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poor presentation. Furthermore, interactive effects of two different aspects of information complexity (data amount and task 
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1. Background 

Current production networks in globalized markets are characterized by increasing dynamic and complexity: 

Reduced time to markets, increasing product diversity, and increasingly complex multi-tier and world-spanning 

supply chains are faced with growing interconnectivity of production machinery, manufacturing execution systems, 

and enterprise resource planning systems under the label Industrial Internet, Internet of Things (IoT), or Industry 

4.0. These trends offer great opportunities for increasing quality, quantity, and productivity, but also offer 

tremendous challenges. The Cluster of Excellence “Integrative Production Technologies for High Wage Countries” 

at RWTH Aachen University addresses these opportunities and challenges and aims at resolving the “polylemma of 

production” which spans along two dilemmas plan-oriented vs. value-oriented production and scale vs. scope [1]: 

Planning-oriented approaches model production processes and centralized planning tiers identify optimal 

resource allocation strategies. This approach limits uncertainty in production, but requires detailed knowledge about 

the processes and available resources. Also, it is calculated a-priori and therefore not able to adjusted in real time. In 

contrast, value-oriented approaches offer higher flexibility to adapt to changes, as decisions are decentralized along 

the value stream and individual situations can be resolved in shorter time, as no centralized institution needs to be 

consulted. However, value-oriented approaches can lead to higher variances along the value stream and optimal 

resource allocations may be missed through the absence of a central control unit [2]. 

The second dimension scale vs. scope refers to the tradeoff between cost-effective cheap mass production of 

similar products vs. costly manufacturing of individualized products. In economies of scale production costs per unit 

are minimized, for example, by lowering fixed costs, bulk buying of resources, increased planning, and through 

division of labor. Economies of scope aim at reducing the costs for manufacturing different products, for offering a 

diverse product portfolio or individualized products. The focus lies in increased flexibility of a company, for 

example, by producing different products on the same machine or by shorter lead times (ibid). 

To compete in globalized markets, enterprises must solve this polylemma and growing interconnectivity of 

technical systems between different tiers of a production network and across companies are a possible solution [3]. 

While Enterprise Resource Planning Systems (ERP) and Manufacturing Execution Systems (MES) are increasingly 

penetrating manufacturing companies and automated processes increase companies’ productivity by optimizing the 

flow of resources and information, there are and always will be human operators in the loop that maintain control, 

take responsibility, and must have a profound understanding about aspects not modeled in these systems. However, 

human factors that contribute to efficient and effective decision making in these complex environments are 

insufficiently understood [4]–[6]. 

2. Introduction 

The amount of information in its various forms has increased in recent years [7]. In consideration of this fact, 

business organizations are challegened to find proper ways to deal with the huge amount of information in order to 

meet the competition in global markets. This issue is particularly important for complex logistic networks like 

supply chains. Effective supply chain management is characterized with fast and economic decisions while 

considering different network nodes (e.g. suppliers, resellers, consumers…) and their interactions [8]. Enterprise 

resource planning (ERP) systems are used to provide these complex information in order to support the decision 

makers. However, human operators of these information systems are faced with an increasing amount of displayed 

information. Considering that these operators make the final decisions, they are required to use the appropriate 

information in context of their goals. As an individual’s information processing capacity is limited, receiving too 

much information may result in information overload [7], which impairs effectivity and efficiency of the decision 

making process. Therefore, it is important to understand and support the perception and processing of complex 

information with effective visualization to improve the decision quality. In order to develop general display 

guidelines, it is indispensable to consider the effects of multiple factors in a controlled experimental setup [9]. 

Consequently, we first outline the characteristics and issues of the visual design of ERP systems. We thereby clarify 

the need to investigate the role of information complexity and presentation of the displayed data in ERP system with 

consideration of human factor. Next, we present an empirical study to deal with the effects of these factors on 

decision quality. Finally, we discuss the results and provide several important practical implications. 
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Fig. 1. Screenshot of SAP ERP. 

2.1. ERP systems and usability of ERP systems 

The implementation of an ERP system is a huge investement for companies (over $1 billion for a large company; 

[10]). However, the costs are mostly justified: ERP systems are the basis of information processing in companies 

and thus they have a direct impact on the economic success (productivity, quality, customer satisfaction, fulfillment 

of industry-specific requirements for documentation and traceability of business processes). The current ERP 

systems offer integrated software solutions for administration and for planning and control of the operational value 

creation processes. ERP systems are commercially available for a long time, but they only interact in a very limited 

way with technical development tools. Despite the benefits of ERP systems, the complexity of these systems is a big 

point of criticism[11]. The major component of an ERP systems is a tabular presentation of alphanumeric and multi-

dimensional data sets. Fig. 1 shows one example of the tabular representation of data in an ERP system. 

In order to make proper decisions, users are usually required to scan and integrate various data values [12]. Since 

users mostly act as final decision makers, the complexity of the displayed information can have a substantial impact 

on the decision quality. Therefore, information complexity should always be considered in context of ERP systems.  

Assuming that the information complexity is constituted by the complexity of the supply chain, it is difficult to 

manipulate this aspect for a software designer. Thus, the way the information is presented to users is of particular 

importance. Furthermore, the customer support is becoming increasingly important for many ERP system vendors 

[13]. In view of these facts, usability may be one of the key factors. DIN EN ISO 9231, Part 11, defines Usability is 

as “the extent to which a product can be used by specified users in a specified way of use to achieve specified goals 

in an effective, efficient and satisfactory way”[14]. Although the consistent consideration of basic usability criteria 

proven effect on the performance [15], [16] usability is so far still a subordinate criterion for the design of software 

systems. It is seen more as a cosmetic facet than a fundamental requirement for optimum performance [17]. In 

consideration of the highly complex information this is particularly problematic. On the one hand users need more 

time to complete tasks with more complex ERP interfaces [18]. On the other hand the ease of use is a central 

determinant of end-user satisfaction with ERP systems [19]. Since successful performance determines the perceived 

ease of use of a system [20], there is a close relation between subjective ratings and objective performances. So far 

the evaluation of the usability of ERP and information systems due to the complexity of the required business 

background and the large number of evaluation criteria is still not implemented consistently. Empirical studies with 

objective measures (e.g. performance time) can provide among other things further information for the development 

of evaluation criteria. Therefore, we considered usability and user characteristics in our study. Since information 

presentation is a key aspect of user interfaces in ERP systems [11], we restricted our study on this factor. In the 

following section, we describe in more detail the theoretical background to evaluate the factors information 

complexity and presentation in a user study. 

2.2. Evaluation of information complexity, presentation and human factors 

In order to get a deeper understanding of the role of information complexity, we subdivided this criticial factor 

into the factors data amount and task complexity. A similar concept was used in a study concerning accounting and 

information systems by Iselin. The author divided information load into “the quantitiy of different dimensions and 
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the quantity of repeated dimensions” [21]. Data amount is also defined as the quantitiy of repeated dimensions in 

our study. The current stock of a product to different times would be an adequate example in terms of ERP systems. 

Task complexity basically describes the quantitiy of different dimensions. We extended the definition based on 

descriptions of Wood [22] and Speier, Vessey und Valcaich [23]. According to these studies, the number of cues 

necessary for a decision increases with increasing task complexity. Therefore, complex tasks require the 

acquirement of more dimensions in order to make a proper decision. If the current stock of the product of the 

previous example consists of two different stores, the task complexity would be higher. Users have to consider two 

different dimensions (store 1 and store 2) in order to find out the total stock for the product. 

The change of font sizes is a common procedure to display more data on a screen. Hence, the manipulation of the 

size of the displayed data is suitable to investigate the role of information presentation as a key aspect of usability. 

Finally, users have to process the displayed data. As already mentioned they take on a role of a final decision 

maker. User may differ in their ability to process information or select different strategies due to their experiences 

and cognitive abilities. In the context of information processing, the latter is of particular importance, because 

humans have limited cognitive processing capacity [24]. Consequently, it is nessecary to examine the role of human 

factors on the decision quality. 

In summary, it seems that information complexity (data amount and task complexity) and presentation are 

important factors of the visual design of ERP systems. In the present experiment, we examine the interrelationship 

of these factors in a controlled experiment using a simplified task with simulated ERP system data. In addition, we 

considered the possible impact of human factors on the decision quality. In the following, we describe the 

methodology and the results of our experiment.  

3. Method 

3.1. Experimental task 

We constructed alphanumeric tables with simulated ERP system data. Subjects had to use these tables to decide if 

there was enough total stock to meet the demand of a customer. Tables consisted of four columns and four or eight 

rows. Each row represented one product and the cells contained numeric data values. The information to each 

product were divided into the four columns store, production, week and demand. 

Store (S): The value in this column represented the number of products in the store. The values were randomly 

generated between 11 and 19. 

Production (P) and week (W): The product of these values represented the number of products in the production 

hall. These products were part of the current stock even though not yet transported to the store. The value for one 

column was randomly generated between 3 and 9. The value of the other column were varied as a function of the 

independent variable task complexity. 

Demand (D): The value of this column represented the stock demand of a fictive customer. The values differed 

randomly from 1 to 10 as a function of the total stock in both directions. 

The total stock (TS) of a product in each row was calculated by the formula               and the subjects 

had to decide for each row if there were enough products (TS > D) or not (TS < D). The final decision referred to 

the entire table. Therefore, the decision “insufficient total stock” could be made once an insufficient stock was 

detected for one product, whereas the subjects had to check each row of the entire table for the decision “sufficient 

total stocks”. Fig. 2 shows an example of a table. 

 

 

 

 

Fig. 2. Example of a table with small data amount and high task complexity. 

Store 
Producti

on 
Week Demand 

14 3 2 17 

13 3 2 12 

12 2 9 31 

12 9 2 25 
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3.2. Experimental variables 

We considered decision (sufficient or insufficient stocks) as an independent variable. The dependent variables 

were performance (reaction times in ms) and accuracy (percentage of correct responses). Furthermore, we examined 

the effects of the following three major independent variables: 

Data amount: We operationalized data amount in two steps by manipulating the amount of rows in the tables. 

Tables with a small data amount contained four rows and tables with a large data amount contained eight rows. 

Consequently, subjects had to consider more products for their final decision using tables with a large data amount. 

Task complexity: Three levels of task complexity were simulated by using different values for the columns 

production or week. Tables with low task complexity only required the comparision of the values for store (S) and 

demand (D), as either the column production or the column week was zero (P or W = 0). Tables with an 

intermediate task complexity contained the value one (P or W = 1) and tables with a high task complexity the value 

two (P or W = 2). Therefore, subjects were forced to integrate more dimensions to make a correct decision with 

increasing task complexity. Each table had the same task complexity across its rows. 

Presentation: We used small (Arial, 8 pt, 2.8 mm) and medium (Arial, 16 pt, 5.6 mm) font sizes to construct 

tables with either poor or good data presentation. As row pitches were modified proportionally, tables with a good 

presentation were twice as big as tables with a poor presentation. As a consequence poor presentations were 

indicated with a high local density [25]. 

3.3. Stimuli and apparatus 

Tables were presented on an Apple 24” iMac with a pixel density of 94 ppi (1920×1200px
2
). The viewing 

distance was approximately 50 cm. The tables were constructed using the font Arial and a constant size for the 

labels of the columns and the values of the practice blocks (12 pt, 4.2 mm). We used random numbers for the cells 

within predefined ranges. In order to avoid unintended effects by the stimuli, we created two different blocks with 

96 tables (48 tables for each font size) and equally allocated the participants to the different blocks.  

3.4. Participants and user characteristics 

A total of 32 participants (13 female) volunteered to take part in the study and received a small present in return. 

The age ranged between 21 and 39 years (M = 26.47; SD = 4.73) and most participants were students. All 

participants reported normal or corrected-to normal visual acuity. We randomly assigned the particpants to the good 

and poor data presentation group by their sex (Nfemale; poor = 6; Nfemale; good = 7).  

We controlled for different individual characteristics that were thought to influence performance. In addition to 

the expertise of the participants, we measured the cognitive abilities perceptual speed and numeracy. In the 

following we only report the scores of 31 participants, because we had excluded one male participant from the later 

analysis (see below, Npoor = 15; Ngood = 16). 

Expertise: We measured the expertise in interacting with numerical data using four 7-point Likert items (Min = 1; 

Max = 7). We considered the frequency for working with tables and numbers (e.g. “I often work with numbers.”) 

and the subjective interest (e.g. “I like working with tables.”). Overall, participants were quite experienced (M = 

5.10; SD = 1.22 and there were no significant differences between the good and poor data presentation group. 

Cognitive abilities: Numeracy was measured using an addition test from the kit of factor-referenced cognitive 

tests [26]. In this test the participants had to sum up three digit numbers with a time limit. The average score of the 

120 possible points was 28.26 (SD = 8.16) with no significant differences between both groups. We used the  

number-comparison test [26] in order to assess the perceptual speed. Here, the participants had to detect differences 

between multi-digit numbers with a time limit. Participants scored in average 25.23 (SD = 5.01) from 51 possible 

points. The scores differed significantly between the two groups. The poor presentation group reached a higher score 

(Mpoor = 28.10; SDpoor = 4.92) than the good presentation group (Mgood = 22.69; SDgood = 3.57; t(29) = 3.50; p < 

.001). We considered this difference in our further analysis. 
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3.5. Design and procedure 

The experiment was based on a 2 x 2 x 3 x 2 experimental design with three within-subjects factors and one 

between factors. The within-subject factors were decision (insufficient, sufficient), data amount (small, large) and 

task complexity (low, intermediate, high) and the between-subject factor presentation (good, poor). 

Participants attended the experiment individually. The experiment began with the completion of the expertise 

questionnaire and the conduction of the cognitive tests. The experimenter explained then the experimental task and 

instructed the participants to respond as fast and accurately as possible. The participants were allocated to the 

experimental block (48 tables) after a practice block with 12 tables. The order of trials was individually randomized. 

At the beginning of each trial, a fixation cross was presented at the center of the screen. The table appeared on the 

screen 250 ms after the fixation cross appearance. The participants responded with either their left (“sufficient 

stocks”) or right (“insufficient stock”) index finger to make a decision. Reaction time was measured from the 

appearance of the table until the participant’s response. The experiment lasted about 40 min. 

4. Results 

The mean reaction time for all correct trials (92.90 %) was 10.19 s (SD = 6.61 s). One participant was excluded 

from the further analysis due to long (RT>>M+SD) reaction times. As a result of the high standard deviations we 

used the median values for for the further analysis. The significance level was set at p < .05. Furthermore, we used 

the spherity assumption and the Greenhouse-Geiser method for the data interpretation. First, it was checked if there 

were correlations between the user characteristics (expertise, numeracy and perceptual speed) and the performance 

(reaction times of correct trials and errors). It showed that there were a marginal significant negative correlation 

between the perceptual speed score and the reaction times (r = - .51; p = .05). Since there were also differences 

between both presentation groups concerning this score, we considered perceptual speed as a covariate. As a 

consequence, ANOCOVAs on median reaction times of correct trials and mean correct percentages were conducted 

with the within-subject factors decision (sufficient, insufficient), data amount (small, large), task complexity (low, 

intermediate, high) and the between-subject factor presentation (good, poor). The ANCOVA on the correct 

percentages showed no signifinance effects. In the following, we report the results of the ANCOVA on the reaction 

times. A significant main effect of decision was found (F(1, 28) = 4.87, p < .05, η² = .15). Reaction times for tables 

with an insufficient stock (Mdninsufficient = 8.71 s) were faster than for tables with sufficient stocks for all products 

(Mdnsufficient = 11.71 s). There were also a significant main effect of data amount (F(1, 28) = 18.94, p < .001, η² = 

.40). Participants responded faster to tables with a small data amount (Mdnsmall = 6.48 s) than to tables with a large 

data amount (Mdnlarge = 11.24 s). Also, a main effect of task complexity was present (F(1.59, 44.43) = 11.76, p < 

.001, η² = .30). Paired t-tests with Bonferroni corrections showed significant effects between all steps ( < p .001), 

indicating that reaction times increase with complexity (Mdnlow = 6.03s; Mdnintermediate = 8.66s; Mdnhigh = 12.55s). 

The interaction between data amount and task complexity was also observed (F(1.48, 41.31) = 5.44, p < .001, η² 

= .32). As can be seen from Fig. 3 (a), the negative impact of a large data amount was much more pronounced for 

tables with higher task complexity (F(1, 28) = 9.48, p < .01, η² = .25). 

 

Fig. 3. Interaction between task complexity and data amount for the reaction times in [s] (a). Main effect of classification (presentation and 

perceptual speed; PS) for the reaction times in [s] (b). 
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The analysis revealed a main effect of presentation. Participants of the good presentation group responded faster 

(Mdngood = 7.53 s) than participants of the poor presentation group (Mdnpoor = 8.84 s). Since there was also a 

significant effect of the covariate perceptual speed (F(1, 28) = 4.64; p < .05; η² = .14), we examined the perceptual 

speed scores (PSScore) of both presentation groups in more detail. It becomes apparent, that the maximum score for 

the good presentation group (Maxgood = 28 s) was only just above the median test score for the poor presentation 

group (Mdnpoor = 28 s). For this reason, we divided the participants into three groups: nine participants with poor 

presentation and low perceptual speed (PSScore ≤ 28), six participants with low presentation and high perceptual 

speed (PSScore > 28) and sixteen participants with good presentation and low perceptual speed (PSScore ≤ 28). We 

conducted a repeated-measures ANOVA on the reaction times with the usual within-subject factors (decision, data 

amount and task complexity) and the new between subject factor classification (poor presentation and low PSScore, 

poor presentation and high PSScore, good presentation and low PSScore). We found the same significant results as 

before and in addition a significant main effect of classification (F(1, 28) = 8.12, p < .01, η² = .37). This effect is 

illustrated in Fig. 3 (b). Subsequent paired t-tests with Bonferroni corrections revealed that participants with a poor 

presentation and low perceptual speed responded significantly slower (Mdnpoor;low = 9.74 s) than participants with a 

poor presentation and high perceptual speed (Mdnpoor;high = 7.72 s; p < .01) and than participants with a good 

presentation and low perceptual speed (Mdngood;low = 7.53 s; p < .01). As can be seen from Fig. 3 (b), there was no 

significant difference between the latter classification groups. 

5. Discussion 

The indisputable benefits of increased interconnectivity of production machinery, manufacturing execution 

systems, and enterprise resource planning systems for small to cross-national companies are challenged by the 

growing complexity of the user interfaces of these systems. In order to fully harness the power of the growing 

number and granularity of available information the technical and human factors that contribute to an understanding 

of the presented information and to high decision efficiency and effeciticty must be thouroughly understood. 

The current study examined the effects of information complexity (data amount and task complexity) and visual 

presentation as a key aspect of usability and human factors on the decision efficiency and effectivity in MES and 

ERP systems. The purpose of this study was to investige the interrelationship of these factors and to derive practical 

implication for the design of future MES and ERP systems. The findings showed that decision speed dropped with 

increasing data volume and task complexity. In addition, the negative impact of increasing data volume on decision 

speed was particularly large for tables with high task complexity. Furthermore, it was found that poor presentation 

decreased the decision speed. Individual differences in form of perceptual speed also influenced decision speed and 

the study revealed that poor presentations especially impaires people with lower perceptual speed. Contrary, people 

with high perceptual speed can compensate poor presentations and achieved about the same level of decision speed 

as individuals with low perceptual speed using good presentations. 

The implication of this study are manyfold. First, the study revealed that decision performance is influenced by 

human factors. Although these precise nature of this influence is not yet sufficiently understood the presented 

experimental paradigm offers the potential to thoughly investigate the role of technical and human factors in 

complex environements and to quantify the costs of poor interfaces as a function of human factors. The sample 

consisted of a homogeneous group of experienced and rather fast participants. Hence, further multi-factorial 

experiments with a more diverse sample that resembles the typical workforce (age, perceptual speed, motivation, …) 

are neccessary to better understand the interrelationship of the investigated factors and to reveal possible interaction 

effects between these factors (e.g., perceptual speed, data amount, and task complexity). 

Second, the study showed that people with a high perceptual speed are able to compensate negative effects of 

poor usability. We speculate that developers of MES or ERP systems have overlook that their systems are used by a 

diverse user population with a large variance in age, motivation, and cognitive abilities, of which not everybody is 

able to compensate the effects of bad user interfaces. We therefore suggest that MES and ERP systems are 

systematically reengeinnered following the typical usability lifecycle as suggested by Gould and Lewis (early focus 

on users, empirical measurement of usage, and iterative design) [27] and that available guidelines for reducing 

complexity are systematically applied [4], [6], which includes a consideration of different aspects of information 
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complexity and their possible interactions. It is crucial that software developers pay attention to factors of user 

diversity, such as age and cognitive abilities, as these substantially contribute to inceased effectivity, efficicency, 

and satisfaction and which will eventually yield in substantially more productive and competitive companies. 
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