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In this paper a system is presented that automatically registers and stitches textures
acquired from multiple photographic images onto the surface of a given correspond-
ing 3D model. Within this process the camera position, direction, and field of view
must be determined for each of the images. For this registration, which aligns a 2D
image to a 3D model, we present an efficient hardware-accelerated silhouette-based
algorithm working on different image resolutions that accurately registers each image
without any user interaction. Besides the silhouettes, the given texture information
also can be used to improve accuracy by comparing one stitched texture to already
registered images resulting in a global multiview optimization. After the 3D–2D
registration for each part of the 3D model’s surface the view is determined which
provides the best available texture. Textures are blended at the borders of regions
assigned to different views. c© 2001 Elsevier Science (USA)
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1. INTRODUCTION

For the past several years 3D rendering solutions have advanced in rendering speed
and realism. Because of this, there is also an increased demand for models of real world
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objects, including both the object’s geometry and its surface texture. Precise geometry is
typically acquired by specialized 3D scanners while detailed texture information can even be
captured by consumer quality digital cameras. Only a few 3D scanning devices are designed
to capture 3D geometry and 2D textures at the same time. Even if texture acquisition is
supported it may be required to take the images under controlled lighting conditions with
a special sensor implying that the object of interest has to be placed in a fully controllable
environment while taking the pictures. In cases where photos and geometry are not acquired
by the same sensor, the images must be registered with the 3D model afterward in order to
connect geometry and texture information.

For this registration task we present a hardware-accelerated algorithm that aligns an
image to the 3D model as well as to other already registered images. All stages of the
algorithm can run completely automatically. Alternatively, the user can skip some steps in
the algorithm providing a rough alignment.

2. RELATED WORK

In the field of capturing surface appearance (color and texture) of real world objects
there have been a number of recent publications ranging from architectural scenes [5, 23]
to smaller artifacts [11, 12, 14, 18, 19] and even deformable objects like faces [7, 8, 15]. To
acquire a complete texture for an object the following tasks must be performed.

2.1. Imaging All Visible Surfaces

If an object’s surface should be entirely digitized the first step is to collect data for all
visible surfaces. A set of camera positions must be determined from which every part of
the surface is captured by at least one image. For a given geometric model and a set of
possible positions Matsushita and Kaneko [12] determine the optimal set of required views
respecting the viewing angle. Further, Stuerzlinger [21] finds a minimal set of view points
within the volume of all possible camera positions. He uses hierarchical visibility links to
first determine optimal subregions using a simulated annealing approach and then selects
optimal points within these regions.

2.2. 3D–2D Registration

After taking the images the camera position and rotation relative to the 3D model must
be determined for each view. Only if geometry and texture are acquired at the same time
with the same sensor as in [19] or [17] are the images already aligned to the range images
and a pure 3D registration algorithm such as the ICP [1, 2] can be applied to align the range
images and at the same time the associated textures. In all other cases, one can basically
follow two different approaches.

The first approach selects a set of points in each image which correspond to known
points on the model’s surface. From these correspondences the camera transformation for
the current view can be directly derived using standard camera calibration techniques, e.g.,
[22]. However, the problem is to find these pairs of points. Depending on the object there
may be geometric feature points which can be easily located in the images and thus can be
detected and assigned automatically. Kriegman et al. [9] use T-junctions and other image
features to constrain the model’s position and orientation. Others attach artificial landmarks
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to the object’s surface which are detected automatically in the images [7]. But these marks
destroy the texture and have to be removed afterward. If no extraordinary points can be
detected automatically one may of course select corresponding pixels manually, which
actually is a commonly used but tedious method [5, 15, 18].

Instead of directly searching for 3D–2D point pairs, one may inspect larger image features
such as the contours of the object within each image. The correct camera transformation will
project the 3D model in such a way that the outline of the projected model and the outline
in the image match perfectly except for small errors due to imprecise geometry acquisition.

A lot of previous algorithms try to find the camera transformation by minimizing the
error between the contour found in the image and the contour of the projected 3D model
[4, 8, 10, 12, 14]. The error is typically computed as the sum of distances between a number
of sample points on one contour to the nearest points on the other [12, 14]. Another approach
computes the sum of minimal distances of rays from the eye point through the image contour
to the model’s surface which is computed using 3D distance maps [4].

To recover the different camera parameters, any kind of nonlinear optimization algorithm
such as Levenberg–Marquardt, simulated annealing, or the downhill simplex method can
be used (see [16] for an overview). During the optimization a lot of different settings for the
camera parameters are tested in order to guide the algorithm toward a minimum. For each
test the error function has to be evaluated which is quite costly for contour-based distance
measurement since the model must be projected and the point distances to the projected con-
tour must be calculated for a sufficient number of points. In Section 5 we present a different,
more efficient algorithm to calculate the distance between silhouettes instead of contours.

Besides geometry-based 3D–2D registration, the texture–image information itself may
be used to register the different views relative to each other. For 2D–2D image registration a
number of techniques have been developed [3]. Based on this pairwise registration a global
optimization for all incorporated views can be performed as demonstrated by Neugebauer
and Klein [14], whereas Rocchini et al. [18] use the image information only to align the
textures in those regions where different textures have to be blended during rendering.

2.3. Texture Preparation and Rendering

After registration the mapping from surface parameters to texture coordinates is known for
each view. A single image can be mapped onto the object by common graphics hardware
supplying projective texture mapping [20]. If multiple views are incorporated one must
determine which image is best to be mapped onto which part of the surface. Here, the
angle between the viewing direction during acquisition and the surface normal may be
considered [12, 18] or the textures are selected depending on the rendering view point
[5, 6, 17]. Special care must be taken at boundaries of surface regions which are textured
with data from different images. To create a smooth transition between the regions the
textures must be blended appropriately. Rocchini et al. [18] even precomputed this blending
into a new texture to speed up the entire rendering process. Additionally, all relevant parts
of the original images are packed into one single large texture to provide easier handling.

3. OVERVIEW AND CONTRIBUTIONS

Out of the set of different tasks necessary to acquire a complete texture mentioned in the
previous section, we present new solutions for the following ones:
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• single view registration based on silhouettes (Sections 5 and 6)
• global registration of multiple views with respect to image features (Section 8)
• view-independent assignment of surface parts to the images providing the best

texture for the single part (Section 7)
• blending between textures at assignment boundaries (Section 7).

Although we briefly explain all necessary steps from image acquisition to rendering of
the textured model, the main focus within this paper is on novel techniques for image
registration.

4. CAMERA TRANSFORMATION

During registration we have to determine the camera setting for each image that maps it
correctly onto the 3D model (Fig. 1). In our system a pinhole camera model is assumed.
Up to seven camera parameters are recovered: the field of view, which is the only intrinsic
parameter and is related to the focal length, and six extrinsic parameters describing the
camera pose and orientation. All other intrinsic parameters such as aspect ratio, principal
point, or radial lens distortion are assumed to be constant and known since they can be
obtained easily using common camera calibration tool kits, or they are simply ignored and
set to reasonable approximate values.

The camera position is expressed by the translation vector tc ∈ R
3, while the orientation

of the camera is described by (φx , φy, φz), the rotation angles about the coordinate axes,
which form a 3 × 3 rotation matrix R. These extrinsic parameters determine a rigid body
transformation that maps a point in world coordinates xw ∈ R

3 into camera coordinates
(xc, yc, zc)T :


 xc

yc

zc


 = Rxw + tc. (1)

For a camera far away from the object this representation has the disadvantage that a
small rotation around the camera results in a large displacement of the object in camera
coordinates. If the point xw is instead rotated around the center of gravity g of the object
the effects of rotation and translation are much easier to distinguish, thus simplifying the
optimization [14]. The translation is now given by t = Rg + tc which actually is the position

FIG. 1. Recovering the camera parameters for one image (left) allows the corresponding 3D model to be
rendered from exactly the same view (right).



SILHOUETTE-BASED TEXTURE REGISTRATION 249

of the center of gravity in camera coordinates.


 xc

yc

zc


 = R(xw − g) + Rg + tc = R(xw − g) + t (2)

To fully describe the camera transformation the points (xc, yc, zc)T are further mapped to
2D image space (u, v)

(
u
v

)
=
(

u0

v0

)
+ 1

zc

(
F
α

xc

Fyc

)
, (3)

where (u0, v0) is the principle point (in our case the center of the image), α the aspect ratio
of width to height which must be provided by the user, and F the focal length. F is related
to the field of view f by F = cot f

2 . Thus, the camera transformation is determined by f
and the vector π = (φx , φy, φz, tx , ty, tz)T . For each image these seven parameters have to
be recovered by a nonlinear optimization of a similarity measure comparing the projected
model to the object found in the image.

5. SIMILARITY MEASURE

Since we want to optimize seven parameters (φx , φy, φz, tx , ty, tz, f ) we define a function
s : R

7 → R which returns a scalar value for the specified camera transformation expressing
the similarity of the projected model and an image, i.e., with a small value indicating high
similarity while the value increases when the projected model and the image are misaligned.
As this function s will be evaluated quite often during the optimization process it is necessary
that it can be computed very quickly.

At first we have to define in which way we want to measure the similarity, which feature
space is to be used. Since the 3D geometric model does not yet carry any color information
we are restricted to geometric properties. In contrast to Neugebauer and Klein [14] and
Matsushita and Kaneko [12] who compared the contour of the projected model to the
contour in the image, we decided to directly compare the silhouettes, which requires less
computation. A silhouette is the object projected onto a plane filled with uniform color
while a contour is the outline of the silhouette.

5.1. Segmentation

When rendering the model for a given view the silhouette can be generated simply by
choosing a uniform white color in front of a black background. Extracting the contour
instead of the silhouette would require further processing which we can avoid.

To compare silhouettes the second silhouette must be extracted from the image data. If the
object is captured in front of a black background the image can be segmented automatically
by histogram-based thresholding. The threshold is chosen directly after the first peak in the
histogram which corresponds to the number of very dark pixels. If the contrast between the
object and the background is too low (as in less controllable environments) other image
processing techniques must be applied. For example the semi-automatic algorithm presented
by Mortensen and Barret [13] may be used to trace the contour in the image which afterward
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FIG. 2. Measuring the difference between the photo (left) and one view of the model (right) by the area
occupied by the XORed foreground pixels.

can be filled automatically. This segmentation has to be done only once for each image before
starting the actual optimization and thus user interaction seems acceptable in rare cases.

5.2. Silhouette Comparison

After extracting the silhouettes some kind of distance measurement between the silhou-
ettes has to be defined. The technique presented here can be carried out completely by the
use of commonly available graphics hardware supporting histogram evaluation.

The first step renders the silhouette of the projected 3D model into the framebuffer. The
result is then combined with the segmented image using a per-pixel XOR-operation. This
process is visualized in Fig. 2 where the silhouettes are computed for the photo and for one
view of the 3D model and combined afterward. After the XOR-operation exactly the pixels
between the outlines remain white. Their number can be counted by simply evaluating
the histogram of the combined image which is computed very efficiently by the graphics
hardware. For exact matches a value close to zero will be returned while the number of
remaining pixels will be much larger if the rendered view of the model is different from
that in the photo.

The computation time for the similarity measure is dominated by two quantities. The
more important one is the resolution selected for rendering since each pixel of the XORed
image will be processed during the computation of the histogram. The other quantity is the
complexity of the 3D model in terms of the number of geometric primitives that have to be
rendered to produce the model’s silhouette.

5.3. Blurred Silhouettes

Until now, we have considered monochromatic silhouette images with a sharp transi-
tion between the intensity of pixels belonging to the object and those belonging to the
background. Suppose there are two sharp intensity transitions that are slightly displaced as
depicted in Fig. 3a. With increasing displacement, the integral of the differences of the two
curves grows linearly while the differences are either one or zero. This exactly corresponds
to the result of the presented similarity measurement based on XORed monochromatic
silhouettes.
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FIG. 3. (a) The integral of differences between a sharp intensity edge and the same edge slightly displaced
(dashed) is proportional to the displacement. (b) Blurred edges also produce a linear distance measure. However,
the differences between blurred edges can be squared before integration approximating a quadratic measurement
(white line).

However, a measurement that is proportional to the squared distance between points
on the outlines would be more desirable. In particular, we would like to have a measure
that introduces some notion of distance of points on one silhouette to points on the other
silhouette, penalizing points far away from the other silhouette much more than points
close to it. For arbitrarily large distances we cannot compute this error term efficiently, as
this would require an extensive search for the closest point on the other silhouette (one-
sided Hausdorff distance). For smaller distances, we can compute the square distance metric
simply by blurring the silhouette and then performing the same operations as above, counting
the various distances for the individual pixels using a histogram. As can be seen in Fig. 3b,
even for blurred transitions the integral of the differences between the curves is proportional
to the displacement. However, in this case the magnitude of the differences is also linear to the
displacement in regions where the transitions overlap. These differences can be squared prior
to the integration. This way, a quadratic distance measurement is approximated for edges
as long as the displacement of the edges is smaller than the size of the filter kernel applied
to blur the edges. Larger displacements are emphasized compared to smaller ones. This
behavior can guide the optimization algorithm faster to the minimum. However, computing
the differences between blurred images is slightly more expensive than just applying the
XOR-operation and one can decide if it is worth the cost (see Section 9).

To blur the silhouettes an n × n low-pass filter is applied (e.g., Gaussian). While this
is no problem with respect to the photo since it is done before the optimization, the
silhouette of the projected 3D model must be filtered again for each view. Although convo-
lution can be computed by the graphics hardware, it requires processing the entire frame-
buffer and thus slows down the evaluation of the similarity measure. After blurring the
silhouettes the absolute difference values between them must be computed on a per-pixel
basis. A special OpenGL extension allows us to compute the positive difference of the
framebuffer contents and an image by specifying a particular blending equation. Since only
positive values are computed while negative values are clamped against zero we first render
the silhouette of the 3D model minus the photo into the red channel and then the photo
minus the 3D model’s silhouette into the green channel of the framebuffer as can be seen
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FIG. 4. XORed sharp silhouettes (left) and subtracted blurred silhouettes (right).

in Fig. 4. The histogram of the red and of the green channel are then combined to obtain
the sum of the absolute values, and the approximate quadratic distance is computed.

5.4. Erroneous Pixels

For real photos the defined similarity measure will always return values much larger than
zero no matter how close the determined view comes to the original view of the photo.
There are always some pixels of the silhouette in the photo which are not covered by the
projected 3D model or vice versa, originating from different sources of error. On one hand
the 3D model may be somewhat imprecise due to the acquisition. There may be even parts
of the object visible in the image which are not part of the 3D model. On the other hand
some pixels in the image may be wrongly classified by the automatic segmentation due
to unfavorable lighting conditions. Additionally, in some views parts of the object will be
hidden by other objects.

There are several possible ways to deal with these erroneous pixels: If the regions of
erroneous pixels do not penetrate the silhouette of the object such as holes within the
silhouette or bright regions in the image apart from the object (Fig. 5a) the optimiza-
tion is not affected since these pixels only add a constant bias to the histogram. If er-
roneous pixels disturb the outline they may lead to slight misregistration (Fig. 5b). But
the error may be corrected afterward by comparing the registered texture to the texture
of other views as explained in Section 8, or it may simply be ignored if it is only small.
In cases where larger regions of the silhouettes are corrupted the erroneous pixels can be
masked out and the histogram is evaluated only over those regions which provide reliable

a) b)

FIG. 5. Large regions of wrongly segmented pixels apart from the silhouette (a) and penetrating the
silhouette (b).
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information. However, masking out the bad regions requires user interaction and thus should
be avoided.

6. NONLINEAR OPTIMIZATION

Let us assume a similarity measure s as defined in the previous section. To recover
the correct transformation for a given image we have to find the pair pmin = (πmin, fmin)
that minimizes s. Since s typically is nonlinear and possesses several local minima, an
appropriate optimization method must be applied. We chose and extended the downhill
simplex method as it is presented in [16]. Other optimization techniques may be used as
well but we found the simplex method easy to control. Furthermore, it does not require
any partial derivatives, which makes it very efficient, even if the cost for evaluating the
similarity measure is high, as in our case.

Since the original simplex method tends to converge too fast to local minima we extended
it by some aspects similar to simulated annealing.

The simplex method for N dimensions takes N + 1 sets of camera parameters pi (the
vertices of a simplex) and evaluates the similarity measure s(pi ) for each set. Then it tries to
find a better solution for the currently worst phi by testing a set of positions: phi is reflected
through the opposite face of the simplex and even further displaced in the same direction
if a better result can be achieved. If this fails phi is gradually pulled toward the center of
the simplex. If the solution could not be improved by these steps Press et al. [16] propose
a contraction of all points toward the best point which unfortunately makes the method
converge too fast to a local minimum. Therefore, we instead place phi randomly within
an adaptively decreasing radius around the best point based on the distance between the
remaining vertices. This radius corresponds to the temperature in simulated annealing. The
system is cooled down quite slowly, thus decreasing the speed of the optimization while
increasing its stability.

6.1. Hierarchical Optimization

The algorithm still converges very quickly to a minimum that is not necessarily the global
minimum. In order to find the global minimum we restart the optimization process several
times. Hereby, the minimum found by the previous optimization is used as the next starting
point. The radius of the initial simplex is of course reduced before each iteration to speed
up the convergence. The optimization is stopped if it converged to the same minimum for
the second time.

Another method to speed up the optimization and even to increase robustness is to run the
optimization at different image resolutions. As pointed out in Section 5 the evaluation time
for our similarity measurement depends on the used image resolution since the histogram
has to count all pixels. Starting with low resolution the view can be approximated roughly
but very quickly. For accurate registration the resolution is increased. At the same time also
the tessellation of the object can be varied to gain a speedup. In our implementation we just
used two different resolutions.

6.2. Generating a Starting Point

For the optimization it is important to have an appropriate starting point. A starting value
for the field of view can be derived directly from the focal length of the applied lens which is
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reported by some digital cameras. This typically will not be the correct focal length since it
is slightly changed by selecting the focal distance. Assuming that the entire object is visible
in the image, an initial guess for the distance can be computed using the field of view and
the size of the object. The x and y displacements are initially assumed to be neglectable.

What remains is to make a guess for the orientation. This is done by sparsely sampling the
space of possible angular directions. We try three different angles for φx and four for both
φy and φz , yielding 48 samples. From each of these samples we start the simplex algorithm
running at a rather low resolution and stop after a few evaluations of the similarity measure.
The best five results are selected and further optimized, this time allowing more evaluations
at the same resolution. It turned out that the best of the computed minima is already quite
close to the one we are searching for. With this value the final optimization can be started.

Of course the generation of the starting point takes some time, but it does not require
any user interaction. Especially, there is no need to select pairs of corresponding points.
However, time can be saved by manually moving and rotating the 3D model very roughly
into a position similar to the photo.

For a fixed field of view the following steps are performed to recover the translation
vector t and the rotation R given by φx , φy, φz : generate a starting position automatically
like described above or select it manually and run the simplex method twice at low image
resolution and then twice at the final resolution.

6.3. Optimizing the Field of View

Given the optimized π , the field of view fstart obtained from the camera, and the result of
the similarity measure s(π, fstart) we now try to find the best field of view fmin that further
minimizes s(π ′, fmin) where π ′ is only slightly changed compared to the previous π . This
problem is a search in only one dimension for which we implemented a simple algorithm.

Let us start with f set to fstart. At first f is increased by an amount d yielding a new f ′.
All other parameters are simply copied from π to π ′. Then the distance tz in π ′ is updated
to compensate for the change in the field of view in such a way that the size of the projected
object approximately remains the same for the new f ′. To π ′ and f ′ the simplex method is
applied allowing only a few evaluations of the similarity measure. This yields an optimized
parameter set π ′

opt . This optimization is necessary to slightly correct π ′ since a wrong field
of view will lead to a wrong registration in the other parameters, too. If by increasing f a
better field of view was found (s(π ′

opt , f ′) < s(π, f )) the field of view is increased and the
algorithm is repeated, starting with (π ′

opt , f ′). Otherwise we divide the increment d by two,
step back to the predecessor of the last field of view, and proceed with the search until d is
sufficiently small. If no better field of view can be found by increasing fstart the algorithm
is just applied to the other direction, decreasing fstart.

Using this algorithm it is possible to determine the best field of view for each photograph
independently. This allows selecting a different focal distance or even different lenses for
each view in contrast to previous approaches in which the field of view had to be fixed
[12, 14].

7. TEXTURE STITCHING

After determining the correct viewing parameters for an image, it can be stitched as
a texture onto the surface of the 3D model. In this section a triangular mesh is assumed
although the presented ideas can easily be adapted to other surface representations as well.
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7.1. Single View Processing

Given the viewing transformation the set of visible vertices of the 3D model can easily
be determined either by casting a ray from the view point to the vertex and testing for
occlusion or by a simple z-buffer depth test. For all visible vertices a texture coordinate into
the image is computed by projecting the vertex into the image plane using the recovered
camera transformation. Additionally, the viewing angle (angle between the vertex normal
and the viewing direction) is determined for each vertex using the averaged normal of the
surrounding triangles. From these data the set of usable vertices is derived. A vertex is
declared valid only if the viewing angle is smaller than 85◦, the depth variation around that
point is not too steep, and the point does not lie exactly on the outline of the projected object.
Using this criterion texture mapping artifacts can be avoided when viewing the textured
object from views other than the determined one.

Based on the set of valid vertices those triangles can be selected for which reliable texture
information is available. A triangle is used only if all its vertices are valid.

7.2. Combining Multiple Textures

If multiple images are involved, the sets of valid triangles will overlap and the best
assignment of triangles to images must be determined. A static decision can be again made
by inspecting the angle under which the triangle is seen in each image. Each triangle is
assigned the texture from that image in which it possesses the largest viewing angle.

There will be triangles that are assigned to one image while an adjacent triangle is assigned
to another image (Fig. 6a). This often results in a visible discontinuity in the texture even
if the images are taken without changing the lighting conditions. A smooth transition is
achieved by blending between the textures across the border triangles. This requires all
boundary triangles to be valid also for adjacent textures. To ensure this the set of valid
triangles for each image is reduced prior to the assignment to the images. All those triangles
are invalidated which have at least one invalid triangle as their neighbor.

Next, the triangles must be determined across which to blend. All triangles containing
a boundary vertex are possible candidates for the blending (Fig. 6b). They are rendered
once for each adjacent texture using appropriate alpha values at the vertices to gain correct
blending. The assignment of alpha values for each vertex for each image is as follows.
For each boundary vertex it is decided in which image it is best represented. For the best
image the vertex is assigned an alpha value of one, while for all other images it is set to
zero. For all surrounding vertices that are not boundary vertices the alpha value is set to
one if the vertex belongs to a triangle that was previously assigned to the current texture
(Fig. 6c).

a) b) c)

FIG. 6. (a) Adjacent triangles textured using different images. (b) Possibly blended triangles shaded gray.
(c) Each boundary vertex is assigned to one image and textures are blended.
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Rendering the textured triangles with these alpha values results in a smooth transition.
Unfortunately, the blending takes place across the width of only one triangle. If the object
is finely tessellated the blending area will become rather small and contrasting textures are
still not sufficiently separated. This problem can be solved by computing the blending on
an object with coarser tessellation and assigning interpolated alpha values to the vertices of
the fine subdivided mesh.

7.3. Organizing the Texture

Blending between the different images during rendering is of course cumbersome because
it must be recomputed for every new view. Some of the triangles have to be rendered up
to three times with three different textures requiring different sets of texture coordinates
for each texture. Therefore, it is more practical to precompute the blended texture for each
border triangle and store it into a new texture allowing it to render all triangles within just
one pass.

This leads to a considerable number of small images, one image per blended triangle.
Instead of using a large number of images, meaning a large number of textures, we copy the
relevant parts of the original images and the blended texture triangles into a large texture as
demonstrated in Fig. 7. A similar technique has also been applied by Rocchini et al. [18].

Unfortunately, the texture patches belonging to triangles adjacent in the mesh are not
necessarily neighboring in the resulting texture. To enable correct bilinear texture filtering
across the shared edges of the triangles during rendering one must providing a border of at
least one additional pixel around each texture triangle.

In addition to this filtering problem, the shared vertices need two different sets of tex-
ture coordinates for the triangles. Since rendering is much easier when only one texture
coordinate is assigned to each vertex we double those vertices and assign different texture
coordinates to each of the copies. Then, the first triangle is constructed using the origi-
nal vertices and the second using the copies. Introducing copies of vertices unfortunately
destroys the topology of the mesh.

FIG. 7. All image information of three images packed into a single texture. The texture consists of the relevant
rectangular regions of the original images and of the blended textures for single triangles. (Although the final texture
consists of 15 images, only three pictures were considered in this case to better visualize the layout of original
image parts and blended triangles.)
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By selecting the relevant rectangular regions of the original images and by intelligent
packing the size of the resulting texture can be significantly decreased. Additionally, having
just one texture facilitates representing the textured object using standard formats as
VRML.

8. MULTIPLE VIEW REGISTRATION

When the texture is combined from multiple views a slightly misaligned image can pro-
duce visible artifacts since image features blended between two images may not be aligned.
The circumstances which can lead to misalignment when only one view is considered are
mentioned in Section 5. If we have multiple already registered views an additional similarity
measurement stex can be defined which does not compare silhouettes but the texture of one
view to the texture obtained by another view. This results in a global optimization taking
into account all views.

8.1. Texture Comparison

Given the parameters (π1, f1) and (π2, f2) of two registered views and the sets T1 and T2

of valid triangles, the quality of the registration can be measured by comparing the textures
mapped, one in turn, onto the set of overlapping triangles T1 ∩ T2. The triangles are rendered
from the view specified by the averaged parameters ((π1 + π2)/2, ( f1 + f2)/2). Choosing
the averaged view results in a similar loss of quality due to distortion and resampling in
both textures.

In the case of a perfectly diffuse surface the textures mapped onto T1 ∩ T2 will look
identical, whereas specularity leads to view-dependent highlights which occur in different
locations on the surface for different views. To get less view-dependent textures the color
images are transformed into the HSV color space which separates the brightness (value) from
the hue and the saturations. Only the hue and/or saturation channel are used for comparison
to avoid the influence of view-dependent brightness. Of course, other methods can also be
applied to create view-independent textures such as the one presented in [14], but they tend
to be more expensive. However, the hue channel of the two textures can now be compared
like the intensity values of two different blurred silhouettes in Section 5. At first, the positive
difference of the first texture minus the second texture is rendered into the red channel of the
frame buffer and then the reversed difference is rendered into the green channel. Summing
up the histogram weighted by the difference values yields a value that becomes minimal
when the two views are perfectly aligned. This measure stex(π1, f1, π2, f2) allows us to
register multiple views with respect to each other.

8.2. Iterative Global Optimization

A registration of multiple views starts with the separate registration of each view based
on the silhouette as described in Section 6. After the single-view registration the sets of
valid triangles are determined and texture coordinates are computed for the vertices. For
each pair of views (i, j) the set of overlapping triangles Ti ∩ Tj is determined and the
averaged parameters (πi j , fi j ) are calculated. For these pairs an initial measurement si j =
stex(πi , fi , π j , f j ) is evaluated.
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FIG. 8. Comparing registration results: Due to an inexact 3D model or disturbed silhouettes, the purely
silhouette-based registration leads to artifacts in the texture (left). Global optimization using texture comparison
results in a better alignment of the features (right).

Successively each view i is selected and the set of other views Vi is determined which
are sharing overlapping triangles with i . We can now optimize the following function:

smultiview(πi , fi ) =
∑
j∈Vi

stex(πi , fi , π j , f j )

si j
. (4)

Again, the extended downhill simplex method presented in Section 6 can be applied, this
time calculating new texture coordinates and evaluating smultiview(πi , fi ) for each try. Since
the changes in πi are expected to be rather small a simplex with small radius is constructed
around πi and the optimization is already stopped after a few evaluations of smultiview.
Iterating this process several times over all views until no further updates are performed
will produce the best possible registration regarding the surface textures.

One result of this approach is shown in Fig. 8 where you can see the result of the purely
silhouette-based registration on the left and the globally optimized registration using texture
comparison on the right. Note the better quality of the dark line across the wheel which is
now continuous.

9. RESULTS

The presented methods were applied to two different objects, a bird and a moose. The
models were acquired using a Steinbichler Tricolite 3D scanner. The bird’s model consists
of around 7000 triangles while the moose is tessellated more finely with nearly 11,000
triangles. The images were taken with a Kodak DCS 560 digital camera that yields an
image resolution of 3040 × 2008 pixels which we reduced to 1024 × 676 since the applied
graphics hardware cannot deal with larger textures. We run the optimization on a SGI Octane
equipped with a MXE graphic board containing 8 Mbyte of texture RAM.

In Fig. 9 the results after automatic registration and stitching of several images onto the
models are shown and compared to real photos that were not used for generating the texture.
The moose texture consists of 15 different images taken with two different lenses and at
different object distances. The bird was textured using only 10 images.

The synthetic results compare really well to the photos although two kinds of artifacts are
visible. At the top of the antler some triangles are not textured because they are too close to
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FIG. 9. Novel viewpoint. Left column: photo that was not used to generate the texture. Right column: synthetic
model rendered with the generated textures.

the outline in each incorporated image. Due to imprecise geometry some of their vertices
are wrongly classified to be outside of the silhouettes and the triangles are discarded.

The other artifacts are due to the nondiffuse surface reflectance. Even though the position
of the lights was not changed during the acquisition, specular highlights result in brightness
differences among the acquired images as can clearly be seen in Fig. 10a. To further reduce
these lighting artifacts a purely diffuse texture would have to be computed incorporating
samples from all acquired pictures.

The precision of the presented algorithm is visualized in Fig. 10a where the right front
wheel of the moose is shown. The wheel is actually textured by at least six different images.
Although the texture of the wheel is composed using several different views, the fine lines
of the wood’s structure are completely preserved, indicating a very accurate registration.

FIG. 10. Texture alignment. View of the right front wheel. Several textures are so accurately aligned that even
fine lines in the wood’s structure are preserved.
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TABLE 1

Average Value and Variance Value of the Recovered Camera Parameters and the Required Time

Applying the XORed and Blurred Silhouette Matching Algorithm for Different Resolutions

Mode x · y Value tx ty tz φx φy φz sec.

XOR 500 × 330 avg 7.4756 −5.5169 704.69 −118.956 −43.5465 −119.326 40
var 0.0059 0.0065 1.9769 0.4664 0.0864 0.2826

XOR 1000 × 660 avg 7.5548 −5.5596 706.19 −119.32 −43.519 −119.719 130
var 0.0034 0.0030 2.4188 0.2151 0.0938 0.1547

Blurred 500 × 330 avg 7.2606 −5.6441 706.57 −117.479 −43.0215 −118.237 39
var 0.0007 0.0042 0.1653 0.0381 0.0163 0.03054

Blurred 1000 × 660 avg 7.3034 −5.6764 706.66 −117.667 −43.0383 −118.386 104
var 0.0041 0.0009 0.3010 0.1582 0.0676 0.1501

Note. The optimization has been started several times from different positions.

When comparing the XOR and blurred matching methods, it can be seen from Table 1
that the blurred silhouette method leads to superior results. The variance of the recovered
parameters is generally decreased, often by one order of magnitude. From our experiments,
it could also be observed that although the computation of the similarity measure is com-
putationally more expensive, the optimization converges more quickly for nonideal starting
points.

Table 2 lists the time (in seconds) needed for the registration task of the bird and moose
models. The registration of the bird took around 28 min, while the moose took 64 min since
more texture information and a more complex geometric model were used and the resolution
used for the final optimization was increased (bird, 500 × 300; moose, 800 × 528). The
images are first loaded and processed to extract the silhouettes, then a starting point for the
optimization is generated, the optimization is run for recovering the position and orientation,
the field of view is determined, and finally the textures are stitched onto the model. Most
of the time is spent finding an appropriate starting position and determining the field of
view.

Time could be saved by manually selecting a good starting position. However, it turned
out that the optimization of the pose and orientation after manual alignment consumed
more time (around 1 min) since the starting point for the optimization is not as precise as
the automatic method. Further time could be saved by fixing the field of view during the
acquisition, since in that case the field of view has to be determined only once.

Most of the results presented so far were computed without using the texture-based mul-
tiview optimization (see Section 8). It turned out that the purely geometry-based registration

TABLE 2

Registration Timings (in seconds) for the Bird and the Moose

Image proc. Start pos. Opt. FoV Stitching Total

Bird
10 images 235 826 239 365 12 1677
Average 23.5 82.6 23.9 36.5 1.2 155

Moose
15 images 359 1660 536 1250 21 3826
Average 23.9 110.6 35.7 83.3 1.4 255
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already produces results of very high accuracy. However, in cases where some of the input
images are misaligned (see Fig. 8) it is worth spending additional time on the texture-based
matching since it corrects for inaccuracies in the silhouettes if the texture contains enough
features.

Comparing textures may also help to correctly register the textures of symmetric objects
where the silhouette-based optimization can fail, e.g., for registering a sphere some manual
work is required at least to provide a meaningful starting point for the optimization.

10. CONCLUSIONS

We have described a number of novel techniques to register and to stitch 2D images
onto 3D geometric models. The camera transformation for each image is determined by
an optimization based on silhouette comparison. If the resulting alignment is not accurate
enough, further optimization based on texture information is possible. Using the recovered
camera transformation, the image is stitched onto the surface. Finally, for multiple views,
an algorithm is presented that produces smooth transitions between textures assigned to
adjacent surface regions on the model.

The presented methods do not require any user interaction during the entire process. They
work efficiently, exploit graphic hardware features, and result in very accurately aligned
textures. Differences in the brightness due to specularity are still visible. To further improve
the quality of the results, the reflectional properties of the surfaces would also have to be
considered or the algorithm would need to blend between the textures depending on the
selected view point.
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