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Part 1: Bayes’ Rule
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Understanding Bayes’ Rule

Bayes’ Rule

P(A | B) =
P(B | A) ·P(A)

P(B | A) ·P(A) +P(B | ¬A) ·P(¬A)
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Lie Detection

1 Studies show that 12.5% of people have at least once stolen something
from their employer (pencil, stapler, belegtes Brötchen, etc.)

2 You are working for me and you have to undergo a lie detection test to
check whether you have ever stolen something

3 The lie detection test has a 87.5% accuracy
4 What is the probability that someone with a test result that says he is

a thief has actually ever stolen something?
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Are You A Thief?

1 Take a coin and flip it 3 times.
2 If you get 3 heads (1/8=12.5%) you are a thief (T ) otherwise you are

not (¬T ).
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Are You A Thief?

1 Now you are hooked up to a lie detector and I ask: Are you a thief?
2 Of course, you all say: No!
3 Take your coin and flip it 3 more times.
4 You are a thief:

1 If you do not have 3 heads (7/8=87.5% accuracy) your lie is caught (L)
2 If you have 3 heads you are not caught (¬L)

5 You are not a thief:
1 If you do not have 3 heads (7/8=87.5% accuracy) the lie detector

states that you are speaking the truth (¬L)
2 If you have 3 heads the lie detector thinks you lie (L)!
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Bayes’ Rule Example: Medical Testing

About 0.01 percent of men with no known risk behavior are infected with
HIV. If such a man has the virus, there is a 99.9 percent chance that the
test result will be positive. If a man is not infected, there is a 99.99 percent
chance that the test result will be negative.

What is the probability that a man from the low risk group has HIV given
that he gets a positive test result?

base rate or prior probability: P(HIV) = 0.0001
hit rate of the test: P(positive | HIV) = 0.999
false alarm rate of the test: P(positive | ¬HIV) = 0.0001
What is the posterior probability P(HIV | positive)?

[Gigerenzer, 2003, chapter 7]
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Bayes’ Rule Example: Medical Testing

P(HIV | positive)≈ 1
1+1

=
1
2

[Gigerenzer, 2003, chapter 7]
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Base Rates Matter
What is the reference class? The base rate for homosexual men is higher,
say, 1.5 percent.

P(HIV | positive)≈ 150
1+150

[Gigerenzer, 2003, chapter 7]
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Bayes’ Rule

P(A | B) =
P(B | A) ·P(A)

P(B | A) ·P(A) +P(B | ¬A) ·P(¬A)(
posterior =

likelihood ·prior
evidence

)
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Base Rate Fallacy
A cab was involved in a hit and run accident at night. Two cab companies,
the Green and the Blue, operate in the city. You are given the following
data:

85% of the cabs in the city are Green and 15% are Blue
a witness identified the cab as Blue.

The court tested the reliability of the witness under the same
circumstances that existed on the night of the accident and concluded that
the witness correctly identified each one of the two colors 80% of the time
and failed 20% of the time. What is the probability that the cab involved in
the accident was Blue rather than Green?

The median and modal answer is typically .8: A total neglect of the base
rate.

[Tversky and Kahneman, 1982]
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Part 2: Bayesian Statistics

[Berry, 1995, Kruschke, 2011, for more]
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Probability Theory and Bayesian Statistics

“It is seen in this essay that the theory of probabilities is at bottom only
common sense reduced to calculus; it makes us appreciate with exactitude
that which exact minds feel by a sort of instinct without being able
ofttimes to give reason for it. It leaves no arbitrariness in the choice of
opinions and sides to be taken; and by its use can always be determined the
most advantageous choice. Thereby it supplements most happily the
ignorance and the weakness of the human mind.” [Laplace, 1902, p. 196]
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Bayes’ Rule for Statistics

Bayes’ Rule

P(A | B) =
P(B | A) ·P(A)

P(B | A) ·P(A) +P(B | ¬A) ·P(¬A)
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Bayes’ Rule for Statistics

Bayes’ Rule

P(H1 | data) =
P(data | H1) ·P(H1)

P(data | H1) ·P(H1) +P(data | H2) ·P(H2)
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Example

Problem
I roll two dice behind your back. I either tell you the minimum (H1) or the
maximum (H2) of the two numbers that came up. I tell you you I got a 5.
What is your probability that H1 is true?
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Example

Problem
I roll two dice behind your back. I either tell you the minimum (H1) or the
maximum (H2) of the two numbers that came up. I tell you you I got a 5.
What is your probability that H1 is true?
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Example

Problem
I roll two dice behind your back. I either tell you the minimum (H1) or the
maximum (H2) of the two numbers that came up. I tell you you I got a 5.
What is your probability that H1 is true?

H1 1 2 3 4 5 6
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P(H1 | data) =
P(data | H1) ·P(H1)

P(data | H1) ·P(H1) +P(data | H2) ·P(H2)
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Example

Problem
I roll two dice behind your back. I either tell you the minimum (H1) or the
maximum (H2) of the two numbers that came up. I tell you you I got a 5.
What is your probability that H1 is true?
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P(H1 | X = 5) =
P(X = 5 | H1) ·P(H1)

P(X = 5 | H1) ·P(H1) +P(X = 5 | H2) ·P(H2)
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Example

Problem
I roll two dice behind your back. I either tell you the minimum (H1) or the
maximum (H2) of the two numbers that came up. I tell you you I got a 5.
What is your probability that H1 is true?
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P(H1 | X = 5) =
3
36 ·P(H1)

3
36 ·P(H1) + 9

36 ·P(H2)
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Example

Problem
I roll two dice behind your back. I either tell you the minimum (H1) or the
maximum (H2) of the two numbers that came up. I tell you you I got a 5.
What is your probability that H1 is true?

H1 1 2 3 4 5 6
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P(H1 | X = 5) =
1 ·P(H1)

1 ·P(H1) +3 ·P(H2)
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Example

Problem
I roll two dice behind your back. I either tell you the minimum (H1) or the
maximum (H2) of the two numbers that came up. I tell you you I got a 5.
What is your probability that H1 is true?
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P(H1 | X = 5) =
1 ·P(H1)

1 ·P(H1) +3 ·P(H2)
withP(H1) = P(H2) =

1
2
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Example

Problem
I roll two dice behind your back. I either tell you the minimum (H1) or the
maximum (H2) of the two numbers that came up. I tell you you I got a 5.
What is your probability that H1 is true?
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P(H1 | X = 5) =
1

1+3
=

1
4
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Frequentist vs Subjective Probabilities (Caricature)

Frequentist (aka Orthodox)
Probabilities are limits of relative
frequencies. They are measurable
by counting events in the world.

Subjectivist (aka Bayesian)
Probabilities are degrees of belief.
They are measurable by asking
people for their opinion.

Bayes’ Rule ...
... applies to both! But subjectivists can apply it more broadly.

[Hacking, 1975, for more]
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An Aside: p-values

It is clear from Bayes’ rule that P(A | B) 6= P(B | A).

p-value is not P(H | data).

[Cohen, 1994]
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Part 3: Rational Analysis

[Green and Swets, 1988, Anderson, 1991a, Anderson, 1991b, Chater and Oaksford, 1999,

Oaksford and Chater, 2001, Kersten and Schrater, 2002, Kersten and Yuille, 2003,

Chater et al., 2006, Tenenbaum et al., 2006, Tenenbaum et al., 2011, for more]
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Categorization Example: Task

Task
White bars of varying length are presented on an otherwise black screen.
The bars come from two two equally probable categories: The short and
the long bars, named category 1 and category 2 respectively.

1 Stimuli from category 1 are drawn from a normal distributions with
mean 10 cm and standard deviation 1 cm.

2 Stimuli from category 2 are drawn from a normal distributions with
mean 12 cm and standard deviation 1 cm.
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Categorization Example: Task

Task
White bars of varying length are presented on an otherwise black screen.
The bars come from two equally probable categories: The short and the
long bars, named category 1 and category 2 respectively. With σ = 1 and
µ1 = 10 and µ2 = 12:

1 p(X = x | C = 1) =
(
2πσ2)− 1

2 exp
(
− 1

2σ2 (x−µ1)2
)

2 p(X = x | C = 2) =
(
2πσ2)− 1

2 exp
(
− 1

2σ2 (x−µ2)2
)

3 p(C = 1) = p(C = 2) = 1
2
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Categorization Example: Task
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Categorization Example: Ideal Observer

Task

1 p(X = x | C = 1) =
(
2πσ2)− 1

2 exp
(
− 1

2σ2 (x−µ1)2
)

2 p(X = x | C = 2) =
(
2πσ2)− 1

2 exp
(
− 1

2σ2 (x−µ2)2
)

3 p(C = 1) = p(C = 2) = 1
2

Question
How would an ideal subject solve the task? What is the best strategy?
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Categorization Example: Posterior

Task

1 p(X = x | C = 1) =
(
2πσ2)− 1

2 exp
(
− 1

2σ2 (x−µ1)2
)

2 p(X = x | C = 2) =
(
2πσ2)− 1

2 exp
(
− 1

2σ2 (x−µ2)2
)

3 p(C = 1) = p(C = 2) = 1
2

p(C = 1 | X = x) =
p(X = x | C = 1)p(C = 1)

p(X = x | C = 1)p(C = 1) +p(X = x | C = 2)p(C = 2)
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Categorization Example: Posterior

Task

1 p(X = x | C = 1) =
(
2πσ2)− 1

2 exp
(
− 1

2σ2 (x−µ1)2
)

2 p(X = x | C = 2) =
(
2πσ2)− 1

2 exp
(
− 1

2σ2 (x−µ2)2
)

3 p(C = 1) = p(C = 2) = 1
2

p(C = 1 | X = x) =
p(X = x | C = 1)

p(X = x | C = 1) +p(X = x | C = 2)
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Categorization Example: Posterior

Task

1 p(X = x | C = 1) =
(
2πσ2)− 1

2 exp
(
− 1

2σ2 (x−µ1)2
)

2 p(X = x | C = 2) =
(
2πσ2)− 1

2 exp
(
− 1

2σ2 (x−µ2)2
)

3 p(C = 1) = p(C = 2) = 1
2

p(C = 1 | X = x) =
exp
(
− 1

2σ2 (x−µ1)2
)

exp
(
− 1

2σ2 (x−µ1)2
)

+ exp
(
− 1

2σ2 (x−µ2)2
)
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Categorization Example: Posterior

p(C = 1 | X = x) =
exp
(
− 1

2σ2 (x−µ1)2
)

exp
(
− 1

2σ2 (x−µ1)2
)

+ exp
(
− 1

2σ2 (x−µ2)2
)

=
1

1+ exp
(
− 1

2σ2

(
(x−µ2)2− (x−µ1)2

))
p(C = 2 | X = x) = 1−p(C = 1 | X = x)
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Categorization Example: Posterior
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Categorization Example: Decision Rule

Respond “1” if and only if

p(C = 1 | X = x)≥ 1
2

1

1+ exp
(
− 1

2σ2

(
(x−µ2)2− (x−µ1)2

)) ≥ 1
2

exp
(
− 1
2σ2

(
(x−µ2)2− (x−µ1)2

))
≤ 1(

(x−µ1)2− (x−µ2)2
)
≤ 0

(x−µ1)2 ≤ (x−µ2)2
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Categorization Example: Decision Rule

Respond “1” if and only if

(x−µ1)2 ≤ (x−µ2)2

x2−2xµ1 + µ
2
1 ≤ x2−2xµ2 + µ

2
2

2x (µ2−µ1)≤ µ
2
2 −µ

2
1

2x (µ2−µ1)≤ (µ2 + µ1)(µ2−µ1)

x ≤ 1
2

(µ2 + µ1)

x ≤ c
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Categorization Example: Decision Rule
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Categorization Example: Minimum Errors
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Categorization Example: Minimum Errors

p(R = 1 | C = 2) =
∫ c

−∞

φ(x ; µ2,σ)dx = Φ(c ; µ2,σ)

p(R = 2 | C = 1) =
∫ +∞

c
φ(x ; µ1,σ)dx = 1−Φ(c ; µ1,σ)

p(Error) =
1
2

(1−Φ(c ; µ1,σ)) +
1
2

Φ(c ; µ2,σ)
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Categorization Example: Minimum Errors

p(Error) =
1
2

(1−Φ(c ; µ1,σ)) +
1
2

Φ(c ; µ2,σ)

0 =−1
2

φ(c ; µ1,σ) +
1
2

φ(c ; µ2,σ)

0< φ
′(copt; µ2,σ)
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Categorization Example: Ideal Observer

Ideal Observer for Categorization Task

Respond “1” if and only if bar length x ≤ 1
2 (µ2 + µ1) = 11 cm. This

strategy will minimize the expected number of errors.

Note
The ideal observer for this categorization task does not compute
probabilities, does not use Bayes’ rule and it does not optimize. It only
checks the stimulus against a decision criterion. Probability theory was
merely used as a tool to derive the optimal strategy.
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Categorization Example: Ideal Observer Responses
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Categorization Example: Actual Responses
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Categorization Example: Actual Responses
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Ideal Observer Analysis: A Heuristic Research Strategy

“[...] In any study, it is desirable to specify rigorously the factors pertinent
to the study. [...] The ideal performance, in other words, constitutes a
convenient base from which to explore the complex operation of a real
organism. [...] The problem then becomes one of changing the ideal model
in some particular so that it is slightly less than ideal. [...] This method of
attack has been found to generate useful hypotheses for further studies.
Thus, whereas it is not expected that the human observer and the ideal
detection device will behave identically, the emphasis in early studies is on
similarities. If the differences are small, one may rule out entire classes of
alternative models, and regard the model in question as a useful tool in
further studies. Proceeding on this assumption, one may then in later
studies emphasize the differences, the form and extent of the differences
suggesting how the ideal model may be modified in the direction of reality.“
[Swets et al., 1961, p. 311]
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Category Learning as Ideal Learning

Task
White bars of varying length (x1...xn) are presented on an otherwise black
screen. The lengths of the bars are drawn i.i.d. from two equally probable
categories: The short and the long bars, named category 1 and category 2,
respectively. With σ = 1 and µ1 = 10 and µ2 = 12:

1 p(Xk = xk | Ck = 1,µ1) =
(
2πσ2)− 1

2 exp
(
− 1

2σ2 (xk −µ1)2
)

2 p(Xk = xk | Ck = 2,µ2) =
(
2πσ2)− 1

2 exp
(
− 1

2σ2 (xk −µ2)2
)

3 p(Ck = 1) = p(Ck = 2) = 1
2

Question
Before we assumed that the ideal observer knows µ1, µ2 and σ . How
would an ideal observer solve the task without this knowledge?
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Category Learning as Error Learning

Question
As we know from the ideal observer analysis that the optimal strategy
implements a decision criterion c , can we come up with a learning
mechanism that iteratively updates the criterion and converges (in some
sense) to the optimal criterion?
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Category Learning as Error Learning

p(R = 1 | C = 2) = Φ(c ; µ2,σ)

p(R = 2 | C = 1) = 1−Φ(c ; µ1,σ)

ct+1 =

{
ct −δ if R = 1and C = 2
ct + δ if R = 2and C = 1

[Kac, 1969]
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Category Learning as Error Learning

p(R = 1 | C = 2) = p(R = 2 | C = 1)

Φ(c ; µ2,σ) = 1−Φ(c ; µ1,σ)

ct+1 =

{
ct −δ if R = 1and C = 2
ct + δ if R = 2and C = 1

[Kac, 1969]
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Part 4: Response to Criticism of Rational Analysis
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Criticism of Bayesian Models

Bayesian Fundamentalism or Enlightenment? On the explanatory
status and theoretical contributions of Bayesian models of cognition
[Jones and Love, 2011]

Bayesian just-so stories in psychology and neuroscience
[Bowers and Davis, 2012]

How Robust Are Probabilistic Models of Higher-Level Cognition?
[Marcus and Davis, 2013]
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Criticism of Bayesian Models

Neglect of mechanisms
Role of optimality/rationality
Post-hoc rationalizations
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Bayesian Fundamentalism

“[...] the primary goal of much Bayesian cognitive modeling has been to
demonstrate that human behavior in some task is rational with respect to a
particular choice of Bayesian model. We refer to this school of thought as
Bayesian Fundamentalism, because it strictly adheres to the tenet that
human behavior can be explained through rational analysis – once the
correct probabilistic interpretation of the task environment has been
identified – without recourse to process, representation, resource
limitations, or physiological or developmental data.” [Jones and Love, 2011, p.
170]

Explain behavior only through rational analysis of task and
environment
Mechanisms play no role
Psychology of the empty organism
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Obsession with Rationality/Optimality?

“[...] Together these studies demonstrate that people are adept at
combining prior knowledge with new evidence in a manner predicted by
Bayesian statistics. [...] Recent studies have found that when combining
information this way, people are also similar to optimal. [...] Their
performance in these cue-combination trials can be predicted using the
rules of Bayesian integration, further evidencing people’s ability to
optimally cope with uncertain information. [...] In typical cases cues are
combined by the subjects in a fashion that is close to the optimum
prescribed by Bayesian statistics.” [Berniker and Körding, 2011, p. 422]
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Mechanisms for Probabilistic Inference

Bayesian modelers do care about mechanisms!
But what role do the (optimal, rational) Bayesian models play in
discovering mechanisms?
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Computational Level

Computational
theory

Representation
and algorithm

Hardware
implementation

What is the goal of the
computation, why is it
appropriate, and what is
the logic of the strategy
by which it can be car-
ried out?

How can this computa-
tional theory be imple-
mented? In particular,
what is the representa-
tion for the input and the
output, and what is the
algorithm for the trans-
formation?

How can the representa-
tion and the algorithm be
realized physically?

[Marr, 2010, p. 25]

Bayesian models formalize computational level analysis
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A Heuristic Research Strategy

“[...] In any study, it is desirable to specify rigorously the factors pertinent
to the study. [...] The ideal performance, in other words, constitutes a
convenient base from which to explore the complex operation of a real
organism. [...] The problem then becomes one of changing the ideal model
in some particular so that it is slightly less than ideal. [...] This method of
attack has been found to generate useful hypotheses for further studies.
Thus, whereas it is not expected that the human observer and the ideal
detection device will behave identically, the emphasis in early studies is on
similarities. If the differences are small, one may rule out entire classes of
alternative models, and regard the model in question as a useful tool in
further studies. Proceeding on this assumption, one may then in later
studies emphasize the differences, the form and extent of the differences
suggesting how the ideal model may be modified in the direction of reality.“
[Swets et al., 1961, p. 311]
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A Heuristic Research Strategy

Marr-Bayes Reverse-Engineering
Bayesian ideal observer analysis is a formal framework for
computational-level modeling. The computational level is key in
reverse-engineering the mind/brain. But ultimately we want explanations
on all three levels: Computational, algorithmic, and implementational.

Bayesian model is only the first step!
Mechanisms are important and we want to know how they solve the
problems that the organism faces
But how does the computational level analysis help us in finding
mechanisms?
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Strong Constraints from Bayesian Models

“Recent psychophysical experiments indicate that humans perform
near-optimal Bayesian inference in a wide variety of tasks, ranging from cue
integration to decision making to motor control. This implies that neurons
both represent probability distributions and combine those distributions
according to a close approximation to Bayes’ rule. ” [Ma et al., 2006, p. 1423]
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Bayesian Realism

The brain directly implements prior, likelihood, loss functions, etc.
There are mechanisms for representing distributions, evidence
integration, computing Bayes’ rule, and choosing optimal decisions.
Look for Bayes in the brain!
But what about the decision criterion in our categorization example?
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Multiple Realizability

“Using probabilistic models to provide a computational-level explanation
does not require that hypothesis spaces or probability distributions be
explicitly represented by the underlying psychological or neural processes, or
that people learn and reason by explicitly using Bayes’ rule”
[Griffiths et al., 2010, p. 362]

Yes, but how then does it help in reverse-engineering the mind/brain?
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Instrumentalist Bayesianism

Bayesian models are just useful in summarizing and organizing the data
Bayesian models don’t constrain mechanistic explanations at all
(beyond fitting the data)

F. Jäkel (UOS) Bayesian Rational Analysis KogWis 2014 63 / 69



Weak Constraints from Bayesian Models

“The three levels are coupled, but only loosely. The choice of an algorithm
is influenced, for example, by what it has to do and by the hardware in
which it must run. But there is a wide choice available at each level, and
the explication of each level involves issues that are rather independent of
the other two.” [Marr, 2010, p. 25]
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Pragmatic Bayesianism

Bayesian models are useful in summarizing and organizing the data
But they are also useful in guiding a heuristic search for mechanisms!
Useful framework to generate testable hypotheses, e.g.

I Error learning models of category learning
I Probabilistic population codes
I Sampling hypothesis
I Message passing
I ...

Theoretically there are many possible algorithms and implementations,
but pragmatically not so many

I Use successful ideas from other fields (machine learning, statistics, AI)
I Use other constraints, like cognitive limitations, known facts about the

hardware, etc.

[Zednik and Jäkel, 2014]
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