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Abstract

Captured reflectance fields tend to provide a relatively coarse sampling of the incident light directions. As a
result, sharp illumination features, such as highlights or shadow boundaries, are poorly reconstructed during
relighting; highlights are disconnected, and shadows show banding artefacts. In this paper, we propose a novel
interpolation technique for 4D reflectance fields that reconstructs plausible images even for non-observed light
directions. Given a sparsely sampled reflectance field, we can effectively synthesize images as they would have
been obtained from denser sampling. The processing pipeline consists of three steps: (1) segmentation of regions
where intermediate lighting cannot be obtained by blending, (2) appropriate flow algorithms for highlights and
shadows, plus (3) a final reconstruction technique that uses image-based priors to faithfully correct errors that
might be introduced by the segmentation or flow step. The algorithm reliably reproduces scenes that contain
specular highlights, interreflections, shadows or caustics.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer graphics]: Three-Dimensional Graph-
ics and Realism I.3.7 [Computer graphics]: Color, shading, shadowing and texture

Keywords: Reflectance Fields, Image-Based Lighting, Upsampling

1. Introduction

Reflectance fields have been shown to be a powerful ap-
proach for creating photo-realistic images of objects or
scenes in new illumination conditions. The key idea of re-
flectance fields, and the basis for almost all work in this field,
is the observation that, due to the principle of superposition
of light, the combination of multiple light sources can be
simulated by adding the pixel values of images taken with
separate light sources. The effect of an environment map on
a scene is simulated by a weighted sum of images taken at
different illuminations, such as point lights at different di-
rections of a light stage setup.

For high-quality results, however, reflectance field meth-
ods have been quite costly in terms of acquisition time and
storage space since they require one input image for each
incident light direction. Faithful reproduction of high fre-
quency illumination effects such as sharp shadow bound-
aries, specular highlights or caustics require a very dense
sampling of the light directions. If the spacing between il-
lumination directions is too large, salient artifacts occur in

simulations of extended light sources (see Figure 1): In
specular highlights on glossy surfaces, the original sam-
pling pattern is clearly visible as a pattern of spatially sepa-
rated highlights. In simulations of moving directional lights,
the synthesized sequence will show aliasing artifacts: Ad-
jacent highlights appear and disappear, rather than moving
smoothly over the reflective surface. Similar aliasing effects
can be observed in moving shadows. In general, smooth re-
sults can only be expected if the sampling density is ap-
propriate for the angular resolution of the illuminations in
terms of the sampling theorem [FLBSar]. For light stages
with LEDs or small flashlights, dense sampling may well re-
quire tens of thousands of images, which are too costly to
acquire.

We therefore propose a novel interpolation and upsam-
pling scheme that takes as input a sparsely sampled re-
flectance field captured with a point light source and pro-
duces a plausible reflectance field with much higher res-
olution, for instance, supersampling it from 230 captured
to about 4000 synthesized illumination directions. With the
constructed superresolution reflectance field, the motion and
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linear blend

proposed interpolation technique

Figure 1: Relighting a sparsely sampled reflectance field
(230 input images) with a small area light source. Top:
Linear interpolation of the input samples results in banded
shadows and disconnected highlights. Bottom: Our novel in-
terpolation technique upsamples the same input reflectance
field, effectively increasing its resolution to 3547 samples,
and is capable of plausibly reproducing smooth shadows,
shadows of semi-transparent objects, highlights and caus-
tics.

appearance of high frequency illumination effects can be ap-
proximated without requiring to capture thousands of sam-
ples.

The intermediate reflectance images are created by first
separating the input images into regions where simple linear
interpolation is sufficient, and regions where it is not. The al-
gorithm distinguishes between highlights, shadow contours
and regions that change slowly with illumination, such as
diffusely lit surfaces and the inner regions of shadows. For
the components that need to be explicitly moved, we apply
appropriate flow algorithms. In order to predict the appear-
ance of the scene for an intermediate light direction we fi-
nally compose the warped components and regularize the so-
lution using image-based priors. As we separate the predic-
tion whether a pixel should be shadowed or not from the esti-
mation of its appearance when actually shadowed, we main-
tain local texture detail while reconstructing a sharp shadow
boundary.

The benefit of our approach is that from low sampling
rates with high-spatial frequency illumination, we can sim-
ulate intermediate illuminations both at high spatial fre-
quencies, such as point lights, and simulate extended light
sources, such as those found in many light fields. From a
theoretical perspective, the algorithm taps new sources of

information about reflectance from sparse samples by mod-
eling and separating the tight connection between the effects
in the image plane and in the angular domain.

2. Related Work

Most reflectance field capturing approaches sample the light
source direction sparsely by moving a point light source
[DHT∗00, MDA02, MPZ∗02] or a projector [MPDW03,
SCG∗05, GTLL06] to a discrete set of positions on the
sphere around the object. High frequency effects in the
light domain, e.g. shadow, highlights or caustics, require
a much higher sampling density. This can be obtained by
literally capturing thousands of samples with a dual light
stage [HED05] at immense acquisition costs, or by trying to
parallelize the acquisition of multiple directional samples us-
ing an adaptive scheme [SCG∗05] or a stochastic approach
based on wavelet noise [PD05]. While considerably faster,
the latter ones have the disadvantage that dim features in the
reflectance field might be captured at high noise levels be-
cause they are always observed in conjunction with some
potentially much brighter reflections.

In this paper, we instead propose an advanced non-linear
interpolation technique that can correctly reproduce the ob-
ject’s appearance for in-between light source positions from
a sparse sampling. Simple blending between input samples
is typically not sufficient.

One way to estimate intermediate samples is to approxi-
mate the reflectance field locally by an explicit model. Var-
ious models have been proposed to describe the apparent
BRDF for the surface point visible at a given camera pixel,
such as analytic BRDF models [DHT∗00], which, how-
ever, do not account for global effects. More general func-
tions such as spherical harmonics and wavelets [MPDW04]
on the other hand can at best provide a smooth interpola-
tion between given samples. High frequencies will not be
introduced to pixels which did not observe them. In or-
der to increase the sampling density locally the reflectance
sharing approach combines samples from multiple surface
points [LLSS03, ZREB06]. This technique has so far been
demonstrated for opaque surfaces of known geometry only.
In this paper we present interpolation techniques for re-
flectance fields of non-opaque surfaces and unknown geom-
etry.

The problem of interpolation between light source direc-
tions is related to the problem of view interpolation, for
which various techniques have been proposed, e.g. optical
flow [BA96,BBPWk04] or level set blending [Whi00]. Spe-
cial solutions to handle illumination effects include flow for
specular surfaces [RB06] or interpolation for specularly re-
fracting materials [MPZ∗02]. However, applying view in-
terpolation techniques to the input images of a reflectance
field directly has the inherent problem that the scene itself
and all its texture is static while the illumination creates
apparent motion on top of the static structures. Barrow et
al. [BT78] therefore proposed the separation into intrinsic
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and illumination images. For reflectance fields of mostly dif-
fuse scenes, Matsushita et al. [MKL∗04] used the illumina-
tion image to detect shadows which are then moved accord-
ing to the position of the light source with the help of an
explicit 3D model of the scene. Applying view-interpolation
techniques on thresholded binary images of detected shadow
regions, Chen and Lensch [CL05] generated smoothly mov-
ing shadow regions. They worked on 6D reflectance fields
where the illumination is controlled by a projector. This al-
lowed them to turn off the direct illumination to the shadow
regions while still considering the indirect illumination from
other scene parts.

Our upsampled reflectance fields are regularized by ap-
plying image-based priors introduced by Fitzgibbon et al.
[AF03]. They performed view interpolation and implicitly
reconstructed a depth map subject to the constraint that the
interpolated view is locally consistent with the recorded im-
age data. The constraint enforces that any pixel neighbor-
hood in the interpolated view has to occur somewhere in
the input views. Wexler et al. [WSI04] further extended this
idea to fill in holes in a space-time video cube. Without any
additional information, relying on image-based priors only,
the holes are filled in by a multi-resolution framework using
3D neighborhoods. At each level the solution of the previ-
ous level is regularized to match the image-based priors at
that resolution. Upsampling reflectance fields can be viewed
as filling holes in a 4D structure. In contrast to the work
by Wexler et al., our input data unfortunately provides 2D
slices only, i.e. priors for 2D neighborhoods. We therefore
need to include the reconstruction step based on highlight
and shadow maps in order to recover 4D consistency.

3. Overview

Reflectance Fields represent a powerful tool to describe light
transport in real world scenes. In the 4D case, the reflectance
field is defined as a function R(x,y,θ,φ) that maps the distant
light coming from the direction (θ,φ) in polar coordinates
to the brightnesses R(x,y,θ,φ) at pixel positions (x,y) in an
image of w×h pixels. Color channels are treated separately.

For a given environment map L(θ,φ), images can be ren-
dered according to the Reflectance Integral for Image-Based
Relighting:

I(x,y) =
Z

θ∈[0:π]

Z

φ∈[0;2π)
L(θ,φ) ·R(x,y,θ,φ)dφsinθdθ

(1)
Captured reflectance fields usually consist of a number

of n slices Ri(x,y), corresponding to images capturing the
appearance of the scene for a single illumination direction
(θi,φi). In order to render these with continuous environ-
ment maps, interpolation along the θ,φ domain is neces-
sary [MPDW04]. Unfortunately, such a direct interpolation
may be insufficient if n is small; however smooth the inter-
polation may be, it does not ensure that high-frequency fea-
tures like shadow boundaries or highlights vary smoothly in
the image domain.

Figure 2: The incident light directions of a sparsely sampled
(n = 230) reflectance field visualized as black dots, and a
connecting Delaunay triangulation which defines barycen-
tric coordinates on which linear interpolation can be per-
formed. We increase the resolution by synthesizing samples
for in-between light directions (red dots).

Figure 3: Input slices Ri, R j of the reflectance field for in-
cident light angles θi,φi and θ j,φ j, respectively, are sepa-
rated into highlights, shadows and a diffuse component. We
interpolate the components separately and combine them to
a new slice Rk for an intermediate light direction.

In our approach, we reduce the interpolation problem by
synthesizing plausible intermediate images Rk at a much
higher density in the domain of light directions (see Fig-
ure 2) and inserting them into the measured field. From
there, we can proceed with any interpolation scheme; for
this paper, we show results based on linear interpolation in
barycentric coordinates on a Delaunay triangulation of the
input images. We generate the intermediate images Rk by
processing the input images Ri according to the pipeline de-
picted in Figure 3. The pipeline consists of three main stages:
segmentation and labeling of the input data, separate upsam-
pling of the highlight and shadowmaps, and reconstruction
at the target resolution subject to image-based priors.

The segmentation stage (Section 4) separates out high-
lights and shadows which are treated separately in our
pipeline. From the input images Ri we extract the images
Hi, that just contain the highlights, and reconstruct images
Di where the information beneath the highlights is plau-
sibly reconstructed using image-based priors. In a second
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step, a binary shadow map Si is computed, which encodes
whether a pixel is likely to be in shadow (Si(x,y) = 0), or not
(Si(x,y) = 1). The shadow labeling does not need to be very
precise since it is used mainly to obtain the correct move-
ment of shadow boundaries, but not the interior intensity.
In the second stage of the pipeline (Section 4), we upsam-
ple the highlight and shadow data to higher resolutions in
the θ,φ domain: we apply optical flow to warp the highlight
images Hi and perform level-set image blending [Whi00] on
the shadow maps Si.
In the third stage, a tentative intermediate image Rreco

k is syn-
thesized. From the warped shadow images we determine for
each pixel how to interpolate its reflectance from shadowed
or lit samples. We then apply image-based priors in order to
regularize our solution, removing intensity or high frequency
artefacts introduced by incorrect segmentation. Finally, we
add the warped highlight layer and arrive at the interpolated
image Rk.

4. Segmentation

Our method begins with the extraction of semantic maps of
highlights and shadows for our input images Ri. In order to
obtain a criterion to determine the status of each pixel, we
sort the measured reflectance values Ri(x,y) for each pixel,
resulting in images Pi, where P0 contains the dimmest re-
flectance for each pixel and Pn−1 the brightest. From these
pictures we select a picture P where no pixel is a highlight
nor a shadow. For an input reflectance field consisting of
n = 256 images, we found P = P230 to be a robust choice.
Based on P, shadow and highlight maps are generated in the
following steps.

4.1. Specular Highlights

The separation of highlights is done separately for each input
image Ri in several steps. At first, a binary map Mhigh

i (x,y)
encodes whether a pixel Ri(x,y) contains highlight informa-
tion or not. Initially, Mhigh

i (x,y) is 1 iff Ri(x,y) ≥ fhighlight ·
P(x,y), where fhighlight is a constant factor for all images; in
our experience, fhighlight = 2 or 4 is a good choice. Then, we
dilate Mhigh

i (x,y) with a 3×3 or 5×5 box filter, growing the
highlight regions to include possible haze around them.
Based on Mhigh

i , we generate the highlight-free images Di
by removing all possible highlight pixels from Ri and apply-
ing the hole filling algorithm by Wexler et al. [WSI04] (see
Section 6.2) to reconstruct plausible texture information re-
placing the highlights. As texture references, we use Ri and
the images for neighboring light configurations, but we re-
move potential highlight pixels. In modification to Wexler et
al.’s original algorithm, we do not perform an outlier detec-
tion, and add a term to the region lookup which favors close-
by regions, as this improves the performance of the lookup
structure.
Finally, the highlight map Hi(x,y) = Ri(x,y)− Di(x,y) is
computed as the per-pixel difference. Figure 4 illustrates the
highlight detection and removal process.

4.2. Shadow Boundaries

In contrast to the highlight maps, the shadow maps are gen-
erated not independently for each input image, but indepen-
dently for each pixel at position (x,y). We perform a region
growing on lit regions and treat the remainder as shadow.
More precisely, a shadow map Si(x,y) is generated for
all directions (θi,φi), with initially Si(x,y) = 1 for “lit”
iff Ri(x,y) ≥ P(x,y), and Si(x,y) = 0, otherwise. In or-
der to mitigate camera noise one can perform this segmen-
tation based on a prefiltered version of Ri. We then per-
form the following iterative update: Let (θi,φi) be the direc-
tion for which pixel (x,y) is currently labeled as shadowed
(Si(x,y) = 0), and (θ j,φ j) a neighboring direction for which
the pixel has been labeled as lit (S j(x,y) = 1). For image Ri,
the pixel is re-labeled as lit (Si(x,y) := 1) if the following
criterion is met: Ri(x,y) > flit · R j(x,y) We usually chose
0.66 ≤ flit ≤ 0.9. The region growing is iterated until no
more updates take place. Thus, the lit regions grow until the
difference to neighboring directions becomes so large that
linear blending is likely to fail, indicating a shadow bound-
ary at this location.
Figure 5 illustrates the detection of shadow maps. Note that
while the results may be noisy in the (x,y) domain, the
scheme is continuous in the (θ,φ) domain, where the recon-
struction later takes place.

5. Upsampling of highlight and shadow data

Before we can synthesize reflectance images Ik at the full
resolution, we need to procure estimations of the shadow and
highlight distributions for this resolution. Let Si and S j be
shadow maps, and Hi and H j be highlight maps for two in-
put images Ri, R j that have adjacent light directions (θi,φi)
and (θ j,φ j) in the mesh provided in Figure 2. In this section,
we will explain how to generate intermediate maps Sk and Hk
for the in-between direction. The full target resolution is then
later obtained by iteratively subdividing the mesh edges and
recomputing the triangulation until the desired resolution is
achieved, i.e. information is available at all red dots in Fig-
ure 2.

5.1. Upsampling Specular Highlights

The generation of Hk is rather straight-forward. We apply the
optical flow algorithm by Brox et al. [BBPWk04] both to ob-
tain a flow field from Hi towards H j , and from H j to Hi. We
clamp the HDR data of the highlights to obtain a smaller dy-
namic range, which makes matching easier. Using the flow
fields, we warp Hi and H j with full dynamic range to the
halfway position, and blend the result linearly to obtain Hk .
The flow algorithm is capable of generating very smooth
fields, which is useful for our application, as it allows to drag
highlight data along even if only neighboring parts matched.
As we segment our highlights carefully and the separated
highlight image is mostly black, this does not introduce arte-
facts.
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(a) input image R (b) detected highlight zone Mhigh (c) reconstructed texture D (d) separated highlights H

Figure 4: Separation of highlights. By intensity analysis in the input image R (a), a region of definite highlights Mhigh is
detected (b, colored in yellow) which is dilated (b, colored in red) for robustness. Texture reconstruction allows to estimate the
appearance D below the highlights (c). By subtracting D from R, the highlight layer H for this image is estimated (d). Note that
the reconstructed highlights have smooth boundaries.

R(154,172,θ,φ) R(156,172,θ,φ) R(158,172,θ,φ)

S(154,172,θ,φ) S(156,172,θ,φ) S(158,172,θ,φ)
S(x,y,θi,φi)

Figure 5: Computation of shadow maps. To the left, the top row shows a plot of acquired reflectance in polar parameterization
for three pixels (to the right of the figure’s left foot). Below, the segmentation in shadow (black) and lit (white) regions is
displayed. The image to the right shows a slice of the shadow map in image space for a fixed incident light angle (θ,φ). While
noisy in image space, the shadow computation is stable along the (θ,φ) directions.

5.2. Upsampling shadow data

For the interpolation of the shadow maps Si, we employ
the level-set blending approach of Whitaker [Whi00], which
generates intermediate shapes of level sets within images.
In contrast to optical flow, this algorithm is more tolerant
to noise in the image domain, estimating the correct move-
ment of the shadow boundaries while keeping fixed struc-
tures constant. In contrast to the original paper, we replace
the up-wind scheme for the computation of partial deriva-
tives with simple central differences, as this yields more sta-
ble results for our application. Since the level-set blending
algorithm produces continuous images even for sharply seg-
mented input data 0 or 1, we re-quantize the output again.
This produces plausible shadow boundaries for in-between
images (see the central row of Figure 6).

6. Image Synthesis

Having generated the Sk and Hk for the target resolution, we
can now synthesize the output images Rk. Let (θk,φk) be
the light direction for which the synthesis is required, and
(θa,φa), (θb,φb), and (θc,φc) be the triangle of observed in-
put directions from Figure 2 which contains (θk,φk). The
reconstruction takes three steps: first, reconstruct the diffuse
appearance Rreco

k using the estimated shadow maps, second,
regularize the estimation using IBR priors, yielding Rregular

k ,
and third, add the highlight layer Hk resulting in the recon-
struction Rk. Figure 6 illustrates the different reconstruction

steps. In the figure, the highlight map Hk has already been
added to the reconstruction results based on the shadow map.

6.1. Reconstruction Based on Shadow Maps

We first reconstruct the initial diffuse appearance Rreco
k ,

given the upsampled shadow maps S. For the construction
of Rreco

k , we need to obtain estimates for every pixel’s ap-
pearance both for the hypothesis Rlit

k that the pixel may be
lit, and for the hypothesis Rshadowed

k that it is in shadow. In
this step, the shadow maps serve two purposes: a prediction
whether a given pixel (x,y) should be shadowed or lit, and
a statement whether the input images Ra,b,c(x,y) describe
the pixel in lit or shadowed state. However, as the shadow
maps are binary and possibly imprecise, they cannot be used
directly. Instead, we compute a blurred shadow map Sk by
averaging over the 10 nearest light directions, which we use
as smooth approximation of the relative shadowness in pixel
Rk(x,y). Analogously, we also compute smoothed shadow
maps Sa,b,c, which are used for estimating the shadow state
of Ra,b,c(x,y) ; optionally, one can average over more neigh-
bors in order to be more conservative (see Figure 7).
We can now compute the values Rshadowed

k (x,y) and Rlit
k for

the appearance of Rk(x,y) both in shadowed state and in lit
state. A set of cases is possible:

1. Sa(x,y) = Sb(x,y) = Sc(x,y) = 1, i.e. all neighboring
input images have reliably observed the pixel while it
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(a) (b) (c) (d) (e) (f)

Si Hi Ri Ri Ri

Sk Hk Rreco
k +Hk Rregular

k +Hk (Ri +R j)/2

S j H j R j R j R j

Figure 6: Illustration of the reconstruction process. The bottom and top row contain information from the initial, sparse input
field. The in-between row is synthesized. By analyzing the shadow maps (a) we can obtain areas (b) where we either can locally
interpolate (gray) or need to locally extrapolate (green and red). The green area is predicted to be fully lit or fully shadowed,
the red area is the estimated location of the shadow boundary. After adding the highlight map (c), reconstruction yields a rough
picture (d) which is improved using image-based priors (e). Especially the shadow boundary is much more pleasing than in a
direct linear interpolation (f).

Sa

Sc Sk

Sb

Figure 7: Polar plot of all blurred shadow maps at a fixed
pixel position (white is lit, black shadowed, gray uncertain).
The reflectance at light direction k is reconstructed accord-
ing to the locally estimated shadow state Sk by extrapolation
from nearby fully lit (white) and fully shadowed (black) mea-
sured samples. If the shadow state of all observed conditions
a,b,c agrees, direct linear interpolation takes place.

was lit: W compute Rlit
k (x,y) using a direct interpola-

tion using barycentric coordinates α,β,γ as Rlit
k (x,y) =

αRa(x,y)+βRb(x,y)+ γRc(x,y).
2. Sa(x,y) = Sb(x,y) = Sc(x,y) = 0: Similarly, we compute

Rshadowed
k (x,y) = αRa(x,y)+βRb(x,y)+ γRc(x,y).

3. For all other cases, we extrapolate a value for Rlit
k (x,y)

(and Rshadowed
k (x,y)) by robustly fitting a linear spherical

harmonic reconstruction using two SH bands to the ob-
servations of nearby light directions, for which a lit state
(shadowed state) have been observed.

The output pixel is finally estimated as Rreco
k (x,y) =

Sk(x,y) ·R
lit
k (x,y)+(1−Sk(x,y)) ·R

shadowed
k (x,y)

Note that in cases where we reconstruct either a fully lit
pixel from fully lit neighbors, or a fully shadowed pixel
from fully shadowed neighbors, we effectively perform a
direct linear interpolation of the pixel value. This implies
that outlier pixels, which are wrongly estimated to be
shadowed or lit, but are consistently misestimated for a set
of close neighbors, tend to be robustly linearly interpolated
as well.

6.2. Regularization Using Image-Based Priors

The reconstruction explained above provides an estimate for
the output image, but this estimate may be unreliable, e.g.
due to misregistrations of shadow or interpolation defects.
The affected areas consist of pixels for which a pixel value
was computed from extrapolated reflectance data, or in the
vicinity of shadow boundaries in Sk(x,y). For these, we run
a regularization algorithm, which we will describe in more
detail below.
We have adapted the approach by Wexler et al. [WSI04]
to perform hole filling and regularization on 2D slices of a
reflectance field: The algorithm iteratively updates all pix-
els within the hole region to better fulfill the given priors:
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Let E0 be the initial estimate image a series of iterative up-
dates Ei is constructed. For each window WEi(p,q) centered
around pixel (p,q) we search for the best matching window
W Ik (s, t) centered around some other pixel in the entire set
of input images Ik based on the modified distance measure

d(WEi(p,q),W Ik (s, t)) = (2)

argmin
λ

L

∑
u=−L

L

∑
v=−L

‖Ei(p+u,q+ v)−λIk(s+u, t + v)‖2,

where L is the radius of the window. In contrast to the orig-
inal approach we search for the best matching window up
to some intensity scale λ. Since our input data is relatively
sparse the extension is necessary to find appropriate matches
for regions which change their intensity slowly due to the co-
sine fall-off under diffuse illumination. An efficient lookup
can still be achieved by normalizing the input window to
unit intensity and then searching for the nearest neighbor
using a KD-tree which is built out of normalized windows
of the input images. The distance measure is furthermore
translated into a similarity measure s(W Ei(p,q),W Ik (s, t)) =

e
−d(WEi (p,q),WIk (s,t))

2σ2 which is used in the following to update all
pixels (x,y) within the window W Ei(p,q).
Let W E

j be the set of all windows that contain (p,q). Each
corresponding matched window λW I

j yields an estimate c j
on what the final color for (p,q) should be. Using the cor-
responding similarity measures s j the update is computed as
the weighted average:

Ei+1(p,q) =
∑ j s jc j

∑ j s j
, compare [WSI04] (3)

Usually, three iterations of this algorithm are sufficient,
and using only input images for neighboring light conditions
is sufficient. The quality improvement is visible in Figures 8
and 9. Note that in most cases the image-based priors re-
move high frequency noise but do not corrupt apparent mo-
tions which is important to achieve temporal consistency.
In some cases however, the shape of some shadow edges
cannot be matched to any input image due to a missing sam-
ple with similar orientation. This can lead to slightly de-
formed shadow edges, as in the slightly too flat shadow of
the shiny sphere in the rightmost image in the second row of
Figure 9. One approach to circumvent this problem would
be to include rotated neighborhoods in the nearest neighbor
search.
Once the reconstruction is complete, the warped highlight
layer Hk is simply added to the result, thus obtaining the fi-
nal reconstruction.

7. Results

In order to demonstrate the performance of the proposed
method we constructed superresolution reflectance fields for
two different scenes: a ceramic bear with highly specular
coating (256 input images) and a second, more complicated
scene composed of a set of spheres with drastically dif-
ferent reflection and transmission properties, as well as a

Figure 8: Reconstruction results using linear interpolation
from 256 images (top row), our upsampling scheme applied
three times (center row) compared to a reference rendering
with with 10 000 input images (bottom row). Left column:
simulated extended light source with 15 degrees radius, right
column: renderings with a directional source. The linear in-
terpolation produces shadow banding and significant gaps
in the highlights. Our upsampling scheme improves signifi-
cantly on the visual quality.

champagne glass (230 input images). In both cases, the il-
lumination directions were spread equidistantly over the up-
per hemisphere. Iterating the subdivision process two times,
we synthesize about 4000 intermediate positions. The bear
data set has a resolution of 200× 196 and the sphere set of
453× 211 pixels. Timings for a contemporary PC are avail-
able in Table 1. The most expensive part of the algorithm
is the application of the texture inpainting for the highlight
segmentation and the regularization of the output. The table
lists the runtimes split into separable units. While I/O opera-
tions are considerable if the steps are split this way, it is easy
to exploit parallelization and run independent operations for
several images concurrently, e.g. on a cluster of PCs. Due to
the smaller resolution, the runtime required for the bear data
set is considerable lower. For the renderings in Figure 8, we
have only generated samples needed for the light situation,
and could therefore afford to create a supersampling of three
subdivision steps.

In Figure 8 we synthesized the superresolution reflectance
field and compare it to the result one would obtain for lin-
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direct interpolation super-resolution, no priors super-resolution with priors reference

Figure 9: Results of a complex scene with detail zoom-ins for renderings in two point light conditions (upper four rows) and in
the Galileo’s Tomb and Uffizi environment maps [Deb98]. The super-resolution reflectance field is upsampled from 230 to 3547
images, the reference has 14116 images. Our upsampling approach produces superior results compare to linear interpolation.
Applying the regularization (second column from the right) further improves shadow boundaries; for real-world illuminations,
the non-regularized version is already close in quality. Note that the reference exposes aliasing which the super-resolution
images do not show due to sub-pixel blurring during the upsampling steps.

action avg. time
initial sort for threshold image 53 sec. t
generation of the initial shadow map Si 62 sec. t
separation into highlight Hi and Di 129 sec. i
level-set blending between two shadow maps 23 sec. o
optical flow and warp for highlight map 9 sec. o
blurring of all full resolution shadow maps 7 min. t
reconstruction of one image without priors 50 sec. o
reconstruction of one image with priors < 15 min. o

Table 1: Timings for the data set in Figure 9. Processing
time either for (t)otal field, per (i)nput or (o)utput image.

ear blending and to a reflectance field captured at the full
resolution. In the right column, we illuminated the scene
from a single intermediate light direction. In the locally,
linearly interpolated image double/triple contours from the

three neighboring input images are visible which are re-
moved by our upsampling scheme. While the reconstructed
shadow boundary does not perfectly match the reference im-
age, it is still plausible and provides a sharp contour. The left
column shows the result after integrating over an extended
light source. The linear blending results in a set of clearly
separated highlights while our reconstruction shows smooth
and connected reflections of the light source. There, the dif-
ference to the ground truth is only marginal. Not only the
highlights, but also the cast shadows in the scene are recon-
structed with superior quality.

The second scene (Figure 9) contains examples for much
more complicated transport paths. The scene is rendered in
a set of environment maps. The figure demonstrates that we
synthesize intermediate reflectance samples for all illumina-
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tion directions in the hemisphere. The first column shows the
result obtained from linearly blending between the input im-
ages, the images in the center column are synthesized based
on the initial reconstruction Rreco with highlights added in.
In the third column we present results rendered with our fi-
nal reconstruction after regularization with image-based pri-
ors. The image-base priors remove noise and other artefacts
that occur at shadow boundaries in the initial reconstruction
due to imprecise shadow segmentation and labeling. The im-
proved quality due to the priors is best visible under illumi-
nation with a single point light (first two rows). When il-
luminated with a complex environment map the noise in the
initial reconstruction already averages out, and the expensive
post-processing using image-based priors might be skipped,
though the shadow boundaries are still slightly sharper in the
third column. We provide renderings of rotating environment
maps in the attached video.

We now analyze the differences between linear blending
and our interpolation algorithm. The mirror sphere in the
front reflects the environment and shows strong interreflec-
tions with the neighboring textured, slightly more glossy
sphere. Extracting and warping the highlight maps, a sharp
reflection of the environment is rendered with our approach
(second and third column) while linear blending clearly pro-
duces artefacts revealing the original input samples even on
the glossy sphere. With our method for shadow extraction,
blending and reconstruction, we are able to correctly move
and interpolate shadows avoiding the triple contours and
banded shadows that are visible in all renderings using the
linear blending. The shadow cast by the two spheres onto
the postcard moves with the light source direction while the
texture itself stays fixed.

The selection of different interpolation schemes derived
from the warped shadow maps (Section 6.2) is powerful
enough to even cope with non-trivial shadows as cast by the
semi-transparent refracting spheres in the front right and in
the back. They produce shadows tinted by the color of the
spheres and furthermore exhibit an interesting intensity vari-
ation within the shadowed regions caused by caustics. Both
the relatively diffuse caustic of the blue sphere in the front
and the sharp caustic of the sphere behind the glass are faith-
fully reproduced with our method, moving smoothly. In con-
trast, they fade in and out in the linear blend.

7.1. Limitations

We observed some artefacts in the reconstruction of the
shadow and caustics of the champagne glass. While the caus-
tics have high spatial frequency, they are relatively dim. Our
algorithm fails to detect them as highlights which need to
be flowed, and therefore produces an incorrect interpolation.
Improving on the segmentation algorithm, which is currently
based on two manually selected thresholds flit and fhighlight ,
could help in this respect.

Another problem that is mostly noticeable at grazing an-
gles is that illumination features, e.g. caustics or shadow

edges, might move too far in image space between two
neighboring measured light samples to be handled correctly
by our interpolation scheme. If there is no sufficient overlap
in the shadow regions the applied level-set blending cannot
produce the expected smooth motion. Capturing more sam-
ples in these regions would help.

The combined effect is visible for the champagne glass
under point light source illumination where the complicated
structures within in the shadow are not as expected, but they
do not show the banding effects visible in the linear blend
either. When illuminated by a complex environment map,
the artifacts are barely visible.

8. Conclusion and Future Work

In this paper we have presented a novel and powerful inter-
polation framework for 4D reflectance fields. Our algorithm
augments sparsely sampled reflectance fields by synthetic in-
termediate slices, simulating the displacement of highlights
and shadows in the image plane as the direction of incident
light changes. We have demonstrated that the augmented re-
flectance field can be used for creating realistic images both
for extended light sources and for directional light.

The method interpolates highlights, cast and attached
shadows in a plausible way, and is flexible enough to inter-
polate even non-trivial illumination effects such as shadows
cast by semi-transparent or translucent objects. As we only
use local pixel neighborhoods to determine whether a pixel
is shadowed or not, but otherwise decouple its local appear-
ance from the appearance of nearby pixels, we can precisely
maintain texture information along shadow boundaries (such
as on the postcard) without dragging it along as the shadow
moves. Our method does not require any previous knowl-
edge on the scene geometry and operates only on the re-
flectance field data. At the same time, the reduced number
of samples makes the measurement significantly faster. We
hope that these developments help to make reflectance fields
applicable to a wide range of new applications in the future.

The output of our algorithm is currently a reflectance field
of full resolution which consumes significant memory space.
As the output is deterministically generated from the sparse
input data, it is largely redundant. While it is not economical
to re-run the algorithm for each rendered illumination situa-
tion, a first step towards successful compression could be to
exploit that most pixels are computed as linear combinations
of the neighboring input images, and store their location in
a compressed mask. This could also allow for faster render-
ing times, as the integration of linearly changing reflectance
values can be sped up.

Due to the demanding computation for a full reflectance
field with up to 4000 intermediate images, we currently ap-
ply the image-based priors in a post processing step only. In
the future we plan to integrate image-based priors in every
step of the pipeline to avoid errors in the labeling and in the
estimated flow.
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