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Abstract. The measurement of accurate material properties is an important step
towards photorealistic rendering. Many real-world objects are composed of a
number of materials that often show subtle changes even within a single material.
Thus, for photorealistic rendering both the general surface properties as well as
the spatially varying effects of the object are needed.
We present an image-based measuring method that robustly detects the different
materials of real objects and fits an average bidirectional reflectance distribution
function (BRDF) to each of them. In order to model the local changes as well,
we project the measured data for each surface point into a basis formed by the
recovered BRDFs leading to a truly spatially varying BRDF representation.
A high quality model of a real object can be generated with relatively few in-
put data. The generated model allows for rendering under arbitrary viewing and
lighting conditions and realistically reproduces the appearance of the original ob-
ject.

1 Introduction

The use of realistic models for all components of image synthesis is a fundamental
prerequisite for photorealistic rendering. This includes models for the geometry, light
sources, and cameras, as well as materials. As more and more visual complexity is
demanded, it is more and more often infeasible to generate these models manually.
Automatic and semi-automatic methods for model acquisition are therefore becoming
increasingly important.

In this paper we concentrate on the acquisition of realistic materials. In particular,
we describe an acquisition process for spatially varying BRDFs that is efficient, reliable,
and requires little manual intervention. Other methods described in the literature (see
Section 2 for an overview) are either focusing on homogeneous materials, or make
assumptions on the type of material to be measured (e.g. human faces). In our work,
we measure spatially varying BRDFs without making any additional assumptions. In
particular, our contributions are

• a robust and efficient BRDF fitting process that clusters the acquired samples into
groups of similar materials and fits a Lafortune model [11] to each group,

• a method that projects every sample texel into a basis of BRDFs obtained from
the clustering procedure. This projection accurately represents the material at that
point and results in a compact representation of a truly spatially varying BRDF.

We require only a relatively small number of high-dynamic range photographs
(about 20-25 images for one object), thereby speeding up the acquisition phase.



As a result of the fitting, clustering, and projection process, we obtain a compact
representation of spatially varying materials that is well suited for rendering purposes
(see Figure 5 for an example). The method works both for objects consisting of a mix-
ture of distinct materials (e.g. paint and silver, see Figure 7), or for smooth transitions
between material properties.

In the following we first review some of the previous work in this area, before we
discuss the details of our own method. We start by describing the acquisition of the
measurement data (Section 3), explain the resampling of this data into our data struc-
tures (Section 4), the BRDF fitting and material clustering steps (Sections 5 and 6), and
finally present a method for projecting the materials into a basis of BRDFs (Section 7).
Section 8 briefly describes our rendering method. In Section 9 we present our results
and then we conclude in Section 10.

2 Related Work

The representation of real-world materials has recently received a lot of attention in the
computer graphics community. The approaches can be grouped into three different cat-
egories: light field and image database methods with static illumination, dense sampling
of the light and viewing directions to generate a tabular representation of the BRDF, and
finally the fitting of reflection models, often based on a sparser set of samples. This last
approach is the one we take and extend to spatially varying BRDFs.

In the first category, there has been a number of approaches ranging from a rela-
tively sparse set of images with a geometric model [4] over the Lumigraph [7] with
more images and a coarser model to the light field [13] with no geometry and a dense
image database. Recently surface light fields [27, 18] have become popular, which fea-
ture both a dense sampling of the directional information and a detailed geometry. In
contrast to these approaches, bidirectional texture functions [1] also work for changes
in the lighting conditions, although at very high storage costs. In our work we use an
algorithm similar to the function quantization approach proposed by Wood et al. [27] to
resample the image data into a compact representation.

The traditional approach for dense sampling of reflectance properties is to use spe-
cialized devices (gonioreflectometers), that position both a light source and a sensor
relative to the material. These devices can only obtain one sample for each pair of light
and sensor position and are therefore relatively slow.

More recently, image-based approaches have been proposed. These methods are
able to acquire a large number of samples at once. For example, Ward Larson [25] uses
a hemispherical mirror to sample the exitant hemisphere of light with a single image.
Instead of using curved mirrors, it is also possible to use curved geometry to obtain a
large number of samples with a single image. This approach is taken by Lu et al [15],
who assume a cylindrical surface, and Marschner et al. [17] who obtain the geometry
using a range scanner. Our method is similar in spirit to the method of Marschner et
al., but we are also dealing with spatially varying BRDFs and we are fitting a reflection
model rather than using a tabular form in order to achieve a compact representation.

A number of researchers have also described the fitting of reflection models to the
acquired sample data [2, 11, 22, 25, 28]. Of these methods, the ones by Ward Lar-
son [25] and Lafortune et al. [11] do not consider spatial variations. Sato et al. [22] fit
a Torrance-Sparrow model [24] to the data, and consider high-frequency variations for
the diffuse part but only per-triangle variations for the specular part. This is also the
case for the work by Yu et al. [28], which also takes indirect illumination into account.
In our work, we perform the measurements in a darkened, black room, so that there is



no indirect light coming from the outside of the object. Indirect light within the object
is assumed to be negligible, which excludes the use of objects with extreme concavities.

Debevec et al. [2] describe a method for acquiring the reflectance field of human
faces. In one part of their work they fit a specialized reflection model for human skin to
the measured data (consisting of about 200 images). Both specular and diffuse param-
eters of the reflection model can vary rapidly across the surface, but other parameters
like the de-saturation of the diffuse component at grazing angles are constant and only
apply to human skin. In our work we try to avoid making assumptions on the kind of
material we are measuring.

Several different representation have been used for fitting BRDF data. In addi-
tion to the models used for measured data (e.g. Koenderink et al. [10], Lafortune [11],
Torrance-Sparrow [22, 28], Ward [25]), Westin et al. [26] have used spherical harmonics
for projecting simulated BRDF data. In our work we use the Lafortune model because
it is compact, well suited for optimization algorithms, and capable of representing in-
teresting BRDF properties such as off-specular peaks and retro-reflection.

3 Acquisition

We obtain the 3D models with a structured light 3D scanner and a computer tomography
scanner both generating dense triangle meshes. The triangle meshes are smoothed [5,
9], manually cleaned, and decimated.

All images are acquired in a measurement lab using a professional digital camera.
An HMI metal halide bulb serves as point light source for the BRDF measurements.
The interior of the photo studio is covered with dark and diffusely reflecting felt to
reduce the influence of the environment on the measurements.

Several views of each object are captured with different camera and light source
positions. For each view we acquire three sets of images: two images to recover the
light source position, one image of the object’s silhouette to register the 3D model with
the images. We then acquire a high dynamic range image [3] of the object lit by the
point light source by taking a series of photographs with varying exposure time.

In addition, a series of calibration images of a checkerboard pattern is taken when-
ever the lens settings are changed. The calibration method proposed by Zhang [29] is
used to recover the intrinsic camera parameters. Another high dynamic range image
of a gray card with known camera and light position is taken in order to compute the
brightness of the light source.

To register the images with the 3D model we use a silhouette-based method [12] that
yields the camera position relative to the object. The light source position is triangulated
based on the reflections in a number of mirroring steel balls. The details of that approach
will be described elsewhere.

4 Resampling of Radiance Values

After acquisition of the geometric model, high-dynamic range image recovery, and reg-
istration, it is necessary to merge the acquired data for further processing. For each point
on the model’s surface we collect all available information using two data structures.

The first one is a so called lumitexel denoted by L, which is generated for every
visible surface point. Each lumitexel stores the geometric and photometric data of one
point, i.e. its position ~x and the normal n̂ in world coordinates1. Linked to the lumitexel

1hats denote unit vectors and arrows denote vectors of arbitrary length.



is a list of radiance samples Ri, each representing the outgoing radiance r of the surface
point captured by one image plus the direction of the light û and the viewing direction
v̂. û and v̂ are both given in the local coordinate frame of the surface point spanned by
n̂ and a deterministically constructed tangent and bi-normal.

A lumitexel can be seen as a very sparsely sampled BRDF. We define the error
between a given BRDF fr and a lumitexel L as:

Efr
(L) =

1

|L|

∑

Ri∈L

s · I(fr(ûi, v̂i)ui,z, ri) + D(fr(ûi, v̂i)ui,z, ri), (1)

where |L| stands for the number of radiance samples linked to the lumitexel, I(r1, r2)
is a function measuring the intensity difference, and D(r1, r2) measures the color-
difference. We introduce the weight s, to be able to compensate for noisy data (e.g. a
slightly wrong normal resulting in a wrong highlight). We always set s ≤ 1. Please
note that since r represents radiance and not reflectance, the BRDF has to be multiplied
by the cosine between the normal and the local light direction, which is uz.

4.1 Assembling Lumitexels

Collecting all radiance samples for a lumitexel requires a resampling of the input images
for the particular point on the surface. At first, one has to determine the set of surface
points for which a lumitexel should be generated. In order to obtain the highest quality
with respect to the input images, the sampling density of the surface points must match
that of the images.

n

x

Fig. 1. The correspondence between pixel posi-
tion and point position ~x on the object is com-
puted by tracing a ray through the image onto
the object. At every ~x a local normal n̂ can be
computed from the triangle’s vertex normals.

Every triangle of the 3D model is
projected into each image using the pre-
viously determined camera parameters.
The area of the projected triangle is mea-
sured in pixels and the triangle is as-
signed to the image Ibest in which its
projected area is largest. For every pixel
within the triangle in Ibest a lumitexel is
generated.

The position ~x of the surface point for
the lumitexel is given by the intersection
of the ray from the camera through the
pixel with the mesh (see Figure 1). The
normal n̂ is interpolated using the trian-
gle’s vertex normals.

A radiance sample Rj is now con-
structed for each image Ij in which ~x is visible from the camera position and the surface
point is lit by the point light source. The vectors ûj and v̂j can be directly calculated.
The associated radiance is found by projecting ~x onto the image plane and retrieving
the color cj at that point using bilinear interpolation. Note, that for Ibest no bilinear
interpolation is necessary and cbest can be obtained without resampling since ~x exactly
maps to the original pixel by construction. The radiance rj of the radiance sample Rj

is obtained by scaling cj according to the brightness of the light source and the squared
distance from the light source to ~x.



5 BRDF Fitting

In this section we will first detail the Lafortune BRDF model [11] that we use to fit
our given lumitexels. Then we will explain how this fit is performed using Levenberg-
Marquardt optimization.

5.1 Lafortune Model

BRDFs are four-dimensional functions that depend on the local viewing and light di-
rection. The dependence on wavelength is often neglected or simply three different
BRDFs are used for the red, green, and blue channel. We use the latter approach.

Instead of representing a measured BRDF as a 4D table the measured samples are in
our case approximated with a parameterized BRDF. This has two advantages. Firstly,
the BRDF requires much less storage since only the parameters are stored and sec-
ondly, we only require a sparse set of samples that would not be sufficient to faithfully
represent a complete tabular BRDF.

Many different BRDF models have been proposed (e.g. [24, 25]) with different
strengths and weaknesses. Our method may be used together with any parameterized
BRDF model. We have chosen the computationally simple but general and physically
plausible Lafortune model [11] in its isotropic form:

fr(û, v̂) = ρd +
∑

i

[Cx,i(uxvx + uyvy) + Cz,iuzvz]
Ni , (2)

This model uses only a handful of parameters. û and v̂ are the local light and viewing
directions, ρd is the diffuse component, Ni is the specular exponent, the ratio between
Cx,i and Cz,i indicates the off-specularity of lobe i of the BRDF. The sign of Cx,i

makes the lobe i either retro-reflective (positive Cx,i) or forward-reflective (negative
Cx,i). The albedo of the lobe i is given by the magnitude of the parameters Cx,i and
Cz,i. From now on we will denote the BRDF with fr(~a; û, v̂), where ~a subsumes all
the parameters of the model, i.e. ρd, Cx,i, Cz,i, and Ni. In the case of only one lobe ~a
is 12-dimensional (4 parameters for each color channel).

5.2 Non-Linear Fitting

The Lafortune BRDF is non-linear in its parameters, which means that we have to use a
non-linear optimization method to fit the parameters to the given data. As in the original
work by Lafortune et al. [11], we use the Levenberg-Marquardt optimization [20] to
determine the parameters of the Lafortune model from our measured data. This method
has proven to be well-suited for fitting non-linear BRDFs.

Instead of BRDF samples we use radiance samples as our input data, which means
we are not directly fitting the BRDF fr(~a; û, v̂) but the radiance values fr(~a; û, v̂)uz to
the radiance samples Ri in order to avoid the numerically problematic division by uz.

We also ensure that the fitting process works well and does not get stuck in undesired
local minima by initializing the fitting routine with parameters that correspond to an
average BRDF.

The Levenberg-Marquardt optimization outputs not only the best-fit parameter vec-
tor ~a, but also a covariance matrix of the parameters, which provides a rough idea of
the parameters that could not be fit well. This information is used in our splitting and
clustering algorithm, as explained in the next section.



6 Clustering

In this section we will explain how we cluster the given lumitexels so that each cluster
Ci corresponds to one material of the object. Given a set of BRDFs {fi}, each cluster Ci

consists of a list of all the lumitexels Li for which fi provides the best approximation.
Determining these clusters is a problem closely related to vector quantization [6] and k-
means clustering [14, 16], both of which work in affine spaces. Unfortunately, we do not
have an affine space when clustering BRDF samples, and we are therefore employing a
modified Lloyd [14] iteration method.

The general idea is to first fit a BRDF fr to an initial cluster containing all the data.
Then we generate two new BRDF models f1 and f2 using the covariance matrix from
the fit (explained in more detail below) representing two new clusters. The lumitexels
Li from the original cluster are then distributed according to the distance Ef1

(Li) and
Ef2

(Li) into the new clusters. We then recursively choose another cluster, split it,
and redistribute the lumitexels and so on. This is repeated until the desired number of
materials is reached, as detailed in Section 6.4.

6.1 Lumitexel Selection

The fitting procedure described in Section 5 performs a relatively large number of op-
erations per radiance sample. Thus, it is expensive to fit a BRDF using all lumitexels
(and all radiance samples contained in the lumitexels) generated by the assembling
procedure. Instead, it is sufficient to consider only a few thousand lumitexels at the
beginning. Later on, we increase the number for an accurate fit.

A first, naive approach to choosing this subset for fitting selects every n-th lumitexel
regardless of its reliability or possible contribution. However, as stated in [28] and [23],
for a robust estimation of the specular part of a BRDF it is very important to include
radiance samples within the specular lobe of the material. Unfortunately, these brightest
pixels statistically also carry the largest error.

Following these ideas we select more lumitexels in areas where a highlight is likely
to occur. These areas are determined by the surface normal, the light source position
and a synthetic BRDF with a broad highlight.

6.2 Splitting

Fitting just a single BRDF to the initial cluster of course is not sufficient if the concerned
object consists of more than one material. In order to decide which cluster to split, we
compute the following error for all clusters Cj :

E(Cj) =
∑

Li∈Cj

Efr
(Li) ∀Cj . (3)

The cluster Cj with the largest error will be split into two new clusters each with a
different BRDF. Further materials can be extracted by further splitting the clusters.

But how do we split a cluster? The BRDF fit to a cluster represents the average ma-
terial of the lumitexels in that cluster. Fitting the BRDF using the Levenberg-Marquardt
algorithm (see Section 5) will also provide us with the covariance matrix of the param-
eters. The eigenvector belonging to the largest eigenvalue of this matrix represents the
direction in which the variance of the samples is highest, and is therefore a good choice
for the direction in which the parameter space is to be split.
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Fig. 3. The complete splitting and
reclustering algorithm including the
global reclustering, which is similar
to the recluster-fit iteration, only that
all lumitexels are distributed among all
clusters.

Let ~a be the fit parameter vector of the BRDF f(~a; û, v̂) for cluster C. ~e denotes
the eigenvector belonging to the largest eigenvalue λ of the corresponding covariance
matrix. We then construct two new BRDFs:

f1(~a + τλ~e; û, v̂) and f2(~a − τλ~e; û, v̂), (4)

where τ is a scaling factor to adapt λ to a moderate value. Two new clusters C1 and C2

are generated by distributing every lumitexel Li of cluster C either to C1 if Ef1
(Li) <

Ef2
(Li), or to C2 otherwise. In the next step, f1 and f2 are fit to best approximate the

lumitexels in the new clusters.

6.3 Reclustering

Because the parameters of the BRDF fit to a multi-material cluster are not necessarily
the center of the parameters of the contained materials and due to improper scaling of
λ and other reasons like noise, the performed split will not be optimal and the two new
clusters may not be clearly separated, e.g. in the case of two distinct materials some
lumitexels belonging to one material may still be assigned to the cluster of the other
material.

A better separation can be achieved by iterating the procedure of distributing the
lumitexels Li based on Ef1

(Li) and Ef2
(Li), and then fitting the BRDFs again. The

iteration stops when the number of lumitexels in the generated cluster does not change
any more. In our experiments this reclustering operation leads to a clear separation of
materials and is done after each split. The split-recluster-fit (SRF) process is visualized
in Figure 2.

When more than two clusters have been generated by successive binary splits and
a new material is clearly distinguished, it is helpful to clean the other clusters, which
were not involved in the last split, from all lumitexels belonging to the newly discovered
material. This can be done in a global reclustering step by redistributing all initial
lumitexels Li to the cluster Cj with

j = argmin
k

Efk
(Li). (5)

And again, the BRDFs of all involved clusters have to be refit. This global reclustering
is repeated several times to clearly separate the materials. We stop this iteration when
the percentage of change is smaller than some ε, or a maximum number of iterations is
reached. The complete splitting and reclustering algorithm is depicted in Figure 3.



Fig. 4. The clustering process at work. In every image a new cluster was created. The object
was reshaded using only the single BRDFs fit to each cluster before the projection into a basis of
multiple BRDFs.

6.4 Termination of the Splitting Process

We still have to decide when to stop the splitting process. To do this we require the user
to input the estimated number of materials |M |. We stop the splitting and clustering
process after 2|M | − 1 clusters have been created. We use this additional number of
clusters to compensate for the often noisy and not absolutely accurate radiance samples
(e.g. slightly wrong normals, noise in the images, misregistration, etc.).

This means that we do not have a one to one mapping between actual materials
and clusters. This is not crucial since the projection, which we will present in the next
section, uses a weighted sum of several BRDFs to accurately represent every lumitexel.

7 Projection

As can be seen in Figure 4 the representation of an object by a collection of only a
few clusters and BRDFs make the virtual object look flat because real surface exhibit
changes in the reflective properties even within a single material. These changes cannot
be represented by a single BRDF per cluster since all lumitexels within the cluster
would be assigned the same BRDF parameters.

To obtain truly spatially varying BRDFs we must find a specific BRDF for each
lumitexel. But the sparse input data does not allow to fit a reliable or even meaningful
BRDF to a single lumitexel because each lumitexel consists of only a few radiance sam-
ples. In addition, you would need to acquire a highlight in every lumitexel to reliably
determine the specular part, as already explained in Section 6.1.

The solution is to project each lumitexel into a basis of BRDFs (see Section 7.1).
The BRDF fπi of a lumitexel Li is represented by the linear combination of m BRDFs
f1, f2, . . . , fm:

fπi = t1f1 + t2f2 + . . . + tmfm, (6)

with t1, t2, . . . , tm being positive scalar weights. This forces the space of solutions
(i.e. the possible BRDFs for a pixel) to be plausible since the basis BRDFs are already
reliably fit to a large number of radiance samples.

Given the BRDFs, the weights have to be determined for each lumitexel. Let
rj=1...|Li| be the radiance values of the lumitexel Li. The weights are found by a least
square optimization of the following system of equations using singular-value decom-
position:









r1

r2

...
r|Li|









=











f̃1(û1, v̂1) f̃2(û1, v̂1) · · · f̃m(û1, v̂1)

f̃1(û2, v̂2) f̃2(û2, v̂2) · · · f̃m(û2, v̂2)
...

...
. . .

...
f̃1(û|Li|, v̂|Li|) f̃2(û|Li|, v̂|Li|) · · · f̃m(û|Li|, v̂|Li|)



















t1
t2
...

tm









, (7)



with f̃(û, v̂) := f(û, v̂)uz. Compared to the non-linear fitting of BRDF model param-
eters (see Section 5.2), we now have a linear problem to solve with a smaller degree
of freedom and even more constraints. Above equation shows only the system for one
color channel, whereas the weights ti have to be the same for all channels. In contrast
to this, BRDF parameters would require a distinct set of parameters per channel.

The least square solution may contain negative values for some tk. But negative
weights may result in an oscillating BRDF that represents only the given radiance sam-
ple accurately but will produce unpredictable values for other viewing and light direc-
tions, we therefore set tk to zero and compute another least square solution for the
remaining t’s, until all t’s are positive. This could also be seen as a constrained mini-
mization problem.

7.1 Basis BRDFs

The next question is how to determine the set of basis BRDFs. Since the changes of the
surface properties within one material tend to be small, a distinct set of basis BRDFs is
assigned to each cluster. Therefore, it is sufficient to store just the scalar weights per
lumitexel instead of the full set of BRDF parameters.

Finding the optimal set of BRDFs f1, f2, . . . , fm, that minimizes the error

Eπ(C) =
1

|C|

∑

Li∈C

Efπi
(Li) (8)

for a cluster C, where fπi denotes the least square projection of the lumitexel Li as
defined in Equation 6, is a problem of principal function analysis (PFA) (see [27]).
Principal function analysis is closely related to principal component analysis (PCA)
with the important difference that functions fm are optimized instead of vectors. Un-
fortunately, the PFA does not reduce to a simple eigenvalue problem as PCA does. To
minimize Eπ(C), we again perform a least square optimization using the Levenberg-
Marquardt method, this time fitting m BRDFs simultaneously. Within each iteration
we recompute the projection fπi of lumitexel Li into the currently estimated basis.

As for every optimization problem the initial parameters (BRDFs) are quite impor-
tant. For a given cluster C, we use the following BRDFs as a basis:

• fC , the BRDF fit to the cluster C,
• the BRDFs of spatially neighboring clusters to match lumitexels at cluster bound-

aries,
• the BRDFs of similar clusters with respect to the material,
• and two BRDFs based on fC , one with slightly increased and one with decreased

diffuse component ρd and exponent N .

In our experiments it turned out that this initial basis together with the projection
already produces very good results with small errors. In most cases the PFA computed
almost negligible changes to the initial BRDFs. This is to be expected because the
initially chosen basis constructed through splitting and clustering already approximates
the material properties quite well.

8 Rendering

As explained in Section 4.1 we know the position of every lumitexel, as well as the
triangle it belongs to and the 2D coordinates within that triangle.



model T V L R C B 1-RMS C-RMS P-RMS F-RMS
angels 47000 27 1606223 7.6 9 6 .2953 .1163 .1113 .1111
bird 14000 25 1917043 6.3 5 4 .1513 .0627 .0387 .0387
bust 50000 16 3627404 4.2 3 4 .1025 .0839 .0583 .0581

Table 1. This table lists the number of triangles (T) of each model, the number of views (V)
we used to reconstruct the spatially varying BRDFs, the number of acquired lumitexels (L) and
the average number of radiance samples (R) per lumitexel, the number of partitioned material
clusters (C), the number of basis BRDFs (B) per cluster, the RMS error for a single average
BRDF (1-RMS), the RMS error when using per-cluster BRDFs, the RMS error after projecting
every lumitexel into the basis of BRDFs, and finally the RMS error after doing a PFA on the basis
BRDFs and projecting every lumitexel into the new basis.

This information can then be used to generate an index texture for the full object.
For every texel, that texture contains an index to the cluster it belongs to. Then we
generate a weight texture map for every cluster that stores the weights resulting from
the projection into the basis BRDFs. The parameters for the basis BRDFs of every
cluster are stored in a small table.

Raytracing such an object is very simple, since for every point on the object that
is raytraced we can simply look up the cluster the texel belongs to. Then we evaluate
the basis BRDFs for the local light and viewing direction and compute the weighted
sum using the weight texture map. So rendering basically reduces to evaluating a few
BRDFs per pixel. Another big advantage of this representation is that mip-mapping
can easily be used. Since the weighted sum is just a linear operation, the weights of
neighboring texels can simply be averaged to generate the next coarser mip-map level.

If the original images are of high resolution and hence the object is sampled very
densely, point sample rendering using forward projection is a viable alternative. It
completely avoids the generation of texture maps and the resulting data can be used
with almost no further processing. This method is used to display our results.

9 Results

We applied our algorithm to three different objects consisting of different materials with
varying reflection properties in both the diffuse and the specular part. The model of the
angels was generated by extracting an isosurface of a computer tomography scan. The
geometry of all other models was captured using a structured light 3D scanner. Some
statistics about the meshes and the number of acquired views are listed in Table 1.
Acquisition of 20 views (each needing about 15 photographs) takes approx. 2.5h. The
high dynamic range conversion and the registration with the 3D model takes about 5h
but is a completely automated task. The clustering and the final projection takes about
1.5h.

In Figure 4 you can see how five successive split operations partition the lumitexels
of the bird into its five materials. The splits were performed as described in Section 6.
Only the per-cluster BRDFs determined by the clustering process are used for shading,
making the object look rather flat. After performing the projection step every lumitexel
is represented in a basis of four BRDFs, now resulting in a much more detailed and
realistic appearance, see Figure 6.

The bust in Figure 5 shows another reconstructed object with very different reflec-
tion properties. The bronze look is very well captured.

In Figure 7 you can see a comparison between an object rendered with an acquired
BRDF (using the projection method) and a photograph of the object. You can see that



they are very similar, but differences can be seen in highlights and in places where
not enough radiance samples were captured. Capturing more samples will increase the
quality. The difference in the hair region is due to missing detail in the triangle mesh.

Another difference is due to the fact that the diffuse color of one lumitexel may
not be represented in any of the constructed clusters because the number of lumitexels
belonging to the same material can be so small that they nearly vanish in the mass of
lumitexels of the cluster they are currently assigned to. This effect can for example
be observed at the mouth of the larger angel which in reality exhibits a much more
saturated red, see Figure 7.

In Table 1 we list RMS errors computed between all the radiance samples of a
model and the reconstructed BRDFs. You can see that the error considerably decreases
when going from one average BRDF to per-cluster BRDFs and then to per-pixel BRDFs
(using projection). As already mentioned the PFA only slightly changes the RMS error.

Generally it can be said that for all the models only a few clusters were needed to
accurately represent all the materials since the projection takes care of material changes.
In our experiments even Lafortune BRDFs consisting of a single lobe were sufficient to
form good bases for the clustering and projection.

The projection method also compensates for imprecise normals, and hence no re-
fitting of the normals is needed. Using exactly reconstructed normals for example by
applying a shape-from-shading approach such as the one by Rushmeier et al. [21] may
yield even better results.

Due to the lack of a test object that had a single base color but varying specularity,
we experimented with artificially generated data. The tests proved that our clustering
algorithm is also able to clearly distinguish materials that have the same color but dif-
ferent specularity, even when noise was introduced in the data.

10 Conclusions and Future Work

We have presented an algorithm and demonstrated a system for reconstructing a high-
quality spatially varying BRDF from complex solid objects using only a small number
of images. This allows for accurately shaded, photorealistic rendering of these objects
from new viewpoints and under arbitrary lighting conditions.

The output of our algorithm also allows to modify the object’s geometry while pre-
serving material properties, since the fitted BRDFs are represented on a per-texel basis
and do not change with the geometry.

Both the number of input views required by our algorithm and the size of the out-
put data (∼25MB) are very small compared to previous approaches for representing
real-world objects, like surface light fields or reflection fields which needed up to 600
images [27].

We have demonstrated the quality and accuracy of our approach, by applying it
to different objects. The resulting spatially varying BRDFs accurately represent the
original materials.

Until now interreflections within the object are not considered, but it should be easy
to remove the effects of interreflections by simulating secondary reflection using the
results obtained by the presented algorithm, or e.g. using techniques from [19].

We also want to investigate the possibility to do hardware accelerated rendering
with the spatially varying BRDFs. Since our data can be represented as texture maps
and the Lafortune model is computationally fairly simple, this should be easily possible,
e.g. using techniques from [8] or from [27].
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Fig. 5. A bronze bust rendered with a spa-
tially varying BRDF, which was acquired
with our reconstruction method.

Fig. 6. This image shows the bird with the
spatially varying BRDF determined by projecting
each lumitexel into a basis of BRDFs. Note the
subtle changes of the materials making the object
look realistic.

Fig. 7. Left side: Photograph of model. Right side: Model with acquired BRDF rendered from
the same view with similar lighting direction. The difference in the hair region is due to missing
detail in the triangle mesh.


