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Multi-dimensional fields
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= extension to multi-dimensional feature spaces mathematically straightforward
= requires interaction kernel of the same dimensionality



Multi-dimensional feature spaces
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= some feature spaces are inherently multi-dimensional, e.g. visual space (2D)
= neural representations e.g. in superior colliculus (saccade planning)



Multi-dimensional feature spaces

= multi-dimensional feature spaces can also combine qualitatively different features

= example: early visual cortex, neurons with localized spatial receptive fields and
sensitivity to surface features (orientation, spatial frequency, color, ...)

orientation map in tree shrew visual cortex [Alexander et al. 1999]



Combining features in multi-dimensional fields

visual scene

= neural field defined over
combination of feature spaces
(space x color)

= not aimed to capture spatial
arrangement of neurons in the
cortex

= visual stimuli provide localized
inputs
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Reading out from 2D fields
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= 2D fields can interact with
1D fields

= first operation: read out
of one feature dimension,
integrate over discarded
dimensions, e.g.

I;(x) = jf(uv(x,y))dy

= often additional Gaussian

convolution in projection
for smoothness



Projections to 2D fields

= projection from 1D to 2D:
ridge input

= does not specify a
location in the 2nd
dimension, does not
typically induce a peak
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Projections to 2D fields

. " intersections of ridges
can induce a peak and
produce a combined
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Combined vs. separate representations

separate low-dimensional representations

= are much more compact (computationally less
expensive / fewer neurons) — at sampling rate of
100 neurons per dimension, 200 neurons for two
1D fields, 10000 neurons for one 2D field)

= can represent individual feature values with the
same precision/reliability as a 2D field

So why use 2D fields at all?



Feature conjunctions

= |ow-dimensional
representations do not
capture feature
conjunctions (binding
problem)
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efficient architectures
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Visual search

visual scene

= if localized peaks are
present in the 2D field,
ridge input can be used
to select one of them

= read-out along the 2nd
dimension then allows to
determine the associated
feature
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Joint selection with bidirectional projections

visual scene

= bidirectional projections
allow coupled selection
in 1D fields

= can be biased by input to
either 1D field
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Joint selection with bidirectional projections
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" once asingleitem s
selected jointly in both
1D fields, ambiguity in
feature conjunctions is
resolved

= object features can then

be processed in separate
pathways

= sequential processing for

multiple items



Case Study: VWM Biases Saccade Behavior
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Case Study: VWM Biases Saccade Behavior
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Case Study: VWM Biases Saccade Behavior

Video



Experimental results

Simulation results
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Operations in higher-dimensional fields

" projections between fields can implement simple mappings if
they meet certain conditions (e.g. continuity)
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= what about operations that combine two different inputs?
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Operations in higher-dimensional fields

= combining/expanding representations into a single high-
dimensional field allows arbitrary mappings to an output field
(as long as mapping is continuous)
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Retinocentric vs. allocentric positions




Spatial transformations

retinocentric stimulus position
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= for transformation of 1D location information: 2D field over retinal space and
gaze direction



Spatial transformations

retinocentric stimulus position
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Spatial transformations

retinocentric stimulus position
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= in angular coordinates for pure rotations: retinocentric stimulus position shifts
by inverse of gaze change

= - points corresponding to the same location lie on a diagonal in the combined
representation



Spatial transformations

retinocentric stimulus position
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= can be mapped onto gaze-invariant
(body-centered) representation: diagonal
read-out



Spatial transformations

retinocentric stimulus position
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= reverse projection can be used to predict
retinocentric location (e.g. to orientate
to memorized location), or estimate gaze
direction by matching retinal and body-
centered representations (e.g. Deneve,
Latham, Pouget 2001)



Case Study: Saccadic Remapping Model

Video



Case Study: Saccadic Remapping Model
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[Schneegans, Schoner 2012; experimental results by Duhamel et al. 1992]



Conclusions

* higher-dimensional fields can represent multiple feature
dimensions in a combined fashion

= more costly than low-dimensional fields, but needed to
represent feature conjunctions rather than separate feature
values

" can provide associations between feature dimensions, e.g. for
visual search

= can implement complex mappings between feature dimensions,
e.g. for spatial transformations



Resources

cosivina
= http://bitbucket.org/sschneegans/cosivina

= object-oriented toolbox for Matlab, allows easy composition
and visualization of DNF models

cedar
= http://bitbucket.org/cedar

= C++ framework for DNF models and robotics, with graphical
user interface for composing architectures



