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Fig. 1: The left image shows four of our optimization targets for which we generated
geometry with our proposed optimization approach. The second and third image show
a physically correct light transport simulation illustrating the results. For the living
room scene we optimized a glass table to cast the predefined caustic. The letters E C
C V in the right image are caustics from parabolic reflectors with a small embedded
light source. The last image shows one half of such an optimized parabolic reflector.

Abstract. In this work we investigate an inverse geometry problem.
Given a light source, a diffuse plane and a caustic image, how must a
geometric object look like (transmissive or reflective) in oder to project
the desired caustic onto the diffuse plane when lit by the light source? In
order to construct the geometry we apply an analysis-by-synthesis ap-
proach, exploiting the GPU to accelerate caustic rendering based on the
current geometry estimate. The optimization is driven by simultaneous
perturbation stochastic approximation (SPSA). We confirm that this al-
gorithm converges to the global minimum with high probability even in
this ill-posed setting. We demonstrate results for precise geometry re-
construction given a caustic image and for reflector design producing an
intended light distribution.

1 Introduction

The automatic construction of geometric objects from a predetermined prop-
erty is an important engineering task. We address the problem of constructing a
transmissive or reflective surface, that, given a predefined light position, creates
an a priori defined caustic image. This task of creating a specific caustic occurs
in the design of headlights, of parabolic concentrators for solar cells or interior
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design, see for example Figure 1. The same approach can also be used to recon-
struct the surface geometry of a real object given only an image of its caustic.
Even though this is an ill-posed problem we show how in many cases reasonable
reconstructions can be achieved.

The geometry estimation follows an analysis-by-synthesis approach. The pro-
cedure starts with an initial surface whose geometry is subsequently optimized
to minimize the mean squared error (MSE) between the target caustic and the
current caustic image. The MSE is the only measure applied to determine the
quality of the constructed geometry. A standard optimization algorithm for such
a problem would be the simulated annealing (SAN) algorithm [1, 2]. However,
our results show that the simultaneous perturbation stochastic approximation
(SPSA) optimization algorithm [3] is more robust and converges much faster in
this setting.

One contribution of our work is the use of SPSA as a global optimizer for
this kind of problem. For the evaluation of the objective function we present a
specialized and optimized implementation that exploits GPUs for a fast evalua-
tion. It efficiently renders single bounce reflections or refractions. The proposed
optimization framework is flexible to work on connected or disconnected triangle
meshes and further can operate on C2 continuous B-spline surfaces. One unique
feature of our method compared to other methods like [4, 5] is the degree of
freedom we can deal with due to utilizing SPSA for optimization. In the case of
the parabolic reflectors in Figure 1 the B-spline patches have about 4000 con-
trol points which have to be optimized. We explore the use of our framework
for reflector design, for geometry reconstruction of water surfaces and for light
concentrating glass objects.

2 Related Work

A recent survey for various ways of reconstructing specular and transparent
geometry has been assembled by Ihrke et al. [6]. Direct geometry measurement
techniques are based on structured illumination [7, 8] and multiple input images.
They apply shape from distortion [9–11], shape from specular highlights [12,
13], optical tomography [14], or inverse ray-tracing [15, 16]. Our reconstruction
method falls into the last category but uses a single intensity distribution image
as input and therefore requires optimization.

Morris et al. [17] demonstrated the reconstruction of a water surface by uti-
lizing two cameras and a known pattern placed under the water surface. With
some restrictions to the setup, for instance secondary refractions or reflections
have to be suppressed, they were able to reconstruct the surface correctly. Recon-
structing a water surface is not the scope of this work, nevertheless our methods
could be applied to this task.

Kutulakos et al. [18] investigate the theoretical background of reconstruct-
ing arbitrarily-shaped specular scenes. They reduced the problem of 3D shape
reconstruction to reconstruction of light paths that cross the image plane. They
showed, that it is impossible to reconstruct a light path when the light is reflected
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or refracted more than twice. In all other cases, three viewpoints are enough for
successful reconstruction. This insight limits the generality of our approach, as
a single caustic image allows us to consider a single surface interaction only. In
addition Ramamoorthi et al. [19] provides a theoretical framework for inverse
rendering problems.

Patow [20] and Patow et al. [21, 22] investigated the specific problem of re-
flector design to obtain surfaces that produce an intended light distribution for
a given light source position. They applied an analysis-by-synthesis approach
using a brute force search and SAN in order to optimize the reflector for the dis-
tribution. Early work on the reflector design problem was done by Neubauer [23],
Caffarelli et al. [24], and Wang [25, 26].

Recent approaches directly operating on NURBS-surfaces and utilizing an
analysis-by-synthesis approach are presented by Anson et al. [4] and Mas et
al. [5]. However, the search space was restricted to only two dimensions and
rotationally symmetric reflectors, and four dimensions respectively.

Recently, Weyrich et al. [27] presented a method of fabricating micro ge-
ometry with custom reflectance probability. They first computed a set of micro
facets which produces the selected reflectance distribution. However, the result-
ing micro facets are not connected, so they utilized a SAN optimization process
to arrange them in a (nearly) tileable way. Our approach generates compara-
ble results on disconnected meshes but is flexible enough to optimize watertight
surfaces as well. Beyond that, our SPSA-based system works efficiently for both
reflective and refractive surfaces.

3 Optimization Framework

Caustics occur when a specular or refractive object focuses light onto a diffuse
surface. Caustics are often caused by water surfaces, glass objects, such as lenses,
or concave mirrors as one finds them in headlights. In photo-realistic image
synthesis a common task is to simulate these caustics [28]. In this work, we ask for
the inverse problem: Given the caustic image, what is the geometry of the caustic
generating surface? During optimization we apply a simplified rendering system
(Section 5) which ignores multiple scattering inside the reflector or refractor.

We can not use methods as in [17, 18], because the directional information
of the incident light onto the diffuse surface is not available in a single caustic
image. Hence, we are not able to directly reconstruct the light paths which
would allow us to reconstruct a single reflective or refractive surface directly.
Furthermore, as the incident direction to the diffusor is unknown the problem is
not well-defined, even the simple case where all the light is focused on a single
point is not uniquely solvable. The solution could be a small lens directly in front
of the light source, or a huge lens further away from the light source.

Therefore, we use an analysis-by-synthesis approach to find an appropriate
solution. The reflecting or transmitting surface is represented as a triangle mesh
or in most examples as C2 continuous B-spline patch which is either initialized as
a planar surface, or a parabolic surface (mainly used for reflector optimization).
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The number of control points is arbitrary, for the results presented here we use
122 up to 642 control points. The control points are fixed in their xy-position,
only the z-coordinate is modified during optimization. Allowing for varying xy-
coordinates would not only increase the dimensionality of the problem, it would
also complicate the optimization process, i.e., preventing self occlusion would
not be trivial in such a setting. The B-spline patch is described by one state
vector θ, with dimensionality p equal to the number of control points. Hence,
we search for an optimal solution vector θ∗ in the problem space Θ ⊆ Rp. The
optimal solution is defined by the global minimum of the objective function L(·),
which in our case is the MSE between the current caustic image and the target
caustic image.

The missing pieces to fully describe our framework are the employed opti-
mization algorithm and the evaluation of the objective function which includes
the costly computation of the caustic. These points are discussed in the next
two sections.

4 Optimization Using SPSA

The optimization is carried out by performing a random walk on the problem
space Θ. In each iteration a new candidate solution θk+1 is computed by adding
a specific step vector to the current state vector θk. In contrast to simulated
annealing which takes a completely random approach, the SPSA algorithm com-
putes an approximate gradient to determine the best search direction in each
iteration.

The SPSA algorithm belongs to the family of stochastic approximation (SA)
algorithms [29]. The basic form of the SA algorithm when there is no analytic gra-
dient available is the Kiefer-Wolfowitz finite-difference SA (FDSA) algorithm [30,
31]. The disadvantage of this algorithm is that it needs 2p objective function eval-
uations in order to approximate a gradient. Introduced by Spall [3], the SPSA
algorithm overcomes this disadvantage. It consumes only two objective function
evaluations in each iteration in order to approximate a gradient regardless of the
dimensionality of the problem.

Gradient Approximation. The idea is to randomly perturb all elements of
θk to obtain two (probably noisy) measurements of the objective function. More
formally, let y(·) denote a noisy measurement of L(·), i.e., y(·) = L(·) + noise.
Each component i of the k-th approximate gradient gk(θk) is now determined
by,

gki(θk) =
y(θk + ck∆k)− y(θk − ck∆k)

2ck∆ki
. (1)

A simple choice for the ∆k random vector is to use a Bernoulli±1 distribution
for each component ∆ki of the vector (with probability 1/2 for each ±1), in
general each ∆ki has to be independent and symmetrically distributed about 0
with finite inverse moments E(|∆ki|−1) <∞ for all k, i [32]. The so-called gain
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Table 1: Choice of the gain sequences

ak a/(A+ k + 1)α

α 0.602 (practically effective), 1.0 (asymptotically optimal)
A < 10% of maximum (expected) iterations
a a/(A+ 1)α · g0(θ) ≈ smallest desired change among elements in θ

ck c/(k + 1)γ

γ 0.101 (practically effective), 1/6 (asymptotically optimal)
c small positive number ≈ standard deviation of the measurement

∆k Bernoulli±1 distribution

sequence ck controls the distance between the sample points. It is monotonically
decreasing in each iteration to ensure high quality gradients when approaching
the optimum.

The optimization is carried out by moving along this approximated gradient
gk, formally,

θk+1 = θk − akgk(θk) , (2)

where the ak is another gain sequence generating monotonically decreasing step
lengths.

The Gain Sequences. Unfortunately, there is no generally optimal choice
for the gain sequences ak and ck and the random vector ∆k in practice, only
theoretically optimal choices are at hand. In [33], some suggestions are given
how to tune these parameters in order to improve convergence, for a summary
see Table 1. The specific choice of SPSA parameters for our purpose is discussed
in Section 6.

Convergence. In general, the order of the error is ε = O(k−1/3) [3, 34, 35]. This
is only the local convergence rate of the algorithm. But as pointed out in [36]
SPSA may work as global optimizer without adding an extra random vector to
the SA-recursion (Eq. 2) [37].

5 Caustic Rendering on the GPU

As the objective function has to be evaluated several thousand or even million
times, a fast implementation of the caustic rendering step is crucial. The main
part of the evaluation of the objective function is the synthesis of the caustic
(about 99% of the computation time is spent there).

The caustic is synthesized by Monte Carlo light transport simulation [28] ig-
noring multiple interactions. We can optimize this simulation specifically for our
task. The simple scene geometry allows for omitting self occlusion, and further
allows direct handling of the ground plane as accumulation buffer. For efficient
simulation we split the B-spline into multiple cubic Beziér patches [38] (see Fig-
ure 2b). The splitting computation is done on the CPU, the resulting Beziér
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Fig. 2: Illustration of the rendering process. In (a) the basic process is illustrated.
Starting from a light source, light rays are connected to the B-spline surface, refracted
(or reflected) and intersected with the ground plane accumulation buffer. (b) shows
how, for sampling purposes, the B-spline surface is split into multiple Beziér patches
and (c) shows 64 Hammersley points used to generate sample points on each Beziér
patch.

patches are than transfered to to GPU memory and the remaining computation
of the caustic is done on the GPU. The basic steps performed on the GPU are
the following (illustrated in Figure 2a):
We start a fixed number of threads (i.e. 64) on the GPU. The number of sam-
ples we take for each Beziér patch is also fixed and a multiple of the number of
threads (so each thread has to take #work = #samples/#threads samples).
For the generation of the sample points we use the Hammersley quasi-Monte
Carlo point set [39] (see Figure 2c). They are well distributed and very simple
to compute,

(x, y) = (i/n, (reverse bits)(i)/0x100000000LL) , (3)

where n = #samples, and i = sample index.
Each thread computes now:

I. initialize ground plane accumulation buffer with zeros
II. for each Bezier patch:

1. sample_index = k + thread_num * work,
where k in range (0,work)

2. compute point (x,y)
3. transform into 3D point on Bezier patch
4. connect point to light source and compute refraction ray
5. intersect with ground plane
6. accumulate contribution with correct weighting

Essential for the correctness of the simulation is the weighting of the samples.
As we directly sample points on the surface patches we have to weight them
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according to the projected differential surface area and the squared distance
r. The differential surface area is given by the length of the cross product of
both directional derivatives (length of the surface normal n), and the projection
results in an additional cosine factor (between normalized surface normal n̂ and
direction d̂ to the light source),

w =
1
r2
||n|| · | < n̂ · d̂ > | . (4)

Additional Optimization. The accumulation of the contribution in step 6
results in random memory read-write access. Further the different threads may
write to the same part of the accumulation buffer, which either leads to the need
of atomic writes or a falsified computation of the caustic. So we simply save
the contribution along with the pixel index in a consecutive array. The array is
transfered to the main memory and the final caustic image is then assembled by
the CPU. By asynchronously calling the CUDA kernel this computation along
with the additional memory transfer can be done mostly synchronous to the
GPU computation.

Efficiency of the method. For example the water surface (see Section 6)
the B-Spline is split into 81 Beziér patches, each patch is sampled with 2048
samples which results in 165888 samples per objective function evaluation. 1000
objective functions are evaluated in less than 4 seconds, which results in 30
minutes overall run time for convergence (System: Intel Core 2 Duo E6850 with
3 GHz and NVIDIA GeForce GTX 285).

6 Results

We apply our framework to a set of different scenarios.

Designing Reflective and Refractive Concentrators. In Figure 1, we de-
sign refractive and reflective surfaces to generate sharp, high contrast patterns at
a specific focus plane. The optimization clearly renders the letters for the glass
table and the parabolic reflector, but can only approximate the sharp transition.
Due to the C2 continuity, the optimized caustic cannot perfectly match the orig-
inal which leads to some background noise in those areas which are intended to
be black. The height variation necessary to produce the output is surprisingly
small compared to the object size.

Headlight Design. A real-world application is shown in Figure 3. Here, a
parabolic head light is optimized to cast a non-blinding, almost homogeneous
spot of predefined shape onto the street. Note the even intensity distribution
in the illuminated region which avoids the hot spot close to the light source
typically generated by headlights. Additional results can be seen in Figure 4.
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Fig. 3: Headlamp Design – from left to right: Predefined shape of the light cone when
projected onto the street. Our resulting distribution after optimization. The difference
to the original distribution. Illustration of the result.

(a) (b) (c) (d) (e) (f)

Fig. 4: Results for parabolic reflector design, (a,d) show the target distribution, (b,d) the
distribution of the resulting reflector, and (c,f) the difference to the target distribution.

Fig. 5: Results for the micro facet optimization. The first image shows the target dis-
tribution, the second image the result by Weyrich et al. [27] with single disconnected
quads. The third image shows the result of applying our optimization approach to dis-
connected quads and the last image on a connected triangle mesh. Note that Weyrich
et al. directly samples normals from the target distribution and generates correspond-
ing quads, hence there is no sample outside the target distribution. With our method
it is possible to directly optimize a closed triangle mesh. We improved our results by
adding a minimal Gauss-blur to the target distribution as it introduces a well-defined
gradient to the error function.
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geometry

caustic

wavy rough very rough initialization

Fig. 6: Top: Visualization of the ground truth geometry for the global convergence
test. Bottom: Resulting caustics from the above geometry that where fed into the
optimization process. For these tests the optimization is alway initialized with a flat
surface, which results in an average grey caustic.

Optimizing Reflectance Distributions. Inspired by Weyrich et al. [27], we
further investigate generating a specific radiance distribution of an almost planar,
reflective surface for directional illumination. We demonstrate the flexibility of
our framework and compare the performance for connected and unconnected
triangle meshes. As shown in Figure 5, optimizing unconnected quads yields
results slightly inferior to Weyrich et al., because in this case the normals can
be directly sampled from the target distribution and need not to be optimized.
However, with our approach it is possible to optimize a closed triangle mesh
which is not possible with their method.

Geometry Reconstruction for Water Surfaces. In Figure 6, we show the
caustics generated by water surfaces of varying roughness. Our system generates
geometry that reproduces the caustics up to a small error. The Figures 8, 9,
and 10 demonstrate the relationship between the MSE of the caustic images and
the error of the geometry. The geometry error was computed by sampling the
surface at 10000 fixed locations and summing up the squared differences to the
original surface. The size of the surface is 10 by 10cm. The results show that the
optimized geometry most often corresponds well to the original surface.

7 Discussion

To generate the results we used SPSA with the standard gain sequences ak and
ck as given in Table 1 with α = 0.602 and γ = 0.101. The asymptotically optimal
values of α = 1.0 and γ = 1/6 would lead to faster local convergence, however, at
the cost of greatly reducing the probability of convergence to a global optimum.
The parameters a and c are adapted to each specific problem and are exper-
imentally chosen observing the beginning of the optimization. The choice of c
influences the gradient approximation and depends on the noise of the objective
function (Eq. 1). One has to trade off a noisy vs. artificially smoothed gradient
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estimation. The value of a controls the step size and thus the convergence be-
havior. Often, if the initial curve of the MSE is too smooth, as it should be at
the end of an optimization, the algorithm directly converges to a nearby local
minimum. a needs to be increased to allow for a more random exploration of the
error landscape. Choosing a too large though will slow down convergence.

Global Convergence. The SPSA algorithm only guarantees a probabilistic
convergence to a global optimum [36]. For decent choices of parameters a and c,
most often, the global optimum in the water surface test cases was found with
the first sequence (see Figure 6, 8, 9, and 10). Whenever the final MSE was
still too large, as in the failure case in Figure 10, we restarted the optimization
with a different random seed, which was never required more than twice in all
presented cases and could be automatized. Our experimental results verify that
SPSA is suitable for global optimization in our setting.

SPSA vs. Simulated Annealing. The good convergence probability of SPSA
is in contrast to SAN which rarely converged to a decent optimum in bearable
time. The drawback of SAN is that it does not explore the error landscape in a
controlled way. It randomly samples the neighboring space and can not walk into
a specific direction as it does not exploit any gradient information, not even an
approximation. The best results with SAN were achieved for the smooth test case
of Figure 6 where the initial solutions is already near the global optimum. With
SAN, we obtained decent results on the unconnected triangle mesh in Figure 5,
but it completely failed at optimizing the parabolic reflectors, probably due to
the complexity of the problem.

Manufacturing. We did not manufacture the reflectors and refractors we op-
timized, but we verified our results by the means of physical light transport
simulation (see Figure 1). We also simulated the precision of a typical milling
machine and randomly perturbed the estimated geometry (see Figure 7).

Fig. 7: Results for the precision simulation, from left to right: E-reflector with randomly
perturbed control points (+−0.02mm) and the difference to the result with no induced
error. Again the E-reflector now with a random perturbation of + − 0.2mm, the ”E”
nearly vanishes in the noise. The last two images show the SPSA optimization of the
very rough test case after 250000 iterations, the geometry error corresponds to an
average error of about 0.1mm.
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Fig. 8: On this input data the a parameter can be chosen arbitrarily out of a large
interval. The reason for this is, that the next nearby local optimum is identical to the
global optimum. However, with even smaller values for a the convergence rate of the
algorithm would be greatly reduced and with larger ones the algorithm might jump
over the global optimum. Note that the remaining difference in the geometric error is
extremely small and corresponds to an average error of less than 0.01mm.
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Fig. 9: SPSA and SAN applied to the very rough test case given in Figure 6. SPSA
converges to the correct result, SAN converges much slower. The left images show the
result after the optimization run (top) and the difference to the target caustic (bot-
tom). We can also see by comparing the objective function graph with the associated
geometry error graph that a smaller MSE of the objective function does not always
results in a smaller geometry error. This indicates local optima. Also note the smooth
MSE graph at the end of the optimization process, indicating local (and in this case
global) convergence.
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Fig. 10: Illustration of a failure case, where SPSA did not find the global optimum at
the first but the second run. In the left columns the top images show the optimization
result and bottom images the difference to the original caustic (compare to Figure 6).
Note the local minimum of the geometry error of the failure case at about 500000
and the monotonic decrease of the corresponding objective function. The algorithm is
clearly converging to a local minimum.

8 Conclusion

The proposed system successfully produces surface geometry that matches a
specific reflection or refraction distribution pattern. It can be used to reconstruct
geometry from a given caustic image or to shape special purpose reflectors.
Key aspects of our efficient optimization are the use of the SPSA algorithm
which ensures global convergence with high probability as well as the GPU
accelerated caustic rendering approach. Our framework can cope with various
surface representations, allowing for the flexibility of unconnected triangles or
for the slightly more restrictive but easy to manufacture continuous B-spline
surfaces.

Currently, our framework is restricted to single reflective or refractive sur-
faces. Adding solid objects with multiple scattering events results in a much
more complex evaluation of the objective function. It will be a challenge to deal
with the additional ambiguities which result in much more distinct local optima
of the objective function [18]. However, the optimization framework based on
SPSA is independent of the rendering technique and can be exchanged with
other methods.
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