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Abstract 
 

     In order to improve hydro-meteorological model prediction using remote-sensing 

measurements the difference between the model world and the observed world should be 

identified. The forward model proposed in this study allows us to simulate the BT 

(brightness temperature) from the land surface model to compare with the observed 

microwave BT. The proposed dielectric mixing model is the key part of the forward 

model to properly link the model parameters and the BT observed by remote sensing. In 

this study, it was established that the physically valid computation of the effective 

dielectric constant should be based on the arithmetic average with consideration of the 

proposed universal damping factor. This physically based dielectric mixing model is 

superior to the refractive mixing model or semi-empirical/calibration model with RMSE 

values of 0.96 and 0.63 for the predicted real and imaginary parts, respectively, 

compared to the measured values. The RMSE obtained with the new model is smaller 

than those obtained by other researchers using refractive mixing models for operational 

microwave remote sensing. 

     Once we determine the model uncertainty using this forward model, we can update 

the model state using the values obtained from the remote-sensing measurement. The 

challenging task in this process is to resolve the ill-posed inversion problem (estimation 

of multiple model parameters from a single BT measurement). This study proposes a 

simple partitioning factor based on model physics. Again, the forward model is crucial 

because these factors are required to be computed in BT space. 
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     In the case study involving the Schäfertal catchment area, the proposed forward 

model, including the new dielectric mixing model, and the proper partitioning factors 

computed from land surface model physics was able to successfully extract the refined 

soil texture information from the microwave BT measurements. The highly resolved soil 

moisture variability based on the refined soil texture will allow us to predict convective 

precipitation with higher spatial and temporal accuracy in the numerical weather 

forecasting model. Moreover, microwave remote sensing using the developed forward 

model, which provides the soil texture, soil moisture, and soil temperature with a fine 

scale resolution, is expected to open up new possibilities to examine the energy balance 

closure problem with unprecedented realism. 
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Zusammenfassung 

     Zur Verbesserung der Vorhersagen von hydrometeorologischen Modellen unter 

Verwendung von Fernerkundungsmessungen muss der Unterschied zwischen der 

Modellwelt und den Messdaten identifiziert werden. Das in dieser Studie 

vorgeschlagene Vorwärtsmodell erlaubt es uns, Strahlungstemperaturen (BT) mit einem 

Landoberflächenmodell zu simulieren und mit gemessenen Mikrowellen-BT-Werten zu 

vergleichen. Ein neues dielektrisches Mischungsmodell wird vorgeschlagen, das den 

entscheidenden Teil des Vorwärtsmodells ausmacht, der die Modellparameter und die 

durch Fernerkundung gemessene BT richtig verbindet. In dieser Studie wurde 

festgestellt, dass die physikalisch fundierte Berechnung der effektiven 

Dielektrizitätskonstante auf dem arithmetischen Mittelwert unter Berücksichtigung eines 

ebenfalls neu vorgeschlagenen universalen Dämpfungsfaktors basieren sollte. Dieses auf 

den Regeln der Physik basierende dielektrische Mischungsmodell ist dem 

Brechungsindexmischungsmodell oder dem semi-empirischen Kalibrierungsmodell 

überlegen wie RMSE-Werte von 0,96 und 0,63 für den Vergleich der vorhergesagten 

realen bzw. imaginären Teile mit den gemessenen Werten zeigen. Der mit dem neuen 

Modell erhaltene RMSE ist kleiner als derjenige, den man mit den in der operationalen 

Mikrowellenfernerkundung verwendeten Brechungsindexmischungsmodellen erhält. 

     Nach der Quantifizierung der Modellunsicherheit mithilfe des neuen 

Vorwärtsmodells kann der Modellzustand mithilfe der mittels Fernerkundung 

gemessenen Werte verbessert werden. Die Herausforderung in diesem Prozess ist es, das 

schlecht gestellte Inversionsproblem zu lösen (Ableitung mehrerer Modellparameter aus 
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einer BT-Messung). Diese Studie schlägt einen einfachen Partitionierungsfaktor auf 

Basis der Modellphysik vor. Auch hier ist das Vorwärtsmodell entscheidend, da diese 

Faktoren im BT-Raum berechnet werden müssen. 

     In einer Fallstudie im Schäfertal-Einzugsgebiet konnte das vorgeschlagene 

Vorwärtsmodell, einschließlich des neuen dielektrischen Mischungsmodells und der 

richtigen Partitionierungsfaktoren berechnet aus der Landoberflächenmodellphysik, 

erfolgreich verfeinerte Bodentexturinformationen aus den Mikrowellen-BT-Messungen 

extrahieren. Die hochaufgelöste Bodenfeuchtevariabilität basierend auf der verfeinerten 

Bodentextur wird es erlauben, konvektiven Niederschlag in numerischen 

Wettervorhersagemodellen mit höherer räumlicher und zeitlicher Genauigkeit zu 

prognostizieren. Darüberhinaus wird erwartet, dass die Mikrowellenfernerkundung mit 

dem entwickelten Vorwärtsmodell, das Bodentextur, Bodenfeuchte und 

Bodentemperatur in hoher Auflösung liefert, neue Möglichkeiten eröffnet, das Problem 

der Energiebilanzschließung mit bisher nicht erreichter Detailtreue zu untersuchen. 
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1. Introduction 
 

The simultaneous extraction of realistic soil temperature and soil moisture readings from 

remote-sensing measurements is challenging. The key factor in the variability of these soil 

properties is the soil texture. This study introduces a novel forward model for extracting the 

highly resolved soil texture information from microwave remote-sensing measurements. 

1.1 Soil Temperature and Soil Moisture Regulation 
 

Soil temperature and soil moisture are critical variables in numerical weather and climate 

prediction models. These model variables control the water and energy balance at the land 

surface [1]. An accurate knowledge of water and energy fluxes is closely related to the weather 

prediction of a precipitation event a week or a month later [2]. Furthermore, a highly resolved 

soil moisture input is critical for the proper initiation of convective precipitation as 

demonstrated in the COPS (Convective and Orographically induced Precipitation Study) 

campaign [3-7]. There is a complex relationship between the status of soil temperature and soil 

moisture, on the one hand, and soil texture and vegetation type, on the other, as shown in Fig. 1. 

 

Fig. 1. Soil water and soil temperature regulation by soil texture and vegetation types; the arrow 

direction indicates the effect-results relation, and color codes are explained in the text.  
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Firstly, the soil texture helps to define the water availability on the land surface. The volume 

of the water participates in evaporation and condensation processes according to the 

temperature variation of the surface layer, amongst other variables. For example, when the 

surface temperature increase, the soil water decreases by evaporation. A little later on, the 

surface temperature decreases as a result of the negative feedback from the loss of latent heat 

due to the transition of the surface soil moisture (surface temperature increase – surface water 

decrease – surface temperature decrease). Fig. 1 shows that the soil texture (yellow line) has a 

direct effect in the determination of water availability within surface soil layer. On the other 

hand, the soil temperature change by the soil texture is an indirect effect. The soil texture can 

also be related to the soil temperature variation via the thermal conductivity specified for the 

soil texture. However, compared to the indirect effect of evaporation/condensation by water to 

temperature, the direct effect of soil texture to soil temperature in terms of soil thermal 

conductivity is negligible.  

When the vegetation is involved in this process (green curves in Fig. 1), the type of 

vegetation also determines the rate of soil water loss. Also due to the soil temperature change by 

shading of leaves, the evaporation and condensation process are modulated towards less thermal 

activity. As a result of the decrease of water and temperature by plants, the activity of 

evaporation over soil might be partially limited. 

For the successful estimation of the vegetation properties by getting rid of soil and soil water 

contributions or for the accurate soil moisture and soil temperature estimation from the 

vegetation disturbance, it is necessary to identify firstly the soil texture effect on heat or water 

fluxes and the quantify the error in the model prediction. The contribution of soil texture in the 

regulation of the energy balance is still largely unknown. Therefore, the bare soil remote 

sensing using microwave channel is necessary. 



 13 

1.2 Soil Texture as a Key Factor in Land Surface Model and Microwave Observation 
Operator 

 

The role of soil texture in the exchange of heat and water is largely unknown. Fig. 2 shows 

that the soil texture contains key information related with land surface model parameters and the 

surface energy balance. The highly resolved hydraulic and thermal conductivities in the land 

surface model (Fig. 2.(a)) can be obtained from the accurate matrix potential computed with 

refined soil texture information from remote-sensing measurements (Fig. 2(b)). It means that the 

model prediction for soil temperature and soil water can be improved by the temporal 

integration of the improved heat and water transport equations in which the thermal and 

hydraulic conductivities are key parameters, as shown in Fig. 2. 

 

Fig. 2. Effect of soil texture on energy flux over bare soil simulated in the land surface model 

and its observing process by the advanced forward model for microwave remote sensing. 

 

However, obtaining detailed global soil texture information, or even performing local scale 

soil texture mapping in situ, is a very challenging task. Thus, it was expected that the 

microwave remote-sensing measurement might be able to provide us not only with the soil 
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temperature and moisture, but also spatially highly resolved soil texture information. To link 

these properties with microwave radiance or BT measurements, I first studied the relationship 

between the effective dielectric constant and soil water, soil temperature, and soil texture 

(purple lines in Fig. 2), which is the main contribution of this thesis. 

 

 
Fig. 3. Water content processes: (a) surface water fluxes and (b) their possible measuring 

regimes by microwave remote-sensing (the white arrows denote shifting regimes by soil 

texture) 

 

As shown in Fig. 3(b), the soil moisture in each stage (i.e., dry, transitional, wet, and 

oversaturated), which is measurable by microwave remote-sensing techniques, tends to move in 

different directions in the surface soil layer (A: in the dry stage, the soil water is immobile, B: in 

the transitional stage, the soil water is removable from the soil medium by evapotranspiration, 

C: in the wet stage, gravity enables the water to infiltrate the soil, and D: in the oversaturated 
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stage, the soil water tends to flow over the surface. The effects of the soil moisture volume on 

climate and human-related events are presented in Table 1. 

 

Table 1. Soil water status classified by soil texture information and its effect on energy balance 

and impact on life  

 Water status  Water flux Socioeconomic effect 

A Dry Immobile within soil Drought 

B Transitional To atmosphere Crop yield growth 

C Wet To subsurface Ground water recharge 
D 

Oversaturated Over surface Landslides/flood 
Green box: positive effect and red box: negative effect on human life 

 

As shown in Table 1, the different soil moisture stages lead to different kinds of interaction 

among the different earth surface layers to achieve a water and energy balance. Furthermore, 

knowledge of the soil water status from remote-sensing measurements is important for 

monitoring and managing water and food resources and the prediction of water-related natural 

hazards, such as landslides, caused by swelling clay.  

In this research, I assess the capability of microwave remote sensing to measure soil texture 

accurately. In addition, I show that the use of improved soil texture information in land surface 

models enhances the accuracy of the results of the simulation of water and heat fluxes. The 

models that were developed in this study were demonstrated by assessing the soil texture of the 

Schäfertal sub-catchment area in Germany, as shown in Fig. 4. 
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Fig. 4. The location and size of the Schäfertal catchment area with the initial land use data [8]. 

 

The size of this sub-catchment area is sufficiently small (1.4 km2 [9]) to assume that an 

atmospheric forcing and precipitation event would be homogenous over the entire catchment 

area. This condition facilitates detection of the soil texture effect in remote-sensing 

measurements. 

In this thesis, I introduce a novel forward model to quantify the effect of the soil texture and 

its error propagation on the heat and water fluxes on bare soil. The advanced forward model is 

composed of a reliable land surface model as well as a new model for dielectric mixing and a 

known radiative transfer model. The NOAH-MP (Noah Land Surface Model with Multi-

Parametrization options) land surface model [10] is useful for resolving the inversion problem 

to estimate multiple soil properties such as soil water and temperature, because the model can 

provide a reliable physical relationship among these variables to express their unknown status in 

terms of the known sensitivity information. This is explained further in Section IV, Land 

Surface Model. The physically based dielectric mixing model accurately links the dielectric 

constant and soil properties. Finally, the radiative transfer model enables us to simulate the 

microwave brightness temperatures and assimilate them into the land surface model. The soil 

texture information in this framework is critically related to the thermal and hydraulic 

conductivities in the NOAH-MP land surface model, the wilting point, and porosity in the novel 
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dielectric-mixing model. The hypothesis in this new methodology is that accurate soil texture 

information from microwave measurements would be able to improve the realism of the water 

and heat fluxes in the land surface model and, therefore, also the soil temperature and water 

predictions. 

To demonstrate the soil texture effect I performed a case study over the Schäfertal sub-

catchment area, which is one of the TERENO (Terrestrial Environmental Observatories) [11] 

sites in Germany, by using a PLMR (Polarimetric L-band Multibeam Radiometer) developed by 

ProSensing (ProSensing Inc., USA). The viewing angle and the waveband of the PLMR used in 

this study was 38.5° among the six beams and 1.413 GHz, respectively. Measurements were 

recorded by placing the PLMR aboard an aircraft, which measured the BT by flying low and 

slowly over the two distinct soil textures (clay loam and loam) in the relatively bare surface 

states of the Shäfertal region [12]. The small size of this catchment area allowed us to 

reasonably assume that atmospheric forcing, including precipitation events, are spatially 

homogenous. These controlled surface conditions allowed us to focus on the time invariant 

effect of the soil texture on the heat and water fluxes. 

Finally, the advanced forward model with the proposed partitioning factor was used to 

assimilate the L-band microwave remote-sensing measurements into the NOAH-MP model by 

scaling the energy balance realistically. Furthermore, I validated the actual improvement by 

comparing the results with the microwave remote-sensing measurements. 
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2. Dielectric Mixing Model 
 

2.1 Measurements from Microwave Remote Sensing 
 

For remote-sensing signal processing purposes, the Earth can be divided into several 

separate layers between the sensor and the target, such as the atmosphere, canopy, and soil – 

each of these again with sub-layers. However, it can be very complicated and error-prone to 

distinguish the contribution of each layer—not even to mention a sub-layer—in an integrated-

path measurement of, for example, the BT. In contrast to radiation in the visible and IR spectral 

region, microwaves penetrate non-precipitating clouds and the gaseous atmosphere without 

significant interaction. Therefore, microwaves can provide more reliable information than IR 

signals about the soil properties and temperatures of the terrestrial surface as well as of 

vegetation. At the same time, using microwave remote-sensing data enables us to reduce the 

uncertainties of remote-sensing observations made at other wavelengths regarding the land 

surface for improved estimations of atmospheric trace gases, aerosols, and clouds. Therefore, an 

understanding of the interaction of microwaves is critical, not only for land surface remote 

sensing, but also for observations of the Earth system as a whole. 

In the current work, I focused on the emission of microwaves from bare soil, which was 

validated with TDR (Time-Domain Reflectometer) probe measurements. Future studies may 

extend the new dielectric-mixing model presented here for the first time to ground vegetation 

and canopy layers.  
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Fig. 5. Measuring principles of bare soil properties (black boxes) by satellite and airborne 

remote sensing in the microwave region (box A) and TDR and GPR (box B). The dielectric 

constant (hexagon) is the link between the measured parameters of the sensors (BT and 

refractive index, respectively) and the targeted soil properties. 

 

When a material is exposed to an electric field, its dielectric constant describes the interaction. 

Thus, the remote sensing of land-surface properties, such as soil moisture, requires an effective 

operator for the computation of the effective dielectric constant (Fig. 4). TDR and GPR (Ground 

Penetrating Radar) measure the refractive index, compute the effective dielectric constant, and 

quantify soil water contents with separately obtained temperature and soil texture information. 

On the other hand, airborne and space-borne remote-sensing instruments measure the BT (box 

A in Fig. 5). To retrieve the soil moisture content from the measured BT, the traditional 

retrieval method requires ancillary information to account for soil temperature and soil texture 

as well as for the effects of vegetation. Studies have attempted to obtain this ancillary data for 

vegetation from the vegetation parameter b [13], multi-frequency microwave sensor 
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measurements [14-16], the NDVI (normalized differenced vegetation index) [17], or the MPDI 

(microwave polarization difference index) [18-20]. Although it is especially challenging for 

areas covered with vegetation, the measurement of land-surface properties is already very 

uncertain for bare soil; hence, for this simpler situation, the ancillary information about soil 

temperature and soil texture are quite critical for retrieving the soil moisture content. In a later 

step, I will integrate the dielectric mixing model into a land surface model. Our new integrated 

model provides the physical relationship for the calculation of the dielectric constant depending 

on soil temperature, soil texture, and soil moisture. All the information that is necessary to 

calculate the BT is available in the land surface model. Thus, the new mixing model can be used 

as a forward operator for determining BT. Finally, the BT obtained via microwave 

measurements may then be used in a data assimilation scheme.  

     In modern space-borne microwave remote sensing several bands are used: L-band (1 to 2 

GHz), C-band (4 to 8 GHz), and K-band (12 to 40 GHz). Examples of remote-sensing 

instruments and satellites are listed in Table 2 [21].  

Table 2. definitions of remote sensing system acronyms and applied wave bands [21].  

Space borne microwave sensors Wavebands 

Acronyms Description L C K 

AMSRE-E Advanced Microwave Scanning Radiometer onboard the Earth Observing System  * * 

ASCAT MetOp’s Advanced SCATterometer, the successor to the C-band scatterometers ESA’s 
ERS-1 and ERS-2 satellites  *  

ALOS PALSAR Advanced Land Observing Satellite *   

AQUARIUS/SAC-D NASA’s sea surface salinity mission *   

ASAR Advanced Synthetic Aperture Radar onboard ENVISAT  *  

ERS-SAR European Remote Sensing Satellite  *  

JERS-1 SAR Japanese Earth Resources Satellite 1Landsat TM: Landsat Thematic Mapper *   

RADARSAT 1&2 Canadian Space Agency’s Radar Satellite  *  

SIR-A/C/X Space borne Imaging Radar-L/C/X Band Synthetic:  *  

SMAP NASA’s Soil Moisture Active Passive Mission *   

SMOS ESA’s Soil Moisture and Ocean Salinity Mission *   

SSM/I Special Sensor Microwave ImagerQuickscat: NASA’s Quick Scatterometer   * 

WindSAT Multichannel multi-frequency microwave radiometer for Ocean Surface Wind detection  * * 

Tandem-L Proposed L-band Radar Mission *   
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2.2 Theoretical Issue in Interpretation of Dielectric Measurements 
 

The effective dielectric constant of the soil is a key variable to quantify the land surface 

properties. However, the models used to date to calculate the effective dielectric constant violate 

the first principle in physics; for example, when using mixing models for the refractive index 

and not—as should be the case—for the dielectric constant itself or when using semi-empirical 

power-law models or calibration models, which require various experimental fitting parameters. 

Nevertheless, these empirical and semi-empirical models are widely utilized in remote-sensing 

applications – including the interpretation of active remote-sensing measurements with TDR 

and GPR, as well as of passive microwave remote-sensing measurements, such as those 

recorded with the SMOS (Soil Moisture and Ocean Salinity) and SMAP (Soil Moisture Active 

Passive) satellites. In this thesis, I propose a new physical approach, based on an arithmetic 

average with damping, for obtaining the effective dielectric constant of multiphase soil. This 

approach enabled us to obtain results that show better agreement with experimental data than 

previous approaches. Therefore, using our model as a forward operator should produce 

improved results in a data assimilation system. 
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Fig. 6. Various methods for computing the effective dielectric constant; the numbers under each 

box indicate the value used for the exponent α in equation (4); micro geometry models [22-30], 

dielectric mixing models [31, 32], refractive mixing models [33-49], and calibration models 

[50-52]; black boxes are two main mixing theories for computation of effective dielectric 

constant; the gray boxes are the most popular but semi-empirical approaches and are 
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et al.

(2009)
0.5
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operationally used in airborne/space-borne microwave remote sensing, which I compare with 

our physically-based model in this publication. 

 

The accurate computation of the effective dielectric constant is essential for all these passive 

and active microwave sensors. Furthermore, it is also critical for the analysis of materials in 

materials sciences [53]. The first dielectric mixing formulas were proposed for cavities, which 

are (hypothetical) spheres [22, 23], monodispersed spheres [24], polydispersed spheres [26], 

non-spherical [28], as well as for non-spherical nanoporous media and nanoparticles [25, 27]. 

However, these mixing models contain an innate limitation for complex multiphase materials 

such as moist soil: the practical design of the dielectric mixing model based on a microgeometry 

approach relies on empirical adjustments [53].  

For land surface remote sensing, two mixing theories have been proposed, namely the 

‘dielectric average’ originally proposed by Brown [31]  

  
εeff = v jε j

j=1

m

∑ ,            (1) 

and the ‘refractive average’ originally proposed by Birchak [33] 

  
neff == v jnj

j=1

m

∑ = v j ε j
j=1

m

∑ .          (2) 

Both approaches relate the effective dielectric constant  of a material to the dielectric 

constants  of its m different components weighted according to their volumetric fractions vj in 

the mixture. The refractive index neff measured by TDR and GPR is related to the time duration 

of electromagnetic wave propagation in a medium, in our case in the soil-water mixture [54], 

according to 

  
neff =

ct
2L

             (3) 

 εeff

 
ε j
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where c is the speed of light, t is the traveling time along the probe rod and L is the length of the 

probe rod. 

A further refinement used by [35]  and [36] is the empirical modification of (1) with an 

exponent α referred to as the ‘shape factor’ according to 

  
εeff
α = v jε j

α

j=1

m

∑ .           (4) 

The linear relationship of the soil moisture with the refractive index, similar to (2), has been 

widely used in calibration models [34, 37, 39, 41]. This approach has further evolved into 

various power-law based models: because the soil moisture estimation following (2) could not 

meet the required accuracy for different soil textures and frequencies of electromagnetic waves, 

various values have been proposed for α [35, 36, 38, 40, 42-47]. A description of the nonlinear 

relationship between water content and the dielectric constant with empirical calibration models 

has also been proposed [50-52]. An overview of these models together with the different values 

used for α is provided in Fig. 6. However, the theory of the refractive mixing is physically 

invalid and violates the superposition rule of polarizability, which is a smaller scale component 

of the dielectric constant. This section demonstrates that the volume of material is linearly 

proportional to its dielectric constant, and not to its refractive index. I demonstrate that the 

effective refractive index is supposed to be calculated from the effective dielectric constant 

 based on the arithmetic mean (parallel mixing) according to (1), and not (2) or (4).  

 

 

 

 

 

neff

 εeff
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2.3 Investigation of Dielectric and Refractive Mixing Theories 
 
 
 The dielectric constant and refractive index are macroscopic averages of polarizabilities 

within an atom. Firstly, I consider the smaller scale average, polarizability. The total 

polarizability for a single molecule  is composed of orientational polarizability , 

ionic polarizability , and electronic polarizability  [55] via 

 .                 (5) 

I can extend the total polarizability of a single molecule to the total polarizability for multiple 

molecules by the equivalent principle of superposition according to 

           (6) 

Subsequently, I can express the total amount of homogenous molecular polarizability for the 

specific species j (e.g., soil, air, or water) by  

               (7) 

where mj is the number of molecules of species j, i is the order of molecule, and 

j is the order of species. 

 

Any 2D (two-dimensional) local electric field can be expressed with a measurable mean, 

which is a macroscopic electric field , and its sub-grid scale perturbation, which is a 

microscopic electric field  within a single molecular species j, by 

              (8) 

 

 αmolecule  αorient

 α ionic  αelect

 αmolecule = αorient +α ionic +αelect

  
αorient ,i

i=1

m

∑ + α ionic,i
i=1

m

∑ + αelect ,i
i=1

m

∑ = αmolecule,i
i=1

m

∑

  
α i, j

i=1

m

∑ = mα j

E

 E

 ′E

ELocal ,i , j = Ej + ′Ei , j
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To consider the parallel mixture I define the total polarizability of molecules measured over the 

unit surface to be the surface polarization density , which is composed of the individual 

molecular polarizability  and its local electric field  on the surface boundary 

            (9) 

where Aj is the area for species j. 

Applying (7) and (8), using (9) enables us to express the homogenous molecular surface 

polarization density as 

        (10) 

I consider the sub-grid scale property as random noise. Then its total contribution can be 

assumed to be zero. 

               (11) 

Then, we can simplify (10) with 2D number density M2D for a certain species j, 

              (12) 

with   .            (13) 

On the other hand, in the macroscopic electric field, which appears in the Maxwell equations, 

the polarization density can also be expressed in terms of the dielectric susceptibility as 

follows. 

             (14) 

 

P2D

  
α i, j   

Elocal,i, j

  
Pj

2D = 1
Aj

ε0α i, jELocal,i, j
i=1

m

∑

  
Pj

2D = m
Aj

ε0α jE j
2D + 1

Aj

ε0α j ′Ei, j
i=1

m

∑

  
′Ei, j

i=1

n

∑ ≈ 0

  
Pj

2D = Mj
2Dε0α , jE j

  
M j

2D =
mj

Aj

  
χ j

2D

Pj
2D = ε0χ j

2DE j
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Thus, (12) and (14) can be used to relate the single molecular scale property  to the 2D 

macroscopic susceptibility  by 

.                        (15) 

Then we can express the mean polarizability for species j, with 2D macroscopic 

susceptibility . 

                                      (16) 

Now, we consider multiple species in the surface polarization density. 

              (17) 

where n is the number of species 

By introducing a partial volume , the polarization density for the mixture of different species 

can be expressed as, 

          (18) 

where Atotal is the total area from all species. 

In (18) the 2D volumetric fraction is included in the polarization density. I define this 

volumetric fraction part with the mixing ratio, .  

          (19) 

where           (20) 

Using (15), we can express the 2D polarization density of the heterogeneous mixtures with the 

dielectric susceptibility. 

 
α j

  
χ j

2D

  
M j

2Dα j = χ j
2D

 
α j

  
χ j

2D

α j =
1
Mj

2D χ j
2D

Peff
2D = Pj

2D

j=1

n

∑ = 1
Atotal

mjε0α jE j
j=1

n

∑

 
Aj

  
Peff

2D =
Aj

Atotal

1
Aj

mjε0α jE j
j=1

n

∑

 v

  
Peff

2D = v j
2DMj

2Dε0α jE j
j=1

n

∑

  
v j

2D =
Aj

Atotal
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           (20) 

If the effective property is defined with the 2D mixing fraction ratio , we can express the 

effective electric susceptibility in the polarization density for heterogeneous medium as, 

                                                        (21) 

where 

.                            (22) 

The electric susceptibility is reflected to the dielectric constant 

.                  (23) 

The derivation explained above allows us to determine which of the mixing theories presented 

in (1) and (2) are suitable for the calculation of the effective dielectric constant. In terms of the 

single molecular polarizability, the superposition principle is valid in (5). For a homogenous 

medium, is proportional to  (15). Then, we can superimpose  with the mixing ratio  

(22) to calculate . The  is proportional to  (23). In this manner, it was determined that 

the dielectric mixing approach (1) is the physically valid average method. On the other hand, 

the refractive mixing approach represented by (2) or the power-law-based refractive mixing 

approach violate the superposition rule when the calculation has been examined down to the 

polarizability scale.  

 

 

 

 

  
Peff

2D = ε0 v j
2Dχ j

2D

j=1

n

∑⎛
⎝⎜

⎞

⎠⎟
E

  
v j

2D

  Peff
2D = ε0χeff

2DE

  
χeff

2D = v j
2Dχ j

2D

j=1

n

∑

  χeff
2D = εeff

2D −1

 
α j  

χ j  
χ j  

v j

 χeff  χeff  εeff
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2.4 Multi-phase Mixing Model for Dielectric Constant 

 
Because the dielectric constant follows the superposition rule of polarizability, this constant, 

and not the refractive index, is linearly proportional to the volume of the physical material. 

Therefore, the arithmetic average of the dielectric constant by volumes of soil water, of soil 

particles, and of air according to (1) is the physically valid approach.  

     For land surface properties, the main phases to be considered in the dielectric averaging 

approach [32] are soil, water, and air. Thus, m becomes 3 in (1). Furthermore, the volumetric 

fractions vj are described by the soil porosity p resulting in  

  
εeff = 1− p( )εsoil +wεwater + p −w( )εair         (24)  

with w for the volumetric fraction of water, 1–p for the volumetric fraction of soil, and p–w for 

the volumetric fraction of air. The volumetric fractions of course add up to unity: 

  
1− p( ) +w + p −w( ) = 1 .          (25) 

 
 The soil volumetric ratios vsilt, vclay, and vsand enable us to derive a sub-phase model for the 

dry soil part namely 

 
εsoil = vsiltεsilt +vclayεclay +vsandεsand         (26) 

with 

  
vsilt +vclay +vsand = 1 .         (27) 

The soil water can be subdivided into bound and free water, both of which show very different 

values for the dielectric constant [56-58]. Then, the effective soil water dielectric constant 

, can be expressed with the sub-phase volumetric mixing ratio, vbound and vfree, with the  εwater
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different dielectric properties of thin water layers around soil particles (so-called ‘bound water’) 

and larger water volumes (so-called ‘free water’) that are  and , respectively. 

 

Table 3. Optical and volumetric properties of multi-phase model within the rescaling process 

Effective medium Main-phase Sub-phase 

Optical property εwater (unknown)  εbound (modeled) εfree (known) 
Volumetric property W (measurable) Vbound (not measurable) Vfree (not measurable) 

W < Wwp 0 ~Wwp 0~1 0 
Wwp < W < ρ Wwp ~ ρ

 1~0 0~1 
 

Ultimately, the model requires the unknown effective value . As shown in Table 3, we can 

obtain this parameter with the modeled value of  (see (88) an (89)) and the known value 

of  via their fractional ratio  and . Because the values of  and  are not 

measurable, I approximate them in terms of the soil water fraction , which can be measured, 

via a rescaling process. The sub-phase fractional ratio /  is an expression depending 

on  as well as on the wilting point  and porosity .  

Firstly, when the dry soil particles become moist and w remains below the wilting point, the 

volumetric soil water content consists only of bound water such that: 

 εwater = εbound  .          (28) 

Thus, I obtain the unknown value  when  varies between 0 and . Then, (24) 

becomes the single-phase (29), which only contains the dielectric constant of bound water: 

  
εeff = 1− p( )εsoil +wεbound + p −w( )εair  for        (29) 

Secondly, when w is larger than the wilting point but smaller than the porosity, the dielectric 

 εbound  ε free

 εwater

 εbound

 ε free  vbound  vfree  vbound  vfree

 w

 vbound  vfree

 w  
w wp  p

 εwater  w  
wwp

 
w <wwp
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constant of water in the soil is a composite of the dielectric constants of bound water and free 

water, respectively, according to 

        (30) 

with               (31) 

The dominant force of bound water is the charge of soil particles, which attracts water 

molecules and causes them to adhere to the surface of soil particles forming thin layers around 

the mineral particles. The presence of increasing amounts of water in the soil serves to thicken 

the thin layer of water molecules, which causes the van der Waals force between these 

molecules [59] to dominate the force due to the surface charges of the soil particles; as a result 

the water is able to move freely. This transition point is termed the wilting point, which depends 

on the size and the characteristic electric charge of the soil particle. Based on this phase 

transition, we can derive vbd and vfree according to 

   

p −wWP

w −wWP

Mainphasedomain
Fig.3−a)

!"# $#
= 1

vfree

Subphasedomain
Fig.3−b)

%          (32)
 

which is equivalent to 

           (33) 

and then because of (31)   

 .          (34) 

By substituting (33) and (34) into (30), we can translate the main-phase mixing model (24) into 

a multiphase mixing model : 

  
εeff = 1− p( )εsoil +w

p −w
p −wWP

⎛

⎝⎜
⎞

⎠⎟
εbound +

w −wWP

p −wWP

⎛

⎝⎜
⎞

⎠⎟
ε free

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+ p −w( )εair

  
 

 εwater = vboundεbound +vfreeε free

  vbound +vfree = 1

 
vfree =

w −wWP

p −wWP

 
vbound = p −w

p −wWP
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for  
 
wwp <w < p .           (35) 

Thus, we can calculate the effective dielectric constant by replacing the unknown  and 

 and  which are not measurable, with the known constants , , , , and 

the variable . As a consequence, I obtain the desired relation between  and . 

In reality, heavily precipitated water cannot infiltrate the soil medium quickly. In this case, 

we must consider pure standing water within the observed volume. When w increases above the 

porosity point, the fraction of standing water over the soil layer increases and the fraction of 

saturated soil medium (free water with soil particles) decreases due to being out of the observed 

unit volume. Considering this condition, the standing water fraction can be computed by the 

relationship 

   

1− p
w − p

Mainphasedomain
Fig.3−c )

!
= 1

vstanding

Subphasedomain
Fig.3−c )

"#$ %$
         (36) 

which is equivalent to 

  
vstanding = w − p

1− p .
           (37) 

Using 

  
vsaturated +vstanding = 1            (38) 

which, in combination with (18), results  in 

   
vsaturated = 1−w

1− p
 .

           (39) 

Using (37) and (39), we can express the measurable effective dielectric constant with 

  
εeff =

1−w
1− p

⎛
⎝⎜

⎞
⎠⎟

1− p( )εsoil + pε free{ }+ w − p
1− p

⎛
⎝⎜

⎞
⎠⎟
ε free

  for w > p.     (40) 

 εwater

 vbound  vfree  
wwp  p  εbound  ε free

 w  w  εeff
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This is simply equivalent to 

  
εeff = 1−w( )εsoil +wε free

 for w > p..      (41) 

In this case, the effective dielectric constant of wet soil can simply be calculated from , 

, and the measured  regardless of the wilting point and porosity. 

 

Fig. 7. Illustration of the relation between the variation of soil water content W and the variation 

of bound and free water fraction in a) dry b) transitional and c) oversaturated conditions 
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The distinct dielectric properties of bound water (characterized by a low dielectric constant 

such as that of ice) and free water (high dielectric constant) cause the effective dielectric 

constant of wet soil (Fig. 7(b)) to become a nonlinear function of w with three domains 

according to (29), (35), and (41), the boundaries of which are given by  and  as shown in 

Fig. 8. 

 

Fig. 8. Multiphase behavior of the effective dielectric constant εeff for different values of the soil 

water fraction w according to the new approach of (29), (35), and (41), where wWP is the wilting 

point and p is the porosity, both of which are specific parameters for a given soil texture. The 

gray solid and dotted curves represent the free and bound water contributions, w vfreeεfree and w 

vboundεbound to εeff, respectively. 
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2.5 Multiphase-Phase Mixing Model for Conductivity 
 

2.5.1 Soil 
 
The calculation of the effective conductivity was suggested empirically with volumetric mixing 

ratio of a sand and clay [36], and the bulk electric conductivity of complex materials such as 

soil and sediments were also proposed [60]. The effective conductivity modeled by these 

approaches, however, additionally requires various fitting parameters depending on the soil 

texture and sediment types. By extending the proposed mixing model, we can derive the EC 

(effective soil conductivity)  without additional empirical parameters. The conductivity 

 is divided into main phases (dry soil , soil water with salinity , and air ), 

        (42) 

For the soil sub-phase, the parallel mixing for the finely layered sand–shale sequence is a 

composite of sand, which has a very low electric conductivity, and shale, which has a very high 

electric conductivity [61]. In this study, I subdivide soil into dry soil and wet soil composed of 

clay, silt, and sand. The dry soil effective conductivity consists of the sub-phases: sand

, silt , and clay  (see Table 4) with their volumetric ratio v, thus  

.         (43) 

 

 

 

 

 

 

 σ eff

 σ eff  σ soil  σ eff  σ air

  
σ eff = 1− p( )σ soil +wσwater + p −w( )σ air

σ soil

σ sand
min σ silt

min σ clay
min

σ soil = vsiltσ silt
min + vclayσ clay

min + vsandσ sand
min
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Table 4 Electrical conductivity (EC) of land surface properties [S/m] 

 
  

Air[62] 3×10−15 8×10−15 
Sand[63] 0.3×10−3 30×10−3 
Silt[63] 4×10−3 75×10−3 
Clay[63] 20×10−3 600×10−3 

Salinity[63] 80×10−3 800×10−3 
Pure water 10-4 

* 0.11 
* The ionic conductivity is calculated at a soil temperature of 22 °C and soil salinity of 0.685 ‰ 

 
 

2.5.2 Salinity 
 
     The effective conductivity of saline water is simply obtained from the contribution of pure 

water and its salinity, 

 .        (44) 

            (45) 

Because the soil water includes almost no volumetric fraction for the solute, we can 

approximate the pure water sub-phase fraction  as 1. 

          (46) 

 

For the salinity part in (44), I assume that the volumetric partial EC contribution of the salinity 

 can approximate the ionic conductivity function of temperature T and salinity s [64]. 

        (47) 

where the ionic conductivity for sea water at 25 °C is provided by [64] : 

 σ
min

 σ
max

 !σ

 
σwater = vpureσ pure +vsalineσ saline

vpure + vsaline = 1

 
vpure

  
vpure = 1− s

ρsolute

ρsolution

≈1

 vsalineσ saline

   
vsalineσ saline ≈ !σ =σ 25°C s( )e−ϕ s,25−T( )
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    (48) 

where, s is the salinity (‰) and 

     (49) 

 

2.5.3 Water 
 
 The effective conductivity for the soil water part is expressed in terms of the bound water 

and free water on soil particles. 

          (50) 

The value of EC differs considerably between bound water (counterions) and free water 

(electrolyte). Clavier et al. [65] suggested a value for the effective dielectric conductivity of soil 

including clay bound water and free water. I assume that the conductivity of bound water is 

equivalent to the conductivity of its bounded soil particles as shown in (51). 

        (51) 

The conductivity of bound water σbound in (50) is equivalent to the conductivity of the dry soil 

σsoil  by the approximate relation (51). For the calculation of  σfree using (52) the maximum EC 

value  σmax in Table 4 was chosen.  

         (52) 

Then, we can rewrite the total soil water conductivity  as the pure water contribution with 

p and wWP and the salinity contribution, from (47). 

.        (53) 

σ 25°C s( ) = 0.18252s −1.4619 ⋅10−3s2 + 2.093 ⋅10−5s3 −1.282 ⋅10−7s4

  

ϕ s,25 −T( ) = 25 −T( )
2.033 ⋅10−2 +1.266 ⋅10−4 25 −T( )
+2.464 ⋅10−6 25 −T( )2

−1.849 ⋅10−5s

+2.551*10−7 25 −T( )s − 2.551⋅10−8 25 −T( )2
s

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 
σ pure = vboundσ bound +vfreeσ free

  
σ bound ≈σ soil = vsiltσ silt

min +vclayσ clay
min +vsandσ sand

min

  
σ free = vsiltσ silt

max +vclayσ clay
max +vsandσ clay

max

 σwater

 !σ

  
σwater =σ bound + σ free −σ bound( ) w −wwp

p −wwp
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Several studies proved that the computation of the effective conductivity is based on the 

arithmetic average of the volumetric mixing ratio ([66], [67], and [53]). From this point 

onwards, the development of the new multiphase mixing model for effective conductivity is 

described. Similar to (29), (35), and (40), I obtain 

  
σ eff = 1− p( )σ soil +wσ bound + p −w( )σ air  for w ≤ wwp     (54)

 

  
σ eff = 1− p( )σ soil +w

p −w
p −wWP

⎛

⎝⎜
⎞

⎠⎟
σ bound +

w −wWP

p −wWP

⎛
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σ free

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+ p −w( ) ⋅σ air

   
 

       for wwp < w < p

                           

(55)

 and 

 
  
σ eff = 1−w( )σ soil +wσ free  for w>p.       (56)

 
The effective electrical conductivity  has a complex form [68]  

 σ eff = ′σ eff + i ′′σ eff           (57)

 
where  represents ohmic conduction and  refers to the faradaic diffusion loss.  

 

 

 

 

 

 

 

 

 

 σ eff

 ′σ eff  ′′σ eff
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2.6 Complex Dielectric Constant 
 
 

The complex dielectric constant  consists of the effective polarization term  as the 

real part and the effective dielectric loss  and effective DC (direct current) conductivity 

.  

  
ε * = ′εeff + i ′′εeff +

σ eff

ωεW 0

⎛

⎝⎜
⎞

⎠⎟
          (58)

 

The frequency-dependent  and  can be derived by, following Debye’s relaxation 

formula [55] for free water, substituting (59) and (60) into (17), (18), and (20). 

  
′ε free = εW 0 +

εW 0 − εW∞

1+ω 2τ 2            (59) 

  
′′ε free =

ωτ εW 0 − εW∞( )
1+ω 2τ 2

           (60) 

where,  is the static dielectric constant of free water computed by Klein and Swift [69],  

is the relaxation time by Stogryn [70] and  was obtained from Lane and Saxton [71]. 

Section 2.7 presents an investigation to determine whether the static dielectric constant  is 

physically applied and to determine the effect of the empirically chosen in the most recent 

and prevalent refractive mixing approach, as shown in [49, 72].  

 The averaging approaches for both the effective value of conductivity  and the 

imaginary part of the dielectric constant  should be identical in (58).  

Then the total dielectric constant is 

  
ε * = ′εeff + i ′′εeff + i

′σ eff

ωε0

+ i
′′σ eff

ωε0

⎛

⎝⎜
⎞

⎠⎟
.        (61)
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In general,  is assumed to be 0 and  is the DC conductivity of the medium [73].  Then, 

we can approximate the effective conductivity 

 ′σ eff ≈σ eff            (62)

 

  
ε * = ′εeff + i ′′εeff +

σ eff

ωε0

⎛

⎝⎜
⎞

⎠⎟
         (63) 

 

2.7 . Comparison with Other Approaches 
 
 Firstly, I compare the general expression of the dielectric mixing and refractive mixing 

model: 

 εeff = a ⋅ εsoil + b ⋅ εbound + c ⋅ ε free + d ⋅ εair         (64) 

  
εeff = a ⋅ εsoil

α + b ⋅ εbound
α + c ⋅ ε free

α + d ⋅ εair
α( )1/α

       (65) 

 neff = a ⋅nsoil + b ⋅nbound + c ⋅nfree + d ⋅nair         (66) 

where, a, b, c, and d is the volumetric mixing ratio for each phase.  

To ensure correspondence between the simulation of the effective dielectric constant and the 

actual measurements, Wang and Schmugge [32] introduced the transition moisture wt, which is 

larger than the wilting point. If wt is utilized to compute b and c in Table 5 according to (33) 

and (34), the bound water fraction b increases and free water fraction c decreases, thereby 

causing an underestimation of the effective dielectric constant. Therefore, the use of wt required 

the empirical parameter ϒ to obtain a fit between the predicted and measured effective dielectric 

constants. 

 

 

 

 ′′σ eff  ′σ eff
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Table 5. list of volumetric mixing ratios in the general expression of the dielectric and refractive 

mixing formulas  

 a b c d a+b+c+d 

 

Wang&Schmugge 
[32]    

 1 

Dobson et al. [36]  0   >1 
Mironov et al.  

[49, 72] 1    1 

Park et al. [74]     1 

 

Wang&Schmugge 
[32]     1 

Dobson et al. [36]  0   >1 
Mironov et al.  

[49, 72] 1    1 

Park et al. [74]    
 1 

 

Wang&Schmugge 
[32] - - - - - 

Dobson et al. [36] - - - - - 
Mironov et al.  

[49, 72] - - - - - 

Park et al. [74]  0  0 1 
 

The following equations were used: (64) for Wang & Shmugge and Park et al. [74], (65) for Dobson et al. and (66) 

for Mironov et al. 

 

Dobson et al. [36] adapted the empirical value of 0.65 for α in (65) and β for c that causes the 

total volumetric ratio to be larger than 1. In the approach of Mironov et al. [72] a negative 

volumetric ratio appears in d. Moreover, the free water dielectric constant reaches unrealistic 

values of up to 100, which is empirically formulated with the clay-mixing ratio. However, in 

reality, the dielectric constant of free water is not physically related to the clay-mixing ratio; it 

is simply the constant value for pure water. In addition, this approach ignores the porosity 

information in the refractive mixing model (see (66)) and thus fails to obtain an acceptable 

connection between the soil texture and the effective dielectric constant.  

 w ≤wWP
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     I also investigated a simple calibration model based on the linear relationship between the 

refractive index  and the soil water content w  

,            (67) 

which is widely utilized for GPR applications, where a = 0.1168, b = -0.19 in [37] and for TDR 

applications, where a = 0.1138, b = -0.1758 in [34], a = 0.1181, b = -0.1841 in [39], and a = 

0.14, b = -0.2 in [41]. This approach has been suggested as the refractive-index mixing 

approach, which only considers the soil water content. We can express the effective dielectric 

constant  as a polynomial function of the soil water content w according to  

.         (68) 

Equation (68) needs various empirical fitting parameters for different soil textures. This 

quadratic polynomial calibration model was also proposed for microwave remote sensing by 

Hallikainen [52] with 

 .  (69) 

Compared to (68), (69) is not only a function of the soil water content w, but also of the soil 

texture. Therefore, the model is able to simulate the effective dielectric constant in various soil 

textures with good agreement to the measurements; however, it also requires nine empirical 

fitting parameters , , and .  

We can rewrite our physically based new model for the mixed status of bound and free 

water (35) in terms of w in the following way 

  
εeff =

ε free − εbound

p −wwp

⎛

⎝
⎜

⎞

⎠
⎟w 2 +

pεbound −wwpε free

p −wwp

⎛

⎝
⎜

⎞

⎠
⎟w + εeff ,soil + εeff ,air

 .    (70) 

The fitting parameters of the empirical polynomial models originate from the combination of 

the dielectric constants and  and the physical soil properties  and  as shown in 

 
εeff

 
w = a εeff + b

 εeff

  
εeff =

1
a2 w 2 − 2b

a2 w + b2

a2

  
εeff = c0 + c1vsand + c2vclay( )w 2 + b0 + b1vsand + b2vclay( )w + a0 + a1vsand + a2vclay( )

a0,1,2   
b0,1,2   

c0,1,2

 εbound  ε free  
wwp  p
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(70). As a result, we can estimate the soil water content from the dielectric measurements 

without creating several empirical parameters or different calibrations for different soil 

conditions; the only unknown parameter, which cannot be resolved, is . However, this 

single parameter can be determined by comparing the mixing model with observations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

!εbound
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2.8 Bulk Dielectric Mixing with Damping 
 
 When the medium is considered to be 3D (three-dimensional) and not flat, the geometrical 

structure and thickness become relevant. For example, the effective value of the polarization 

density P should be reduced by 1/3, a number termed the depolarization factor for the spherical 

shape [22]. The non-spherical shape effect of soil particles in saturated and unsaturated porous 

media was reviewed by [75]. Recent studies showed that by increasing the thickness of a 

medium, the effective value of the dielectric constant decreases [45, 76-78]. In short, a 

reduction of the bulk dielectric constant compared to the flat 2D dielectric constant is 

attributable to both the 3D microgeometry and the thickness of the medium. In the following 

part of this section, I idealize the complex morphology of the land surface properties found in 

nature and consider the soil as isotropic. Thus, in order to consider dielectric constant in 3D 

aspect, I focus on the damping effect within the sampling depth of instrument, such as a 

penetration depth of TDR or GRP or an emission depth of SMOS or SMAP, which will be 

described further in the following section.  

 The sampling depth refers to the thickness at which the surface emission is determined by 

its dielectric constant [79]. Ultimately, the energy emitted from this layer is remotely sensed by 

instruments [80]. In other words, the signal detected over a surface is not only related to the 

arithmetic average of the dielectric constant of soil properties discussed in Section III, but also 

determined by the sampling depth, which is considered with the damping factor in this section. 

Knowing the depth from which the signal originates is important for the soil moisture 

estimation with remotely sensed measurements. With increasing sampling depth, the 

contribution of the signal from that depth to the average signal intensity becomes smaller and 

smaller. Without considering attenuation, the quantification of soil moisture content from 

surface emission is underestimated. The computation of the surface emission from the sampling 
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depth is related to a nonlinear weighting function, such as a decaying function with depth [81]. 

Wilheit [82] proposed a layered model for the electric field in the distinct interface between air 

(free space) and the soil surface. The medium under the surface layer is assumed as 

homogenous, which then can be described by Beer-Lambert’s law. The interface provides one 

boundary condition for Maxwell’s equations, namely 

 .         (71) 

The incident electric field  is equivalent to the sum of the macroscopic electric field  and 

the depolarization field . In the layer model, the attenuation of the electric field during the 

wave propagation from one layer to the next is derived with the propagation function that is 

governed by Beer-Lambert’s law. The law describes the decrease of the intensity of radiation 

with depth z according to 

   

I z( )
I 0( ) = exp − z

δ
⎛
⎝⎜

⎞
⎠⎟          (72)

 

where  is the penetration depth [83]. The penetration depth for the vertically uniform soil 

profile can be simplified with the imaginary part of the refractive index  and the wavelength 

λ  

  
δ = λ

4π ′′n           (73)
 

The microwave penetration depth has been studied for various soil textures [84]. Depending on 

the type of material,  determines δ. On the other hand, the mixed medium has a penetration 

depth referred to as the effective penetration depth δeff, which is determined with the effective 

value of . If the distribution pattern of material is isotropic, the vertical distribution pattern 

(2D cross section) is identical to the horizontal 2D distribution pattern. As discussed in the 

  
E0 = E +Edep

  E0  E

 
Edep

δ

 ′′n

  neff
2D′′

  neff
2D′′
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following, I believe that the effective penetration depth depends in an analogous way on the 

imaginary part of the effective refractive index, , namely the effective penetration depth is 

  
δeff =

λ
4πneff

2D′′ .           (74)
 

where can be derived from (29), (35), and (41), which was originally invented for parallel 

mixing, by 

  
′′neff = Im εeff( ) .           (75) 

Following (72), the electric field of the electromagnetic wave can be expressed as 

  

E z( )2

E 0( )2 = exp − z
δeff

⎛

⎝⎜
⎞

⎠⎟
.           (76) 

Then, we can describe the electric field at any depth by 

  
E z( ) = E 0( )exp − z

2δeff

⎛

⎝⎜
⎞

⎠⎟ .
          (77) 

By integrating the 2D surface polarization density  (see equation (21)) with equation (77) up 

to the depth z, we get the following 3D averaging equation for the isotropic mixing medium 

  
Peff

3D = 1
z

Peff
2D z( )

0

z

∫ dz = ε0χeff
2DE 0( ) 1

z
exp − z

2δeff

⎛

⎝⎜
⎞

⎠⎟0

z

∫ dz
      (78) 

and thus, 

  
Peff

3D = ε0χeff
2DE 0( ) 2δeff

z
1− exp − z

2δeff

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟

 .      (79) 

Equation (79) can be expressed with the initial electric field component  and the effective 

electric susceptibility of a 3D substance as 

          (80) 

  neff
2D′′

  neff
2D′′

  Peff
2D

  
E 0( )

  χeff
3D

  
Peff

3D = ε0χeff
3DE 0( )
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Then the new effective electric susceptibility is 

           (81)
 

where 

  
Hz =

2δeff

z
1− exp − z

2δeff

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟

 .        (82) 

In other words, the final solution for an isotropic medium requires the effective susceptibility 

obtained simply by parallel mixing and an attenuation factor .  

The electric susceptibility is related to the dielectric constant according to 

.           (83) 

Thus, we obtain a 3D effective dielectric constant for a heterogeneous medium according to 

.         (84) 

Inserting the attenuation factor  into the multiphase model of equation (29), (35) and (41), we 

obtain the real part of the 3D effective dielectric constant 

         (85) 

and for the imaginary part, we obtain 

   .          (86) 

If the sampling of the soil layer is obtained with penetration depth , one needs to insert  

for z in (82) and Hz becomes a constant Hδ, which is independent of the wavelength and 

extinction coefficient and has the value 

.        (87) 

Indeed, we found this simple selection of the integration limit for z in (78) to provide the 

best results compared to the experimental values, as shown below.  

  χeff
3D = χeff

2DHz

 Hz

χeff
3D = εeff

3D −1

   

εeff
3D

bulk
! = ( εeff

2D

uppermost
thin layer

! −1) Hz

damping
factor

! +1

 Hz

  
′εeff
3D = ′εeff −1( )Hz +1

  ′′εeff
3D = ′′εeffHz

 δeff  δeff

  
Hδ = 2 1− exp −0.5( )( ) ≈ 0.8
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In summary, the forward model operator, which is based on physical parameters, was obtained 

by combining the multiphase dielectric mixing model and the damping function.   

  

2.9 Results 
 
 The proposed multiphase model translates links between the main-phase, which have to be 

estimated as model states, and the sub-phases, of which the optical characteristics can be 

captured by the sensor. I obtained wWP and p from the STATSGO (State Soil Geographic) Data 

Base [85] (Table 6). These soil properties determine the nonlinear behavior in the calculation of 

the effective dielectric constant. 

 

Table 6. Volumetric mixing ratio (%) of soil texture, wilting point, and porosity  

 Sand Sandy loam Silt loam Clay loam Silt clay Clay 
Sand (%) 100.0 51.5 17.2 35 5.0 15 
Silt (%) 0.0 35.0 63.8 30 47.6 20 

Clay (%) 0.0 13.5 19.0 35 47.4 65 
Wilting point (cm3/cm3) 0.010 0.047 0.084 0.103 0.126 0.138 

Porosity (cm3/cm3) 0.339 0.434 0.476 0.465 0.550* 0.550* 
 

Soil texture data were obtained from [51] and porosity from STATSGO Data [cm3/cm3] [82]; * increased porosity 

to match the maximum measurement point. 

 

The consistent performance of the new approach in predicting the effective dielectric constant 

was compared by utilizing the four most prevalent dielectric mixing models. 

     The published values of the dielectric constants for the bound water and the dry soil are 

listed in Table 7. The Wang-and-Schmugge model has a smaller dielectric constant for bound 

water compared to other approaches. The model of Dobson et al. does not deal separately with 

bound and free water but integrates them into a dielectric constant of water. For the comparison 
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with Mironov et al. [72], I simulated the effective dielectric constant with two conditions 

(referred to as Mironov et al.-1  and Mironov et al.-2). Mironov et al.-1 is the originally 

proposed refractive mixing model ([49, 72]) which uses a static dielectric constant of free water 

 of 100 in (59) and (60). Such a value does not realistically represent the pressure at the 

land surface. This empirical choice in Debye’s relaxation formulas (59) and (60) yields greater 

values for the dielectric constants for both the real and imaginary parts in Mironov et al.-1 

compared to other approaches. Mironov et al.-2 is our modification with the physically known 

 for pure water of 80, which is the same value that is used in the remainder of the 

approaches, including our approach. This value can either be measured [86] or modeled [69] at 

20 °C with the surface pressure level 0.1 MPa. In our approach, the free water dielectric 

constant is computed from Debye’s equations, (59) and (60). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  εW 0

  εW 0



 50 

Table 7. Complex dielectric constant for land surface properties 

 Free water Bound water 

Soil 
Air 
[87, 
88] Microwave L C K L C K 

Mironov 
et al.-1 

 
99.5 93.7 43.9 

79.1(1) 
68.3(2) 
64.2(3) 
53.4(4) 
46.2(5) 
37.7(6) 

62.0(2) 
60.3(3) 
39.3(5) 

29.8(2) 
27.7(3) 
19.2(5) 

2.67-1.88 [72] 1.0 

 
7.1 23.7 47.5 

15.2(1) 
16.1(2) 
16.4(3) 
17.6(4) 
18.5(5) 
19.9(6) 

22.6(2) 
19.4(3) 
19.2(5) 

31.8(2) 
29.9(3) 
20.9(5) 

0.13-0.002 [72] 0.0 

Mironov 
et al.-2 

 
79.6 75.0 43.9 * * * * 1.0 

 
5.6 18.7 37.5 * * * * 0.0 

Wang& 
Schmugge 

 
79.6 73.1 41.3 3.15[32] 5 [87, 88] 1.0 

 
6.1 23.8 38.2 0.0 [32] 0.078 [87, 88] 0.0 

Dobson 
et al. 

 
79.6 73.1 41.3 35 [36] 4.67 [36] 1.0 

 
6.1 23.8 38.2 5 [36] 0 [36] 0.0 

Park et al. 
 

79.6 73.1 41.3 48.0(1), 38.2(2), 32.4(3), 
29.7(4), 22.4(5), 18.3(6) 

5.0 for clay & loam 
3.0 for sand [87, 88] 

1.0 

 
6.1 23.8 38.2 1.0(1), 3.6(2), 5.3(3), 

5.4(4), 7.2(5), 7.7(6) 
0.078 for clay, loam, 

and sand [87, 88] 0.0 

 

Bound water: (1) sand, (2) sandy loam, (3) silt loam, (4) clay loam, (5) silt clay, (6) clay * same value as Mironov 

et al.-1  
 

The optimal bound water dielectric constant for the imaginary part and the real part has been 

determined as the following formulations, 

  ′
εbound = 48 vsand + 36 vsilt + 6 vclay          (88) 

and 

  ′′
εbound = vsand + 5 vsilt +10 vclay          

to complete the mixing formulas (29), (35), and (40). 

′ε

′′ε

′ε
′′ε
′ε
′′ε
′ε
′′ε

′ε

′′ε
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     In Table 8 the RMSE between the simulation results obtained with our novel model and the 

measured data, was calculated with 

.         (89) 

Each approach was calibrated or empirically designed based on the limited availability of their 

dielectric measurements.  

However, considering that the purpose of this modeling is the operational usage of microwave 

remote sensing for soil moisture estimation on a global scale, the consistent performance of the 

dielectric prediction with reasonable accuracy, in general, is more important than obtaining high 

accuracy only in specific cases. Therefore, I next examined the approach involving the most 

reliable dielectric mixing model for microwave remote sensing in the L-band (Fig. 9), C-band 

(Fig. 10), and K-band (Fig. 11) over various soil textures through assessment of the RMSE 

value. In this analysis, I examined whether the wilting point and porosity are really the critical 

factors required to predict the effective dielectric constant and whether the physically based 

approach consistently performs well in predictions compared to other semi-empirical and 

calibration approaches. 

RMSE = 1
n

ε t ,eff
3D − ε t ,measured( )2

t=1

n

∑
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Fig. 9. Comparison of the effective dielectric constant in the L-band region for five soil textures from sand to clay predicted by our approach, 

Wang & Schmugge [32], Dobson et al. [36], Hallikainen et al. [52], Mironov et al. [89], and Park et al. [74] with the measured points 

obtained from [36], [32], [74, 88, 90](vertical lines indicates wwp and p).  
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Fig. 10. Comparison of the  C-band effective dielectric constant predicted by our approach, Wang & Schmugge , Dobson et al., Hallikainen 

et al., and Mironov et al. with measured points obtained from [36], [52], and [91] (vertical lines indicates wwp and p).  
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Fig. 11. Comparison of the K-band effective dielectric constant predicted by our approach, Wang & Schmugge , Dobson et al., Hallikainen et 

al., and Mironov et al. with measured points obtained from [36] and [91] (vertical lines indicates wwp and p).



 59 

     Dobson’s model [36] was proposed based on the evaluation and calibration of five soil 

texture values from sandy loam to silt clay for which the sand mixing ratio ranged from 5 to 

51%. The simulation for pure sand by this model revealed a highly overestimated dielectric 

constant in the real part as shown in Fig. 9(a) (e.g., 27 instead of 18 for w = 0.275, i.e., a 50% 

overestimation). Other approaches, such as that of Wang & Schmugge [32] and that of 

Hallikainen et al. [52], generally underestimate the dielectric constant in such a situation and, 

therefore, result in excessively large values of soil moisture resulting from the dielectric 

measurements. On the other hand, the values obtained with our model were in good agreement 

(e.g., only a 3% underestimation for w = 0.275) with the dielectric constant measurements of 

wet sand, also capturing the oversaturated condition above the porosity point. The models of 

Mironov et al. -1 [89] and Hallikainen et al. [52] largely overestimate the imaginary part of the 

dielectric constant (e.g., 67% and 144% overestimated in w = 0.275, respectively (see Fig. 9(a)), 

whereas other models including ours more closely correspond with the measurements (e.g., an 

18% overestimation for w = 0.275). When we compare the predictions of various models along 

the gradient of increasing clay content (see Fig. 9(a) to (f)), the dielectric predictions for the real 

part are similar amongst the models; in general, all the predictions are in good agreement with 

the measured values of the dielectric constants. However, the models show significantly 

different performances in the prediction of the imaginary part. Considering the modeled curve 

for the imaginary part shown in Fig. 9(a), (d), and (e), by increasing clay contents, our model is 

in good agreement for both sand and clay loam with values of 0.25 and 0.72, respectively, 

regarding the RMSE score in Table 8, both of which are approximately four times less than the 

RMSE score of Mironov et al.-1. On the other hand, other approaches show a slight shift 

according to the variation in clay content, thereby causing overestimation and underestimation 

problems for the sand and the clay loam in the prediction of the imaginary part. The improved 
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performance of our model is attributed to the physically based mixing approach for the 

computation of effective conductivity similar to the mixing model for the real part of effective 

dielectric constant. For the clay case (Fig. 9(f)), our model shows an overestimation problem. 

One of the possible reasons might be a swelling process of heavy clay in the oversaturated soil 

condition. A significantly larger porosity of the sampled clay soil than the value that I applied in 

our model (0.550 in Table 6) might cause this disagreement. 

     For higher frequencies, such as the C- (Fig. 10) and K- bands (Fig. 11), the dielectric 

difference of the bound water and free water decreases, as shown in Table 7, and the wilting 

point and porosity of the soil texture are less significant in the prediction of the effective 

dielectric constant. Therefore, as shown in Fig. 10 and Fig. 11, the C- and K- band predictions 

of all the models from the soil water to the dielectric constant or vice versa are less diverse than 

the L-band prediction.  

 Overall, the physical adaption of the static dielectric constant of free water in Mironov et 

al.-2   resulted in a larger RMSE than Mironov et al.-1 which introduced the empirical value for 

the static dielectric constant of pure water as 100. However, our physical-based approach 

proved to be 15% more accurate than Mironov et al.-1 and  50% more accurate than other 

approaches for the real part. For the imaginary part, it shows the same performance as Mironov 

et al.-1 and is 40% more accurate than the other approaches. For the L-band, our model is 13% 

more accurate than Mironov et al.-1 and 66% more accurate than other approaches regarding the 

real part and 28% more accurate than Mironov et al.-1 and 48% more accurate than other 

approaches regarding the imaginary part.  
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Table 8. RMSE scores of the effective dielectric constant predicted by the approaches shown in 

Figs. 8 - 10
 

Soil texture Sand 
Sandy 
loam 

Silt 
loam 

Silt 
clay 

Clay 
loam Clay 

Sandy 
loam 

Silt 
loam 

Silt 
clay 

Sandy 
loam 

Silt 
loam 

Silt 
clay 

Real part L-band C-band K-band 
Wang&Schmugge 1.34 1.40 1.21 0.96 3.44 1.08 0.96 1.77 2.75 1.66 1.01 2.75 

Dobson et al. 8.06 2.21 1.12 2.86 2.87 4.77 2.86 1.52 0.93 0.98 0.74 1.25 

Hallikainen et al. 3.96 2.33 1.15 1.93 5.22 3.38 1.93 1.69 2.46 0.94 0.43 1.25 

Mironov et al.-1 2.78 1.79 1.09 2.04 4.03 0.68 2.04 2.40 3.20 1.34 0.96 2.44 

Mironov et al.-2 1.15 0.43 1.15 0.82 2.51 0.69 0.82 1.04 1.65 0.71 0.63 1.67 

Park et al. 0.47 0.33 1.11 0.91 1.98 1.77 0.91 0.97 1.03 0.89 0.45 1.23 

Imaginary part L-band C-band K-band 
Wang&Schmugge 0.45 0.35 0.74 1.78 0.91 0.52 0.50 0.61 0.66 0.98 1.83 0.53 

Dobson et al. 0.22 1.38 0.28 0.60 2.92 1.01 0.66 0.27 1.05 0.52 1.11 1.01 

Hallikainen et al. 1.78 0.39 1.12 0.56 1.85 1.19 1.47 0.69 2.13 1.21 0.77 1.01 

Mironov et al.-1 1.15 0.35 0.63 0.56 2.51 1.14 0.71 0.71 0.44 0.28 0.81 0.24 

Mironov et al.-2 0.82 0.38 0.73 0.61 2.12 1.12 0.44 0.44 0.54 0.68 0.20 0.82 

Park et al. 0.25 0.26 0.64 0.33 0.72 1.68 0.70 0.87 0.88 0.47 0.87 0.52 

Gray boxes indicate the best performance 

 

Table 9. RMSE score averaged over soil textures for L, C, and K band wavelengths 

 
Wang & 

Schmugge 
Dobson 

et al. 
Hallikainen 

et al. 
Mironov 
et al.-1 

Mironov 
et al.-2 

Park et al. 

Real part 
L 1.78 3.78 3.13 1.12 2.27 0.98 
C 1.99 1.77 2.03 1.17 2.55 0.97 
K 1.81 0.99 0.87 1.00 1.58 0.86 

Average 1.86 2.44 2.22 1.13 2.10 0.96 

Imaginary 
part 

L 0.75 1.46 1.20 0.82 0.94 0.59 
C 0.68 0.66 1.43 0.50 0.54 0.63 
K 1.11 0.88 1.00 0.24 0.57 0.61 

Average 0.82 1.08 1.18 0.64 0.76 0.63  
Gray boxes indicate the best performance 
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Table 10. Number of black boxes in Table 8 showing the number of times a model provided the 

most accurate performance of all the models that were used 

 
Wang & 

Schmugge 
Dobson 

et al. 
Hallikainen 

et al. 
Mironov 
et al.-1 

Mironov 
et al.-2 

Park et al. 

Real part 
L 0 0 0 2 (1) 0 4 (2) 
C 0 1 0 0 1 1 
K 0 0 1 0 1 1 

Imaginary 
part 

L 1 (0.5) 2 (1) 0 0 0 3 (1.5) 
C 0 1 0 1 1 0 
K 0 0 0 2 1 0 

Total 0.5 3 1 4 4 5.5 

Normalized score 0.03 0.17 0.05 0.22 0.22 0.31 

 

Numbers in brackets are the numbers for the L-band divided by 2 because collected cases for L band were double 

those of the C and K bands; these bracketed numbers  are the weighted scores comparable to those of the C and K 

bands. They are used for the overall total score. Gray boxes mark the model which performs best. 
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2.10 Discussion 
 

 Previous models focused on the prediction of the dielectric constant of wet soil below the 

porosity point. The simulation of the dielectric constant for w > p has not been studied using  

the previous dielectric or refractive mixing models although the prediction of the effective 

dielectric constant in this range could potentially facilitate the tracking of rain events, in 

estimating the infiltration capacity of the surface, and in mapping flooded areas via surface 

microwave remote sensing. The contribution of our novel physical-based approach is that it 

includes the less frequent but important case of oversaturation. Because of the lack of 

measurement data for this case in the literature, I could only validate the prediction in this range 

with data for clay loam at 1.4 GHz [32], as shown in Fig. 5(e).  These measured dielectric 

constant data show a change in gradient when w becomes larger than p. Our new approach 

reflects this behavior and indeed simulates dielectric constant data which are linearly 

proportional to w for w > p (see (22)), whereas none of the previous models displayed this 

capability; for example, the approach of Mironov et al. which is the current baseline dielectric 

mixing model both for SMOS [92] and SMAP satellites ([93, 94]) shows that both the real and 

imaginary parts of the dielectric constant increase exponentially for w > p, which leads to 

unrealistically low BTs. In this regard the different frequency regions behave differently; 

particularly in the L-band, significant differences are found between our new model and 

previous models. It should be noted, however, that this concept requires more extensive 

validation with measurements. 

    The best approach among the various soil types and wide range of microwave frequencies (L-

, C-, and K-bands) was identified by counting the cases in which a model provided the best 
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RMSE score. To account for the higher number of comparisons for the L-band (six) instead of 

three for each of the other bands, I finally divided the score for the L-band by 2 to arrive at the 

overall performance scores in Table 10. An analysis of the results in Table 10 indicates that our 

new approach performs best with a normalized total score of 0.315 compared to the models of 

Wang & Schmugge [32], Dobson et al. [36], and Hallikainen et al. [52], which produced scores 

of 0.035, 0.172, and 0.05, respectively. The model of Mironov et al. [49, 72] also produced a 

comparatively high score of 0.22, but this is 10% less than the result obtained with our new 

model. Furthermore, as discussed above, this model is not physically based and requires several 

fitting parameters. 
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3. Radiative Transfer Model 

 

3.1 Brightness Temperature Scaled on Spaceborne Measuring System  
 
 

In this section, I combine the effective dielectric constant computed by using the physical-

based novel dielectric constant derived in Section II with the existing radiative transfer model to 

simulate the BT. In respect of the spatial resolution of space borne remote-sensing 

measurements, such as SMAP and SMOS, we need to define the measurable scale BT as an 

anisotropic BT measurement with isotropic effective dielectric constants as shown in Fig. 12.  

 

 
 
Fig. 12. Computation of the effective BT using the land surface model properties at the scale of 

the space-borne remote-sensing sensor. 

 

Understanding the difference between isotropic and anisotropic computation is important for the 

accurate quantification of land surface properties derived from large-scale remote sensing of the 

land surface. Fig. 12 indicates which components in the forward model should be considered for 

isotropic and anisotropic approaches. Generally, the effective dielectric constant and volumetric 

parameter of the land surface model are isotropic properties. The microwave penetration depth 
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for the particular soil medium is approximately 2 cm [95], for which soil moisture retrieval 

against emissivity ([96, 97]) was performed at a depth of 0 – 2 cm assuming the soil water is 

homogeneously distributed. Therefore, the effective dielectric constant can also be assumed to 

be constant. The soil moisture captured in the scale of the field of view (FOV) of SMOS and 

SMAP was estimated by considering the volumetric (isotropic) and fractional (anisotropic) 

properties in the forward simulation. If we could succeed in describing the relationship between 

the volumetric and fractional properties indicated by the orange arrow in Fig. 12 via physical or 

statistical modeling, we could avoid the ill-posed problem by reducing two unknowns into one, 

that is, either a volumetric or a fractional parameter. An example of this kind of solution would 

be the statistical model between the maximum value and the spread of the property in the sub-

grid. This approach would allow us to realistically estimate the soil moisture from the BT 

measurement of space-borne remote sensing. 

 

3.2 Colum-Integrated Brightness Temperature  
 
 
 

The blackbody radiance is calculated using the absolute temperature T of the medium and 

the wavelength of the observed electromagnetic wave λ with additional constants (where h is 

Plank’s constant, kb is the Boltzmann constant, and c is the speed of light) according to Plank’s 

function. 

  
B T,λ( ) = 2hc2

λ5 exp
hc
λkT

⎛
⎝⎜

⎞
⎠⎟
−1

⎛
⎝⎜

⎞
⎠⎟

−1

       (90) 

The radiance measured on the remote-sensing sensor is composed of the atmospheric 

contribution and the emission of the top of the vegetation attenuated by atmospheric 

transmissivity.  
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B TTOA,λ( ) = B TATM ,λ( ) + tATMB TTOV ,λ( )       (91) 

The emitted BT across the top of the vegetation is composed of the canopy contribution and soil 

contribution as follows. 

  
B TTOV ,λ( ) = 1− tc( ) 1+ tcrs( )B Tc,λ( ) + tc 1− rs( )B Ts,λ( )     (92) 

For microwave remote sensing, we can simply substitute (91) and (92) into  

  
B TTOA,λ( ) = 1− tc( ) 1+ tcrs( )B Tc,λ( ) + tc 1− rs( )B Ts,λ( )     (93) 

with the approximations, 

  
B TATM ,λ( ) ≈ 0          (94) 

and   tATM ≈1.          (95) 

In the long wavelength range, such as for microwave radiation, we can also approximate (90) 

with the Rayleigh-Jeans law. 

  
B T,λ( ) ≈ 2kT

λ 2           (96) 

 

Then, we can rewrite (93) as follows: 

  
TTOA = 1− tc( ) 1+ tcrs( )Tc + tc 1− rs( )Ts        (97) 

 

The top of the atmosphere is the surface layer of the Earth from which the microwaves are 

ultimately emitted and registered on the sensor, and this emission is referred to as BT in this 

study.   

  
BT = 1− tc( ) 1+ tcrs( )Tc + tc 1− rs( )Ts        (98) 

This equation tells us that the determination of the measured temperature on the microwave 

sensor, referred to as the BT, across the top of the vegetation or the top of the atmosphere not 
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only depends on the absolute temperature of the canopy and soil, but also on their respective 

optical properties tc and rs. Ultimately, the BT measured by the microwave sensor contains the 

temperature information and optical properties of the soil and canopy. In Section III-C, we show 

how the optical properties tc and rs are determined by obtaining the volumetric information of 

the soil and canopy water, the soil texture, and the type and height of the canopy. The isotropic 

effective dielectric constant is utilized to compute the effective reflectivity of the soil layer and 

the effective transmissivity of the canopy layer. 

 

3.3 Reflectivity of Soil, rs, from Isotropic Dielectric Constant 
 

     The computed effective dielectric constant is a key parameter to simulate the BT of the soil 

observable on remote-sensing sensors. The reflectivity of two polarization directions is related 

with the effective dielectric constants of soil, , , and the incident angle of light  

according to the Fresnel equation. 

  

rh =
cosθ i −

′εeff
2 + ′′εeff

2 + ′εeff

2
− sin2θ i

cosθ i +
′εeff
2 + ′′εeff

2 + ′εeff

2
− sin2θ i

2

,

     (99) 

  

rv =
′εeff cosθ i −

′εeff
2 + ′′εeff

2 + ′εeff

2
− sin2θ i

′εeff cosθ i +
′εeff
2 + ′′εeff

2 + ′εeff

2
− sin2θ i

2

.

    (100) 

The total reflectivity from the homogenous media becomes 

   
r =

rv + rh

2 ,
           (101) 

 ′εeff  ′′εeff  θ i
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ks = exp −hcos2 u( ) .        (102)

 

The roughness parameter h is calculated with the standard deviation of the roughness height and 

wavelength, 

  
h = 4σ 2 2π

λ
⎛
⎝⎜

⎞
⎠⎟

2

.
          (103) 

Finally, the reflectivity, including the roughness effect is, 

 rs = r ks .          (104) 

The radiative transfer model connects the BT measured on the microwave sensor with the actual 

temperature and optical properties of the land surface. The dielectric mixing model links the 

optical properties (reflectivity of soil) and soil water w via (99) to (104).  

 

3.4 Transmissivity of Canopy, tc, from the Canopy Water Related Optical Thickness 
 

The soil emission underneath the canopy layer is attenuated by the transmissivity of the 

canopy, tc, which is determined by the optical thickness τ and the incident angle θi. 

  
tc = exp −τ cosθ i( )          (105) 

Theoretically, the physically valid computation of tc or τ of the canopy might be based on the 

isotropic effective dielectric constant of vegetation, which is composed of main-phases biomass, 

vegetation water, and pores in the membranes, similar to the dielectric mixing for the soil 

medium. In this study, we apply the existing simple linear approximation with parameter b 

according to Jackson [13]. 

 τ = bw           (106) 
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3.5  Anisotropic Brightness Temperature Measured on Microwave Sensor 
 

The effective BT and fractional parameter of the land surface model are anisotropic as 

shown in Fig. 12. The anisotropic medium is defined in terms of different properties in different 

directions. In remote-sensing applications, the measured unit pixel originates from a FOV 

covering a large horizontal area with very shallow measured depth. Upon normalization of this 

medium, the measurable medium becomes anisotropic. The effective value of the BT, which is 

the final product from the forward model, is anisotropic. The measurement scale in microwave 

remote sensing has a shallow penetration depth, i.e., 2 cm, and a wide FOV of 39 km × 47 km 

for SMAP and 35 km at the center of the FOV for SMOS. Therefore, the normalized vertical 

and horizontal directions of the observed mixture are anistoropic.  
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Fig. 13. Anisotropic BT simulation using the advance forward operator in the space-born 

remote-sensing scale.  

 

Overall, the link between the effective values of electromagnetic properties is related 

differently to the model properties. The volumetric mixing information of sand, silt, and clay 

particles and the volume of water molecules are linked to the effective dielectric constant. The 

fractional information of the soil texture class, vegetation, and precipitated area are linked to the 

effective BT. As shown in Fig. 12, the fractional water or vegetation are linearly proportional to 

BT. The volumetric water contents, vegetation density, or the volumetric mixing ratio of clay 

are linearly proportional to the effective dielectric constant (which is nonlinear for water 

because of its multiple phases) and nonlinear in relation to the effective BT. In the case study 

scale I focus on a real-world isotropic case, namely a bare soil surface in Schäfertal.  
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4. Land Surface Model 
 

4.1 Theoretical Framework 
 

Finally, the addition of physical properties through a land surface model completes our 

novel forward model. The land surface model facilitates resolution of the ill-posed inverse 

problem in bare soil remote sensing. In this section, the proposed forward model is utilized for 

soil texture inversion obtained from remotely sensed BT. 

 

Table 11. Concept of the inversion process using new approaches 

Term Mathematical 
expression Description 

True state Xtrue Real temperature, water, and soil texture on the surface 
Observable true state Ytrue Observed BT from the passive microwave remote sensing 
Model state X Temperature, water, and soil texture in land surface model 
Forward model* f Radiative model / Dielectric mixing model* 
Response model r Partial derivative of f 
Partitioning factor* Φ Model sensitivity in BT scale normalized via r 
Partitioned simulation error Φ(Ytrue-f(X)) Model error in BT scale 
Partitioned model error r-1Φ(Ytrue-f(X)) Model error in own physical scale 

True state X+ r-1Φ(Ytrue-f(X)) Model states improved from observed BT which is ideally 
equivalent to Xtrue 

 
*New approaches 

 

As shown in Table 11, the forward model f and partitioning factor Φ are essential components 

of the inversion process. These two models developed in this study form a new contribution to 

the research field of land surface remote sensing. The following parts of this section contain a 

detailed explanation of the mathematical derivation of the proposed response model. 
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4.2 Well-Posed Response Model 
 
 

This section introduces the response model, which integrates the physical parameters from 

the bare soil model. This approach allows us to estimate multiple soil properties from the single 

BT value measured remotely over bare soil. The measured radiance is a signal resulting from 

the effect of multiple model variables: the soil water content W, soil temperature T, and soil 

texture S; the canopy water Wc, canopy temperature Tc, and canopy type C and its status (e.g., 

its leaf area index (LAI) and height). The determination of the soil water and soil temperature 

not only depends on the soil texture, but also on the status and type of canopy. Therefore, the 

BT registered on the microwave sensor is the result of the regulation of both soil texture and 

vegetation. Should we already have accurate soil texture information from underneath the 

canopy layer, this could be reflected as input in the land surface model to identify the error 

source in the canopy information of the model. Thus, in this study I focus on developing the 

bare soil forward model to simulate accurate BT readings before the vegetation appears. Even 

though the relationship between the model properties and remote-sensing measurement in the 

case of bare soil is less complicated compared to those with vegetation, bare soil remote sensing 

is still challenging with one measured variable, BT, and three unknown variables: soil 

temperature, soil water, and soil texture. Furthermore, I also investigate the response model 

derived from the forward model in this section.  

The general mathematical expression of the forward model for bare soil is (A) in Fig. 14, 

which is an ill-posed problem involving the estimation of three model variables, T, W, and S, 

from a single measurement, namely the BT. 
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Fig. 14. Derivation of the well-posed solution for bare soil remote sensing (f: forward model, r: 

response model equivalent to Jacobian operator). 

 
The response model presented in (B) is equivalent to the partial derivative of the forward model, 

the inversion of which suffers from an ill-posed problem. However, by virtue of the physical 

relationship among the variations of the model parameters, the inversion process of the response 

model can be well posed if we apply the model physics. For example, in bare soil remote 

sensing the difference in the soil temperature ΔT and soil moisture ΔW in the pixels are 

determined only by the difference in the soil texture ΔS under identical atmospheric forcing and 

initial conditions. Therefore, the unknowns ΔT and ΔW can be expressed in terms of ΔS as 

shown in (C) in Fig. 14, concluding that the inverse response function is well posed for 

estimating one of the unknowns ΔS from the one known variable ΔBT. In other words, the 

physical relationship of the soil texture ΔS with ΔT and ΔW is the key clue to resolve the ill-

posed problem in the estimation of these variables from the remote-sensing measurement. 
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4.3 Physical Partitioning from Perturbation 
 

Therefore, we need to determine how to apply the model physics to the inversion process 

(C), i.e., the physical relationship of ΔS to ΔT and ΔW. I address this problem by introducing 

the concept of the physically based partitioning factor. The partitioning factors for each model 

parameter are computed based on their physical variations in the normalized space. The sum of 

these factors always becomes a unit maintaining physical balance among them. Therefore, for 

the soil texture remote-sensing application, these factors play a role in accurately distributing 

the observed ΔBT into the estimations of ΔT, ΔW, and ΔS. The physically based partitioning 

factors are computed by introducing the perturbation strategy using the land surface model, 

NOAH-MP. In addition, I demonstrate the ability of the physically based partitioning factor to 

improve soil texture information and accordingly the soil temperature and soil moisture 

information. 

 

Fig. 15. Inversion strategy using partitioning factors by NOAH-MP perturbation and forward 

and inverse response model from dielectric mixing and radiative transfer model; S: soil texture, 

T: soil temperature and W: soil moisture. 
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4.3.1 Process 1: Model variation & Forward response model 
 
 
I derive the forward response ((2) in Fig.15) from our forward model. The expression 

containing the partial derivatives provides an intuitive prospect about how the net variation of 

BT on the measurements sensor is composed of the variation of the individual model parameters 

T, W, and S, which is (1) in Fig.15.  

 

  

dBT
observable

net variation

! = ∂BT
∂T

response
model

!
dT

model
variation

! + ∂BT
∂W

response
model

!
dW
model

variation

! + ∂BT
∂S

response
model

!
dS

model
variation

!    (107) 

 

 
Responsemodel

Dielectric mixingmodel
Radiative model
⎧
⎨
⎩

 

 
Modelvariation NOAH −MP model{  

 
Scaling of the model variation (right side of (107)) is determined by the equivalence of their 

total contributions to the observed correction (left side of (107)). If one of the contributing 

components is missing from (107) and it was a significant source among the contributions on 

the right side of (107), the inversion process (computation from left to right in the equation) will 

cause a bias error in the estimation of the model parameters. 

 

4.3.2 Process 2: Partitioning factor  
 
 
     The partitioning factor ((3) in Fig.15) calculated by the forward response model, plays a 

critical role to divide the net measured BT into multiple model parameters. The model 

variations or the model sensitivity information can be translated into their variation in the 

observation space via the forward response model of the conjugation with the partial derivative 

of radiative transfer (98) and the dielectric-mixing model (84) for bare soil. The response model 
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derived from the forward response model enables us to compute the partial contribution of the 

land surface variables in NOAH-MP and measurable as the BT on the microwave sensor. The 

partial contribution of the variables of the i-th model in BT space can be expressed as 

 
dBTi =

∂BT
∂xi

dxi
.          (108) 

Then, the partitioning factor normalized by the total contribution of the variables of the entire 

model becomes 

  

φi =
dBTi

dBTi
i=1

n

∑
,           (109) 

where n is the number of variables in the model. 

For example, by model perturbation, each grid cell contains the perturbations of the soil 

temperature 

 
dBTT = ∂BT

∂T
dT           (110) 

soil water 

 
dBTW = ∂BT

∂W
dW           (111) 

and soil texture, 

 
dBTS = ∂BT

∂S
dS

.
          (112) 

Based on the model information, which is translated into the BT space via the response model, I 

compute the physical-based partitioning factors for the remotely measured BT related to the 

contribution of the soil temperature 

 
φT =

dBTT

dBTT + dBTW + dBTS

,         (113) 

soil water  
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φw =

dBTW

dBTT + dBTW + dBTS

         (114) 

and soil texture 

 
φS =

dBTS

dBTT + dBTW + dBTS

.         (115) 

The physically based partitioning factors allow us to perform realistic model improvement over 

multiple variables and parameters by maintaining the physical balance among them based on 

the remote-sensing measurements. 

If the contribution factors are not computed based on the model physics or are ignored for 

any contribution of model variables, the model update from remote-sensing measurements will 

be problematic, thereby causing unrealistic values in model updates or improvements. For 

example, without the soil texture error contribution we obtain huge temperature or water 

updates from the remote-sensing measurements because one of the main error contributors, the 

soil texture, was ignored. 

 

4.3.3 Process 3: Innovation  
 

     Innovation ((4) in Fig.15) is the difference between the model world with limited knowledge 

of the true states and the real world measured by remote sensing. In this study, innovation is 

defined as the difference between observation from remote sensing and simulation from 

NOAH-MP via the forward model. 

  
ΔBT = BTobs − f T,W ,S( )        (116) 

Innovation can be obtained from our limited knowledge of the soil texture map as low-

resolution soil texture input in NOAH-MP. 
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4.3.4 Process 4: Partitioned innovation, Inversed response & Model improvement  
 

 

The computed innovation between the measured signal and the simulated signal can be sub-

divided into dBTT, dBTW, and dBTS by the partitioning factors. If the values are simply 

retrieved without using the model physics to interpret them, the signal variation only originates 

from the single model properties such as in the microwave soil moisture retrieval algorithm. 

However, by knowing the physical relationship among the parameters, we can interpret all 

model contributions in the BT space simultaneously by substituting the partitioning factors 

calculated from (113), (114), and (115) which are referred to as partitioned innovation ((5) in 

Fig. 15) as follows.  

 ΔBTT = φTΔBT           (117) 

 ΔBTW = φWΔBT           (118) 

 ΔBTS = φSΔBT           (119) 

Then we can translate the partial contribution of remotely sensed BT into its own physical units 

using the inversed response function. 

  
ΔT = ∂BT

∂T
⎛
⎝⎜

⎞
⎠⎟

−1

ΔBTT          (120) 

  
ΔW = ∂BT

∂W
⎛
⎝⎜

⎞
⎠⎟

−1

ΔBTW          (121) 

  
ΔT = ∂BT

∂S
⎛
⎝⎜

⎞
⎠⎟

−1

ΔBTS          (122) 

These are the model improvements from the measured BT. 
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4.3.5 Process 5: Error consideration 

The remote-sensing measurement can be more realistically interpreted by identifying the 

error ((8) in Fig.15). If the observation error is relatively high compared to the background 

knowledge or the model simulation, we have to avoid updating the model from the observation. 

In this case, the weighting factor of the difference from the observation simply becomes 0. 

However, if the remote-sensing observation is very reliable, this factor approaches 1. For 

example, this weighting factor for the observation error is mathematically derived in the 

Ensemble Kalman filter [6].  

  
ΔT = ∂BT

∂T
⎛
⎝⎜

⎞
⎠⎟

−1

ΔBTTηBT         (123) 

  
ΔW = ∂BT

∂W
⎛
⎝⎜

⎞
⎠⎟

−1

ΔBTWηBT         (124) 

  
ΔS = ∂BT

∂S
⎛
⎝⎜

⎞
⎠⎟

−1

ΔBTSηBT         (125) 

Note that, unlike the various partitioning factors of BT for each of the model variables, the 

error-weighting factor ηBT is identical for all the variables as the measured BT is the single 

source of errors. 

 

4.3.6 Process 6: Improved model states 
 

By adding model improvements to the original control model states, we can compute the 

new temperature, Tnew, water, Wnew, and volumetric soil mixing ratio Snew as shown in  

 Tnew =T + ΔT ,         (126) 

 Wnew =W + ΔW ,        (127) 
and               

 Snew = S + ΔS .         (128) 
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5. Results 
 

5.1 Limited Knowledge about Soil Texture Information 
 
  

BT simulations were performed by using the bare soil properties of the Schäfertal sub-

catchment area. The general soil texture in this region is characterized as Luvisols (upper part) 

and Cambisols (lower part) as shown in Fig.10(a) [98]. According to the USDA (U.S. 

Department of Agricultural) soil texture classification, the soil texture of the upper part is loam, 

whereas the lower part consists of clay loam (see Fig. 10(b)). The dominant soil mineral in the 

Schäfertal sub-catchment area is silt, which forms approximately 60 % of the volumetric mixing 

ratio [99]. On the other hand, the volume matrix ratio for silt measured in a small hill slope area 

of the Schäfertal gauging station, as found in [100], was 69.48 % for silt and the sand and clay 

mixing ratio was 13.78 % and 17.22 %, respectively. This small-scale study area corresponds to 

the upper part of the Schäfertal catchment area. Regardless of the large-scale soil texture map of 

the Schäfertal catchment area or the more detailed soil texture measurements in parts of the 

Schäfertal catchment area, the high-resolution soil texture information is required to understand 

the hydrological cycle and energy balance over this region. In this study, I improved our limited 

knowledge of the soil texture information over the Schäfertal catchment area by extracting 

information from the PLMR measurements 
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Fig. 16. Soil texture map for (a) Shäfertal sub-catchment area [98] and (b) digitized into two soil 

textures: (A) loam for Luvisol and (B) clay loam for Cambisol. The regional map for this 

catchment area is provided in Fig.4. 

 

5.2 Homogeneous atmospheric weather forcing 
 
 

As shown in Fig. 18, the microwave BT measurements from PLMR were obtained at 10:30 

am on May 27, 2008 for which the DOY (days of year) is 148. The atmospheric weather forcing 

related to this remote-sensing moment was obtained from the re-analysis of the GLDAS (Global 

Land Data Assimilation System) weather data [101].  The size of the Schäfertal sub-catchment 

area is so small (1.44 km2 [9]) that the weather conditions could reasonably be assumed as 

homogeneous. The main difference in an area of this size is, therefore, only the soil texture 

distribution as shown in Fig. 16.  
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Fig. 17. Synoptic weather map from Met Office: top (May 26, 2008), middle (May 27, 2008), 

which is the date of PLMR measurement, and bottom (May 28, 2008). The red dot indicates the 

location of the Schäfertal catchment area (51°39’19.61” N, 11°02’24.78”E). 
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On May 27, 2008 (147 DOY), the warm front is far away from the Schäfertal catchment 

area as shown in Fig. 17. On May 27, 2008 (148 DOY) the warm front is approaching the red 

dot indicating the Schäfertal catchment area. On the next day, (May 28, 2008; 149 DOY), the 

warm front caused the precipitation of rain over the catchment area. Fig. 18 shows the same 

weather pattern in the NOAH-MP simulation with GLDAS weather forcing. The prediction of 

soil moisture based on the different soil textures (A) and (B) shows a distinct temporal pattern 

in soil moisture prediction (Fig. 18(b)) as opposed to the soil temperature (Fig. 18(c)). For 

instance, the soil water content of the surface layer of the clay loam (B) was systematically 

higher than that of the loam (A). On the other hand, the soil temperature differed between the 

loam (A) and clay loam (B), although this difference was smaller than the difference in the soil 

water. This experiment demonstrates that the effect of soil texture on the soil water content is 

significant. 

 

Fig. 18. Temporal simulation of soil moisture (b) and soil temperature (c) with the identical 

forcing of precipitation event (a) with different soil texture. (A) and (B) are loam and clay loam, 

respectively, as indicated in Fig. 16. 
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Fig. 19. NOAH-MP 2D simulation at the passing moment of PLMR with the atmospheric 

forcing form GLADS re-analysis from January to December, 2008: (a) clay, (b) silt, c) sand 

mixing ratios, (d) soil temperature, and (e) soil moisture for (A) loam and (B) clay loam.  

 

Fig. 19 presents the 2D simulations of the land surface model properties from NOAH-MP 

according to the soil texture, loam (A), and clay loam (B). In reality, the soil texture, i.e., the 

mixing ratio of clay, silt, and sand, is spatially continuous. Therefore, the tabulated soil input 

parameters, such as the wilting point and porosity of the soil medium, saturation soil potential, 

soil diffusivity, and soil thermal conductivity/diffusivity coefficient, parameterized according to 

12 soil texture classes are inherently the huge error sources in the prediction of the land surface 

model, including the NOAH-MP model. Therefore, a highly resolved soil texture from 

microwave BT measurements, rather than a coarse classification, would result in a more 

realistic spatial distribution pattern of the soil temperature and soil moisture. 
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5.3 High Resolution Innovation from Observation 

 
Firstly, based on the simplified soil texture map reflecting our limited knowledge about the 

Schäfertal catchment area, the low-resolution BT is simulated as shown in Fig. 20(a). Using the 

L-band microwave remote-sensing measurements (Fig. 20(b)) we can calculate the model error 

as the BT (Fig. 20(c)). The inversion process presented in this study was expected to lead to a 

reduction of the model error. Therefore, the innovation is a potential model improvement 

appearing in the observation space, such as the remote-sensing BT measurements. 

 

 

Fig. 20. Computation of model error using microwave measurements: (a) forward model 

simulation (NOAH-MP), (b) L-band microwave radiometry measurement (PLMF), and (c) 

innovation from the difference between observation and model simulation. 
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5.4 Computation of Partitioning Factor from Model 

 
Based on the soil texture simplified as the two types shown in Fig. 20, the soil temperature 

and the soil moisture were simulated for the moment when the PLMR measurements were 

obtained (dotted lines in Fig. 18). The result showed that the different soil textures are 

associated with different soil temperature and soil moisture regimes. This sensitivity study 

enabled us to derive the forward response model from the forward model. Using the forward 

response model, I was able to compute the partitioning factor using (113), (114), and (115), 

which served a critical role in the solution of the ill-posed inverse problem. 

 
 
Fig. 21. Computed partitioning factors for soil mixing ratios and model variables T (soil 

temperature) and W (soil water) for (A) loam and (B) clay loam. 

 

The set of partitioning factors presented in Fig. 21 are computed from: (1) perturbation of 
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finally, (3) normalization of each component based on their total. The partitioning factor 

contains the information about how to subdivide the remotely sensed measurement into the 

(A) Loam
(B) Clay loam

N
or

m
al

iz
ed

 s
ca

le

0

0.5

1.0

Vclay VSilt VSand T W

Partitioning factors



 88 

multiple land surface model variables in the same BT scale. The novel forward model 

composed of the NOAH-MP, dielectric mixing, and radiative transfer models translates the 

degree of soil temperature, soil water, and soil mixing ratios into the measurable BT and its 

response model allows us to compute their partitioning factors in the BT space.  For instance, 

Fig. 21 shows that the BT measured by the PLMR over the loam area (A) on May 28, 2008 is 

almost partitioned into 110 % for the soil water, and 21 %,  -21 %, and -10 % for the volumetric 

mixing ratio of clay, silt, and loam, respectively. 

 

5.5 Improvement for Multiple Model Variables 

 
The spatial variation of the model error computed by obtaining the difference between the 

model and the remotely sensed measurement in Fig. 20(c) provides us with the unique 

magnitude of the total BT contribution from the remote-sensing measurement for each 

individual pixel. Owing to the partitioning factors computed for loam and clay loam as in Fig. 

21, the improvements for the multiple model parameters on the BT scale (Fig. 22(a).1 to (e).1)) 

can be translated into their own physical unit (Fig. 22(a).2 to (e).2)) via the inverse response 

model. A comparison of the model simulations based on the two types of soil texture 

information (Fig. 23(a).1 − (e).1), indicated that the resolution of the new model predictions for 

the multiple model states was improved (Fig. 23(a).2 − (e).2). 
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Fig. 22. BT contribution plot of the measurement difference separated into multiple model 

parameters (soil temperature, surface temperature, soil water (first row), and soil texture, clay, 

silt, and sand (second row)) computed by (117) − (122). 
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Fig. 23. Improved model states after reflecting remote-sensing measurements in the soil 

temperature, the surface temperature, the soil water (first row), and the soil texture, clay, silt, 

and sand (second row) computed by (126) − (128). 
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In the new model prediction with the improved soil texture input, two distinct bar-distribution 

patterns of the model states in the control run were changed into continuous Gaussian-like 

curves with a greater standard deviation than the control run; i.e., ‘before update’ for which the 

standard deviation is 0 due to the bar-type distribution for each soil texture (A) and (B). The 

change in the distribution pattern from a single value for all pixels to a unique magnitude for 

each pixel implies that the resolution of the model prediction has been refined by the remote-

sensing measurements. Now the peaks of the distribution patterns can be compared to the bar 

distributions of the control run in Fig. 24. If the model predictions for the soil temperature, soil 

water, and volumetric soil-mixing ratio from the control run are systematically overestimated or 

underestimated compared to the average of their new estimation (translated from the remote-

sensing measurements), the remote-sensing observation can also be utilized to reduce these 

model bias errors.  
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Fig. 24. Comparison between the average and standard deviation of the simulation before 

update (two types of soil texture input) and the simulation after update (spatially refined input 

of soil texture and other relevant soil parameters). 

 

The NOAH-MP land surface model is capable of simulating the soil temperature and soil 

moisture based on only 12 types of soil textures by USDA soil classification (Fig. 25(a)). Using 

the proposed forward model, the microwave remote-sensing measurements would not only lead 

to improved soil texture information, (Fig. 25(a)) but would also improve the resolution of other 

model parameters in the NOAH-MP simulation (Fig. 25(b) and (c)).  
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Fig. 25. Refined sand, silt, and clay mixing ratio information over the typical USDA soil texture 

classification and (a) their impacts on the soil temperature, (b) soil moisture, and (c) regimes in 

the simulation of NOAH-MP. 
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5.6 Validation of BT Simulation 

 
The in situ soil moisture and soil temperature measurements for the Schäfertal catchment 

area are unfortunately not available for the targeted forecasting time step, which was on May 

28, 2008, i.e., on day 148 of the year (DOY). This date falls in a drying period when the surface 

temperature and soil moisture content largely depend on the type of the soil texture. These in 

situ measurements are critical for retrieval of the soil texture. However, in this work, instead of 

the in situ measurements, the remote-sensing BT measurements were implemented with the 

forward and NOAH-MP models to derive the soil texture. In addition, rather than using the in 

situ measurements, which were unavailable, I used the microwave BT measurements to validate 

the improvement in the NOAH-MP prediction by the soil texture correction.  

The microwave BT is the impact of the measured phenomenon of the soil texture on the land 

surface model properties. Using this inversion approach we are able to retrieve this cause as the 

refined soil texture input. Only by modifying the soil texture input based on realistic conditions, 

can we truly predict the soil temperature and soil moisture in the NOAH-MP land surface 

model. This prediction originates from the NOAH-MP simulation, and not from the inversion of 

the measured BT. Simulation of the BT from the new prediction of the surface temperature and 

soil moisture with NOAH-MP enables us to compare these predicted values with the measured 

BT values to determine whether the new prediction effectively changes toward the control 

model run or the remotely sensed measurements. For instance, in our Schäfertal catchment case 

study, the use of the novel forward model and NOAH-MP land surface model allowed us to 

obtain high-resolution soil texture information from the microwave remote-sensing 

measurements recorded on May 28, 2008, which were then used to correct the soil texture and 

hydrological parameters accordingly for Jan. 1, 2008. Based on the same weather forcing 

technique and the same initial values of the soil temperature and moisture for Jan. 1, 2008, I ran 
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more than 1000 cases for each pixel with unique soil texture information extracted from the 

microwave BT obtained on May 28, 2008. 

 

 

Fig. 26. Predicted BT (red) based on the refined soil texture ranging between the simulated BT 

from the control run and the BT measured by the PLMR. 
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abovementioned period of five months was modeled by using the soil texture refinement and 

this led to an improved prediction of the BT measurements compared to the prediction obtained 

by running the model based on the two types of soil texture (A) and (B). The improved 

prediction showed a 50 % reduction in the RMSE score and a significant improvement in the 

BIAS correction from -5.2 to -0.66. 
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considers the error effects of the bare soil surface type on the sensor, the BT measurements 

recorded over the vegetation and BT simulation using the bare soil forward model produced a 

low and unstable correlation score. This pattern provided by the BT simulation via the forward 

model for bare soil can be utilized to identify whether a pixel resulting from BT measurements 

represents vegetation or bare soil. This explanation is also supported by the fact that regions 

covered in vegetation typically result in brighter BT measurements than bare soil due to the 

emissivity of the vegetation. Additionally, these brighter BT pixels, which are assumed to be 

from a vegetated region, also display uncorrelated patterns against BT measurements. This 

indicates that an approach such as this to perform surface type classification would require a 

primary forward model designed for one specific type of surface to allow the targeted type to be 

distinguished in the remote-sensing measurements over regions with mixed surface types.  

  

 

Fig. 27. Correlation analysis resulting from comparison of the bare soil forward model and 

observed data for surface classification types. 
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5.7 Improvement in Heat and Water Fluxes of NOAH-MP 

 
     Because the dielectric constant of water in the microwave band is significantly higher than 

for land surface covers, microwave is the most effective channel for tracking water movement 

on the land surface. For example, the water flux from the surface to the subsurface (wetting 

period) and from the surface to the atmosphere (drying period) has different patterns in BT 

variation that are similar to the different contribution curves in the evapotranspiration and 

infiltration in Fig. 14(f). Furthermore, the microwave BT measurements as a proxy of water and 

heat fluxes allow us to realistically calibrate the flux of both the sensible heat and latent heat. In 

addition, the forward model, composed of the novel dielectric-mixing and radiative transfer 

models, represents the response between the model properties and the L-band brightness. In 

Section F, it was demonstrated that the difference between the predicted BT based on the 

refined soil texture and the measured BT becomes significantly smaller than the BT simulation 

of the control run when comparing the RMSE and BIAS shown in Fig. 26 The refined soil 

moisture content of the predicted BT may also facilitate the computation of the turbulence 

fluxes of the latent heat and sensible heat. However, the refinement in these fluxes would need 

to be validated by in situ measurements, such as eddy covariance flux measurements, in future 

studies. The focus of this study was on the analysis of the difference between the fluxes that 

were originally simulated and the predicted fluxes based on new soil texture input to improve 

our understanding of the role of soil texture in the surface energy balance.  

To determine whether the flux simulation is supposed to become increasingly or decreasingly 

realistic as a result of soil texture improvement, the model variables in Fig. 28(b) and (c) and 

their temporal variation per hour (d) and (e) in a time series were simulated as a control run 

(NOAH-MP run based on two types of soil texture). The proposed forward model enables us to 

simulate the temporal variability of different land surface properties in the BT domain. 
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Fig. 28. Temporal response analysis of microwave BT as a proxy of water and heat fluxes in 

NOAH-MP. 

 The soil texture refinement based on microwave remote sensing also affects the flux 

variables in NOAH-MP. The new model run based on the improved soil texture with more than 

400 sets of clay, silt, and sand-mixing ratios over the pixels originally classified as representing 

(A) loam and (B) clay loam, shows a slightly lower net heat flux rate than the control run. On 

the other hand, owing to the highly resolved soil texture input, the NOAH-MP flux simulation 

for individual pixels varied in the range with maximum (light blue) and minimum values (light 

green) as shown in Fig. 29. The significant difference between the minima and maxima of the 

net heat fluxes was found to occur during the cooling process indicated with red dotted circles 

(decreasing net radiation in afternoon), especially for the (B) clay loam. 
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Fig. 29. Flux change in NOAH-MP by the refined soil texture input. 
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6. Summary and overview 
 
 

Lately, the “physically based model” ([17, 19, 102]) as radiative transfer model in the study 

of soil moisture retrieval from passive microwave measurements has been actively studied, a 

direction that fits into the data assimilation scheme [103]. Rather than focusing on the physical 

principles of the radiative transfer model, this study focuses on the physical principles of the 

dielectric mixing model and the physics of the NOAH-MP land surface model introduced in the 

partitioning factor. 

The effective dielectric constant in the forward model is the fundamental parameter required 

in the accurate quantification of land-surface properties such as water and mineral soil particles. 

The physically correct averaging method for the effective dielectric constant is the arithmetic 

mean because it does not violate the superposition rule of polarizability. Considering the soil 

water phase as consisting of free and bound water and the bulk behavior to include a damping 

factor, the effective dielectric constant of bare soil properties predicts a complex nonlinear 

behavior over various soil textures with the lowest RMSE score compared to other semi-

empirical models such as those of Wang & Shmugge [10], Dobson et al. [6] and the most recent 

and most prevalent model, that of Mironov et al. [7], and calibration approach, e.g., that of 

Hallikainen et al. [52]. An improvement by the new microwave dielectric mixing model would 

be anticipated in monitoring the surface runoff to minimize damage caused by flooding and 

flood-related landslides. Moreover, it would be possible to apply the proposed algorithm 

directly to existing soil moisture estimation algorithms of TDR/GPR devices or to the baseline 

dielectric mixing model for SMOS and SMAP.  

The combination of the physically based dielectric mixing model with the radiative transfer 

model, and the proposed partitioning factor computed from NOAH-MP model perturbation 

enables us to evaluate and minimize the model error compared to the remote-sensing 
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measurements. For example, in the case study of the Schäfertal catchment area, it is discovered 

that the use of a refined soil texture not only affected the soil moisture and soil temperature, but 

also other prediction variables, such as the latent heat, sensible heat, and ground heat fluxes in 

the NOAH-MP output. The new soil texture input consistently improved the temporal 

simulation of these critical model variables in the NOAH-MP simulation. 

In a future validation, this study would aim to use in situ measurements in the proposed 

approach to improve the soil temperature and soil moisture simulation of the NOHA-MP. 

Ultimately, the highly resolved soil texture information from microwave remote sensing is 

expected to resolve NOAH-MP land surface parameters, including soil moisture prediction, for 

which spatial resolution plays a crucial role in the initiation process of convective precipitation 

coupled with an atmospheric model system such as WRF (Weather Research and Forecasting 

Model)[12]−[16]. Furthermore, the proposed forward model may prove to be a useful tool in 

flux partitioning by means of microwave remote sensing and land surface models. Ultimately, 

this study will allow us to investigate the energy balance closure problem with unprecedented 

resolution and scale, which is one of the critical issues in micrometeorology and climate study.  
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