = 107
to Nmax = 102 with 36 samples. Once the best learning rate has
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been determined, we run those settings ten times with different
random seeds. While we are using a log grid search, researchers
are free to use any other hyperparameter tuning method, however
this would require re-running the baselines as well.

Figure 5.2 shows the learning curves of the eight problems in
the small and large benchmark set using tuned hyperparameters.
Table 5.2 summarizes the results from both benchmark sets. We
focus on three main observations, which corroborate widely-held
beliefs and support the case for an extensive and standardized
benchmark.

There is no optimal optimizer for all test problems. While Apam
compares favorably on most test problems, in some cases the
other optimizers are considerably better. This is most notable on
CIFAR-100 (P6), where MomeNTUM is significantly better then the
other two. We will investigate this statement in much more detail
in Chapter 6.

The connection between the four learning metrics is non-trivial.
Looking at P6 and P7 we note that the optimizers rank differ-
ently on train vs. test loss. However, there is no optimizer that
universally generalizes better than the others; the generalization
performance is evidently problem dependent. The same holds for
the generalization from loss to accuracy (e.g. P3 or P6).

Apawm is somewhat easier to tune. Between the eight test problems,
the optimal learning rate for each optimizer varies significantly.
Figure 5.3 shows the final performance against learning rate for
each of the eight test problems. There is no significant difference
between the three optimizers in terms of their learning rate sen-
sitivity. However, in most cases, the order of magnitude of the
optimal learning rate for Apawm is in the order of 107* and 1073
(with the exception of P1), while for SGD and MowmenTtuM this
spread is slightly larger.
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Figure 5.2: Learning curves for all eight test problems showing the performance of SGD, MomenTUM, and Apam
produced with DeerOBS. Each column represents a single test problem, each row one of the four main performance
metrics. The thick colored lines show the mean performance over ten runs of each optimizer with tuned hyperparameters,
with the standard deviation shown via the shaded area. The convergence performances used to determine the speed of
the optimizer (see Table 5.2) are shown with a horizontal gray line (—) in the subplot of the corresponding metric.
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Figure 5.3: Relative performance against learning rate for each test problem and optimizer. Top row shows test problems
P1 to P4, bottom row the test problems P5 to P8. The optimizers are represented in the same color as in Figure 5.2 and
throughout this thesis, where @ represents SGD, ® represents MomMeNTUM, and ® the Apam optimizer.



Table 5.2: DEepOBS benchmark for three popular optimizers, showing the performance, speed and tuneability measures
of SGD, MomenTuM and Apam on all eight test problems. The performance is measured using the test accuracy in
percent (when available, otherwise the test loss) and the speed using the number of iterations to reach the convergence
performance. All numbers are averaged over ten runs with the same hyperparameter settings. The tuneability row
indicates the best performing set of hyperparameters per test problem, untuned hyperparameters are shown in gray for

completeness.
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Test Problem SGD Momentum Adam Test Problem

SGD Momentum Adam

P1 Performance [ey2l) P5 Performance
Quadratic ~ Speed 70.5 F-MNIST  Speed

Deep Tuneability ~ 7:1.58e-02 1:2.51e-03  7: 3.98e-02 VAE Tuneability
1:0.99 p1:0.9
B2:0.999
e:1e-08

P2 Performance 52.93 P6 Performance
MNIST Speed CIFAR-100  Speed

VAE Tuneability ~ 7: 3.98e-03 1:2.51e-05  1:1.58e-04 AIICNN C Tuneability
1:0.99 B1:0.9
B2:0.999
£:1e-08
P3 Performance 92.14 % P7 Performance
F-MNIST Speed 59.1 SVHN Speed
CNN Tuneability =~ 7:1.58e-01  n:2.51e-03  n: 2.51e-04 Wide ResNet Tuneability
u:0.99 p1:0.9
B2:0.999
£:1e-08
P4 Performance [EMAR P8 Performance
CIFAR-10 Speed 42.5 40.7 ToLsToI Speed
CNN Tuneability ~ 7:6.31e-02  1:3.98e-04  7: 3.98e-04 Char RNN Tuneability
1:0.99 p1:0.9
B2:0.999
&:1e-08

n: 3.98e-03  1:1.00e-05

u:0.99

57.06 %

128.7

n:1.58e-01  n: 3.98e-03
u:0.99

95.37 %

28.3

n:2.51e-02  1: 6.31e-04
u:0.99
61.30 %
88.0

n:1.58e+00 1n: 3.98e-02
u:0.99

1:1.58e-04
p1:0.9
B2:0.999
e:1e-08
56.15 %
152.6

7:1.00e-03
B1:0.9
B2:0.999
e:1e-08
95.25 %

1: 1.58e-04
B1:0.9

Ba2: 0.999
e:1e-08
61.23 %

1: 2.51e-03
p1:0.9
B2:0.999
e:1e-08

5.5 Conclusion

Deep learning continues to pose a challenging domain for opti-
mization algorithms. Aspects like stochasticity and generalization
make it challenging to benchmark optimization algorithms against
each other. We have discussed best practices for experimental
protocols and presented the DeepOBS package, which provides
an open-source implementation of these standards. We hope that
DeepOBS can help researchers working on optimization for deep
learning to build better algorithms, by simultaneously making the
empirical evaluation simpler, yet also more reproducible and fair.
By providing a common ground for methods to be compared on,
we aim to speed up the development of deep-learning optimizers,
and aid practitioners in their decision for an algorithm.






Empirically Comparing Deep
Learning Optimizers

Choosing the optimizer is considered to be among the most crucial
design decisions in deep learning, and it is not an easy one. The
growing literature now lists hundreds of optimization methods,
see Table 3.1. In the absence of clear theoretical guidance and
conclusive empirical evidence, the decision is often made based
on anecdotes. In this chapter, we aim to replace these anecdotes, if
not with a conclusive ranking, then at least with evidence-backed
heuristics. Having developed a standardized evaluation protocol in
the previous chapter, we now perform an extensive, standardized
benchmark of fifteen particularly popular deep learning optimizers.
Analyzing more than 50,000 individual runs, we contribute the
following three points: (i) Optimizer performance varies greatly
across tasks. (ii) We observe that evaluating multiple optimizers
with default parameters works approximately as well as tuning the
hyperparameters of a single, fixed optimizer. (iii) While we cannot
discern an optimization method clearly dominating across all tested
tasks, we identify a significantly reduced subset of specific optimiz-
ers and parameter choices that generally lead to competitive results
in our experiments: Apam remains a strong contender, with newer
methods failing to significantly and consistently outperform it. Our
open-sourced results! are available as challenging and well-tuned
baselines for more meaningful evaluations of novel optimization
methods without requiring any further computational efforts. This
chapter is largely based on the publication [26]1].

The Crowded Field of Deep Learning
Optimizers

Choosing the right optimization method and effectively tuning
its hyperparameters heavily influences the training speed and
final performance of neural networks, it is an important, every-day
challenge to practitioners. It is probably the task that requires the
most time and resources in many applications. Hence, optimization
for machine learning has been a focal point of research, engendering
an ever-growing list of methods (cf. Figure 6.1), many of them
targeted at deep learning. The hypothetical machine learning
practitioner who is able to keep up with the literature now has the
choice among hundreds of methods (see Table 3.1), each with their
own set of tunable hyperparameters, when deciding how to train
a model.

6.1 The Crowded Field
of Deep Learning
Optimizers . . .. .. 91
6.2 Benchmarking Process 95
6.3 Results of Comparing
Popular Optimization
Methods
6.4 Limitations of our
Empirical Comparison 104
6.5 Conclusion . . . . .. 105

1: Available at

[261] Schmidt et al. (2021), “Descend-
ing through a Crowded Valley -
Benchmarking Deep Learning Opti-
mizers”
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Figure 6.1: Number of times ArRX1v titles and abstracts mention specific optimizer per year. All non-selected optimizers
from Table 3.1 are grouped into Other. This figure illustrates not only the expected increase in both methods and mentions
(see left subplot (a) showing the total mentions per year), but also that our selection covers the most popular methods. In
2020, the excluded methods accounted for < 4 % of the mentions (see right subplot (b)).

There is limited theoretical analysis that clearly favors one of
these choices over the others. Some authors have offered empirical
comparisons on comparably small sets of popular methods [e.g.,
[60] Choi et al. (2019), “On Empiri- , 271, 318]; but for most optimizers, the only empirical evaluation

cal Comparisons of Optimizers for g offered by the original work introducing the method. Many
Deep Learning”

[271] Sivaprasad et al. (2020), “Op- ) ) ) ) i
timizer Benchmarking Needs to Ac- anecdotal experience, and informal discussion with colleagues or

practitioners and researchers, meanwhile, rely on personal and

count for Hyperparameter Tuning”  on social media. The result is an often unclear, ever-changing “state

[715] Wilson et al. (2017), “The  of the art” occasionally driven by hype. The key obstacle for an
Marginal Value of Adaptive Gradi- L . . .

) i ., objective benchmark is the combinatorial cost of such an endeavor

ent Methods in Machine Learning .

posed by comparing a large number of methods on a large number

of problems, with the high resource and time cost of tuning each

method’s parameters and repeating each (stochastic) experiment

repeatedly for fidelity.

Leveraging the optimizer benchmark suite DeepOBS, presented
in Chapter 5, we conduct a large-scale benchmark of optimizers
to ground the ongoing debate about deep learning optimizers
on empirical evidence, and to help understand how the choice
of optimization methods and hyperparameters influences the
training performance. Specifically, we examine whether recently
proposed methods show an improved performance compared to
more established methods such as SGD or Apam. Additionally,
we assess whether there exist optimization methods with well-
working default hyperparameters that are able to keep up with
tuned optimizers. To this end, we evaluate fifteen optimization
methods, selected for their perceived popularity, on a range of
representative deep learning problems (see Figure 6.4) drawing
conclusions from tens of thousands of individual training runs.



6.1 The Crowded Field of Deep Learning Optimizers

Right up front, we want to state that it is impossible to include
all optimizers (see Table 3.1 for just a subset), and to satisfy any
and all expectations readers may have on tuning, initialization, or
the choice of problems—not least because everyone has different
expectations in this regard. In our personal opinion, what is needed
is an empirical comparison by a third party not involved in the
original works. As the target audience of our work, we assume
a careful practitioner who does not have access to near-limitless
resources, nor to a broad range of personal experiences. As such,
the core contributions of this chapter are:

1. Assessing the progress in deep learning optimization. In
this work, we identify more than a hundred optimization
methods (see Table 3.1) and more than 20 families of hyperpa-
rameter schedules (see Table 3.2) proposed for deep learning.
We conduct a large-scale optimizer benchmark, specifically
focusing on problems arising in deep learning. We evaluate
fifteen optimizers on eight deep learning problems using four
different schedules, tuning over dozens of hyperparameter
settings. To our knowledge, this is the most comprehensive
empirical evaluation of deep learning optimizers to date (see
Section 6.1.1 on related work).

2. Insights from more than 50,000 optimization runs. Our em-
pirical experiments indicate that an optimizer’s performance
highly depends on the problem (see Figure 6.4). But some
high-level trends emerge, too: (1) Evaluating multiple opti-
mizers with default hyperparameters works approximately
as well as tuning the hyperparameters for a fixed optimizer.
(2) Using an additional untuned learning rate schedule helps
on average, but its effect varies greatly depending on the op-
timizer and the problem. (3) While there is no optimizer that
clearly dominates across all tested workloads, some of the
methods we tested exhibited highly variable performance.
Others demonstrated decent performance consistently. We
deliberately abstain from recommending a single one among
them, because we could not find a clear winner with statistical
confidence.

3. An open-source baseline for future optimizer benchmarks
and meta-learning approaches. Our results are available in
an open and easily accessible form.? This data set contains
53,760 unique runs, each consisting of thousands of indi-
vidual data points, such as the mini-batch training losses
of every iteration or epoch-wise performance measures, for
example, the loss on the full validation set or test set accuracy.
These results can be used as competitive and well-tuned base-
lines for future benchmarks of new optimizers, drastically
reducing the amount of computational budget required for a

2: This also echoes the results
shown in the small showcase in Sec-
tion 5.4.

3: Available at


https://github.com/SirRob1997/Crowded-Valley---Results
https://github.com/SirRob1997/Crowded-Valley---Results

Chapter 6 Empirically Comparing Deep Learning Optimizers

[319] Wolpert et al. (1997), “No free
lunch theorems for optimization”

[262] Schneider et al. (2019), “Deep-
OBS: A Deep Learning Optimizer
Benchmark Suite”

[205] Metz et al. (2020), “Using a
thousand optimization tasks tolearn
hyperparameter search strategies”

[60] Choi et al. (2019), “On Empiri-
cal Comparisons of Optimizers for
Deep Learning”

[271] Sivaprasad et al. (2020), “Op-
timizer Benchmarking Needs to Ac-
count for Hyperparameter Tuning”

meaningful optimizer comparison. This collection of training
curves could also be used for meta-learning novel optimiza-
tion methods, hyperparameter search strategies, or hyper-
parameter adaptation strategies. To encourage researches to
contribute to this collection, we made our baselines easily
expandable.

The high-level result of our benchmark is, perhaps expectedly,
not a clear winner. Instead, our comparison shows that, while
some optimizers are frequently decent, they also generally perform
similarly, often switching their positions in the ranking. This result
is reminiscent, albeit not formally a rigorous result of the No Free
Lunch Theorem [319]. A key insight of our comparison is that a
practitioner with a new deep learning task can expect to do about
equally well by taking almost any method from our benchmark
and tuning it, as they would by investing the same computational
resources into running a set of optimizers with their default settings
and picking the winner.

Possibly the most important takeaway from our comparison is that
“there are now enough optimizers”. Methods research in stochastic
optimization should focus on significant (conceptual, functional,
performance) improvements—such as methods specifically suited
for certain problem types, inner-loop parameter tuning or struc-
turally novel methods. We make this claim not to discourage
research but, quite on the contrary, to offer a motivation for more
meaningful, non-incremental research.

Related Works

Following the rapid increase in publications on optimizers, bench-
marking these methods for the application in deep learning has
only recently attracted significant interest. The benchmarking
framework DeepOBS, described in Chapter 5 and [262] includes a
wide range of realistic deep learning problems together with stan-
dardized procedures for evaluating optimizers. Metz et al. [205]
presented TaskSkeT, another collection of optimization problems fo-
cusing on smaller but more numerous problems. For the empirical
analysis presented here, we use DeepOBS as it provides optimiza-
tion problems closer to real-world deep learning tasks. In contrast
to our evaluation of existing methods, TaskSer and its analysis
focuses on meta-learning new optimizers or hyperparameters.

Both Choi et al. [60] and Sivaprasad et al. [271] analyzed specific
aspects of the benchmarking process. Sivaprasad et al. [271] used
DeepOBS to illustrate that the performance of an optimizer de-
pends significantly on the hyperparameter tuning budget. The
analysis by Choi et al. [60] supports this point, stating that “the
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hyperparameter search space may be the single most important
factor explaining the rankings”. They further stress an optimizer
hierarchy, demonstrating that, given sufficient hyperparameter
tuning, more general optimizers can never be outperformed by
special cases. In their study, however, they manually defined a
hyperparameter search space per optimizer and problem basing it on
prior published results, prior experiences, or pre-tuning trials.

Here, we instead aim to identify well-performing general-purpose
optimizers for deep learning, especially when there is no prior
knowledge about well-working hyperparameter values for each
specific problem. We further elaborate on the influence of our
chosen hyperparameter search strategy in Section 6.4 discussing
the limitations of our empirical study.

This benchmark also relates to empirical generalization studies of
adaptive methods, such as that of Wilson et al. [315] which sparked
an extensive discussion whether adaptive methods, such as Apam,
tend to generalize worse than standard first-order methods (i.e.
SGD). By focusing on and reporting the test set accuracy we implicitly
include the generalization capabilities of different optimizers in our
benchmark results, an important characteristic of deep learning
optimization.

Benchmarking Process

Any benchmarking effort requires tricky decisions on the experi-
mental setup that influence the results. Evaluating on a specific
task or picking a certain tuning budget may favor or disadvantage
certain methods [271]. It is impossible to avoid these decisions
or to cover all possible choices. Generally, we follow the protocol
proposed in Chapter 5 and formalized in the DeerOBS package.
Aiming for generality, we evaluate the performance on the eight
problems of DeepOBS’s small and large benchmark set, which
consists of diverse real-world deep learning problems from dif-
ferent disciplines (Section 6.2.1). From a collection of more than a
hundred deep learning optimizers (see Table 3.1) we select fifteen
of the most popular choices (see Figure 6.1) for this benchmark
(Section 6.2.2). For each problem and optimizer we evaluate all pos-
sible combinations of four different tuning budgets (Section 6.2.3)
and four selected learning rate schedules (Section 6.2.4), covering

[318] Wilson et al. (2017), “The
Marginal Value of Adaptive Gradi-
ent Methods in Machine Learning”

[271] Sivaprasad et al. (2020), “Op-
timizer Benchmarking Needs to Ac-
count for Hyperparameter Tuning”
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Table 6.1: Summary of the DEepOBS problems used in our benchmark. Exact model configurations can be found in
Appendix A.1 or [262]. The run time approximations are based on the run time for Abam on a TesLa K80 GPU.

Data set Model Task Metric Batch  Budget Approx.

size inepochs  runtime
P1 Artificial Noisy quadratic =~ Minimization Loss 128 100 <1min
P2 MNIST VAE Generative Loss 64 50 10 min
P3 F-MNIST  Basic CNN: 2c2p  Classification Accuracy 128 100 20 min
P4 CIFAR-10  Basic CNN:3c3p  Classification Accuracy 128 100 35 min
P5 F-MNIST  VAE Generative Loss 64 100 20 min
P6 CIFAR-100 Arr-CNN-C Classification Accuracy 256 350 4h 00 min
P7 SVHN WipE ResNEer 16-4  Classification Accuracy 128 160 3 h 30 min
P8 Tovstor RNN Char. Prediction  Accuracy 50 200 5h 30 min

[1] Abadi et al. (2015), “TensorFlow:
Large-Scale Machine Learning on
Heterogeneous Systems”

the following combinatorial space:

Problem Optimizer Tuning Schedule
P1 Apam one-shot constant
P2 NAG small cosine
X X _ X _
.. medium cosine warm restarts
P8 ) SGD J,, \large , \trapez. 4

Combining those options results in 1,920 configurations, where
each of the fifteen optimizers is evaluated in 128 settings (i.e. on
eight problems, with four budgets and four schedules). Including
hyperparameter search and estimating the confidence interval, our
main benchmark consists of 53,760 unique training curves.

Problems

We consider the eight optimization tasks summarized in Table 6.1,
available as the “small” (P1-P4) and “large” (P5-P8) problem
sets in DEepOBS. A detailed description of these problems, in-
cluding architectures, training parameters, etc. can be found in
Appendix A.l. All experiments were performed using version
1.2.0-beta of DEepOBS and version | 1.15 | of TensorFrow [1].

DeepOBS provides several performance metrics, including the
training and test loss, and the validation accuracy. While these are
all relevant, any comparative evaluation of optimizers requires
picking only a few, if not just one particular performance metric.
Following DeepOBS, our analysis (Section 6.3) focuses on the final
test accuracy (or loss, if accuracy is not defined for this problem).
This metric captures the optimizer’s generalization ability and is
thus highly relevant for practical use. Our publicly released results
include all metrics for completeness. An example of training loss
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performance is shown in Figure B.12. Accordingly, the tuning (Sec-
tion 6.2.3) is done with respect to the validation metric. We discuss
possible limitations resulting from these choices in Section 6.4.

Optimizer

In Table 3.1 we collect over a hundred optimization methods
introduced for or used in deep learning. This list was collected
by multiple researchers trying to keep up with the field over
recent years. It is thus necessarily incomplete, although it may well
represent one of the most exhaustive of such collections. Even this
incomplete list, though, contains too many entries for a benchmark
with the degrees of freedom collected above. This is a serious
problem for research: Even an author of a new optimizer, let alone
a practitioner, cannot be expected to compare their work with every
possible previous method.

We thus select a subset of fifteen optimizers, which we consider
to be currently the most popular choices in the community, see
Table 6.2. These do not necessarily reflect the “best” methods,
but are either commonly used by practitioners and researchers,
or have recently generated attention. Our selection is focused on
first-order optimization methods, both due to their prevalence for
non-convex optimization problems in deep learning as well as to
simplify the comparison. Whether there is a significant difference
between these optimizers or if they are inherently redundant is
one of the questions this work investigates.

Our list focuses on optimizers over optimization techniques, al-
though the line between the two is admittedly blurry. Techniques
such as averaging weights [e.g., 143] or ensemble methods [e.g., 9]
have been shown to be simple but effective at improving the opti-
mization performance. Those methods, however, can be applied
to all methods in our lists, similar to regularization techniques,
learning rate schedules, or tuning method. We have, therefore,
decided to omit them from Table 3.1.

Tuning

Budget: Optimization methods for deep learning regularly expose
hyperparameters to the user, see Section 3.4. The user either relies
on the default suggestion or sets them using experience from
previous experiments, or using additional tuning runs to find the
best-performing setting. All optimizers in our benchmark have
tunable hyperparameters, and we consider four different tuning
budgets.

[143] Izmailov et al. (2018), “Averag-
ing weights leads to wider optima
and better generalization”

[92] Garipov et al. (2018), “Loss Sur-
faces, Mode Connectivity, and Fast
Ensembling of DNNs”
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Table 6.2: Optimizers selected for our benchmarking process with their respective color, hyperparameters, default
values, tuning distributions and scheduled hyperparameters. Here, LU (-, -) denotes the log-uniform distribution while
U (-, -) denotes the discrete uniform distribution.

Optimizer Ref. Parameters Default Tuning Distribution Scheduled
AMSBounD [196] n 1073 LU (1074,1) v/
n* 0.1 LU (1073,0.5)
B1 0.9 LU (0.5,0.999)
B2 0.999 LU (0.8,0.999)
y 1073 LU (107%,1071)
e 1078 X
©® AMSGRraD [238] n 1072 LU (1074,1) v
B1 0.9 LU (0.5,0.999)
B2 0.999 LU (0.8,0.999)
& 1078 X
ADABELIEF [361] n 1072 LU (10’4, 1) v
B1 0.9 LU4(0.5,0.999)
B2 0.999 LU (0.8,0.999)
e 10714 X
ApaBounp [196] n 1073 LU (10_4, l) v
n* 0.1 LU (1073,0.5)
B1 0.9 LU (0.5,0.999)
B2 0.999 LU4(0.8,0.999)
y 1073 LU (1074,1071)
® ADADELTA [341] n 1073 EL{ (10’4, 1) v
€ 1078
1-p 0.05 LU (1074,1)
ApAGRAD [78] n 1072 (10_4 l) v
e 1077 X
©® Apam [166] n 1073 LU (1074,1) v/
B1 0.9 LU4(0.5,0.999)
B2 0.999 LU (0.8,0.999)
e 108 X
® LOOKAHEAD [349] n 0.5 LU (10_4, l)
MoMENTUM ¢ 1072 LU (1074,1) v
abbr. LA(Mom.) k 5 U (1,20)
1-p 0.01 LU (1074,1)
©® LOOKAHEAD [349] n 0.5 LU (10_4, l)
RApam n 1073 LU (e —4,1) v
abbr. LA(RADAM) B1 0.9 LU (0.5,0.999)
B2 0.999 L4 (0.8,0.999)
€ 1077 X
k 5 U (1,20)
MOMENTUM [230] n 1072 (10_4 1) v
1-p 0.01 LU (1074,1)
® NAG [221] 1 1072 LU (1074,1) v
1-p 0.01 LU (1074,1)
©® Nabam [76] n 1073 LU (1074,1) v
B1 0.9 LU (0.5,0.999)
B2 0.999 LU4(0.8,0.999)
£ 1077 X
® RApam [189] n 1073 LU (1074,1) v
B1 0.9 LU(0.5,0.999)
B2 0.999 LU (0.8,0.999)
3 1077 X
® RMSPror [294] n 1073 LU (1074,1) v/
e 10710 X
1-p 0.1 LU (1074,1)

® SGD [242] 1 1072 LU (1074,1) v




6.2 Benchmarking Process

The first budget consists of just a single run. This one-shot budget
uses the default values proposed by the original authors, where
available.* If an optimizer performs well in this setting, this has
great practical value, as it drastically reduces the computational
resources required for successful training.

The small, medium and large budgets consist of 25, 50, and 75 tuning
runs, where the parameters for each setting are sampled using
random search. Tuning runs for the small and medium budget
were sampled using the distributions defined in Table 6.2. The
additional 25 tuning runs of the large budget, however, were
sampled using refined bounds: For each combination of optimizer,
problem, and learning rate schedule we use the same distribution as
before, but restrict the search space, to contain all hyperparameter
configurations of the top-performing 20 % tuning runs from the
medium budget are included.

We use a single seed for tuning, but for all configurations repeat
the best setting with ten different seeds. This allows us to re-
port standard deviations in addition to means, assessing stability.
Our tuning process can sometimes pick “lucky” seeds, which
do not perform well when averaging over multiple runs. This is
arguably a feature rather than a bug, since it reflects practical
reality. If an optimizer is so unstable that ten random seeds are re-
quired for tuning—which would render this benchmark practically
infeasible—it would be impractical for the end-user as well. Our
scoring naturally prefers stable optimizers. Appendices B.1 and B.2
provide further analysis of these cases and the general stability
of our benchmark, showing among other things that failing seeds
occur in less than 0.5 % of the tuning runs.

Tuning method: We tune parameters by random search without
early-stopping for the small, medium and large budget. Random
search is a popular choice due to its efficiency over grid search [27]
and its ease of implementation and parallelization compared to
Bayesian optimization (further discussed in Section 6.4). A minor
complication of random search is that the sampling distribution
affects the performance of the optimizer. The sampling distribu-
tion acts as a prior over good parameter settings, and bad priors
consequently ruin performance. We followed the valid interval
and intuition provided by the optimizers” authors for relevant hy-
perparameters. The resulting sampling distributions can be found
in Table 6.2. Even though a hyperparameter might have a similar
name in different optimization methods (e.g. learning rate «), its
appropriate search space can differ. However, without grounded
heuristics guiding the practitioner on how the hyperparameters
differ between optimizers, the most straightforward approach for
any user is to use the same search space. Therefore, in case there
was no prior knowledge provided in the cited work we chose

4: Table 6.2 lists the default param-
eters used in our benchmark

[27] Bergstra et al. (2012), “Random
Search for Hyper-Parameter Opti-
mization”
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5: See Choi et al. [
detailed discussion
[60] Choi et al. (2019), “On Empiri-
cal Comparisons of Optimizers for
Deep Learning”

] for a more

[101] Goodfellow et al. (2016), “Deep
Learning”

[342] Zhang et al. (2020), “Dive into
Deep Learning”

[193] Loshchilov et al. (2017), “SGDR:

Stochastic Gradient Descent with
Warm Restarts”

[330] Xing et al. (2018), “A Walk with
SGD”

[105] Goyal et al. (2017), “Accurate,
Large Minibatch SGD: Training Im-
ageNet in 1 Hour”

similar distributions for similar hyperparameters across different
optimizers.

What should be considered a hyperparameter? There is a fuzzy
boundary between (tunable) hyperparameters and (fixed) design
parameters. A recently contentious example is the ¢ in adaptive
methods like Apawm. It was originally introduced as a safeguard
against division by zero, but has recently been re-interpreted as a
problem-dependent hyperparameter.’> Under this view, one can
actually consider several optimizers called Apam: From an easy-
to-tune but potentially limited Apam,, only tuning the learning
rate, to the tricky-to-tune but all-powerful Apam, g, s, which
can approximate SGD in its hyperparameter space. While both
share the update rule, we consider them to be different optimizers.
For each update rule, we selected one popular choice of tunable
parameters, e.g. ADAM, g, 4,, see Table 6.2.

Schedules

The literature on learning rate schedules is now nearly as extensive
as that on optimizers, see Table 3.2. In theory, schedules can be
applied to all hyperparameters of an optimization method but to
keep our configuration space feasible, we only apply schedules
to the learning rate, by far the most popular practical choice [101,

]. We choose four different learning rate schedules, trying to
cover all major types of schedules:

v

A constant learning rate;
A cosine decay [
A cosine with warm restarts schedule [
ule;

A trapezoidal schedule [
introduced in Goyal et al. [105].

v

] as an example of a smooth decay;

v

] as a cyclical sched-

v

] from the warm-up schedules

Appendix B.3 in the appendix provides a more detailed description
of the used schedules.

Results of Comparing Popular Optimization
Methods

How well do optimizers work out-of-the-box? By comparing each
optimizer’s one-shot results against the tuned versions of all fifteen
optimizers, we can construct a 15x15 matrix of performance gains.
Figure 6.2 illustrates this on five problems showing improvements
by a positive sign and an orange cell. Detailed plots for all problems
are in Figures B.5 and B.6 in the appendix. For example, the bottom
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Figure 6.2: The test set performance improvement after switching from any untuned optimizer (y-axis, one-shot) to
any tuned optimizer (x-axis, small budget) as an average over 10 random seeds for the constant schedule. For example,
the bottom left cell of the largest matrix indicates that the tuned version of AMSBounbD (1) reaches a 2.4 % higher test
accuracy than untuned SGD (15). We discuss the unintuitive occurrence of negative diagonal entries in Appendix B.5. The
colormap is capped at +3 to improve presentation, although larger values occur.

left cell of the largest matrix in Figure 6.2 shows that AMSBounDp
(1) tuned using a small budget performs 2.4% better than SGD (15)
with default parameters on this specific problem.

An orange row in Figure 6.2 indicates that an optimizer’s default
setting is performing badly, since it can be beaten by any well-tuned
competitor. We can observe badly-performing default settings for
MowmentuM, NAG and SGD, advocating the intuition that non-
adaptive optimization methods require more tuning, but also for
AMSGRraD and Apaperra. This is just a statement about the default
parameters suggested by the authors or the popular frameworks;
well-working default parameters might well exist for those meth-
ods. Conversely, a white & blue row signals a well-performing
default setting, since even tuned optimizers do not significantly
outperform it. Apam, Napam and RApawm, as well as AMSBounb,
ApaBounp and ApaBELier all have white or blue rows on several
(but not all!) problems, supporting the rule of thumb that adap-
tive methods have well-working default parameters. Conversely,
orange (or blue) columns highlight optimizers that, when tuned,
perform better (or worse) than all untuned optimization methods.
We do not observe such columns consistently across tasks. This
supports the conclusion that an optimizer’s performance is heavily
problem-dependent and that there is no single best optimizer across
workloads.

Figures B.5 to B.8 in the appendix suggest an interesting alternative
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Figure 6.3: Lines in gray (—, smoothed by cubic splines for visual guidance only) show the relative improvement for a
certain tuning budget and schedule (compared to the one-shot tuning without schedule) for all fifteen optimizers on all
eight problems. The median over all lines is plotted in orange (—) with the shaded area () indicating the area between
the 25th and 75th percentile. With an increased budget and a schedule, one can expect a performance increase on average
(orange lines), but not automatically for individual settings (i.e. gray lines can be unaffected or even decrease).

[102] Goodfellow et al. (2014), “Gen-
erative Adversarial Nets”

[307] Vaswani et al. (2017), “Atten-
tion Is All You Need”

[4] Agarwal et al. (2020), “Disentan-
gling Adaptive Gradient Methods
from Learning Rates”

approach for machine learning practitioners: Instead of picking a
single optimizer and tuning its hyperparameters extensively, trying
out a few optimizers with default settings and picking the best
one yields competitive results with less computational and tuning
choice efforts. However, this might not hold for more complicated,
structurally different tasks such as GANs [102] or TRANSFORMER
models [307]. The similarity of those two approaches might be due
to the fact that optimizers have implicit learning rate schedules [4]
and trying out different optimizers is similar to trying out different
(well-tested) schedules.

How much do tuning and schedules help? We consider the fi-
nal performance achieved by varying budgets and schedules to
quantify the usefulness of tuning and applying parameter-free
schedules (Figure 6.3). While there is no clear trend for any individ-
ual setting (gray lines), in the median we observe that increasing
the budget improves performance, albeit with diminishing returns.
For example, using the medium budget without any schedule leads
to a median relative improvement of roughly 3.4 % compared to
the default parameters (without schedule).

Applying an untuned schedule improves median performance
as well. For example, the large tuning budget coupled with a
trapezoidal learning rate schedule leads to a median relative
improvement of the performance of roughly 5.2 % compared to
the default parameters. However, while these trends hold in the
median, their individual effect varies wildly among optimizers and
problems, as is apparent from the noisy structure of the individual
lines shown in Figure 6.3.

Which optimizers work well after tuning? Figure 6.4 compares
the optimizers’ performance across all eight problems. There is no
single optimizer that dominates its competitors across all tasks.
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Figure 6.4: Mean test set performance over 10 random seeds of all tested optimizers on all eight optimization problems
using the large budget for tuning and no learning rate schedule. One standard deviation for the tuned Apam optimizer is
shown with a red error bar (I; error bars for other methods omitted for legibility). The performance of untuned Apam (V')
and ApaBounp (/) are marked for reference. The upper bound of each axis represents the best performance achieved in
the benchmark, while the lower bound is chosen in relation to the performance of Abam with default parameters. Tabular

version available in the Appendix as Table B.2.

Nevertheless, some optimizers generally perform well, while others
can vary greatly in their behavior, most notably performing poorly
on VAEs.

Further supporting the hypothesis of previous sections, we note
that taking the best out of a small set of untuned optimizers — for
example, Apam and ApaBounp — frequently results in competitive
performance. Except for the two VAE problems, the best of those
two untuned optimizers generally falls within the distribution of
the well-tuned methods. Combining these runs with a tuned version
of Apawm (or a variant thereof) provides stable and slightly improved
results across many problems in our benchmark. To further increase
the performance, our results suggest trying a different optimizer
next, such as RMSPropr or NAG. Across multiple budgets and
schedules, both optimizers show a consistently good performance
on the RNN (P8) and ALL-CNN-C (P6) model, respectively.

Nevertheless, achieving (or getting close to) the absolute best
performance still requires testing numerous optimizers. Which
optimizer wins in the end is problem-dependent: optimizers that
achieve top scores on one problem can perform poorly on other
tasks. We note in passing that the individual optimizer rankings
changes when considering e.g. a smaller budget or an additional
learning rate schedule (see Figures B.9 to B.11 in the appendix).
However, the overall trends described here are consistent.
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[70] Deng et al. (2009), “ImageNet:
A Large-Scale Hierarchical Image
Database”

[307] Vaswani et al. (2017), “Atten-
tion Is All You Need”

6: The MLCommons benchmark for
algorithmic efficiency of training
methods, described in Section 8.2.1,
will consider larger-scale models,
such as TRaNsrFoRrMERs. This is possi-
ble since the benchmark is held in
the form of a competition where sub-
mitters have to decide, for instance
which learning rate schedule they
use, which reduces the combinato-
rial complexity.

The idea that optimizers perform consistently better or worse for
specific model architectures or tasks has been regularly theorized
and mentioned in the literature. Indeed, our results support this
hypothesis, with NAG often beating Apam on image classification
tasks, and RMSProp being consistently on top for the natural
language modeling task (see Tables B.2 to B.5). Understanding
whether and why certain optimizers favor specific problem types
presents an interesting research avenue and might lead to more
sophisticated optimizers that utilize the problem characteristics.

Limitations of our Empirical Comparison

Any empirical benchmark has constraints and limitations. Here we
highlight some of ours” and characterize the context within which
our results should be considered.

Generalization of the results: By using the DeepOBS test problems,
which span models and data sets of varying complexity and
different domains, we aim for generalization. Our results are,
despite our best efforts, reflective of not just these setups, but
also of the chosen training parameters, the software framework,
and further unavoidable choices. Our comparison’s design aims
to be close to what an informed practitioner would encounter
for a relatively novel problem in practice. It goes without saying
that even a carefully curated range of problems cannot cover all
challenges of machine learning or even just deep learning. In
particular, our conclusions may not generalize to other workloads
such as GANSs, reinforcement learning, or applications where e.g.
memory usage is crucial.

Similarly, our benchmark does not cover more large-scale problems
]. While there is
oft-mentioned anecdotal evidence that the characteristics of deep

such as IMAGENET [/0] or TRANSFORMER models [
learning problems change for larger models, it would simply be
impossible to perform the kind of combinatorial exploration cov-
ered in our benchmark, even with significant hardware resources.
The inclusion of larger models would require reducing the number
of tested optimizers, schedules or tuning methods and would
thus shift the focus of the benchmark. Studying whether there are
systematic differences between different types of deep learning
problems presents an interesting avenue for further research.®

We do not consider this study the definitive work on benchmarking
deep learning optimizers, but rather an important and significant
step in the right direction. While our comparison includes many
“dimensions” of deep learning optimization, e.g. by considering dif-
ferent problems, tuning budgets, and learning rate schedules, there



are certainly many more. To ensure that the benchmark remains
feasible, we chose to use the fixed L2 regularization and batch size
that DeepOBS suggests for each problem. We also did not include
optimization techniques such as weight averaging or ensemble
methods as they can be combined with all evaluated optimizers
and hence would increase the computational cost further. Future
works could study how these techniques interact with different
optimization methods. However, to keep our benchmark feasible,
we have selected what we believe to be the most important aspects
affecting an optimizer comparison. We hope, that our study lays
the groundwork so that other works can build on it and analyze
these questions.

Influence of the hyperparameter search strategy: As noted by,
e.g., Choi et al. [60] and Sivaprasad et al. [271], the hyperparameter
tuning method, its budget, and its search domain, can signifi-
cantly affect performance. By reporting results from four different
hyperparameter optimization budgets (including the tuning-free
one-shot setting) we try to quantify the effect of tuning. We argue
that our random search process presents a realistic setting for many
but certainly not all deep learning practitioners. One may criticize
our approach as simplistic, but note that more elaborate schemes,
in particular Bayesian optimization, would multiply the number
of design decisions (kernels, search utilities, priors, etc.) and thus
significantly complicate the analysis.

The individual hyperparameter sampling distributions signifi-
cantly affect the relative rankings of the optimizers. A poorly
chosen search space can make successful tuning next to impossible.
In our benchmark, we use relatively broad initial search spaces,
dozens of tuning runs and a refining of those search spaces for the
large budget. Note, though, that the problem of finding appropriate
search spaces is inherited by practitioners. It is arguably an im-
plicit flaw of an optimization method that expects hyperparameter
tuning not to come with well-identified search spaces for those
parameters and this should thus be reflected in a benchmark.

Conclusion

Faced with an avalanche of research developing new stochastic
optimizers, practitioners are left with the near-impossible task of
not just picking a method from this ever-growing list, but also
to guess or tune hyperparameters for them, even to continuously
tune them during training. Despite efforts by the community, there
is currently no method that clearly dominates the competition.

6.5 Conclusion

[60] Choi et al. (2019), “On Empiri-
cal Comparisons of Optimizers for
Deep Learning”

[271] Sivaprasad et al. (2020), “Op-
timizer Benchmarking Needs to Ac-
count for Hyperparameter Tuning”
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We have provided an extensive empirical benchmark of optimiza-
tion methods for deep learning. It reveals structure in the crowded
field of training methods for deep learning: First, although many
methods perform competitively, a subset of methods tends to come
up near the top across the spectrum of problems. Despite years of
new research by many committed authors, Abam remains a viable
(but also not a clearly superior) choice for many problems, with
NAG or RMSProp being interesting alternatives that were able to
boost performance on individual problems. Secondly, tuning helps
about as much as trying other optimizers. Our open and extendable
data set allows many, more technical observations, for example,
that the stability to re-runs is an often overlooked challenge.

Perhaps the most important takeaway from our study is hidden
in plain sight: the field is in danger of being drowned by noise.
Different optimizers exhibit a surprisingly similar performance
distribution compared to a single method that is re-tuned or simply
re-run with different random seeds. It is thus questionable how
much insight the development of new methods yields, at least
if they are conceptually and functionally close to the existing
population. We hope that benchmarks like ours can help the
community to move beyond inventing yet another optimizer and
to focus on key challenges, such as automatic, inner-loop tuning for
truly robust and efficient optimization. We are releasing our data
to allow future authors to ensure that their method contributes to
such ends.



A Practical Debugging Tool for the
Training of Deep Neural Networks

When engineers train deep learning models, they are very much
“flying blind”. Commonly used methods for real-time training diag-
nostics, such as monitoring the training or test loss, are limited (see
Section 7.1). Assessing a network’s training process solely through
these performance indicators is akin to debugging software with-
out access to internal states through a debugger. To address this,
we present Cockrit, a collection of instruments (see Section 7.2)
that enable a closer look into the inner workings of a learning
machine, and a more informative and meaningful status report
for practitioners. It facilitates the identification of learning phases
and failure modes, such as ill-chosen hyperparameters or model
inefficiencies (see Sections 7.3 and 7.4). These instruments leverage
novel higher-order information about the gradient distribution and
curvature, which has only recently become efficiently accessible
(see Section 7.5). We believe that such a debugging tool, which we
provide open source! for PyTorcH [228], is a valuable help in trou-
bleshooting the training process. By revealing new insights, it also
more generally contributes to explainability and interpretability
of deep neural networks. The contents of this chapter are mostly
based on publication [263].

Why We Need a New Type of Debugger

Deep learning represents a new programming paradigm: Instead
of deterministic programs, users design models and “simply”
train them with data. In this metaphor, deep learning is a meta-
programming form, where coding is replaced by training. In this
chapter, we ponder the question how we can provide more in-
sight into this training process by building a debugger specifically
designed for the challenges of deep learning.

Debuggers are crucial tools for traditional software development.
When things fail, they provide access to the internal workings
of the code, allowing a look “into the box”. This is much more
efficient than re-running the program with different inputs. And
yet, deep learning is arguably closer to the latter. If the attempt
to train a deep network fails, a machine learning engineer faces
various options: Should they adjust the training hyperparameters
(how?); change the optimizer (to which one?); alter the model
(how?); or just re-run with a different seed? Machine learning
toolboxes provide scant help to guide these decisions.

7.1 Why We Need a New
Type of Debugger . . 107

7.2 Cockpit’s Instruments 109

7.3 Experiments: Identify-
ing Training Bugs with
Cockpit . . ... ... 114
7.4 Showcasing Cockpit . 117

7.5 Benchmarking Cock-

pit's Instruments . . . 119

7.6 Conclusion . . . . .. 121

1: Cockerrt is available at:

[228] Paszke et al. (2019), “Py-
Torch: An Imperative Style, High-
Performance Deep Learning Li-
brary”

[263] Schneider et al. (2021), “Cock-
pit: A Practical Debugging Tool for
the Training of Deep Neural Net-
works”
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Figure 7.1: Illustrative example: Learning curves do not tell the whole story. Two different optimization runs (= /=)
can lead to virtually the same loss curve (left). However, the actual optimization trajectories (center), exhibit vastly different
behaviors. In practice, the trajectories are intractably high-dimensional and cannot be visualized directly. Recommendable
actions for both scenarios ( /decrease the learning rate) cannot be inferred from the loss curve alone. The Alpha
distribution, one of Cockrir’s instruments (right), not only clearly distinguishes the two scenarios, but also allows for
taking decisions regarding how the learning rate should be adapted. See Section 7.3.3 for further details.

Of course, traditional debuggers can be applied to deep learning.
They will give access to every single weight of a neural network in
each iteration, or the individual pixels of its training data. But this
rarely yields insights towards successful training. Extracting mean-
ingful information requires a statistical approach and distillation
of the bewildering complexity into a manageable summary. Tools
[1] Abadi et al. (2015), “TensorFlow:  like TENsorBoarD [!1] or WEIGHTs & Biasks [30] were built in part
Large-Scale Machine Learning on g streamline this visualization. Yet, the quantities that are widely
Heterogeneous Systems" monitored (mainly loss or accuracy on the training or validation
[30] Biewald (2020), ”EXper.imer},t set), provide only scant explanation for relative differences be-
Tracking with Weights and Biases ] o
tween multiple training runs, because they do not show the network’s
internal state. Figure 7.1 illustrates how such established learning
curves can describe the current state of the model — whether it is
performing well or not — while failing to inform about training
state and dynamics. They tell the user that things are going well
or badly, but not why. The situation is similar to flying a plane by
sight, without instruments to provide feedback. It is not surprising,
then, that achieving state-of-the-art performance in deep learning
requires expert intuition, or plain trial & error.

We aim to enrich the deep learning pipeline with a visual and statis-
tical debugging tool that uses newly proposed observables as well
as several established ones (Section 7.2). We leverage and augment
recent extensions to automatic differentiation (i.e. BaAckPACK [66]
[225] Paszke et al. (2019), “Py- for PyTorcH [228]) to efficiently access second-order statistical (e.g.
Torch: An Imperative Style, High- gradient variances) and geometric (e.g. Hessian) information. We
Performance Deep Learning Li- show how these quantities can aid the deep learning engineer in
brary” tasks, like learning rate selection, as well as detecting common
bugs with data processing or model architectures (Section 7.3).

[66] Dangel et al. (2020), “BackPACK:
Packing more into Backprop”

Concretely, we introduce Cockerrr, a flexible and efficient frame-
work for online-monitoring these observables during training in
carefully designed plots we call “instruments” (see Figure 7.2). To
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Cockpit for SGD on CIFAR-100 All-CNN-C

STEP SIZE CURVATURE

Figure 7.2: Screenshot of Cockrir’s full view while training the AL.-CNN-C [277] on CIFAR-100 (P6 in Appendix A.1)
with SGD using a cyclical learning rate schedule. This figure and its labels are not meant to be legible, but rather give
an impression of Cockpir’s user experience. Gray panels (bottom row) show the information currently tracked by most
practitioners. The individual instruments are discussed in Section 7.2, and observations are described in Section 7.4. An
animated version can be found in the accompanying GrtHus repository.

be of practical use, such visualization must have a manageable

computational overhead. We show that Cockrir scales well to real-

world deep learning problems (see Figure 7.2 and Section 7.4). We

also provide three different configurations of varying computa-

tional complexity and demonstrate that their instruments keep the

computational cost well below a factor of 2 in runtime (Section 7.5).

Cockerrr scales well to real-world deep learning problems (see

Figure 7.2 and Section 7.4). It is available as open-source code,? ex-  2: Package availableat: hitps://qi
tendable, and seamlessly integrates into existing PYTorcH training ~ t"v0-con/f-dangel/cockpit

loops (see Algorithm C.1).
P & [277] Springenberg et al. (2015),

“Striving for simplicity: The all con-
volutional net”

7.2 Cockpit’s Instruments

Setting: We consider the supervised learning task as described
in Section 2.1 and formalized in Section 3.2. In summary, one
would like to minimize an inaccessible expected risk Lp,..(0) =
/ {(f(x;0),y)dPuue(x,y) via the empirical approximation  3: Here, we define the risk in terms
Lp,. (0) = % Zl\il g(f(x(i)l 0), y(i)).B In practice, only stochasti- of the pammfzters L(0) instead of the
caltlTy sub-samplecli mini-batches B = {(x(l), y(l)), o, (xB) y(B))} c model function L(fp). As described

in Section 3.2, both descriptions are
Dirain are used to compute mini-batch approximations of the loss  analogous views.

Lg(0) = %Zle (D the gradient gg(0) = %Zle g[g) and the

Hessian Hg(0) = % ZIB=1 Vf,f(i),
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4: In TeNsorBoaRrD, arbitrary quan-
tities can be tracked and visualized.
But what quantities are tracked and
how they are computed is up to the
user. With Cockrit, we offer a pre-
defined set of meaningful quantities,
provided through efficient compu-
tation.

[187] Liu et al. (2020), “Understand-
ing Why Neural Networks General-
ize Well Through GSNR of Parame-
ters”

[199] Mahsereci et al. (2017), “Early
Stopping without a Validation Set”

[21] Balles et al. (2017), “Coupling
Adaptive Batch Sizes with Learning
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[43] Byrd et al. (2012), “Sample Size
Selection in Optimization Methods
for Machine Learning”

[32] Bollapragada et al. (2017),
“Adaptive Sampling Strategies for
Stochastic Optimization”

[291] Thomas et al. (2020), “On the
interplay between noise and curva-
ture and its effect on optimization
and generalization”

[333] Yao et al. (2020), “ADAHES-

SIAN: An Adaptive Second Order
Optimizer for Machine Learning”

Design choices: To minimize computational and design overhead,
we restrict the metrics to quantities that require no additional
model evaluations. This means that, at training step t — t +1
with mini-batches B"), B¢V and parameters 0M 9+ e may
access information about the mini-batch losses LBm(B(t)) and
LB(t+1)(6(t+1)), but no cross-terms that would require additional
forward passes.

Key point: Lg(0), gr(0), and Hg(0) are just expected values of a
distribution over the batch, see Section 3.2.1. Only recently, this dis-
tribution has begun to attract attention [52] as its computation has
become more accessible [39, 66]. Contemporary optimizers lever-
age only the mean gradient and neglect higher moments. One core
point of this chapter is making extensive use of these distribution
properties, trying to visualize them in various ways. This out-of-
the-box support for the carefully selected and efficiently computed
quantities distinguishes Cockrir from tools like TENsorBoarD that
offer visualizations as well.* Leveraging these distributional quan-
tities, we create instruments and show how they can help adapt
hyperparameters (Section 7.2.1), analyze the loss landscape (Sec-
tion7.2.2), and track network dynamics (Section 7.2.3). Instruments
can sometimes be built from already-computed information or are
efficient variants of previously proposed observables. To keep the
presentation concise, we highlight the instruments shown in Fig-
ure 7.2 and listed in Table 7.1. Appendix C.3 defines them formally
and contains more extensions, such as the mean GSNR [187], the
early stopping [199] and CABS [21] criterion, which can all be used

in Cockerr.

Bug types: We distinguish between three types of bugs encoun-
tered in deep learning. Implementation bugs are low-level software
bugs that, for example, trigger syntax errors. Training bugs result in
unnecessarily inefficient or even unsuccessful training. They can,
for example, stem from erroneous data handling (see Section 7.3.1),
the chosen model architecture (see Section 7.3.2), or ill-chosen hy-
perparameters (see Section 7.3.3). Prediction bugs describe incorrect
predictions of a trained model on specific examples. Traditional
debuggers are well-suited to find implementation bugs. Cockpir
focuses on efficiently identifying training bugs instead.

Adapting Hyperparameters

One big challenge in deep learning is setting the hyperparame-
ters correctly, which is currently mostly done by trial and error
through parameter searches. We aim to augment this process with
instruments that inform the user about the effect that the chosen
parameters have on the current training process.



7.2 Cockpit's Instruments

Table 7.1: Overview of Cockpit quantities. They range from cheap byproducts, to non-linear transformations of first-order
information and Hessian-based measures. Some quantities have already been proposed, others are first to be considered
in this work. They are categorized into configurations economy C business C full based on their runtime overhead (see
Section 7.5 for a detailed evaluation).

Name Short Description Config Pos. in Figure 7.2

Alpha Normalized step size on a noisy quadratic interpo- economy top left
lation between two iterates 0, 9(+1

Distance Distance from initialization [|8®) — 8©]|, economy middle left

UpdateSize Update size ||0*+V) — ®)||, economy middle left

GradNorm Mini-batch gradient norm ||gg(0)||2 economy bottom left

NormTest Normalized fluctuations of the residual norms economy top
lgs — g5 ll2, proposed in [43]

InnerTest  Normalized fluctuations of the g[(B; Vg parallel com- economy top
ponents along gg, proposed in [37]

OrthoTest  Same as InnerTest but using the orthogonal com- economy top
ponents, proposed in [37]

GradHistld Histogram of individual gradient elements, economy middle

(i) j=1,..,D

(85" (0)}icp

TICDiag Relation between (diagonal) curvature and gradi- business bottom right
ent noise, inspired by [291]

HessTrace  Exact or approximate Hessian trace, Tr(Hg(0)), business middle right
inspired by [333]

HessMaxEV ~ Maximum Hessian eigenvalue, Amax(Hg(0)), in-  full top right
spired by [337]

GradHist2d Histogram of weights and individual gradient ele-  full bottom

; i=1,...,D
ments, {(6}, g3 (6))} /g

Alpha: Are we crossing the valley? Using individual loss and
gradient observations at the start and end point of each iteration,
we build a noise-informed univariate quadratic approximation
along the step direction (i.e. the loss in the update direction as a
one-dimensional function of the step size), and assess to which
point on this parabola our optimizer moves. We standardize this
value, calling it Alpha and denoting it by «, such that stepping to
the valley-floor is assigned a = 0, the starting pointisat « = —1and
updates to the point exactly opposite of the starting pointhave o = 1
(see Appendix C.3.1 for a more detailed visual and mathematical
description of «). Figure 7.1 illustrates the scenarios @ = +1 and
how monitoring the Alpha distribution (right panel) can help
distinguish between two training runs with similar performance
but distinct failure sources. By default, this Cockpir instrument
shows the Alpha distribution for the last 10 % of training and
the entire training process (e.g. top left plot in Figure 7.2). In
Section 7.3.3 we demonstrate empirically that, counter-intuitively,
it is generally not a good idea to choose the step size such that « is
close to zero.
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Distances: Are we making progress? Another way to discern
the trajectories in Figure 7.1 is by measuring the L? distance from
initialization [e.g., ] (bistance) and the update size [e.g., 6, 55]
(UpdateSize) in parameter space. Both are shown together in one
Cockerrt instrument (see also middle left plot in Figure 7.2) and are
far larger for the blue line in Figure 7.1. These distance metrics are
also able to disentangle different phases for the blue path: Using
the same step size, the blue trajectory will continue to “jump back
and forth” between the loss valley’s walls but at some point will
cease to make progress in the low curvature direction. During
this “surfing of the walls”, the Distance increases, ultimately
though, it will stagnate, with the UpdateSize remaining non-zero,
indicating diffusion. While the initial “surfing the wall”-phase
benefits training (see Section 7.3.3), achieving stationarity may
require adaptation once the optimizer reaches that diffusion.

Gradient norm: How steep is the wall? The UpdateSize will
show that the orange trajectory is stuck. But why? Such slow-down
can result from both a bad learning rate or from plateaus in the
loss landscape. The gradient norm (GradNorm, bottom left panel in
Figure 7.2) distinguishes these two causes.

Gradient tests: How noisy is the batch? The batch size B trades off
gradient accuracy versus computational cost. Recently, adaptive
sampling strategies based on testing geometric constraints between
mean and individual gradients have been proposed [32, 43]. The
norm, inner product, and orthogonality tests (NormTest, InnerTest,
OrthoTest) use a standardized radius and two band widths (paral-
lel and orthogonal to the gradient mean) that indicate how strongly
individual gradients scatter around the mean. The original works
use these values to adapt batch sizes. Instead, Cockpit combines all
three tests into a single gauge (top center plot of Figure 7.2) using
the standardized noise radius and band widths for visualization.
These noise signals can be used to guide batch size adaptation
on- and offline, or to probe the influence of gradient alignment on
training speed [254] and generalization [45, 49, 187].

Hessian Properties for Local Loss Geometry

An intuition for the local loss landscape helps in many ways. It can
help diagnose whether training is stuck, to adapt the learning rate,
and explain stability or regularization properties [76, 145]. The key
challenge lies in the large number of parameters: Low-dimensional
projections of surfaces can behave unintuitively [
the extreme or average behaviors may help in debugging, especially

], but tracking

if first-order metrics fail.
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Hessian eigenvalues: A gorge or a lake? In convex optimization,
the maximum Hessian eigenvalue crucially determines the appro-
priate learning rate [260]. Many works have studied the Hessian
spectrum in machine learning [e.g., 95, 96, , 3 , ]. In
short: curvature matters. Established [229] and recent autodiff
frameworks [
ing the full matrix. Cockpit leverages this to provide the Hessian’s
largest eigenvalue and trace (HessMaxEV and HessTrace, top right
and middle right plots in Figure 7.2). The former resembles the

] can compute Hessian properties without requir-

loss surface’s sharpest valley and can thus hint at training instabil-
ities [145]. HessTrace describes a notion of “average curvature”,
since the eigenvalues A; relate to it by >; A; = Tr(Hg(0)), which
might correlate with generalization [144].

TIC: How do curvature and gradient noise interact? There is
an ongoing debate about curvature’s link to generalization [e.g.,

, , ]. The Takeuchi Information Criterion (TIC) [256, |
estimates the generalization gap by a ratio between Hessian and
non-central second gradient moment. It also provides intuition
for changes in the objective function implied by gradient noise.
Inspired by the approximations in [291], CockpiT provides mini-
batch TIC estimates (TICDiag or TICTrace, bottom right plot of
Figure 7.2).

Visualizing Internal Network Dynamics

Histograms provide a natural visual compression of the high-
dimensional B X D individual gradient values. They give insights
into the gradient distribution and hence offer a more detailed view
of the learning signal. Together with the parameter associated to
each individual gradient, the entire model status and dynamics
can be visualized in a single plot and be monitored during training.
This provides a more fine-grained view of training compared to
tracking parameters and gradient norms [55].

Gradient and parameter histograms: What is happening in our
network? Cockrit offers GradHistld, a univariate histogram of

the gradient elements {g[g)(ﬂ)j}fz[;’”"lj. Additionally, GradHist2d, a
j=1,...,D

combined histogram of parameter-gradient pairs {(6;, g[g)(ej)}i B
provides a two-dimensional look into the network’s gradient and
parameter values in a mini-batch. Section 7.3.1 shows an example
use-case of the gradient histogram; Section 7.3.2 makes the case
for the layer-wise variants of the instruments.
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Experiments: Identifying Training Bugs with
Cockpit

The diverse information provided by Cockeir can help users and
researchers in many ways, some of which, just like for a traditional
debugger, only become apparent in practical use. In this section, we
present a few motivating examples, selecting specific instruments
and scenarios in which they are practically useful. Specifically,
we show that Cockrir can help the user discern between, and
thus fix, common training bugs (Sections 7.3.1 and 7.3.2) that are
otherwise hard to distinguish as they lead to the same failure:
bad training. We demonstrate that Cockrir can guide practitioners
to choose efficient hyperparameters within a single training run
(Sections 7.3.2 and 7.3.3). Finally, we highlight that Cockpir’s
instruments can provide research insights about the optimization
process (Section 7.3.3). Our empirical findings are demonstrated on
test problems from the DeepOBS benchmark collection, presented
in Chapter 5 and [267].

Incorrectly Scaled Data

One prominent source of bugs is the data pipeline. To pick a
relatively simple example: For standard optimizers to work at
their usual learning rates, network inputs must be standardized
(i.e. between zero and one, or have zero mean and unit variance [e. g.,

]). If the user forgets to do this, optimizer performance is likely
to degrade. It can be difficult to identify the source of this problem
as it does not cause obvious failures, such as NaN or Inf gradients.
We now construct a semi-realistic example, to show how using
Cockrrir can help diagnose this problem upon observing slow
training performance.

By default®, the popular image data sets CIFAR-10/100 [169] are
provided as NumPy [113] arrays that consist of integers in the inter-
val [0, 255]. This raw data, instead of the widely used version with
floats in [0, 1], changes the data scale by a factor of 255 and thus
the gradients as well. Therefore, the optimizer’s optimal learning
rate is scaled as well. In other words, the default parameters of
popular optimization methods may not work well anymore, or
good hyperparameters may take extreme values. Even if the user
directly inspects the training images, this may not be apparent
(see Figures 7.3 and C.3 in the appendix for the same experiment
with the VGG16 network [ ]). But the gra-
dient histogram instrument of Cockrir, which has a deliberate
default plotting range around [-1, 1] to highlight such problems,

] on ImaGeNET [

immediately and prominently shows that there is an issue.


https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

7.3 Experiments: Identifying Training Bugs with Cockpit 115

Gradient Element
o

Gradient Element

10 10* 10
(a) Normalized Data (b) Raw Data

Figure 7.3: Same inputs, different gradients; Catching data bugs with Cockerr. (a) normalized ([0,1]) and (b) raw
([0, 255]) images look identical in auto-scaled front-ends like marpLOTLIB’S imshow. The gradient distribution of the 3c3p
model from DeerOBS (P4 in Appendix A.1), however, is crucially affected by this scaling.

Of course, this particular data is only a placeholder for real practical
data sets. While this problem may not frequently arise in the highly
pre-processed and readily packaged CIFAR-10, it is not a rare
problem for practitioners who work with their personal data sets.
This is particularly likely in domains outside standard computer
vision, e.g. when working with mixed-type data without obvious
natural scales.

7.3.2 Vanishing Gradients

The model architecture itself can be a source of training bugs. As
before, such problems mostly arise with novel data sets, where
well-working architectures are still unknown. The following ex-
ample shows how even a small (in terms of code) architectural
modification can severely harm the training.

Figure 7.4a shows the distribution of gradient values of two differ-
ent network architectures in blue and orange. Although the blue
model trains considerably better than the orange one, their gradi-
ent distributions look relatively similar. The difference between
the two models becomes evident when inspecting the histogram
layer-wise. We can see that multiple layers have a degenerated
gradient distribution with many elements being practically zero
(see Figure 7.4b, bottom row). Since the fully connected layers close
to the output have far more parameters (a typical pattern of con-
volutional networks), they dominate the network-wide histogram.
This obscures the fact that a major part of the model is effectively
unable to train.

Both the blue and orange networks follow DeepOBS’s 3c3p ar-
chitecture (see P4 in Appendix A.1). The only difference is the
non-linearity: The blue network uses the common ReLU activa-
tion function, while the orange one has sigmoid activations (see
Section 4.2.2 for a description of popular deep learning activation
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Figure 7.4: Gradient distributions of two similar architectures on the same problem. (a) Distribution of individual
gradient elements summarized over the entire network. Both networks seem similar. (b) Layer-wise histograms for a
subset of layers. Parameter 0 is the layer closest to the network’s input, parameter 10 closest to its output. Only the
layer-wise view reveals that there are several layers with a degenerated gradient distribution for the orange network

making training unnecessary hard.

[111] Gur-Ari et al. (2018), “Gradi-
ent Descent Happens in a Tiny Sub-
space”

[324] Wu et al. (2018), “Understand-
ing short-horizon bias in stochastic
meta-optimization”

[330] Xing et al. (2018), “ A Walk with
SGD”

functions). In this experiment, the layer-wise histogram instrument
of Cockerit highlights which part of the architecture makes training
unnecessarily hard. Accessing information layer-wise is also essen-
tial due to the strong overparameterization in deep models where
training can happen in small subspaces [111]. Once again, this is
hard to do with common monitoring tools, such as the popular
learning curves.

Tuning Learning Rates

Once the architecture is defined, the optimizer’s learning rate
is the most important hyperparameter to tune. Getting it right
requires extensive hyperparameter searches at high resource costs.
Cockrir’s instruments can provide intuition and information to
streamline this process: In contrast to the raw learning rate, the
curvature-standardized step size Alpha quantity (see Section 7.2.1)
has a natural scale.

Across multiple optimization problems (P4, P10, P11, and P12 in
Appendix A.1), we observe, perhaps surprisingly, that the best runs
and indeed all good runs have a median a > 0 (Figure 7.5). This il-
lustrates a fundamental difference between stochastic optimization,
as is typical for machine learning, and classic deterministic opti-
mization. Instead of locally stepping “to the valley floor” (optimal
in the deterministic case), stochastic optimizers should overshoot
the valley somewhat. This need to “surf the walls” has been hy-
pothesized before [e.g., ,
training. Frequently, learning rates are adapted during training,

] as a property of neural network
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Figure 7.5: Test accuracy as a function of standardized step size Alpha. For four DEerOBS problems (see Appendix A.1
for details on the problems), final test accuracy is shown versus the median a-value over the entire training. Marker
size indicates the magnitude of the raw learning rate, marker color identifies tasks (see legend). For each problem, the

best-performing setting is highlighted by a vertical colored line.

which fits with our observation about positive a-values: “Over-
shooting” allows fast early progression towards areas of lower loss,
but it does not yield convergence in the end. Real-time visualiza-
tions of the training state, as offered by Cockrir, can augment these
fine-tuning processes.

Figure 7.5 also indicates a major challenge preventing simple
automated tuning solutions: The optimal a-value is problem-
dependent, and simpler problems, such as the multi-layer per-
ceptron (MLP) on MNIST [177] (P10 in Appendix A.1), behave
much more similar to classic optimization problems. Algorithmic
research on small problems can thus produce misleading conclu-
sions. The figure also shows that the Alpha gauge is not sufficient
by itself: extreme overshooting with a too-large learning rate leads
to poor performance, which however can be prevented by taking
additional instruments into account. This makes the case for the
cockpit metaphor of increasing interpretability from several instru-
ments in conjunction. By combining the Alpha instrument with
other gauges that capture the local geometry or network dynamics,
the user can better identify good choices of the learning rate and
other hyperparameters.

Showcasing Cockpit

Having introduced the tool, we can now return to Figure 7.2
for a closer look. The figure shows a snapshot from training
the ALL-CNN-C [277] on CIFAR-100 (P6 in Appendix A.1) using
SGD with a cyclic learning rate schedule (see bottom left panel).
Diagonal curvature instruments are configured to use an MC
approximation in order to reduce the runtime (here, C = 100,
compare Section 7.5).

[177] LeCun et al. (1998), “Gradient-
Based Learning Applied to Docu-
ment Recognition”

[277] Springenberg et al. (2015),
“Striving for simplicity: The all con-
volutional net”
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[68] Frankle et al. (2020), “The Early
Phase of Neural Network Training”

[292] Thompson et al. (2020), “The
Computational Limits of Deep
Learning”

A glance at all panels shows that the learning rate schedule is
reflected in the metrics. However, the instruments also provide
insights into the early phase of training (first ~ 100 iterations),
where the learning rate is still unaffected by the schedule: There,
the loss plateaus and the optimizer takes relatively small steps
(compared to later, as can be seen in the small gradient norms,
and small distance from initialization). Based on these low-cost
instruments, one may thus at first suspect that training was poorly
initialized; but training indeed succeeds after iteration 100! Viewing
Cockerrr entirely though, it becomes clear that optimization in these
first stepsis not stuck at all: While loss, gradient norms, and distance
in parameter space remain almost constant, curvature changes,
which expresses itself in a clear downward trend of the maximum
Hessian eigenvalue (top right panel).

The importance of early training phases has recently been hypoth-
esized [58], suggesting a logarithmic timeline. Not only does our
showcase support this hypothesis, but it also provides an expla-
nation from the curvature-based metrics, which in this particular
case are the only meaningful feedback in the first few training
steps. It also suggests monitoring training at log-spaced intervals.
Cockrrr provides the flexibility to do so, indeed, Figure 7.2 has
been created with log-scheduled tracking events.

As a final note, we recognize that the approach taken here promotes
an amount of manual work (monitoring metrics, deliberately inter-
vening, efc.) that may seem ironic and at odds with the paradigm of
automation that is at the heart of machine learning. However, we
argue that this might be what is needed at this point in the evolu-
tion of the field. Deep learning has been driven notably by scaling
compute resources [297], and fully automated, one-shot training
may still be some way out. To develop better training methods,
researchers, not just users, need algorithmic interpretability and
explainability: direct insights and intuition about the processes
taking place “inside” neural nets. To highlight how CockpiT might
provide this, we contrast in Appendix C.6 the Cockpit view of two
convex DEepOBS problems: a noisy quadratic (P1in Appendix A.1)
and logistic regression on MNIST (P9 in Appendix A.1). In both
cases, the instruments behave differently compared to the deep
learning problem in Figure 7.2. In particular, the gradient norm
increases (left column, bottom panel) during training, and indi-
vidual gradients become less scattered (center column, top panel).
This is diametrically opposed to the convex problems and shows
that deep learning differs even qualitatively from well-understood
optimization problems.
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Benchmarking Cockpit’s Instruments

Section 7.3 made a case for Cockrir as an effective debugging and
tuning tool. To make the library useful in practice, it must also
have limited computational cost. We now show that it is possible to
compute the proposed quantities at reasonable overhead. The user
can control the absolute cost along two dimensions, by reducing the
number of instruments, or by reducing their update frequency.

All benchmark results show SGD without momentum. Cockrir’s
quantities, however, work for generic optimizers and can mostly
be used identically without increased costs. One current exception
is Alpha which can be computed more efficiently if provided with
the optimizer’s update rule. ©

Complexity analysis: Computing more information adds compu-
tational overhead, of course. However, recent work [66] has shown
that first-order information, like distributional statistics on the
batch gradients, can be computed on top of the mean gradient
at little extra cost. Similar savings apply for most quantities in
Table 7.1, as they are (non-)linear transformations of individual
gradients. A subset of CockpiT’s quantities also uses second-order
information from the Hessian diagonal. For ReLU networks on a
classification task with C classes, the additional work is propor-
tional to C gradient backpropagations (i.e. C = 10 for CIFAR-10,
C = 100 for CIFAR-100). Parallel processing can, to some extent,
process these extra backpropagations in parallel without signifi-
cant overhead. If this is no longer possible, we can fall back to a
Monte Carlo (MC) sampling approximation, which reduces the
number of extra backprop passes to the number of samples (1 by
default).”

While parallelization is possible for the gradient instruments, com-
puting the maximum Hessian eigenvalue is inherently sequential.
Similar to Yao et al. [333], we use matrix-free Hessian-vector prod-
ucts by automatic differentiation [229], where each product’s costs
are proportional to one gradient computation. Regardless of the
underlying iterative eigensolver, multiple such products must
be queried to compute the spectral norm (the required number
depends on the spectral gap to the second-largest eigenvalue).

Runtime benchmark: Figure 7.6a shows the wall-clock com-
putational overhead for individual instruments (details in Ap-
pendix C.5).8 As expected, byproducts are virtually free, and quan-
tities that rely solely on first-order information add little overhead
(at most roughly 25 % on this problem). Thanks to parallelization,
the ten extra backward passes required for Hessian quantities
reduce to less than 100 % overhead. Individual overheads also do

6: This is currently implemented for
vanilla SGD. For other optimizers,
Cocxkerrr falls back to a less efficient
computation.

[66] Dangel et al. (2020), “BackPACK:
Packing more into Backprop”

7: An MC-sampled approximation
of the Hessian/generalized Gauss-
Newton has been used in Fig-
ure 7.2 to reduce the prohibitively
large number of extra backprops on
CIFAR-100 (C = 100).

[333] Yao et al. (2020), “ADAHES-
SIAN: An Adaptive Second Order
Optimizer for Machine Learning”

[229] Pearlmutter (1994), “Fast Exact
Multiplication by the Hessian”

8: To improve readability, we ex-
clude HessMaxEV here, because its
overhead is large compared to other
quantities. Surprisingly, we also ob-
served significant cost for the 2D
histogram on GPU. It is caused
by an implementation bottleneck
for histogram shapes observed in
deep models. We thus also omit
GradHist2d here, as we expect it to
be eliminated with future implemen-
tations (see Appendix C.5.2 for a
detailed analysis and further bench-
marks). Both quantities, however,
are part of the benchmark shown
in Figure 7.6b.
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Figure 7.6: Runtime overhead for individual Cockrit instruments and configurations as shown on CIFAR-10 using
the 3c3p network (P4 in Appendix A.1) on a GPU. (a) The runtime overheads for individual instruments are shown
as multiples of the baseline (= no tracking). Most instruments add little overhead. This plot shows the overhead in
one iteration, determined by averaging over multiple iterations and random seeds. (b) Overhead for different Cockpir
configurations. Adjusting the tracking interval and re-using the computation shared by multiple instruments can make
the overhead orders of magnitude smaller. Blue fields mark settings that allow tracking without doubling the training

time.

[66] Dangel et al. (2020), “BackPACK:
Packing more into Backprop”

not simply add up when multiple quantities are tracked, because
quantities relying on the same information share computations.

To allow a rough cost control, Cockpir currently offers three con-
figurations, called economy, business, and full, in increasing order
of cost (cf. Table 7.1). As a basic guideline, we consider a factor
of two to be an acceptable limit for the increase in training time
and benchmark the configurations” runtimes for different tracking
intervals. Figure 7.6b shows a runtime matrix for training the 3c3p
problem of DeepOBS on CIFAR-10 (P4 in Appendix A.1), where
settings that meet this limit are set in blue (more problems in-
cluding IMaGeNET are shown in Appendix C.5). Speedups due
to shared computations are easy to read off: Summing all the
individual overheads shown in Figure 7.6a would result in a total
overhead larger than 200 %, while the joint overhead for the busi-
ness configuration reduces to 140 %. The economy configuration can
easily be tracked at every step of this problem and stay well below
our threshold of doubling the execution time. Cockpir’s full view,
shown in Figure 7.2, can be updated every 64-th iteration without
a major increase in training time (this corresponds to about five
updates per epoch). Finally, tracking any configuration about once
per epoch — which is common in practice — adds overhead close to
zero (rightmost column).

This good performance is largely due to the efficiency of the
BackPACK package [66], which we leverage with custom and
optimized modification, that compacts information layer-wise and
then discards unneeded buffers. Using layer-wise information
(Section 7.3.2) scales better to large networks, where storing the
entire model’s individual gradients all at once becomes increasingly
expensive (see Appendix C.5). To the best of our knowledge, many
of the quantities in Table 7.1, especially those relying on individual



gradients, have only been explored on rather small problems. With
Cockrrt they can now be accessed at a reasonable rate for deep
learning models outside the toy problem category.

Conclusion

Contemporary machine learning, in particular deep learning, re-
mains a craft and an art. High dimensionality, stochasticity, and
non-convexity require constant tracking and tuning, often resulting
in a painful process of trial and error. When things fail, popular per-
formance measures, like the training loss, do not provide enough
information by themselves. These metrics only tell whether the
model is learning, but not why. Alternatively, traditional debug-
ging tools can provide access to individual weights and data.
However, in models whose power only arises from possessing
myriad parameters, this approach is hopeless, like looking for the
proverbial needle in a haystack.

To mitigate this, we proposed Cockerrr, a practical visual debugging
tool for deep learning. It offers instruments to monitor the network’s
internal dynamics during training, in real-time. In its presentation,
we focused on two crucial factors affecting the user experience:
Firstly, such a debugger must provide meaningful insights. To
demonstrate Cockpir’s utility, we showed how it can identify
bugs where traditional tools fail. Secondly, it must come at a feasible
computational cost. Although Cockrir uses rich second-order
information, efficient computation keeps the necessary runtime
overhead cheap. The open-source PYTorcH package can be added
to many existing training loops.

Obviously, such a tool is never complete. Just like there is no perfect
universal debugger, the list of current instruments is naturally
incomplete. Further practical experience with the tool, for example
in the form of a future larger user study, could provide additional
evidence for its utility. However, our analysis shows that Cockpir
provides useful tools and extracts valuable information presently
not easily accessible to the user. We believe that this improves
algorithmic interpretability — helping practitioners understand
how to make their models work — but may also inspire new
research. The code is designed flexibly, deliberately separating the
computation and visualization. New instruments can be added
easily and also be shown by the user’s preferred visualization
tool, e.g. TEnsorBoarp. Of course, instead of just showing the data,
the same information can be used by novel algorithms directly,
side-stepping the human in the loop.

7.6 Conclusion
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Conclusion and Outlook

Optimization remains a central and critical component of modern
machine learning. The first-order iterative optimization methods
that lie at the heart of most neural network training, are often
referred to as the “workhorses” of deep learning. Yet, we know
surprisingly little about why these “workhorses” work and, more
importantly, in which situations they fail. The choice of training
method and, perhaps even more so, the choice of their hyperpa-
rameters can have such a significant effect on the performance
achievable by contemporary machine learning and deep learning
models. Unsurprisingly, there exist many tricks and heuristics to
augment the unsatisfactory user experience of carefully setting
these hyperparameters through extensive and costly trial-and-error
searches or human intuition. To improve this unsatisfying status
quo, we urgently need more insight into the training process of
deep learning models. In this work, we aimed to improve the un-
derstanding of deep learning optimization by carefully comparing
the existing methods and introducing novel debugging tools to
open the black box of neural network training.

Summary

This work focused on addressing and improving the current state
of optimization for deep learning by providing analysis, tools, and
insights in three areas:

» In Chapter 5, we identified the need for a standardized and
rigorous evaluation tool for optimization methods for deep
learning. Although hundreds of novel algorithms have been
suggested for deep learning, see Table 3.1, there is no agreed-
upon protocol for systematic and reproducible evaluation
and comparison of optimizers. The unique challenges of deep
learning, such as the high-dimensionality of the parameter
space, the stochasticity of the training process, or the need for
hyperparameter tuning make it difficult to objectively quan-
tify what constitutes a “better” optimizer. With DeepOBS, we
presented a protocol and a practical tool that simplifies and
automates this benchmarking process. It addresses the chal-
lenges of benchmarking deep learning optimizers, offering a
more objective and quantitative evaluation of novel methods
and thus a way to measure progress in the development of
better training methods for deep learning.

8.1 Summary . .

8.2 Future Work
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» Using the knowledge gained from developing the evalua-

tion tool DeerOBS, we benchmarked fifteen popular deep
learning optimization methods in Chapter 6. In order to
make this comparison as fair as possible, the methods had
to be tested on multiple problems, with different hyper-
parameter settings and using various tuning budgets. A
careful experimental design was necessary to keep the com-
putational complexity within reasonable limits so that the
benchmark remained feasible. Examining the approximately
50,000 resulting training runs, we found that, contrary to
their claims, novel optimizers do not consistently and sig-
nificantly outperform established methods. Comparatively
traditional methods, such as the popular Apam optimizer,
remain a viable, but also not superior, choice for many prob-
lems. SGD with Nesterov AcCELERATED GrRADIENT (NAG) or
RMSPror are interesting alternatives that were able to boost
performance on individual problems.

The use of machine learning involves a transformation from
what has been called Software 1.0, i.e. the “classic” coding
of explicit instructions, toward Software 2.0, i.e. the training
of models that learn the strategies on their own to solve
a task [157]. With it, the software development tools need
to change as well toward more machine learning focused
MLOps tools. Debuggers are an indispensable tool for tra-
ditional software development but have failed to co-evolve
to contemporary machine learning. Traditional debuggers
can display the exact value of each of the millions of model
parameters or the pixel value of each and every training im-
age, but this does not provide insight into why deep learning
models fail to train and what changes are needed to fix this.
In Chapter 7, we introduced Cockerrt, a visual and statistical
debugger specifically designed for deep learning. It provides
a more meaningful status report compared to the learning
curves and a much richer view into neural network training.
As a showcase of Cockrir’s capabilities, we identified that
effective training runs consistently overshoot the local loss
minimum. Cockerr also provides the ability to identify and
disentangle of common failure modes in neural network
training, such as incorrectly scaled data or inefficient model
architectures.

Future Work

The work presented in this thesis also provides interesting future
research directions and natural extensions of the topics presented
here. Smaller extensions of the individual works were already



discussed in the individual chapters and here we want to focus
on longer-term visions. Section 8.2.1 describes a current undertak-
ing to further improve the state of benchmarking algorithms in
deep learning. It can be seen as a continuation of the benchmark
projects in Chapters 5 and 6. Section 8.2.2 presents a perspective
for extending the deep learning debugging tool Cockerrr, presented
in Chapter 7. Section 8.2.3 outlines how the insights gained from
benchmarking and building tools for debugging optimization
methods for deep learning can be leveraged to develop new train-
ing algorithms. In particular, this section focuses on autonomous
training methods that require less human interaction by removing
hyperparameters such as the learning rate.

Algorithmic Efficiency Competition of MLCommons

Recently, the non-profit consortium MLCommons formed the Algo-
rithmic Efficiency Working Group to develop the first truly community-
wide standard for benchmarking training algorithms and models
in deep learning.! In a collaborative effort, researchers from inter-
national artificial intelligence companies and universities, competi-
tions will be held at regular intervals to evaluate submitted training
algorithms and models. The focus will be on measuring speedups
in neural network training that can be achieved by modifying the
underlying algorithms. Both the hardware and the underlying
software framework will be kept fixed to isolate the improvements
resulting from changes to the algorithms. The training algorithms
and models are compared in separate tracks of the competition to
avoid highly specific solutions. Instead, the goal is to identify and
encourage the development of widely useful algorithms that work
well on general problems.

Compared to the work presented in Chapters 5 and 6, MLCommoNs
uses a more encompassing view of what constitutes a training
algorithm. This not only includes the optimizer, i.e. the update
rule, but also the search space for hyperparameter tuning or the
data selection process. By conducting a competition, MLComMoONs
avoids some of the complexity that arises when comparing training
methods in deep learning. For instance, the burden of selecting
search spaces is shifted to the submitters who must decide which
specific instance of their algorithm produces the best results. In
this way, the competition can make a fairer comparison between
algorithms. Due to the collaborative effort of multiple researchers,
it is possible to include more diverse and larger-scale test problems
from different scientific fields compared to DeepOBS.

The participation of both industry and academic institutions in
the working group will allow MLCommons to have wide adop-
tion and visibility. The insights gained from developing DeepOBS

8.2 Future Work

1: At the time of writing, the author
of this thesis is one of the two elected
chairs for this working group.
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and benchmarking deep learning optimizers will help in this en-
deavor. MLCommons has the opportunity not only to stimulate
new research in algorithms for neural network training but also
to rigorously measure the progress that the field has made so far.
It thus represents a natural continuation of the work presented
here.

A Vision for Cockpit 2.0

Cockrrr, the debugging tool presented in Chapter 7, provides
a set of observables for debugging neural network training. To
date, these observables and instruments focus on the training
process. Future work on Cockpit could extend it by putting more
emphasis on studying the properties and behavior of the final
parameters found after training. Analyzing the solution provided
by the optimization algorithm could help understand whether
the parameters are likely to generalize to unseen data points.
Additionally, fairness aspects of the current model could be studied,
e.g. by providing feedback to the practitioners which data points
are currently incorrectly classified. This could indicate, for example,
that certain classes are not being modeled accurately enough.

An orthogonal direction to extend Cockpir would be to unravel the
quantities layer-wise. Figure 7.4 showed an example where signifi-
cant information could only be extracted by looking at individual
layers of a neural network in isolation. One major challenge is
visualizing information layer-wise without overloading the instru-
ments. A crucial step in this endeavor could be to find intelligent
approaches to summarize the many layers of contemporary neural
networks. This might, for example, be done by grouping by layer
type, e.g. by combining every convolutional layer, or grouping by
depth, e.g. building clusters of layers based on their positioning
in the network. Looking at the training dynamics of a neural net-
work in the form of multiple gradient-parameter histogram clouds,
color-coded by layer, could provide a new perspective and reveal
interesting new insights.

The future ambition of Cockrir would certainly be to provide
a more automated monitoring of neural network training. This
requires a deeper understanding of each quantity included in
Cockerrr to formulate a clear relationship between their behavior
and the root of a training bug. Currently, providing such a handbook
or manual for Cockrir is not possible, but future enhancements
could bring us closer to this goal of providing more direct feedback
Ideally, Cockpir would, for example, simply have a red lamp
signaling that the learning rate is too large and that it should be
reduced. This would turn Cockrir into a copilot or perhaps even
an autopilot. This will likely require extensive user studies and



additional quantities before such an automated experience could
be provided.

Putting It All Together: Resource-efficient
Autonomous Training Algorithms for Deep Learning

Today’s neural network optimizers require vast amounts of human
and energy resources that are spent “babysitting” the training
process with expensive hyperparameter searches. Replacing this
inefficient process with an automated one-shot training method
has the potential to reduce the overall compute time and thus the
energy cost of training a contemporary deep learning model by at
least one order of magnitude. This would make neural network
training not only more efficient, but also more robust and accessible.
The development of such an algorithm could be based on three
insights gained from the analyses presented in this work:

Learning is phase-dependent — Dynamic agents, not static
update rules

Figure 7.5 showed an example of how, in neural network training,
a suboptimal short-term decision can nevertheless yield long-
term benefits. In this case, overstepping is detrimental if one
myopically considers only the reduction in the loss in a single
iteration. However, it appears that this overstepping also provides
faster progress towards lower-loss regions and thus a benefit for
the entire optimization run. Automatic training algorithms must
thus be able to sacrifice short-term benefits for the longer-term
performance and thus overcome the “short-horizon bias” [324].
This suggests a larger point, which is that the goal of optimization
depends on the current learning phase. More specifically, there
might be three distinct learning phases, each with different goals
for the training algorithm:

» Initial chaos: Recent work [e.g., 7, 87, 55, ] indicates the
existence of a critical early phase of training. During this
phase, the weights are mostly determined by the random
initialization, which results in large gradients and fast move-
ment in weight space. The first few iterations could critically
determine which region of the loss landscape the optimizer
moves into, which can already irrevocably affect the final
performance.

» Cruise control: During most of the training process, the
optimizer’s goal is not to locally minimize the loss, but instead
make progress towards areas of low loss. As mentioned
earlier, the training algorithm should not be concerned with
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short-term improvements during this phase, but should
focus primarily on getting to regions where achieving a good
final performance is possible. During this “cruise control”
phase, intentionally over-stepping local minima and choosing
large learning rates are attractive strategies for a training
algorithm.

» Fine-tuning: It is only during the later stages of training
that convergence become important. Once a region of low
loss has been reached, highly precise steps towards its mini-
mum are desirable. Currently, tuned methods use a (tuned)
learning rate schedule which decays the step size as train-
ing progresses to achieve this. Automated methods could
replace these schedules by instead using more costly but
high-precision gradient or even Hessian estimates to take a
few final fine-tuning steps.

Using all the available information — Distributions and
confidences

In order to detect these learning phases, training algorithms may
need new observables. Most contemporary deep learning optimiz-
ers only use the mean batch gradient, which is readily available
in the widely used software frameworks such as TensorFrow [1],
], or JAX [39]. But this obfuscates the fact that each
batch provides more information. Recent advances in automatic
differentiation, e. . BAckPACK [66], allow the efficient computation
of, among other things, the individual gradients or their variance.

PyTorcH [

In Chapter 7, we have already made extensive use of the individual
gradients by providing (non-)linear transformations thereof. In
addition to their use for monitoring or debugging the training pro-
cess, these novel observables could provide essential information
to effectively steer and adjust the optimization process.

Extensive evaluation on practical problems — DeepOBS and
MLCommons

The current literature encompasses more than one hundred deep
learning optimizers, see Table 3.1. Although most claim superior
performance to popular methods, they have largely failed to replace
more established methods in practice. Extensive testing using either
the DeepOBS toolkit or the MLCommons benchmark for training
algorithms can help ensure that a newly developed optimizer
is widely applicable and able to reach competitive performance
consistently. Such an extensive evaluation is necessary because
optimizers are applied across a diverse set of tasks as one of
the “plug-and-play” building blocks of a deep learning pipeline.



Following a rigorous and standardized benchmark protocol would
help demonstrate the capabilities of the method.

Concluding this work, we believe that developing autonomous
training algorithms are a promising and relevant research direction
that could significantly improve the efficiency and usability of
deep learning. It would make the user experience much more
satisfying, which is currently marred by the tedious process of
setting sensitive hyperparameters through expensive trial and
error. At the very least, attempting to develop such an autonomous
training algorithm would require much more insight into why
current methods work and in what cases they fail. This would tell
us much more about why neural network training is as successful
as it is, and help open the black box of deep learning.

8.2 Future Work
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Appendix for Chapter: A
Benchmark Suite for Deep
Learning Optimizers

Detailed Description of the Benchmarking
Test Problems

In the following, we describe the in total eight DeerOBS test

problems that are part of its small and large benchmark set in more
detail. In Appendix A.1.3 we provide a description of test problems

outside of the small and large benchmark set, that were used in
Chapter 7. This is a summary of the more detailed description of

every test problem of DEepOBS which can be found in the official

documentation.! See also Table 6.1 in Chapter 6 which provides a
more concise overview of the eight test problems included in the

small and large benchmark set.

P1

P2

P3

P4

Small Benchmark Set

Quadratic Deep: A 100-dimensional stochastic quadratic
loss function. 90% of the eigenvalues are drawn from [0, 1],
and 10% from [30, 60] creating an ill-conditioned problem
with a structured eigenspectrum similar to the one reported
for neural networks, e.g. by Chaudhari et al. [50]. No regu-
larization is used. By default, we train with a batch size of
128 for 100 epochs.

MNIST — VAE: A variational autoencoder [166] with three
convolutional and three deconvolutional layers with dropout
layers (dropout rate of 0.2) and a latent space of size 8 on the
MNIST data set. Leaky ReLU activations (see Section 4.2.2)
are used with a factor of 0.3. By default, trained with a batch
size of 64 for 50 epochs.

FasH1ioN-MNIST — CNN (2c2d): A vanilla convolutional
network with two convolutional and two fully connected
layers and ReLU activations for image classification on the
Fasuron-MNIST data set. No regularization is used. Default
batch size of 128 and training time of 100 epochs.
CIFAR-10 — CNN (3c3d): A slightly larger convolutional
network with three convolutional and three fully connected
layers on CIFAR-10. L? regularization of 0.002 is used on the
weights but not the biases. By default, trained with a batch
size of 128 for 100 epochs.

A.1 Detailed Description
of the Benchmarking
Test Problems . ... 135

1: Available at

[50] Chaudhari et al. (2017),
“Entropy-SGD: Biasing gradient de-
scent into wide valleys”

[166] Kingma et al. (2015), “Adam:
A Method for Stochastic Optimiza-
tion”
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[277] Springenberg et al. (2015),
“Striving for simplicity: The all con-
volutional net”

[339] Zagoruyko et al. (2016), “Wide
Residual Networks”

[127] Hochreiter et al. (1997), “Long
Short-Term Memory”

P5

Pé6

pP7

P8

P9

P10

P11

P12

Large Benchmark Set

FasHioN-MNIST — VAE: Same variational autoencoder as
P2 with three convolutional and three deconvolutional layers
with dropout layers and a latent space of size 8 on the
Fasuron-MNIST data set. Default training time is 100 epochs
with a batch size of 64.

CIFAR-100 — All-CNN-C: The all convolutional network All-
CNN-C from Springenberg et al. [277] for image classification
on the CIFAR-100 data set. L? regularization of 5 - 107# is
used on the weights but not the biases. By default, DEepOBS
uses a batch size of 256 for 350 epochs.

SVHN — Wide ResNet-16-4: The wide residual network
WRN-16-4 architecture of Zagoruyko and Komodakis [359]
on the SVHN data set for image classification. L? regulariza-
tion of 5 - 107 is used on the weights but not the biases. By
default, trained with a batch size of 128 for 160 epochs.
Torstor — CharRNN: A two-layer LSTM [127] with 128
units per LSTM cell for character-level language modeling
on Torstor’s WAR AND PEack. It is trained by default with a
sequence length of 50 and batch size of 50 for 200 epochs.

Additional Benchmarking Problems

MNIST — Log. Reg.: Multinomial logistic regression on
MNIST. No regularization is used and both the weights and
biases are initialized to 0.0. The default batch size is 128 and
the default number of epochs 50.

MNIST — MLP: Multi-layer perceptron neural network on
MNIST. The model uses four fully connected layers with 1000,
500, 100, and 10 units per layer. The first three layers use ReLU
activation, the last one a softmax activation. Initialization is
done via truncated normal with standard deviation of 31072
for the weights. Biases are initialized to 0.0. No regularization
is used. The model is trained by default with a batch size 128
for 100 epochs.

FasuioN-MNIST — MLP: Multi-layer perceptron neural
network on Fasuion-MNIST. Uses the same model as P10
with the same default training parameters, e.g. batch size
128 and 100 epochs.

SVHN — CNN (3¢3d): Convolutional neural network for
the SVHN data set. It uses the same 3c3p architecture than
P4. The default batch size is 128 and the default number of
epochs 100.



Appendix for Chapter: Empirically
Comparing Deep Learning
Optimizers

Robustness to Random Seeds

Data subsampling, random weight initialization, dropout and other
aspects of deep learning introduce stochasticity to the training
process. As such, judging the performance of an optimizer on
a single run may be misleading due to random fluctuations. In
our benchmark we use 10 different seeds of the final setting for
each budget in order to judge the stability of the optimizer and
the results. However, to keep the magnitude of this benchmark
feasible, we only use a single seed while tuning, analogously to how
a single user would progress. This means that our tuning process
can sometimes choose hyperparameter settings which might not
even converge for seeds other than the one used for tuning.

Figure B.1 illustrates this behavior on an example problem where
we used 10 seeds throughout a tuning process using grid search.!
The figure shows that in the beginning performance increases when
increasing the learning rate, followed by an area were it sometimes
works but other times diverges. Picking hyperparameters from
this “danger zone” can lead to unstable results. In this case, where
we only consider the learning rate, it is clear that decreasing the
learning rate a bit to get away from this “danger zone” would lead
to a more stable, but equally well-performing algorithm. In more
complicated cases, however, we are unable to use a simple heuristic
such as this. This might be the case, for example, when tuning
multiple hyperparameters or when the effect of the hyperparameter
on the performance is less straight forward. Thus, this is a problem
not created by improperly using the tuning method, but by an
unstable optimization method.

In our benchmark, we observe a total of 18, 24, and 17 divergent
seeds for the small, medium, and large budget respectively. This
amounts to roughly 0.5% of the runs in each budget. Most of them
occur when using SGD (10, 15, and 7 cases for the small, medium
and large budget respectively), ADAGRAD (5, 3, and 5 cases for the
small, medium and large budget respectively) or ApaperLta (3, 5,
and 3 cases for the small, medium and large budget respectively),
which might indicate that modern adaptive methods are less prone
to this kind of behavior. None of these cases occur when using
a constant schedule, and most of them occur when using the
trapezoidal schedule (11, 11, and 9 cases for the small, medium
and large budget respectively). However, as our data on diverging

B.1 Robustness to Random

Seeds . ... ..... 137
B.2 Re-Tuning Experiments138

B.3 List of Schedules

Selected .. ... .. 140
B.4 ArRX1v Mentions . . . 141
B.5 Improvement after

Tuning .. ...... 141
B.6 Optimizer Perfor-

mance Across Test

Problems . . ... .. 146
B.7 Tabular Version . .. 149

1: The data for this figure was taken,
with permission, from Bahde [16].

[16] Bahde (2019), “Towards Mean-
ingful Deep Learning Optimizer
Benchmarks”
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Figure B.1: Performance of SGD on a simple multilayer perceptron (P10 in Appendix A.1.3) For each learning rate,
markers in orange (%) show the initial seed which would be used for tuning, blue markers (%) illustrate nine additional

seeds with otherwise unchanged settings. The mean over all seeds is plotted as a blue line (=), showing one standard
deviation as a shaded area (1).

seeds is very limited, it is not conclusive enough to draw solid
conclusions.

Re-Tuning Experiments

In order to test the stability of our benchmark and especially the
tuning method, we selected two optimizers in our benchmark and
re-tuned them on all problems a second time. We used completely
independent random seeds for both tuning and the 10 repetitions
with the final setting. Figure B.2 and Figure B.3 show the distri-
bution of all 10 random seeds for both the original tuning as well
as the re-tuning runs for RMSPropr and Apaberra. It is evident,
that re-tuning results in a shift of this distribution, since small
(stochastic) changes during tuning can result in a different chosen
hyperparameter setting.

These differences also highlight how crucial it is to look at multiple
problems. Individually, small changes, such as re-doing the tuning
with different seeds can lead to optimization methods changing
rankings. However, they tend to average out when looking at
an unbiased list of multiple problems. These results also further
supports the statement made in Section 6.3 that there is no op-
timization method clearly domination the competition, as small
performance margins might vanish when re-tuning.
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Figure B.4: Illustration of the se-
lected learning rate schedules for a
training duration of 150 epochs.

[193] Loshchilov et al. (2017), “SGDR:
Stochastic Gradient Descent with
Warm Restarts”

[193] Loshchilov et al. (2017), “SGDR:
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Warm Restarts”

[330] Xing et al. (2018), “A Walk with
SGD”
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The schedules selected for our benchmark are illustrated in Fig-
ure B.4. All learning rate schedules are multiplied by the initial
learning rate found via tuning or picked as the default choice.

We use a cosine decay [197] that starts at 1 and decays in the form of
a half period of a cosine to 0. As an example of a cyclical learning
rate schedule, we test a cosine with warm restarts schedule with a
cycle length At = 10 which increases by a factor of 2 after each cycle
without any discount factor. Depending on the number of epochs
we train our model, it is possible that training stops shortly after
one of those warm restarts. Since performance typically declines
shortly after increasing the learning rate, we don’t report the
final performance for this schedule, but instead the performance
achieved after the last complete period (just before the next restart).
This approach is suggested by the original work of Loshchilov and
Hutter [193]. However, we still use the final performance while
tuning.

A representation of a schedule including warm-up is the trapezoidal
schedule from Xing et al. [330]. For our benchmark we set a

warm-up and cool-down period of !/10 the training time.



B.4 ArXiv Mentions

ARX1v Mentions

Table B.1: Mentions of each optimizer in titles and abstracts of papers on ARX1v per year. All non-selected optimizers
from Table 3.1 are grouped into OTHER.

Optimizer 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

AMSBounD 0 0 0 0 0 0 0 0 0 1 0
©® AMSGRAD 0 0 0 0 0 0 0 0 7 9 11
ADABELIEF 0 0 0 0 0 0 0 0 0 0 3
ApaBounp 0 0 0 0 0 0 0 0 0 4 4
® ADADELTA 0 0 1 0 1 2 0 1 2 3 3
ApaGRAD 0 0 0 2 1 5 3 8 16 22 24
® Apam 0 2 0 5 4 7 11 31 47 83 119
® LOOKAHEAD 0 0 0 0 0 0 0 0 0 2 1
MOMENTUM 3 6 7 5 9 14 23 57 76 124 205
® NAG 1 0 1 1 1 3 3 11 17 18 19
® Napam 0 0 0 0 0 0 0 0 1 2 0
OTHER 0 1 1 0 1 3 2 4 22 34 36
® RApaMm 0 0 0 0 0 0 0 0 0 2 1
@® RMSPror 0 0 0 0 0 3 3 13 13 18 18
® SGD 2 9 9 30 42 98 129 205 326 451 532

Improvement after Tuning

When looking at Figure 6.2, one might realize that few diagonal
entries contain negative values. Since diagonal entries reflect the
intra-optimizer performance change when tuning on the respective
task, this might feel quite counterintuitive at first. In theory, this can
occur if the respective tuning distributions is chosen poorly, the tun-
ing randomness simply got “unlucky”, or we observe significantly
worse results for our additional seeds (see Figure B.1).

If we compare Figures B.5 and B.6 to Figures B.7 and B.8 we can
see most negative diagonal entries vanish or at least diminish in
magnitude. For the latter two figures we allow for more tuning
runs and only consider the seed that has been used for this tuning
process. The fact that the effect of negative diagonal entries reduces
is an indication that they mostly result from the two latter reasons
mentioned.
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Figure B.5: The absolute test set performance improvement after switching from any untuned optimizer (y-axis,
one-shot) to any tuned optimizer (x-axis, small budget) as an average over 10 random seeds for the constant schedule.
This is a detailed version of Figure 6.2 in the main text showing the first four problems.
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Figure B.6: The absolute test set performance improvement after switching from any untuned optimizer (y-axis,
one-shot) to any tuned optimizer (x-axis, small budget) as an average over 10 random seeds for the constant schedule.
This is a detailed version of Figure 6.2 in the main text showing the last four problems.
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Figure B.7: The absolute test set performance improvement after switching from any untuned optimizer (y-axis,
one-shot) to any tuned optimizer (x-axis, large budget) for the constant schedule. This is structurally the same plot as

Figure B.5 but comparing to the large budget and only considering the seed that has been used for tuning.
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Figure B.8: The absolute test set performance improvement after switching from any untuned optimizer (y-axis,
one-shot) to any tuned optimizer (x-axis, large budget) for the constant schedule. This is structurally the same plot as
Figure B.6 but comparing to the large budget and only considering the seed that has been used for tuning.
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Optimizer Performance Across Test
Problems

Similarly to Figure 6.4, we show the corresponding plots for the
small budget with no learning rate schedule in Figure B.9 and the
medium budget with the cosine and trapezoidal learning rate schedule
in Figures B.10 and B.11. Additionally, in Figure B.12 we show the
same setting as Figure 6.4 but showing the training loss instead of
the test loss/accuracy.

The high-level trends mentioned in Section 6.3 also hold for the
smaller tuning budget in Figure B.9. Namely, taking the win-
ning optimizer for several untuned algorithms (here marked for
Apam and ApaBounp) will result in a decent performance in most
problems with much less effort. Adding a tuned version Apawm (or
variants thereof) to this selection would result in a very competitive
performance. The absolute top-performance however, is achieved
by changing optimizers across different problems.

Note, although the medium budget is a true superset of the small
budget it is not given that it will always perform better. Our tuning
procedure guarantees that the validation performance on the seed
that has been used for tuning is as least as good on the medium
budget than on the small budget. But due to averaging over
multiple seeds and reporting fest performance instead of validation
performance, this hierarchy is no longer guaranteed. We discuss
the possible effects of averaging over multiple seeds further in
Appendix B.1.

The same high-level trends also emerge when considering the
cosine or trapezoidal learning rate schedule in Figures B.10 and B.11.
We can also see that the top performance in general increase when
adding a schedule (cf. Figure 6.4 and Figure B.11).

Comparing Figure 6.4 and Figure B.12 we can assess the general-
ization performance of the optimization method not only to an
unseen test set, but also to a different performance metric (accuracy
instead of loss). Again, the overall picture of varying performance
across different problems remains consistent when considering the
training loss performance. Similarily to the figures showing test
set performance we cannot identify a clear winner, although Apam
ands its variants, such as RApam perform near the top consistently.
Note that while Figure B.12 shows the training loss, the optimizers
have still be tuned to achieve the best validation performance (i.e.
accuracy if available, else the loss).
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Figure B.9: Mean test set performance over 10 random seeds of all tested optimizers on all eight optimization problems
using the small budget for tuning and no learning rate schedule. One standard deviation for the tuned Apam optimizer is
shown with a red error bar (I). The performance of the untuned versions of Abam (') and AbpaBounp (4.) are marked for
reference. Note, the upper bound of each axis represents the best performance achieved in the benchmark, while the
lower bound is chosen in relation to the performance of Abam with default parameters. Tabular version available in the
Appendix as Table B.3.
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Figure B.10: Mean test set performance over 10 random seeds of all tested optimizers on all eight optimization problems
using the medium budget for tuning and the cosine learning rate schedule. One standard deviation for the tuned Apam
optimizer is shown with a red error bar (I). The performance of the untuned versions of Apam (7)) and ApaBounp (4.)
are marked for reference (this time with the cosine learning rate schedule). Note, the upper bound of each axis represents
the best performance achieved in the benchmark, while the lower bound is chosen in relation to the performance of Apam
with default parameters (and no schedule). Tabular version available in the Appendix as Table B.4.
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Figure B.11: Mean test set performance over 10 random seeds of all tested optimizers on all eight optimization problems
using the large budget for tuning and the trapezoidal learning rate schedule. One standard deviation for the tuned Apam
optimizer is shown with a red error bar (I). The performance of the untuned versions of Apam (') and ApaBounp (4.) are
marked for reference (this time with the trapezoidal learning rate schedule). Note, the upper bound of each axis represents
the best performance achieved in the benchmark, while the lower bound is chosen in relation to the performance of Apam
with default parameters (and no schedule). Tabular version available in the Appendix as Table B.5.
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Figure B.12: Mean training loss performance over 10 random seeds of all tested optimizers on all eight optimization
problems using the large budget for tuning and no learning rate schedule. One standard deviation for the tuned Apam
optimizer is shown with a red error bar (I). The performance of the untuned versions of Apam (7)) and ApaBounp (4.)
are marked for reference. Note, the upper bound of each axis represents the best performance achieved in the benchmark,
while the lower bound is chosen in relation to the performance of Abam with default parameters (and no schedule). This
figure is very similar to Figure 6.4, but showing the training loss performance instead of the test accuracy (or test loss if no
accuracy is available). Tabular version available in the Appendix as Table B.6.



B.7 Tabular Version

Tabular Version

Table B.2: Tabular version of Figure 6.4. Mean test set performance and standard deviation over 10 random seeds of all
tested optimizers on all eight optimization problems using the large budget for tuning and no learning rate schedule. For
comprehensability, mean and standard deviation are rounded.

Optimizer Quadratic MNIST VAE F-MNIST 2c2d CIFAR-10 3c3d F-MNIST VAE CIFAR-100 SVHN Tolstoi
Deep
AMSBounp 86.35 + 3.47 2814 £0.15 9215+ 0.13 82.99 +0.78 23.55+0.18 54.64 +1.33 95.31+ 0.31 59.70 £ 0.16
©® AMSGRrAD 87.64 £1.00 27.85 = 0.07 92.26 + 0.16 83.42 + 0.65 23.11+0.10 52.34 +1.03 95.58 + 0.31 61.52 + 0.13
ApABELIEF 87.17 £ 0.03 28.01 + 0.06 92.06 + 0.24 82.85 + 0.59 23.22 £0.08 53.76 +1.35 95.09 + 0.30 61.26 £ 0.17
ApaBounp 94.66 * 6.25 28.14£0.13 92.03 +£0.13 83.39 +0.53 23.38 £ 0.09 54.77 £ 0.94 95.40 + 0.29 59.73 = 0.20
® ApADELTA 106.95 + 0.14 27.87 £0.10 92.07 +£0.11 83.34 + 0.74 2318 +£0.13 53.18 +2.48 95.30 + 0.60 60.54 = 0.15
ApaGRrAD 86.70 +1.99 28.04 +0.29 92.05+0.17 83.08 + 0.41 23.16 + 0.04 43.63 + 21.35 95.34 + 0.49 62.01+0.10
©® Apam 86.58 +1.95 27.77 £ 0.03 91.69 + 0.16 82.95+0.70 23.06 £ 0.10 54.84 + 0.65 94.84 £ 0.30 61.97 £0.12
® LA(Mom.) 87.17 £ 0.07 52.86 + 0.84 91.74 £ 0.19 74.01 +3.70 25.37 £ 0.35 57.32 + 0.80 95.82 + 0.11 61.44 £0.17
©® LA(RApam) 89.03 + 0.87 34.26 +9.37 92.05 +0.16 83.00 + 0.64 24.04+0.25 54.92 +0.97 95.67 £ 0.11 61.73 £0.10
©® MoMENTUM 87.04 £ 0.02 36.00 + 11.09 91.87 £ 0.12 83.16 + 0.56 23.86 £0.15 56.21 + 0.67 95.37 £ 0.27 61.97 £0.12
® NAG 87.08 £ 0.02 36.16 +10.99 91.87 £ 0.12 83.30 £ 0.88 23.85+0.22 57.85 + 0.77 95.28 +0.23 61.74 £ 0.12
©® Napam 86.45 +1.94 27.73 = 0.09 91.75 £ 0.42 83.58 + 0.45 23.00 + 0.07 53.44 £1.27 95.00 £ 0.25 62.01 +0.11
® RApam 86.43 +1.93 27.81+0.06 91.63 + 0.24 82.85 + 0.52 2310+ 0.11 53.98 +1.00 94.83 + 0.38 61.98 +£0.13
® RMSPror 87.38 £ 0.12 27.86 = 0.08 91.79 £ 0.36 82.16 + 0.65 23.11+0.08 52.16 + 0.99 95.25 +0.34 62.24 + 0.07
®SGD 86.29 + 3.44 36.17 +£10.97 91.80 £ 0.23 82.64 +0.91 23.83 £0.22 50.58 +1.49 95.11 +0.31 61.29 +0.14

Table B.3: Tabular version of Figure B.9. Mean test set performance and standard deviation over 10 random seeds of all
tested optimizers on all eight optimization problems using the small budget for tuning and no learning rate schedule. For
comprehensability, mean and standard deviation are rounded.

Optimizer Quadratic MNIST VAE F-MNIST 2c2d CIFAR-10 3c3d F-MNIST VAE CIFAR-100 SVHN Tolstoi
Deep
AMSBounp 92.80 + 5.99 2818 £ 0.14 91.99 £ 0.10 83.15 £ 0.65 23.50 £ 0.11 5491+ 0.54 95.33 £0.17 58.25+0.19
©® AMSGRrAD 87.58 £ 0.71 27.87 £ 0.08 92.01 £+ 0.09 82.25 +0.54 23.21+0.06 5271+ 0.97 95.25 +0.21 61.61+0.14
ApABELIEF 87.18 £0.03 27.99 + 0.06 91.94 £ 0.33 83.13 + 0.60 23.17 +0.07 53.17 £1.15 94.99 +0.31 61.09 £ 0.09
ApaBounp 94.66 + 6.25 28.11 £ 0.09 92.08 + 0.20 82.64 +1.03 23.40 £ 0.06 50.10 + 16.39 95.33 £ 0.16 58.88 + 0.16
® ApADELTA 123.86 £ 0.24 28.03 +£0.08 91.84 £ 0.11 81.31 + 1.40 23.50 £0.17 50.14 +2.29 95.21+0.29 59.40 = 0.11
ApaGrap 87.14 £1.02 27.98 +0.16 92.08 +0.23 83.25 +0.51 23.19 £ 0.08 37.90 + 24.22 95.02 +0.21 62.01 + 0.11
©® Apam 87.68 £ 1.44 27.81 £ 0.06 91.67 £ 0.25 81.90 + 0.86 23.10 £ 0.11 52.96 +1.34 94.84 + 0.38 61.79 £ 0.06
® LA(Mom.) 87.16 £ 0.06 55.20 £ 0.86 91.58 £ 0.15 8272 +1.24 25.28 +£0.23 57.68 = 0.60 95.80 + 0.10 60.23 +£0.26
©® LA(RADpam) 93.75 +3.15 3811+9.73 91.97 £0.22 84.70 + 0.30 2453 £0.15 55.09 + 0.98 95.62 £ 0.19 60.00 = 0.11
©® MoMENTUM 87.03 +0.02 36.08 + 11.04 91.87 £ 0.16 83.00 + 0.71 23.93 £ 0.30 55.96 + 0.92 95.34 +0.23 61.93 £ 0.10
® NAG 87.08 £ 0.02 36.18 +10.97 92.05+0.13 83.32 £ 0.57 23.87 +0.33 57.75 £ 0.71 95.51 +0.21 62.07 = 0.10
©® Napam 86.45 +1.94 27.77 £ 0.06 91.59 + 0.25 82.94 + 0.61 23.12 £ 0.06 53.30 £ 0.90 94.99 + 0.18 61.97 £ 0.08
® RApam 86.43 +1.93 27.82 +0.06 91.49 + 0.40 82.27 +0.53 23.12 £ 0.07 53.47 + 0.86 9479 £ 0.38 61.93 +£0.14
® RMSPror 87.40 £ 0.14 28.03 +0.13 91.27 £0.28 82.56 £ 0.71 23.26 +0.08 51.20 + 0.89 93.82 £ 1.64 62.25 + (.12

®sGD 88.37 +£3.55 36.18 +£10.96 91.69 + 0.15 82.20 +£1.32 23.76 £0.25 51.53 + 1.37 94.84 + 0.56 61.25 + 0.12
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Table B.4: Tabular version of Figure B.10. Mean test set performance and standard deviation over 10 random seeds of
all tested optimizers on all eight optimization problems using the medium budget for tuning and the cosine learning rate
schedule. For comprehensability, mean and standard deviation are rounded.

Optimizer Quadratic MNIST VAE F-MNIST 2c2d CIFAR-10 3c3d F-MNIST VAE CIFAR-100 SVHN Tolstoi
Deep
AMSBounD 85.94 + 3.41 2812 +0.19 91.97 £ 0.15 82.91+0.83 23.49 +0.07 54.87 £ 0.70 95.62 + 0.15 59.31 + 0.36
©® AMSGRAD 87.00 £ 0.55 27.39 + 0.04 92.25+0.22 85.20 + 0.34 22.83 £ 0.06 54.21+1.99 96.68 £ 0.07 61.68 + 0.17
ADABELIEF 88.12 + 0.04 27.45 + 0.05 92.43 +0.14 85.47 £ 0.26 22.78 +0.04 57.58 + 0.57 96.46 + 0.08 61.09 + 0.17
ApaBounp 85.92 + 3.41 28.00 + 0.09 92.08 +0.17 83.20 + 0.62 23.38 £ 0.08 54.68 + 0.81 95.58 + 0.10 59.45 + 0.36
® ADADELTA 164.58 + 0.35 58.46 + 61.52 92.05 + 0.08 85.12 + 0.28 60.55 + 49.27 51.34 £ 0.64 96.68 + 0.05 57.77 £ 0.19
ApaGRAD 86.61 +1.94 28.17 +£0.27 91.90 + 0.23 85.48 + 0.35 23.36 £ 0.05 29.40 + 28.41 96.78 + 0.07 61.75 + 0.07
® Apam 85.92 + 3.41 27.60 % 0.06 92.29 +0.12 85.27 +£0.29 22.75 + 0.03 55.14 + 0.97 96.67 £ 0.06 61.86 + 0.16
® LA(Mowm.) 87.06 £ 0.02 76.78 + 24.04 91.76 £ 0.20 85.61 +0.24 46.09 + 21.85 62.67 £ 0.81 96.78 £ 0.08 60.26 = 0.23
©® LA(RApam) 87.08 £ 0.42 37.41£10.15 91.49 + 0.24 85.87 £0.18 24.00 + 0.12 42.00 + 27.55 96.65 = 0.09 61.62 = 0.16
©® MOMENTUM 87.06 £ 0.02 36.33 +10.85 91.89 + 0.12 86.13 £ 0.19 2370 +0.18 63.43 + 0.56 96.71 £ 0.05 62.26 + 0.13
©® NAG 87.06 £ 0.02 36.53 +10.71 91.76 £ 0.13 87.12 £ 0.19 41.41 + 21.65 63.61 + 0.46 96.68 = 0.08 62.46 = 0.10
® Napam 85.93 + 3.41 27.46 +0.10 92.42 +0.12 85.34 + 0.34 22.77 £0.07 54.02 +0.71 96.62 + 0.07 62.20 + 0.12
©® RApam 86.49 +1.94 27.51 +0.05 92.33 +0.10 85.47 +0.36 22.82 +0.08 55.31 + 0.86 96.61 £ 0.07 61.87 £ 0.19
©® RMSPror 87.09 £ 0.01 27.57 £0.05 92.22 +0.18 84.54 +0.25 22.80 + 0.04 48.02 +15.69 96.65 = 0.06 62.85 + 0.06
®SGD 86.30 + 3.41 36.47 £10.76 9172 £0.21 70.50 + 30.76 23.54 +0.13 42.29 + 27.05 96.80 + 0.08 60.40 = 0.11

Table B.5: Tabular version of Figure B.11. Mean test set performance and standard deviation over 10 random seeds of all
tested optimizers on all eight optimization problems using the large budget for tuning and trapezoidal learning rate schedule.
For comprehensability, mean and standard deviation are rounded.

Optimizer Quadratic MNIST VAE F-MNIST 2c2d CIFAR-10 3c3d F-MNIST VAE CIFAR-100 SVHN Tolstoi
Deep
AMSBounD 86.78 + 2.04 2818 £ 0.19 9211+ 0.16 83.11+0.84 23.49 £ 0.11 54.28 +1.23 95.46 +0.21 59.70 £ 0.14
® AMSGRraD 85.94 + 3.42 27.57 £ 0.06 92.29 + 0.12 84.71+ 0.31 22.87 +0.06 57.15 + 0.89 96.42 + 0.06 61.86 + 0.14
ADABELIEF 87.19 = 0.02 27.75 = 0.05 92.27 +0.10 84.90 +0.32 22.93 +0.07 58.66 + 0.50 96.35 + 0.07 61.50 + 0.15
ApaBounp 91.34 + 5.60 28.11+0.09 92.08 +0.14 83.23 +0.58 23.37 £ 0.05 54.50 +1.23 95.45 +0.18 59.72 £0.17
® ApaDELTA 108.26 + 0.14 27.60 = 0.08 91.87 £ 0.20 85.40 £ 0.17 22.87 +£0.08 59.67 +0.38 96.58 + 0.07 60.41+0.11
ADpAGRAD 86.51 +1.95 27.83 £0.15 91.88 + 0.12 84.84 +£0.23 7e23 + 2e24 48.31 + 23.66 96.48 + 0.10 62.35+0.16
® Apam 88.01+ 3.63 27.52 +0.06 92.09 +0.14 84.66 + 0.42 22.80 + 0.05 58.52 + 0.61 96.22 + 0.08 62.31+0.10
® LA(Mowm.) 87.12 £ 0.02 52.89 + 0.00 91.87 £ 0.17 84.85 + 0.60 28.24 +13.23 62.69 + 0.42 96.48 £+ 0.10 61.81 £ 0.17
©® LA(RApam) 88.67 +1.24 36.14 +£10.99 91.96 + 0.14 86.31 + 0.25 23.83 +0.14 56.22 +18.42 96.62 + 0.08 62.03 +0.14
©® MoMENTUM 87.06 £ 0.02 33.77 £9.62 91.67 £ 0.22 85.02 + 0.30 23.45 +£0.22 62.78 +0.34 96.50 + 0.08 62.40 +£0.08
® NAG 87.06 + 0.02 35.80 + 11.20 92.08 +0.16 85.00 + 0.44 23.38 £ 0.16 63.30 £ 0.31 96.43 + 0.11 62.41+0.09
©® Nabam 87.03 & 3.66 27.51 + 0.08 92.28 +0.11 84.96 + 0.37 22.83 +0.08 58.96 + 0.77 96.27 + 0.10 62.28 + 0.11
©® RApam 86.43 +1.93 27.51 £ 0.05 9217 £0.17 84.86 £ 0.32 22.83 +0.07 59.01+0.73 96.29 + 0.09 62.24 +0.13
® RMSPror 87.14 £0.03 27.58 +0.07 92.23 +0.13 8411+ 0.16 22.85 + 0.05 30.15 + 29.15 96.25 + 0.09 62.59 £ 0.11
®SGD 86.05 + 3.40 3571 +11.26 91.88 £ 0.17 84.83 +0.27 23.43 +0.19 31.36 + 30.38 96.42 + 0.07 61.25 + 0.11

Table B.6: Tabular version of Figure B.12. Mean fraining set performance and standard deviation over 10 random seeds
of all tested optimizers on all eight optimization problems using the large budget for tuning and no learning rate schedule.
For comprehensability, mean and standard deviation are rounded.

Optimizer Quadratic MNIST VAE F-MNIST 2c2d CIFAR-10 3c3d F-MNIST VAE CIFAR-100 SVHN Tolstoi
Deep
AMSBounp 8410 + 3.34 27.84 £ 0.15 0.00 + 0.00 0.58 + 0.02 23.46 +0.22 1.80 £ 0.09 0.17 + 0.00 1.26 £ 0.01
©® AMSGRrAD 85.24 +1.21 27.20 £ 0.09 0.00 £ 0.00 0.56 £ 0.01 22.77 £0.10 1.62 +£0.11 0.07 + 0.00 1.18 + 0.01
ApABELIEF 84.87 £ 0.30 27.16 = 0.07 0.00 £ 0.00 0.56 + 0.02 22.68 + 0.07 175+ 0.11 0.10 + 0.00 1.19 + 0.01
ApaBounp 92.10 + 5.64 27.86 = 0.17 0.00 £ 0.00 0.57 +£0.02 23.27 +0.14 1.87 +0.09 0.08 £ 0.01 1.26 £ 0.01
® ApADELTA 104.99 £ 0.30 2716 £0.12 0.00 £ 0.00 0.52 + 0.01 22.79 +0.15 1.91+0.17 0.11 + 0.01 1.21+0.01
ApaGrap 84.40 £1.73 27.58 +0.34 0.00 £ 0.00 0.53 £0.02 22.94 + 0.06 5.25 £ 6.85 0.10 £ 0.01 1.15 £ 0.01
® Apam 84.33 £1.76 26.99 +0.07 0.00 £ 0.00 0.56 + 0.03 2273 £0.12 179 +£0.09 0.10 £ 0.01 1.15 £ 0.00
® LA(Mom.) 84.85 +0.30 52.85 + 0.74 0.06 + 0.02 1.00 £+ 0.16 25.40 +0.39 176 + 0.06 0.06 £ 0.00 117 £0.01
©® LA(RADpam) 86.68 + 1.10 34.33 +9.29 0.00 =+ 0.00 0.57 +0.02 24.00 +0.26 175 £ 0.08 0.11 £ 0.00 1.16 + 0.00
© MoMENTUM 84.77 £ 0.30 35.98 + 11.06 0.00 =+ 0.00 0.57 +0.02 2371+013 1.84 +£0.07 0.13 £ 0.00 1.15 £ 0.01
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Appendix for Chapter: A Practical
Debugging Tool for the Training of
Deep Neural Networks

Code Example

One design principle of Cockerrr is its easy integration with con-
ventional PyTorch [225] training loops. Algorithm C.1 shows a
working example of a standard training loop with Cockerr integra-
tion. Lines that show Cockpit-specific code or required changes to
traditional training codes are highlighted. More examples and tuto-
rials are described in Cockpit’s documentation.! Cockpit’s syntax
is inspired by BAckPACK: It can be used interchangeably with the
library responsible for most of its back-end computations. Changes

to the code are straightforward and include:

» Importing (Lines 5, 7 and 8): Besides importing Cockpit
we also need to import BAckPACK which is required for
extending (parts of) the model (see next step).

» Extending (Lines 11 and 12): When defining the model
and the loss function, we need to extend both of them
using BackPACK. This is as trivial as wrapping them in
the ' extend() function provided by BackPACK and lets
BackPACK know that additional quantities (such as the
individual gradients) should be computed for them. Note,
that while applying BackPACK is easy, it currently does not
support all possible model architectures and layer types.
Specifically, batch norm layers are not supported since using
them results in ill-defined individual gradients.

» Individual losses (Line 13): For the Alpha quantity, CockpIr
also requires the individual loss values. This is necessary
in order to estimate the variance of the loss estimate. These
individual loss values, and consequently the variance, can
be computed cheaply but its computation is not usually part
of a conventional training loop. Creating this loss is done
analogously to creating any other loss, with the only excep-
tion of setting  reduction="none" . Since we don't differentiate
this loss, we don’t need to extend it.

» Cockpit configuration (Line 16 and 17): Initializing Cockprt
requires passing the (extended) model parameters as well as
a list of quantities that should be tracked. Table 7.1 provides
an overview of all possible quantities. In this example, we
use one of the pre-defined configurations offered by Cockeir.
Separately, we initialize the plotting part of Cockrir. We
deliberately detached the visualization from the tracking to
allow greater flexibility.
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C.2 Cockpit Instruments

Overview . . . . . .. 153
C.3 Mathematical Details 155
C.4 Additional Experi-

ments . ........ 166
C.5 Implementation De-

tails and Additional
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Problems . . ... .. 176

[228] Paszke et al. (2019), “Py-
Torch: An Imperative Style, High-
Performance Deep Learning Li-
brary”

1: Available at


https://cockpit.readthedocs.io/en/latest/
https://cockpit.readthedocs.io/en/latest/
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» Quantity computation (Line 27 and 38): Performing the
training is very similar to a regular training loop, with
the only difference being that the backward pass should
be surrounded by the Cockrir context (with cockpit(): ).

Additionally to the global_step we also pass afew additional
information to Cockrir that are computed anyway and can
be re-used by Cockerrr, such as the batch size, the individual
losses, or the optimizer itself. After the backward pass (when
the context is left) all CockpiT quantities are automatically
computed.

» Logging and visualizing (Line 46 and 47): At any point
during the training, we can write all quantities to a log file.
We can use this log file, or alternatively Cockeir directly, to
visualize all quantities which would result in a status screen
similar to Figure 7.2.

import torch
from _utils_examples import cnn, fmnist_data, get_logpath
from backpack import extend

cockpit import Cockpit, CockpitPlotter
cockpit.utils.configuration import configuration as config

from
from

fmnist_data = fmnist_data()
model = extend(cnn())
loss_fn = extend(torch.nn.CrossEntropyLoss(reduction="mean"))

3| losses_fn = torch.nn.CrossEntropyLoss(reduction="none")

opt = torch.optim.SGD(model.parameters(), lr=1le-2)

Cockpit(model.parameters(), quantities=config("full"))
CockpitPlotter()

cockpit
plotter

max_steps, global_step = 50, 0
for inputs, labels in iter(fmnist_data):
opt.zero_grad()

outputs = model(inputs)
loss = loss_fn(outputs, labels)
losses = losses_fn(outputs, labels)

with cockpit(
global_step,
info={
"batch_size": inputs.shape[0],
"individual_losses": losses,
"loss": loss,
"optimizer": opt,

+

loss.backward(
create_graph=cockpit.create_graph(global_step),
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opt.step()
global_step += 1

if global_step >= max_steps:
break

cockpit.write(get_logpath())
plotter.plot(get_logpath())

Cockpit Instruments Overview

Table C.1lists all quantities available in the first public release of
Cockerr. If necessary, we provide references to their mathematical
definition. This table contains additional quantities, compared
to Table 7.1 in the main text. To improve the presentation, we
decided to not describe every quantity available in Cockprr in the
main part and instead focus on the investigated metrics. Custom
quantities can be added easily without having to understand the
inner-workings.

Algorithm C.1: Complete training
loop with Cockrit in PyYTOrcH.
Line changes compared to a more
traditional training loop without
Cockrrr are highlighted in light
orange ().

[21] Balles et al. (2017), “Coupling
Adaptive Batch Sizes with Learning
Rates”

[199] Mahsereci et al. (2017), “Early
Stopping without a Validation Set”

[43] Byrd et al. (2012), “Sample Size
Selection in Optimization Methods
for Machine Learning”

[32] Bollapragada et al. (2017),
“Adaptive Sampling Strategies for
Stochastic Optimization”

[333] Yao et al. (2020), “ADAHES-
SIAN: An Adaptive Second Order
Optimizer for Machine Learning”

[291] Thomas et al. (2020), “On the
interplay between noise and curva-
ture and its effect on optimization
and generalization”

[187] Liu et al. (2020), “Understand-
ing Why Neural Networks General-
ize Well Through GSNR of Parame-
ters”
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Table C.1: Overview of all CockriT quantities with a short description and, if necessary, a reference to mathematical

definition.

Name Description Math

Loss Mini-batch training loss at current iteration, Lg -

Parameters Parameter values () at the current iteration -

Distance L2 distance from initialization ||@®) — 8©||, -

UpdateSize Update size of the current iteration |e¢+D) — g1)||, -

GradNorm Mini-batch gradient norm || gg(0)||2 -

Time Time of the current iteration -
(e.g. used in benchmark of Appendix C.5)

Alpha Normalized step on a noisy quadratic interpolation between two  (C.4)
iterates 0), 9(t+1)

CABS Adaptive batch size for SGD, optimizes expected objective gain per  (C.6)
cost, adapted from [21]

EarlyStopping Evidence-based early stopping criterion for SGD, (C11)
proposed in [199]

GradHist1ld Histogram of individual gradient elements, { g[g)(ej)}f;; """ P (C12)

GradHist2d Histogram of weights and individual gradient elements, (C.13)
16,85 O™

NormTest Normalized fluctuations of the residual norms ||gp — g[g ) II, (C.20)
proposed in [43]

InnerTest Normalized fluctuations of g[g)’s parallel components along gg, (C.206)
proposed in [37]

OrthoTest Normalized fluctuations of g[g)’s orthogonal components along gg,  (C.33)
proposed in [32]

HessMaxEV Maximum Hessian eigenvalue, Amax(Hg(0)), inspired by [333] (C.34)

HessTrace Exact or approximate Hessian trace, Tr(Hp(0)), inspired by [333] -

TICDiag Relation between (diagonal) curvature and gradient noise, (C.38)
inspired by [291]

TICTrace Relation between curvature and gradient noise trace, (C.37)
inspired by [291]

MeanGSNR Average gradient signal-to-noise-ratio (GSNR), inspired by [157] (C.41)
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Mathematical Details

In this section, we want to provide the mathematical background
for the instruments described in Table C.1. This complements the
more informal description presented in Section 7.2 in the main
text, which focused more on the expressiveness of the individual
quantities.

Normalized Step Length (Alpha)

Understepping: & < 0 Minimizing: a ~ 0 Overshooting: & > 0
1.00 \ \ /
N\

» 075
9]
o}
—~ 0.50 =

0.25

0.00

p(t) p(t+1) o) g(t+1) o) p(t+1)

Figure C.1: Motivational sketch for Alpha. In each iteration of the optimizer we observe the loss function at two positions
0® and @(t+1) (shown in @). The black lines (—) show the observed slope at this position, which we can get from
projecting the gradients onto the current step direction 0t+1) — (1) Note, that all four observations (two loss and two
slope values) are noisy, due to being computed on a mini-batch. With access to the individual losses and gradients (some
samples shown in = /), we can estimate their noise level and build a noise-informed quadratic fit (=). Using this fit,
we determine whether the optimizer minimizes the local univariate loss (middle plot), or whether we understep (left plot)
or overshoot (right plot) the minimum.

Motivation: The goal of Alpha is to estimate and quantify the effect
that a selected learning rate has on the optimizer’s steps. Let’s
consider the step that the optimizer takes at training iteration ¢. This
parameter update from ) to 8+1 happens in a one-dimensional
space, defined by the update direction 8¢*1) — ) = s(). The
update direction depends on the update rule of the optimizer, e.g.
for SGD with learning rate 7 it is simply s} = —ngg(0™")), see
Update Rule 3.3.2.

We build a noise-informed univariate quadratic approximation
along this update step (0%) — 0*1) based on the two noisy loss
function observations at 8*) and 0**! and the two noisy slope
observation at these two points. Examining this quadratic fit, we
are able to determine where on this parabola our optimizer steps.
Standardizing this, we express a step to the minimum of the loss
in the update direction as @ = 0. Analogously, steps that end short
of this minimum result in @ < 0, and a step over the minimum in
a > 0. These three different scenarios for Alpha are illustrated in
Figure C.1 also showing the underlying observations that would
lead to them. Figure 7.1 shows the distribution of Alpha values for
two very different optimization trajectories.
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[330] Xing et al. (2018), “ A Walk with
SGD”

Noisy observations: In order to build an approximation of the loss
function in the update direction, we leverage the four observations
of the function (and its derivative) that are available in each iteration.
Due to the stochasticity of deep learning optimization, we also take
into account the noise level of all observations by estimating them
(see Section 3.2.1). The first two observations are the mini-batch
training losses L (0)) and Ly (0Y+Y), which are computed in
every standard training loop. Additionally, we consider the slope
in the update direction. To compute the slope of the loss function in
the direction of the optimizer’s update s*), we project the current
gradient along this update direction

s®7 gg(01)] 1 S(t)Tg[(E;)(g(t)) o

B¢ |s®)]12 ~ B = RGN (C1)

Egi+n S(t)TgB(e(tH))— _ 1 s(t)Tg[g)(e(Hl)) (C.2)
[Is®)]? B+ ety lIsO1?

For all four observations (two loss observations and two obser-
vations of the slope), we can also compute their variances by
leveraging individual gradients, to estimate the noise levels ¢ of
the observations.

Quadratic fit & normalization: Using our (noisy) observations,
we are now ready to build an approximation for the loss as a
function of the step size, which we will denote as f (7). We assume
a quadratic function for f, which follows recent reports for the
loss landscape of neural networks [330], i.e. a function f(7) =
w1 + WyT + w32 parameterized by w € R3. We further assume a
Gaussian likelihood of the form

P (f|w,c1>) :N(f;cDTw,Q) , (C.3)

for observations f of the loss and its slope. The observation matrix
@ and the noise matrix of the observations Q are

65 0 0 0
© 1 (1) (1) 0 oz 0 0
N ’ =y o o 0|
(SR 211 27 1
0 0 0 o

where 7 denotes the position and ¢ denotes the noise level es-
timate of the observation. The maximum likelihood solution of
Equation (C.3) for the parameters of our quadratic fit is given by

w=(PQ'®T) " ®Qf. (C.4)

Once we have the quadratic fit of the univariate loss function in the
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update direction, we normalize the scales such that the resulting
Alpha value expresses the effective step taken by the optimizer
sketched in Figure C.1.

Usage: The Alpha quantity is related to recent line search ap-
proaches [200, 305]. However, instead of searching for an accept-
able step by repeated attempts, we instead report the effect of the
current step size selection. This could, for example, be used to
disentangle the two optimization runs in Figure 7.1. Additionally,
this information could also be used to automatically adapt the
learning rate during the training process. But, as discussed in
Section 7.3.3, it isn’t trivial what the “correct” decision is, as it
might depend on the optimization problem, the training phase,
and other factors. The Alpha quantity can, however, provide more
insight into what kind of steps are used in well-tuned runs with
traditional optimizers such as SGD.

CABS Criterion: Coupling Adaptive Batch Sizes with
Learning Rates (CABS)

The CABS criterion, proposed by Balles et al. [21], can be used to
adapt the mini-batch size during training with SGD. It relies on
the gradient noise and approximately optimizes the objective’s
expected gain per cost. The adaptation rule is

Tr(Zp,..(0))

B «
Lptrue(e)

, (C.5)

where 7 is the learning rate and the practical implementation ap-
proximates Lp,..(0) = Lg(0), Tr(Xp,..(0)) = % Tr(£5(0)) (com-
pare equations (10, 22) and first paragraph of Section 4 in [21]). This
yields the quantity computed in Cockrir’s CABS instrument,

L3, Sien | 5(0) - g0(0)|
B «j=1 ieB | &R B ;
Lp(0)

B«n (C.6)

Usage: The CABS criterion described above suggests a batch size
which is optimal under certain assumptions. This suggestion can
support practitioners in the batch size selection for their deep
learning task.

Early-stopping Criterion for SGD (EarlyStopping)

The empirical risk Lp,,,, (0), and the mini-batch loss Lg(0) are
only estimators of the target objective Lp, . (0) (see Section 3.2).
Mahsereci et al. [199] motivate P(gp,p(0) | gr,..(0) = 0) as a

[200] Mahsereci et al. (2017), “Prob-
abilistic Line Searches for Stochastic
Optimization”

[308] Vaswani et al. (2019), “Pain-
less Stochastic Gradient: Interpola-
tion, Line-Search, and Convergence
Rates”

[21] Balles et al. (2017), “Coupling
Adaptive Batch Sizes with Learning
Rates”

[199] Mahsereci et al. (2017), “Early
Stopping without a Validation Set”
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measure for detecting noise in the finite data sets B, D due to
sampling from Pie. They propose an evidence-based criterion
for early stopping the training procedure based on mini-batch
statistics, and model P(gg(0)) with a sampled diagonal variance
approximation,

D [ﬁB(G)]].’j
P(ga(0) ~ [ [NV|[8rnc(®)];; —F— ] (C7)
j=1

Their SGD stopping criterion is

0< % |log P(88(6)) — Egy(0)~r(sae) [log P(ga(0))]]  (C.8)

and translate into

B D [gB(e)]?
0<1—-— _ co
D450, )
D 2
0<1- g s [gB‘(e)]d -, (C.10)
= g Sies |24(0) - g(0)|
2
o<1 BB-1 ZDZ [8B(0)]; 1)

- (zieB[ ><e>]) Blga(0)]]

Cockrir’s EarlyStopping quantity computes the right-hand side
of Equation (C.11).

Usage: The EarlyStopping quantity of Cockpir can inform the
practitioner that training is about to be completed and the model
might be at risk of overfitting.

Individual Gradient Element Histograms
(GradHist1d, GradHist2d)

For the B X D individual gradient elements, Cockpir’s GradHist1d
instrument displays a histogram of

(1)
{gB (Gj)}ieB,jzl,...,D ' (C12)

Cockrir’s GradHist2d instrument displays a two-dimensional his-
togram of the B X D tuples

{( ]'gB)(Q ))}z‘e[ﬁs,]‘:1 ,,,, b (C.13)

and the marginalized one-dimensional histograms over the param-
eter and gradient axes.
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(a) (b)

gB - gPtrue
88 ~ projg, (gn)

gPtrue

} ?\Gnorm

< 2V0rtho

Figure C.2: Conceptual sketch for gradient tests. (a) Relevant vectors to formulate the geometric constraints between
population and mini-batch gradient probed by the gradient tests. (b) Gradient test visualization in Cockprr.

Usage: Sections 7.3.1 and 7.3.2 provide use cases (identifying
data pre-processing issues and vanishing gradients) for both the
gradient histogram as well as its layer-wise extension.

Gradient Tests (NormTest, InnerTest, OrthoTest)

Bollapragada et al. [32] and Byrd et al. [43] proposed batch size
adaptation schemes based on the gradient noise. They formulate
geometric constraints between population and mini-batch gradi-
ent and accessible approximations that can be probed to decide
whether the mini-batch size should be increased. Mini-batches are
assumed to be sampled i.i.d. from Pie, it holds that

E[g8(0)] = &Py..(0), (C14)
E [88(0)7 2re(0)] = 118Pu (O)II. (C.15)

The above works propose enforcing other weaker similarity in ex-
pectation during optimization. These geometric constraints reduce
to basic vector geometry (see Figure C.2a for an overview of the
relevant vectors). We recall their formulation here for consistency
and derive the practical versions, which can be computed from
training observables and are used in Cockrir (consult Figure C.2b
for the visualization).

Usage: All three gradient tests describe the noise level of the
gradients. Bollapragada et al. [32] and Byrd et al. [43] adapt the
batch size so that the proposed geometric constraints are fulfilled.
Practitioners can use the combined gradient test plot, i.e. top center
plot in Figure 7.2, to monitor gradient noise during training and
adjust hyperparameters such as the batch size.

[32] Bollapragada et al. (2017),
“Adaptive Sampling Strategies for
Stochastic Optimization”

[43] Byrd et al. (2012), “Sample Size
Selection in Optimization Methods
for Machine Learning”
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[43] Byrd et al. (2012), “Sample Size
Selection in Optimization Methods
for Machine Learning”

[32] Bollapragada et al. (2017),
“Adaptive Sampling Strategies for
Stochastic Optimization”

Norm Test (NormTest)

The norm test [43] constrains the residual norm || gg(0) — gp,...(0)ll,
rescaled by ||gp,..(0)]|. This gives rise to a standardized ball of
radius Onorm € (0, ) around the population gradient, where the
mini-batch gradient should reside. Byrd et al. [43] set Opnorm = 0.9
in their experiments and increase the batch size if (in the practical
version, see below) the following constraint is not fulfilled

188(0) — g (O)II7
18P (O

E <02 - (C.16)

Instead of taking the expectation over mini-batches, Byrd et al. [43]
note that the above will be satisfied if

(i) 2
—_F 2

2o - (C17)
B 18Pe (O °
They propose a practical form of this test,
(i) 2
1 Zien ||8p (0) — g8(0)
< 0%, (C.18)

B(B-1) llgn(0)]°

which can be computed from mini-batch statistics. Rearranging

ieB

> s - gs0)] = (ZB; Hgé,f)(e)Hz) ~Bllga(®)]?, (C19)

we arrive at

Sieo 80
1 icB ||8p 5

< 0? C.20
BB-1)| |gs(0) = Prom (20

that leverages the norm of both the mini-batch and the individual
gradients, which can be aggregated over parameters during a
backward pass. Cockpir’s NormTest corresponds to the maximum
radius Oporm for which the above inequality holds.

Inner Product Test (InnerTest)

The inner product test [32] constrains the projection of gg(6) onto
8Py (0) (compare Figure C.2a),

g8(0)"8p,..(0)
18P (O

prongtrue(e) (gB(e)) = gptruc(e) 4 (Cz]‘)
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rescaled by ||gp,..(0)l]. This restricts the mini-batch gradient to
reside in a standardized band of relative width Ojner € (0, 00)
around the population risk gradient. Bollapragada et al. [32] use
Oinner = 0.9 (in the practical version, see below) to adapt the
batch size if the parallel component’s variance does not satisfy the
condition

Var

2
T T
g5(0) gptmegm] . (gB<e> 80 (0) _ 1) <o
||ngme(e)” ”gptrue(e)”

(C.22)

(note that by Equation (C.15) we have E [W] = 1). Bol-
gptrue
lapragada et al. [32] bound Equation (C.22) by the individual

gradient variance,

1

i i 2
g(0) 78] 1 |[80(0)7 8py(6) ,
r = B E -1 <

||gPtme(6)||2 ”gptrue(e)”Z inner *

(C.23)

They then propose a practical form of Equation (C.23), which uses
the mini-batch sample variance,

i i 2
1. [52@ O] 1 (g[;>(e)TgB<e)_ 1)
B Ige(0)]* BB-D i@\ lgsO)l*

<O .- (C.24)
Expanding
, 2
i) g)T 2 Sies (g0(0)7ga(0)

o o ieB | § B
Z(—gﬂ()gﬂi)—l) = (B - ) -B (C25)
ies \ lge(0) [EECH

and inserting Equation (C.25) into Equation (C.24) yields
, 2
L | Zien (85)(0)72a(0))
- -B|<0%..  (C26)
B(B-1) [EEICH]

It relies on pairwise scalar products between individual gradients,
which can be aggregated over layers during backpropagation.
Cockrir’s InnerTest computes the maximum band width Oinner
that satisfies Equation (C.26).
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[32] Bollapragada et al. (2017),
“Adaptive Sampling Strategies for
Stochastic Optimization”

Orthogonality Test (OrthoTest)

In contrast to the inner product test (Appendix C.3.5) which con-
strains the projection (Equation (C.21)), the orthogonality test [32]
constrains the orthogonal part (see Figure C.2a)

86(0) —projg, (9 (88(0)), (C.27)

rescaled by || gp,..(0)||. This restricts the mini-batch gradient to a
standardized band of relative width vorno € (0, 00) parallel to the
population gradient. Bollapragada et al. [32] use v = tan(80°) =
5.84 (in the practical version, see below) to adapt the batch size if
the following condition is violated,

g8(6) ~ projg, (o) (g8(0)) |

18P (O)l

<? (C.28)

— “ortho *

Expanding the norm, and inserting Equation (C.21), this simplifies

to
IE H gB(e) _gB(e)TgPtrue(e) gptrue(e) : <V2
18P O 118Pwc (O I8P (O] | ~ 7
(C.29)
lge©)I? _ (88(6)"8r..(0) | _ ,
Vortho *

I8P @I llgre (O |~
(C.30)

Bollapragada et al. [32] bound this inequality using individual
gradients instead,

i i 2
1] _s© 'O 80 gn.@ || _ .
B |[18rme@IF  lIgren(O)F  llgrnc (O] | =
(C.31)
They propose the practical form
, , )
1 2.(0)  8.(0)7ga(0) gs(0) .
BB-1) ||lge®l  lige(®)l> ligs@IIf | = "
(C.32)

which simplifies to

. 2
| s (85 ©7g@) )
B(B-1) 2| TIga(0)I2 Iga(@)F |~ oo’

(C.33)
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It relies on pairwise scalar products between individual gradients
which can be aggregated over layers during a backward pass.
Cockrir’s OrthoTest computes the maximum band width Verihe
which satisfies Equation (C.33).

Relation to acute angle test: Recently, a novel “acute angle test”
was proposed by Bahamou and Goldfarb [15]. While the theo-
retical constraint between gg(0) and gp, . (0) differs from the
orthogonality test, the practical versions coincide. Hence, we do
not incorporate the acute angle here.

Hessian Maximum Eigenvalue (HessMaxEV)

The Hessian’s maximum eigenvalue Amax(Hp(0)) is computed
with an iterative eigensolver from Hessian-vector products through
PyTorcH’s automatic differentiation [229]. Like Yao et al. [333],
we employ power iterations with similar

(stop after at most 100 iterations, or if the iterate does
converged with a relative and absolute tolerance of 1073,107°,
respectively) to compute Amax(Hg(0)) through the HessMaxEV
quantity in Cockeir.

In principle, more sophisticated eigensolvers (for example
ArnoLpI's METHOD) could be applied to converge in fewer it-
erations or compute eigenvalues other than the leading ones.
Warsa et al. [316] empirically demonstrate that the FLOP ratio
between power iteration and implicitly restarted ARNOLDI METHOD
can reach values larger than 100. While we can use such a beneficial
method on a CPU through
restricted to the GPU-compatible power iteration for GPU training.

We expect that extending the support of popular machine learning

we are

libraries like PYTorcH for such iterative eigensolvers on GPUs can
help to save computation time.

v Hg(0)v

C.34
— (C.34)

Amax(Hp(6)) = max||Hg(6)v|| = max
lofl=1 veRD

Usage: The Hessian’s maximum eigenvalue describes the loss
surface’s sharpest direction and thus provides an understanding
of the current loss landscape. Additionally, in convex optimization,
the largest Hessian eigenvalue crucially determines the appropriate
step size [260]. In Section 7.4, we can observe that although training
seems stuck in the very first few iterations progress is visible when

looking at the maximum Hessian eigenvalue HessMaxEV.

[15] Bahamou et al. (2019), “A
Dynamic Sampling Adaptive-SGD
Method for Machine Learning”

[229] Pearlmutter (1994), “Fast Exact
Multiplication by the Hessian”

[333] Yao et al. (2020), “ADAHES-
SIAN: An Adaptive Second Order
Optimizer for Machine Learning”

[316] Warsa et al. (2004), “Krylov
Subspace Iterations for Determinis-
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Hessian Trace (HessTrace)

In comparison to Yao et al. [
products [229] to estimate the Hessian trace, we compute the
exact value Tr(Hg(0)) with the HessTrace quantity in Cockpit by

], who leverage Hessian-vector

aggregating the output of BaAckPACK'’s extension,
which computes the diagonal entries of Hg(0). Alternatively, the
trace can also be estimated from the generalized Gauss-Newton

matrix, or an MC-sampled approximation thereof.

Usage: The Hessian trace equals the sum of the eigenvalues and
thus provides a notion of “average curvature” of the current loss
landscape. It has long been theorized and discussed that curvature
and generalization performance may be linked [e.g., 126] (see also
Section 2.3.3).

Takeuchi Information Criterion (TIC) (TICDiag,
TICTrace)

Recent work by Thomas et al. [291] suggests that optimizer conver-
gence speed and generalization is mainly influenced by curvature
and gradient noise; and hence their interaction is crucial to under-
stand the generalization and optimization behavior of deep neural
networks. They reinvestigate the Takeuchi Information Criterion
(TIC) [286], an estimator for the generalization gap in overparame-
terized maximum likelihood estimation. At a local minimum 6%,

the generalization gap is estimated by the TIC

L T (Hp, (6%)Cp,.(6%)) ,

5 (C.35)

where Hp, . (0%) is the population Hessian and Cp,, (0%) is the
gradient’s uncentered second moment,

Cp,..(6%) = / Vol(£(x;0%), y) (Vol(f(x;0%),y) " dPruelx, y).
(C.36)

Both matrices are inaccessible in practice. In their experiments,
Thomas et al. [291] propose the approximation Tr(C)/Tr(H) for
Tr(H™1C). They also replace the Hessian by the Fisher as it is easier
to compute. With these practical simplifications, they investigate
the TIC of trained neural networks where the curvature and noise

matrix are evaluated on a large data set.

The TIC provided in Cockerrr differs from this setting, since by de-
sign we want to observe quantities during training, while avoiding
additional model predictions. Also, BaAckPACK provides access to


https://docs.backpack.pt/en/master/extensions.html#backpack.extensions.DiagHessian

C.3 Mathematical Details

the Hessian; hence we don’t need to use the Fisher. We propose
the following two approximations of the TIC from a mini-batch:

» TICTrace: Uses the approximation of Thomas et al. [291]
which replaces the matrix-product trace by the product of
traces,

Tr(Ca(0) & Sicellgl (0)]
Tr (Hp(0))  Tr(Hg(0))

(C.37)

» TICDiag: Uses a diagonal approximation of the Hessian,
which is cheap to invert,

> 8 (0

ieB

| -

D
Tr (diag (H[a;(e))_1 CB(G)) = Z [HB(G)]]_}
i=1

(C.38)

Usage: The TIC is a proxy for the model’s generalization gap, see
Thomas et al. [291].

Gradient Signal-to-Noise-Ratio (MeanGSNR)

The gradient signal-to-noise-ratio GSNR(0;) € R for a single
parameter 0; is defined as

2
E (x,1)~Prruelx,) [[Vef (f(x;0),y)] ]'] (8P (O]
GSNR(0;) = =

Var(x,y)~ptme(x,y) [[V@f(f(x; 6), y)]]] [Eptrue(e)]f,j .
(C.39)

Liu et al. [187] use it to explain generalization properties of models
in the early training phase. We apply their estimation to mini-
batches,

GSNR(0;) ~ BOn, 5e(0),
Rl (se|@e)) - e
]

(C.40)

Inspired by Liu et al. [187], Cockpir’s MeanGSNR computes the
average GSNR over all parameters,

D
= D IGSNR(O)). (€4
j=1

Usage: The GSNR describes the gradient noise level which is
influenced, among other things, by the batch size. Using the

L ]

[291] Thomas et al. (2020), “On the
interplay between noise and curva-
ture and its effect on optimization
and generalization”

[187] Liu et al. (2020), “Understand-
ing Why Neural Networks General-
ize Well Through GSNR of Parame-
ters”
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(a) Normalized Data
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MeanGSNR, perhaps in combination with the gradient tests or the
CABS criterion could provide practitioners a clearer picture of
suitable batch sizes for their particular problem. As shown by Liu
et al. [187], the GSNR is also linked to generalization of neural
networks.

Additional Experiments

In this section, we present additional experiments and use cases
that showcase Cockpir’s utility. Appendix C.4.1 shows that Cockprr
is able to scale to larger data sets by running the experiment with
incorrectly scaled data (see Section 7.3.1) on IMAGENET instead
of CIFAR-10. Appendix C.4.2 provides another concrete use case
similar to Figure 7.1: detecting regularization during training.

Incorrectly Scaled Data for ImageNet

We repeat the experiment of Section 7.3.1 on the ImaceNEr [/0] data
set instead of CIFAR-10. We also use a larger neural network model,
switching from DeerOBS’ 3c3p to VGG16 [270]. This demonstrates
that Cockerit is able to scale to both larger models and data sets.
The input size of the images is almost fifty times larger (224 x 224
instead of 32 X 32). The model size increased by roughly a factor
of 150 (VGGI6 for ImaceNET has roughly 138 million parameters,
3c3Dp has less than a million).

Similar to the example shown in the main text, the gradients are
affected by the scaling introduced via the input images, albeit less
drastically (see Figure 7.3). Due to the gradient scaling, default
optimization hyperparameters might not work well anymore for
the model using the raw input data.

Gradient Element

(b) Raw Data

Figure C.3: Same inputs, different gradients on IMAGeNET. This is structurally the same plot as Figure 7.3, but using
ImaceNEer and VGG16. (a) normalized ([0, 1]) and (b) raw ([0, 255]) images look identical in auto-scaled front-ends like
MATPLOTLIB’S imshow. The gradient distribution on the VGG16 model, however, is affected by this scaling.
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Figure C.4: Observing implicit regularization of the optimizer with Cocxkert through a comparison of SGD and GD on

a synthetic problem inspired by [96,

] (details in the text). Left: The mini-batch loss of both optimizers looks similar.

Right: Noise due to mini-batching regularizes the Hessian’s maximum eigenvalue in stages where the loss suggests that

training has converged.

Detecting Implicit Regularization of the Optimizer

In non-convex optimization, optimizers can converge to local
minima which might have different properties. Here, we illustrate
this by investigating the effect of sub-sampling noise on a simple
task from [96, 212].

We generate synthetic data Dipain = {(x, y(i)) € Rx R}fi Tloo
for a regression task with x ~ A(0;1) with noisy observations
y = 1.4x + € where € ~ N(0;1). The model is a scalar network with

T T
parameters 0 = (w1 wz) € R?, initialized at © = (0.1 1.7) ,

that produces predictions via f(x; 0) = wow;x. We seek to mini-
mize the mean squared error

1 Y . 2
Lpen(0) = 5 > ( fx;0) - y“)) (C.42)

i=1
and compare SGD (B = 95) with GD (B = N = 100) at a learning
rate of 0.1 (see Figure C.4).

We observe that the loss of both SGD and GD is almost identi-
cal. Using a noisy gradient regularizes the Hessian’s maximum
eigenvalue though. It decreases in later stages where the loss curve
suggests that training has converged. This regularization effect
constitutes an important phenomenon that cannot be observed by
monitoring only the loss.

[96] Ginsburg (2020), “On regular-
ization of gradient descent, layer im-
balance and flat minima”

[212] Mulayoff et al. (2020), “Unique
Properties of Flat Minima in Deep
Networks”
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Implementation Details and Additional
Benchmarks

In this section, we provide more details about our implementation
(Appendix C.5.1) to access the desired quantities with as little
overhead as possible. Additionally, we present more benchmarks
for individual instruments (Appendix C.5.2) and Cockeir configu-
rations (Appendix C.5.2). These are similar but extended versions
of the ones presented in Figures 7.6a and 7.6b in the main text.
Lastly, we benchmark different implementations of computing the
two-dimensional gradient histogram (Appendix C.5.3), identifying
a computational bottleneck for its current GPU implementation.

Hardware details: Throughout this paper, we conducted bench-
marks on the following setup

» CPU: Intel Core i7-8700K CPU @ 3.70 GHz x 12 (32 GB)
» GPU: NVIDIA GeForce RTX 2080 Ti (11 GB)

Test problem details: The experiments in this paper rely mostly
on optimization problems provided by the DEepOBS benchmark
suite, see Appendix A.1 or [262]. If not stated otherwise, we use
the default training details suggested by DeepOBS.

Hooks & Memory Benchmarks

To improve memory consumption, we compact information during
the backward pass by adding hooks to the neural network’s layers.
These are executed after BackPACK extensions and have access to
the quantities computed therein. They compress information to
what is requested by a quantity and free the memory occupied
by BackPACK bulffers. Such savings primarily depend on the pa-
rameter distribution over layers, and are bigger for more balanced
architectures (compare Figure C.5).

Example: Say, we want to compute a histogram over the B x D
individual gradient elements of a network. Suppose that B =
128 and the model is DeepOBS’s CIFAR-10 3c3p test problem
(P4 in Appendix A.1) with 895,210 parameters. Given that ev-
ery parameter is stored in single precision, the model requires
895,210 X 4 Bytes ~ 3.41 MB. Storing the individual gradients will
require 128 X 895,210 X 4 Bytes ~ 437 MB (for larger networks this
quickly exceeds the available memory as the individual gradients
occupy B times the model size). If instead, the layer-wise indi-
vidual gradients are condensed into histograms of negligible size
and immediately freed afterwards during backpropagation, the
maximum memory overhead reduces to storing the individual
gradients of the largest layer. For our example, the largest layer
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has 589, 824 parameters, and the associated individual gradients
will require 128 X 589, 824 X 4 Bytes ~ 288 MB, saving roughly
149 MB of RAM. In practice, we observe these expected savings,
see Figure C.5c.

Additional Run Time Benchmarks
Individual Instrument Overhead

To estimate the computational overhead for individual instruments,
we run Cockpir with that instrument for 32 iterations, tracking at
every step. Training proceeds with the default batch size specified
by the DeerOBS problem and uses SGD with learning rate 1073.
We measure the time between iterations 1 and 32, and average
for the overhead per step. Every such estimate is repeated over
10 random seeds to obtain mean and error bars as reported in
Figure 7 .6a.

Note that this protocol does not include initial overhead for setting
up data loading and also does not include the time for evaluating
train/test loss on a larger data set, which is usually done by
practitioners. Hence, we even expect the shown overheads to be
smaller in a conventional training loop which includes the above
steps.

Individual overhead on GPU versus CPU: Figure C.6 and Fig-
ure C.7 show the individual overhead for four different DeepOBS
problems (P3, P4, P9, and P10 in Appendix A.1) on GPU and
CPU, respectively. The left part of Figure C.6¢c corresponds to
Figure 7.6a. Right panels show the expensive quantities, which we
omitted in the main text as they were expected to be expensive
due to their computational work (HessMaxEV) or bottlenecks in
the implementation (GradHist2d, see Appendix C.5.3 for details).
We see that they are in many cases equally or more expensive
than computing all other instruments. Another expected feature
of the GPU-to-CPU comparison is that parallelism on the CPU
is significantly less pronounced. Hence, we observe an increased
overhead for all quantities that contain non-linear transformations
and contractions of the high-dimensional individual gradients, or
require additional backpropagations (curvature).

Configuration Overhead

For the estimation of different Cockrir configuration overheads,
we use almost the same setting as described above, training for 512
iterations and tracking only every specified interval.
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Figure C.5: Memory consumption and savings with hooks during one forward-backward step on a CPU for different
DeepOBS problems. We compare three settings; i) without Cockeir (baseline); ii) Cockpir with GradHist1d with BackPACK
(expensive); iii) Cockprr with GradHist1d with BAckPACK and additional hooks (optimized). Peak memory consumptions
are highlighted by horizontal dashed bars and shown in the legend. Shaded areas, if visible, fill two standard deviations
above and below the mean value, all of them result from ten independent runs. Dotted lines indicate individual runs. Our
optimized approach allows to free obsolete tensors during backpropagation and thereby reduces memory consumption.
From top to bottom: the effect is less pronounced for architectures that concentrate the majority of parameters in a single
layer ((a) 3,274, 634 total, 3,211, 264 largest layer) and increases for more balanced networks ((b) 1, 336, 610 total, 784, 000
largest layer, (c): 895, 210 total, 589, 824 largest layer).
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Figure C.6: Individual overhead of Cockrir’s instruments on GPU for four different problems. All run times are
shown as multiples of the baseline without tracking. Expensive quantities are displayed in separate panels on the right.
Experimental details in the text.
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Figure C.7: Individual overhead of Cockrit’s instruments on CPU for four different problems. All run times are
shown as multiples of the baseline without tracking. Expensive quantities are displayed in separate panels on the right.
Experimental details in the text.
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Figure C.8: Overhead of CockeriT
configurations on GPU for four dif-
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as in Figure 7.6.
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Configuration overhead on GPU vs. CPU: Figures C.8 and C.9
show the overhead for four different DeepOBS problems. The
bottom left part of Figure C.8 corresponds to Figure 7.6b. In
general, we observe that increased parallelism can be exploited on
a GPU, leading to smaller overheads compared to a CPU.

CockriT can even scale to significantly larger problems, such as

a ResNEer-50 [117] on ImaceNEt-like data. Figure C.10 shows the  [!/7]Heetal. (2016), "Deep Residual
computational overhead for different tracking intervals on such Learning for Image Recognition”
a large-scale problem. Using the economy configuration, we can

achieve our self-imposed goal of at most doubling the run time even

when tracking every fourth step. More extensive configurations

(such as the full set) would indeed have almost prohibitively

large costs associated. However, these costs could be dramatically

reduced when one decides to only inspect a part of the network

using Cockerir. Note, individual gradients are not properly defined

when using batch norm, therefore, we replaced these batch norm

layers with identity layers when using the ResNet-50.

C.5.3 Performance of Two-dimensional Histograms:

Both one- and two-dimensional histograms require B X D ele-
ments be accessed, and hence perform similarly. However, we
observed different behavior on GPU and decided to omit the two-
dimensional histogram’s run time in the main text. As explained
here, this performance lack is not fundamental, but a shortcoming
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Figure C.9: Overhead of Cockerit
configurations on CPU for four dif-
ferent problems with varying track-
ing interval. Color bar is the same
as in Figure 7.6.

Figure C.10: Overhead of CockpiT
configurations on GPU for
ResNET-50 on IMAGENET. Cockrit’s
instruments scale efficiently even
to very large problems (here:
1000 classes, (3,224,224)-sized
inputs, and a batch size of 64. For
individual gradients to be defined,
we replaced the batch norm layers
of the ResNer-50 model with
identities.) Color bar is the same as
in Figure 7.6.
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4: See also the discussion at https:
//discuss.pytorch.org/t/torc
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of the GPU implementation. PYTorcH provides built-in function-
ality for computing one-dimensional histograms at the time of
writing, but is not yet featuring multi-dimensional histograms. We
experimented with three implementations:

» PyTorcH (third party): A third party implementation? under
review for being integrated into PyTorcu 2. It relies on
torch.bincount, which uses atomicAdds that represent a
bottleneck for histograms where most counts are contained
in one bin.* This occurs often for over-parameterized deep
models, as most of the gradient elements are zero.

» PyYTorcH (Cockrrt): Our implementation uses a suggested
workaround, computes bin indices and scatters the counts
into their associated bins with torch.Tensor.put_. This
circumvents atomicAdds, but has poor memory locality.

» NumPy: The single-threaded numpy.histogram2d serves as
baseline, but does not run on GPUs.


https://github.com/miranov25/RootInteractive/blob/7019e4c2b9f291551aeeb8677a969cfcfde690d1/RootInteractive/Tools/Histograms/histogramdd_pytorch.py
https://github.com/miranov25/RootInteractive/blob/7019e4c2b9f291551aeeb8677a969cfcfde690d1/RootInteractive/Tools/Histograms/histogramdd_pytorch.py
https://github.com/pytorch/pytorch/pull/44485
https://github.com/pytorch/pytorch/pull/44485
https://discuss.pytorch.org/t/torch-bincount-1000x-slower-on-cuda/42654
https://discuss.pytorch.org/t/torch-bincount-1000x-slower-on-cuda/42654
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Figure C.11: Performance of two-dimensional histogram GPU implementations depends on the data. (a) Run time for
two different GPU implementations with histograms of different imbalance. Cockrir’s implementation outperforms the
third party solution by more than one order of magnitude in the deep learning regime (b < 1). (b) On CPU, performance
is robust to histogram balance. The run time difference between NumPy and PyTorcH is due to multi-threading. Data
has the same size as DeepOBS’s CIFAR-10 3c3p problem (D = 895,210, B = 128). Curves represent averages over 10
independent runs. Error bars are omitted to improve legibility.

To demonstrate that the performance strongly dependence on the
data, we generate data from a uniform distribution over [0, b] X
[0, ], where b € (0, 1) parametrizes the histogram’s balance. We
then compute a two-dimensional histograms on [0,1] x [0, 1].
Figure C.11a clearly shows an increase in run time for both GPU
implementations if the histogram is more imbalanced.

Note that even though our custom implementation outperforms the
third party implementation by more than one order of magnitude
in the deep neural network regime (b < 1), it is still considerably
slower than computing the one-dimensional histogram (see Fig-
ure C.6 (c)), and even slower on GPU than on CPU (Figure C.11b).
As expected, the CPU implementations do not significantly depend
on the histogram’s balance (Figure C.11b). The performance differ-
ence between PyTorcH and NumPY is likely due to multi-threading
versus single-threading.

A carefully engineered GPU implementation for efficient histogram
computation in the deep learning setting is currently not available.
However, we think such an implementation is possible and it
would reduce the computational overhead for the two-dimensional
histogram roughly to that of the one-dimensional histogram and
could be added in future releases of Cockrir.
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Cockpit’s View of Convex Stochastic
Problems

To contrast the showcase of Cockrir on a deep learning problem
in Figure 7.2, we show the Cockrir view of two convex problems.
Figure C.12 shows Cockpit’s view of a noisy quadratic (top plot, P1
in Appendix A.1) and logistic regression on MNIST (bottom plot,
P9 in Appendix A.1). Comparing Figures 7.2 and C.12 reveals a
significant difference between the behavior of the instruments when
comparing convex problems with deep learning tasks, highlighting
the unique properties of deep learning optimization.



C.6 Cockpit’s View of Convex Stochastic Problems 177

Cockpit for SGD on Quadratic Deep

STEP SIZE CURVATURE

Cockpit for SGD on MNIST Log. Reg.

CURVATURE

Figure C.12: Screenshot of Cockrir’s full view for convex DEepOBS problems. Top Cockpit shows training on a noisy
quadratic loss function. Bottom shows training on logistic regression on MNIST. It is evident, that there is a fundamental
difference in the optimization process, compared to training deep networks, i.e. Figure 7.2. This is, for example, visible
when comparing the gradient norms, which converge to zero for convex problems but not for deep learning.
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