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Abstract

Digital movie cameras only perform a discrete sam-

pling of real-world imagery. While spatial sampling

effects are well studied in the literature, there has

not been as much work in regards to temporal sam-

pling. As cameras get faster and faster, the need

for conventional frame-rate video that matches the

abilities of human perception remains. In this ar-

ticle, we introduce a system with controlled tem-

poral sampling behavior. It transforms a high fps

input stream into a conventional speed output video

in real-time. We investigate the effect of different

temporal sampling kernels and demonstrate that ex-

tended, overlapping kernels can mitigate aliasing

artifacts. Furthermore, NPR effects, such as en-

hanced motion blur, can be achieved. By applying

Fourier transforms in the temporal domain, we can

also obtain novel tools for analyzing and visualizing

time dependent effects. We demonstrate the effect

of different sampling kernels in creating enhanced

movies and stills of fast motion.

1 Introduction

Today’s cameras are able to capture scenes at frame

rates far exceeding human visual requirements.

These high-speed cameras have so far been used

mainly for machine vision applications, but now

gain prevalence as consumer devices. We feel that

there is a new opportunity to use these cameras for

computational videography. Specifically, we show

that even if the output is intended for a human au-
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Figure 1: Processing pipeline of the proposed cam-

era system.

dience, we can exploit the captured high frequency

signal to present improved videos at common frame

rates (≈ 60Hz).

Historically, video and film cameras have per-

formed a rather simple temporal filtering: each sin-

gle frame integrates the exposure of a different,

non-overlapping time period. Depending on the

shutter shape and its movement characteristics (as

in rolling shutters), the recorded video will create

a different viewing experience. The most promi-

nent temporal artifacts are the wagon-wheel effect

and non-continuous motion of fast moving objects.

These effects can only be removed if temporal pre-

filtering is applied prior to sampling the animation.

In this article, we will discuss the construc-

tion of an optimal sampling filter given the char-

acteristics of the output device, and will present

a novel computational imaging system which per-

forms real-time temporal pre-filtering to dampen

temporal aliasing. The system allows for tempo-

rally overlapping filters, which are a prerequisite for

successful anti-aliasing. As the shape and extent

of the temporal filter in our system can be chosen

arbitrarily, we can perform different filtering oper-

ations, e.g. optimally pre-filtering for a given out-

put kernel or artistically emphasizing or modulating

motion blur. Furthermore, we can apply specialized
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filter banks for analyzing the signal in the Fourier

domain, in order to understand and enhance video

content based on its temporal behavior, e.g. empha-

sizing or deemphasizing motion.

Our system consists of a high speed camera cou-

pled to a high performance GPU. We demonstrate

online recording and processing of 500 Hz input

video at 1 MPixel mapped to a 60 Hz output. While

the necessary compute power is currently provided

by a GPU, FPGAs in consumer cameras are already

close to being able to perform the proposed filtering

inside a single device.

Our main contributions are:

• a discussion of temporal sampling with pre-

filtering and reconstruction for videography

(Section 3),

• a prototype system that performs real-time

temporal filtering with overlapping kernels of

arbitrary shapes (Section 4), and

• a Fourier camera that can perform online im-

age processing in the temporal Fourier domain

(Section 5) such as frequency analysis and mo-

tion enhancement.

We demonstrate the following real-time applica-

tions: suppression of temporal aliasing in videos,

non-photo realistic motion blur for videos and still

images, and real-time Fourier-space processing.

2 Related Work

Motion Blur. In the context of rendering, temporal

effects have been analyzed to remove aliasing by

distributed sampling [7, 17], to speed up the com-

putation of animation sequences by frame-less ren-

dering [3], and to faithfully create motion blur with

photon mapping [5], to name a few. They can be

synthesized using the accumulation buffer [11].

For video cameras, a simple way to create mo-

tion blur is to blend successive frames. However,

this reconstruction kernel is not optimal. Brostow

and Essa [4] proposed a method to add motion blur

to stop motion animations by estimating the opti-

cal flow between the two images and then smearing

the pixel colors along the trajectories. The analy-

sis of optical flow and image alignment has been

further used to correlate the acquired image sam-

ples over time, reducing noise in low-light condi-

tions [1, 21], and to estimate and extend the mo-

tion in a scene [13]. Hardware solutions for online

spatio-temporal filtering for noise reduction using a

spatio-temporal bilateral filter over a small window

have been proposed as well. All these techniques

are based on a regularly sampled video stream with-

out altering the temporal filtering characteristic of

the camera. The generated output significantly de-

pends on the performance of the optical flow esti-

mation. In our setup, we change the temporal filter

kernel in order to produce the desired effect rather

than relying on image-space vision algorithms.

Techniques for temporal filtering. The temporal

filtering characteristics of a camera can be changed

in a couple of different ways: One of the earliest

controlled temporal filtering techniques made use

of stroboscopes to create multi-exposure images of

high-speed motion inside a single frame, e.g. [6].

In Section 4.3, we will demonstrate that we can ob-

tain a similar effect with he help of an appropriately

chosen filter kernel, without influencing the illumi-

nation of the scene in any way.

Recently, at a very small time scale, the photore-

fractive effect in photonic crystals has been used

to implement a temporal high or low-pass filter for

rather short time intervals [10, 26]. Shechtman et

al. [20] combined a set of video cameras to pro-

duce space-time super resolution videos which al-

lowed for off-line temporal filtering. Bennett and

McMillan [2] perform filtering on standard frame-

rate video to create time-lapse output. The pro-

pose a virtual shutter for additional effects. We will

present an online system that requires only a single

high-speed camera.

Wilburn et al. [25] employed a multi-camera ar-

ray, to compose an image where the length of the

temporal filter can be chosen adaptively to the scene

content. In our application we will process the

video stream of a single high-speed camera to per-

form temporal filtering.

To fight motion blur, Raskar et al. [18] aug-

mented a traditional camera with a high-speed

ferro-electric LCD shutter. The time sequence of

the shutter implements a broad band filter kernel

that allows for reconstructing of sharp images of

moving objects. This setup can in principle be used

to shape the temporal filter in a fashion similar to

strobe illumination in an on-and-off exposure se-

quence. However, it is inherently restricted to non-

negative filter functions. In addition, as the integra-

tion will still be done within a single frame only,

shaped overlapping filters are not possible.

Another interesting way to alter the spatio-



temporal filtering is to move the camera, which

Levin et al. demonstrated successfully for remov-

ing the effects of motion blur [12]. In their setup,

the shape of the temporal filter through motion can-

not be arbitrarily controlled.

Smart Cameras. The design of our system re-

lies on a tight coupling of the recording high speed

camera and a high-performance compute platform.

This design is rather similar to smart cameras for

motion capturing, which record at a very high

frame rate and then detect markers inside the cam-

era [23, 15, 16]. However, they do not deliver a

video stream as output but rather a compact repre-

sentation of the marker trajectories. Smart cameras

operating at standard video frame rates (e.g.[8, 24])

offer real-time video manipulation but typically do

not provide additional means to control the tempo-

ral filtering. Recently, the first consumer cameras

appeared (e.g. Casio Exilim Pro EX-F1) that pro-

vide high speed capture capabilities at rather low

resolution. Specialized hardware compresses the

video stream in real-time indicating that the nec-

essary compute power for online temporal filtering

within a consumer camera is within reach.

3 Temporal Prefiltering

Let us first address the problem of avoiding tem-

poral aliasing by optimal filtering in the temporal

domain.

Due to recording with finite exposure times,

every digital camera already performs some pre-

filtering as part of the image capture. Conversely,

every display device for time-variant data creates a

time-continuous signal by means of a reconstruc-

tion filter. In this article, we take the properties of

the monitor, including its sampling rate, as given,

and investigate the choices for the camera’s pre-

filter depending on possible reconstruction filters on

the monitor side. Before we discuss the relationship

between these filters with the help of sampling the-

ory, we will now summarize a mathematical model

for image formation in a digital camera.

3.1 Image Formation Model

Consider a digital image I . The image value I(x, y)
at pixel position (x, y) corresponds to some amount

of energy accumulated in the sensor over the expo-

sure time. It can be expressed as an integration over

time t of the flux Φ(x, y, t) arriving at that pixel,

and a measurement kernel m(t, x, y) encoding the

temporally varying response:

I(x, y) =

Z

∞

−∞

Φ(x, y, t) · m(t, x, y) dt. (1)

With mechanical shutters, there is always a non-

trivial dependence of m on (x, y), as the shutter

moves with a finite speed across the sensor. Unless

used for artistic effect, these are undesired proper-

ties not present in many digital cameras that use

an electrical shutter. We will therefore disregard

the dependence of m on (x, y), and treat it as one-

dimensional.

3.2 Imaging and Sampling Theory

Equation 1 can in fact be interpreted as temporal

sampling of a time-variant signal, so we can apply

sampling theory considerations on its shape. As all

pixels (x, y) are treated independently, we can fo-

cus on a single pixel, and call its time-variant signal

s(t). A digital movie camera is then a device that

generates a set of samples cτ at discrete points in

time, so that

cτ =

Z

∞

−∞

s(t) · m(t − τ) dt (2)

Correspondingly, a monitor or digital display device

takes the discrete pixel sampling cτ , and generates

a continuously defined output approximation

s̃(t) =
X

τ

cτ · r(t − τ) (3)

of the input signal with a reconstruction kernel r(t).
We know from the work of Shannon [19], that,

should s(t) be band-limited with a frequency of 1
2
ν,

i.e., the signal does not contain any energy in any

higher frequency band, it can be completely repre-

sented by sampling it with a rate of ν, yielding a

discrete representation (ct)t∈Z fromwhich a perfect

reconstruction is possible. Shannon’s observations

tell us that a perfect reconstruction

s(t) =
X

τ

cτ · r(t − τ)

=
X

τ

Z

∞

−∞

s(t) · m(t − τ) dt · r(t − τ)



is possible for the choice of

r(t) = m(t) = sinc(t·ν) for sinc(x) =
sin(x)

πx
.

Prefiltering by convolution with sinc(t) of the ap-
propriate sampling frequency (multiplication with a

box function in Fourier space) effectively removes

all frequencies beyond the Nyquist limit. Shannon’s

theorem guarantees that the filtered signal can be re-

constructed from the sampled sequence, but when

capturing motion, almost arbitrary frequencies can

occur in single pixels due to occlusions and dis-

occlusions. If they are strictly filtered out, the out-

put will contain ringing artifacts. Even worse, the

sinc kernel has infinite support: even if the frequen-

cies were limited, we would have to integrate over

the entire video.

Meanwhile, as sampling theory has pro-

gressed [22], the relationship between m(t) and

r(t) is much better understood. Overall, we want

to approximate s(t) as close as possible with some

function s̃ (see Equation 3). In the least squares

sense, this is a projection into the function space

spanned by the (rτ )τ∈Z,

rτ (t) := r(t − τ). (4)

Unser [22] describes techniques to compute the ker-

nel m(t) that approximate this equation. He also

discusses the theoretical relationships in far greater

depth than would be appropriate in this article.

We observe that the shape of the display recon-

struction kernel r(t) is crucial for a smooth recon-

struction; in cases where it contains frequencies

above ν

2
, reconstructing with r(t) will introduce

spurious frequencies into s̃ that in general no pre-

filtering on the input-signal can prevent. These spu-

rious frequencies cause so-called aliasing artifacts

in the reconstruction.

3.3 Kernel Shapes for Optimal Pre-

Filtering

We will now discuss typical reconstruction func-

tions r(t) of the output device with increasing

smoothness. Specifically, we will look at the B-

spline basis functions, and the accordingly least-

squares optimal kernel shape m(t) for pre-filtering.
We perform an experiment and provide a synthetic

scene with a spinning five-pointed star (see Figure

2). We discretize each sampling interval T = 1
ν

=

1 into 32 steps for simulation purposes. For each

of the choices of r(t), sampling is performed with

the corresponding L2-optimal pre-filtering kernel

m(t). The supplemental video shows the results;

we invite the reader to determine which one suits

the reconstruction by his/her monitor best.

The selected output filters mimic different behav-

iors that can be observed in real displays:

Box function (zero-order-hold) with width T and

height 1, i.e. r(t) = rect(t). The discretized recon-

struction filter rτ forms an orthonormal system, and

the L2-optimal pre-filtering m(t) and r(t) actually
are the same functions.

Triangle functionwith width 2·T and height 1, i.e.
r(t) = tri(t) = rect(t) ∗ rect(t). This implies that

the output device performs a linear interpolation of

the sample values. The reconstruction suggests a

more continuous rotation; however, the appearance

of the frames differs strongly (T = 0 vs. T = 1
2
).

Due to the multitude of peaks in the pre-filter m(t),
ringing becomes apparent.

Higher-order B-splines, i.e. r(t) = βi(t), i ≥ 2.
For the higher-order B-spline basis functions, ob-

tained by convolving rect(t) i times with itself, we

observe that the consistency between in-between

and sampled frames increases. At the same time,

the broad support of these kernels largely reduces

the contrast between foreground and background.

Sinc: r(t) = sinc(t) is the optimal pre-filter as

it suppresses frequencies beyond half the sampling

limit most effectively. In the simulation, the sinc is

windowed to an interval [−12.5, 12.5]. The recon-
struction shows overly dark areas for T = 1

2
where

the reconstructed signal was actually negative due

to ringing. As in the rect(t) case, the rτ form again

an orthonormal system, andm(t) and r(t) coincide.
Transient In most physical systems a transition

from one state to another follows an exponential

function, e.g. as dampened by a capacitor. The filter

r(t) =

8

<

:

e−λt if 0 ≤ t < 1

1 − e−λ(t+1) if − 1 ≤ t < 0
0 otherwise

(5)

describes another possible time dependence of a

digital monitor, simulated in our case with λ = 5. It
stands out from the other discussed functions as be-

ing asymmetric; it further has the remarkable prop-

erty that it yields an in-between image for T = 3
4

which is sharper than the images at the sampled po-

sitions for T ∈ {0, 1}.
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Figure 2: Filtering results for a spinning star. From top to down: shape of the pre-filter and the recon-

struction kernel, intensity profile for a single pixel, and reconstructed images for individual time steps

(t ∈ 0, 1/4, 1/2, 3/4 clockwise starting top left) within one frame.

Common Observations

In the examples above, the optimal pre-filter for all

but the box kernel extend over a period of two sam-

ples or more. Following Shannon’s argument, a

camera implementing any reasonable pre-filter ker-

nel needs to accumulate the data of several frames

worth of exposure into a single output frame. This

can in the general case be realized computation-

ally, but for most kernels it requires the same sub-

exposure to be counted towards several distinct

frames with different weights.

The pre-filtering in most digital cameras resem-

bles a rectangular kernel m(t) = rect(t/w) with

width w. Assuming that the kernel spans the entire

duration between two frames (w = 1), and assum-

ing an unrealistic output device with r(t) = rect(t),
this sampling kernel is L2-optimal. Most often,

though, the exposure time is much shorter than the

frame duration to avoid saturation, and the system

produces severe aliasing effects such as the “wagon-

wheel moving backwards” illusion or jagged, dis-

continuous motion (see supplemental video).

Another aliasing effect that is quite apparent in

all filters with extended support is ringing. The

ringing is an effect of a windowed filter kernel in

the Fourier domain that manifests itself as an over-

shooting signal in the spatial domain. In our exam-

ple, it is due to the unbounded frequency of the in-

put. These high frequencies are not necessarily suf-

ficiently suppressed by the L2-optimal pre-filters.

3.4 Evaluation of Further Kernel Types

In the following paragraphs, we will discuss a selec-

tion of other ad-hoc kernel shapes and their effects.

Unlike in the previous discussion we will not take

the reconstruction into account and only perform a

shaped exposure filtering for visually pleasing re-

sults. Figure 3 shows the results for two successive

frames of the rotating star sequence; the entire se-

quence is visualized in the supplemental video. The

selected filters provide relatively little ringing.

The kernel types point, halfbox and fullbox cor-

respond to point sampling and rectangular kernels

of width w = T

2
and w = T , respectively. They

represent the results achievable with a traditional

camera. While the convolution for w = T pro-

duces at the least some overlap between successive

frames, the first two cases skip some in-between

sub-frames completely, yielding a stuttering, jagged

appearance in the video.

The triangle and Gaussian kernels, perceptually

close in appearance, provide a smooth, continuous

transition between frames. Each individual output

frame however looks rather smooth, though.

In their work on reconstruction filters [14],

Mitchell and Netravali proposed a class of piece-

wise cubic filters for reconstructing point sampled

data and demonstrated their effectiveness with a

user study. The results of using these filters, for pa-

rameters (B, C) = ( 1
3
, 1

3
) and (B, C) = ( 3

2
,− 1

4
),

respectively, yield also smooth transitions between

dark and bright pixels, but seem less fuzzy than the

Gaussian and the triangle filters.

For a non-photorealistic (NPR) effect, we sim-
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Figure 3: Excerpt from a simulated sequence of a spinning star and the generating kernels (bottom).

ply took a non-linear exponential function m′(t) =
e(−1+t)·2, blurring it slightly. It highlights a sharp

exposure, but pulls a trail of continuously falling

pixel values behind, akin to the afterglow of an ex-

ponential decay process. In order to emphasize the

effect, we have extended the filter width to 4 frames.

Finally, the strobe kernel simulates an illumina-

tion with a stroboscope. The stills of different po-

sitions in time add up to an overlay image. In con-

trast to a stroboscope illumination, though, we can

achieve the effect without influencing the scene il-

lumination by choosing an appropriate filter kernel.

These example kernels demonstrate a range of

possible temporal filtering characteristics. The best

choice is dependent of the desired effect. In the

following section, we will study their behavior in

a real-world scenario.

4 Real-Time Processing System

We will now introduce the design aspects of our

hardware and software prototype.

4.1 Hardware Configuration

In order to approximate arbitrarily shaped filters on

a continuous signal we sample at a much higher

frame rate than the final display. Using a Basler

A504kc camera, we capture at 480Hz at a resolu-

tion of 1000 × 1024 or 500Hz at 240 × 256 for

the Fourier analysis in the next section. We stream

the captured frames to an NVIDIA GeForce GTX

280 graphics card. The temporal filtering is imple-

mented in Cuda.

The system is capable of performing the neces-

sary processing for the high speed video stream in

real-time, continuously generating an output video

at 60Hz. As an alternative capturing device, we em-

ploy a Casio Exilim Pro EX-F1 camera to record

high speed video at 300Hz.

point box MN
“

3

2
,−

1

4

”

NPR kernel strobe

Figure 4: Various filters applied to the video of a

spinning fan at two different velocities. Aliasing

effects are visible in the accompanying video for all

filters except for the MN filter.

4.2 Temporal Filtering Pipeline

The incoming frames are transformed into a smaller

number of output frames. Each output frame is

obtained by convolving the corresponding input

frames with the filter kernel. As the filter kernels

for adjacent frames can overlap, input frames can

contribute to more than one output frames.

In order to minimize the required bandwidth we

stream color-filter-array images into GPU memory

and perform all operations on these images. Only

for display, we run demosaicing by bi-linear inter-

polation and subtract the black frame at 60Hz.

Given a specific frame rate reduction, the maxi-

mum filter length is only bounded by the processing

speed and local bandwidth on the GPU.

4.3 Results for Rigid Body Motion

Figure 4 shows the effect of different filtering ker-

nels on the repeating motion of a rotating fan. Using

a one-point sample results in a jaggy motion with a

strong wagon-wheel effect when the fan spins up or

down. This aliasing effect is still present for the box

filter but removed in the Mitchell-Netravali filter.
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Figure 5: Filtering results for stochastic processes. Depending on the applied filter individual particles or

the motion direction is visible. The non-linearly increasing filter combines the details of the point filter

while indicating the motion direction.

4.4 Results for Stochastic Processes

In Figure 5 we visualize the effect of temporal

filtering on stochastic motion with repeating pat-

terns. Point sampling freezes the motion in time

and renders rather sharp images. Note how the wa-

ter stream is composed of individual droplets. At

the same time the still frame hardly conveys the

associated motion any more. In the output video,

point sampling leads to the appearance of a rather

random sampling. Using a box instead, all droplets

are smeared into streaks, but the sequence still con-

tains too high frequencies to render the sequence

attractively. The Mitchell-Netravali (MN) filter on

the other hand is too smooth. The vividness of the

water and the flames is significantly dampened.

In our NPR filter we combined the spatial detail –

however slightly filtered – with the motion direction

information close to the MN filter. We argue that in

the stills, this NPR filter summarizes the character-

istics of the two stochastic effects better than any

other filter. In addition, the video is crisp but far

less random compared to the point sampling.

In the fire sequence, the strobe filter nicely shows

the propagation of the reaction surfaces over time.

While for reflecting objects this can be obtained us-

ing a strobe illumination, we can visualize this ef-

fect in real-time even for self-emitting media.

5 Fourier Camera

The ability to perform the convolution of high speed

video material in real-time makes it possible to

visualize periodic or non-periodic movement in a

novel way: by performing a discrete per-pixel tem-

poral Fourier transform on the input. Per-pixel os-

cillations can be observed in different frequency-

bands, with the zero-band displaying the temporal

average, and higher bands showing the oscillations

at different frequencies.

Implementation The frequency analysis is per-

formed by computing a sliding discrete Fourier

transform over 32 frames captured at 500Hz. We

compute 9 bands with a resolution of 240 × 256
each at 50Hz. A different Fourier transform is cal-

culated for each frame.

5.1 Fourier Domain Applications

Figure 6 shows a screen capture of the power spec-

trum of a real-time decomposition of a spinning fan

sequence into separate frequency bands. The fan

rotates at three different velocities, thus generat-

ing clearly distinct distributions across the bands.

By analyzing this data, we can perform frequency-

based segmentation quite easily (Figure 7). Note

however, that the result of the Fourier transform will

be influenced by both the actual motion as well as

the texture of the moving object.

As the computational performance of the pro-

posed system is high, we can also compute the in-
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Figure 6: Screen shots of the online temporal

Fourier transform. Each window shows the first

nine bands of the power spectrum, with increasing

frequency from top left to bottom right. As the fan

accelerates, the energy moves to higher bands.

Figure 7: Color-coded maximum frequency of the

fan of Figure 6 spinning at four different velocities.

Figure 8: Modified appearance of a video sequence

in Fourier space: standard Gaussian filter (top left),

absolute values after removing the DC band (top

right), boosting low frequencies (bottom left), and

boosting high frequencies (bottom right).

verse Fourier transform, which makes editing in

Fourier space possible. One possible application is

the selective emphasis of some frequencies, as il-

lustrated in Figure 8. In comparison to a standard

Gaussian filter kernel, simple edits reveal move-

ment structures: if the zero-order (DC) band is re-

moved from the reconstruction, only moving scene

parts can be seen, a selective frequencies boost trig-

gers a motion trail effect. Selecting the frequencies

influences spatial extent and visual contrast.

Figure 9 shows the frequency boosting effect on

thin plant leaves moving in wind. Here, the per-

Figure 9: In contrast to a plain Gaussian filter kernel

(left), boosting frequency components emphasizes

the motion.

ceived motion is enhanced by the frequency edit –

without analyzing or even tracking the motion be-

havior of individual scene components. The effect

is similar to previous work [9] in introducing subtle

ringing that creates a perceived motion effect.

Such simple, multiplicative edits correspond to

appropriately chosen convolutions in the primal do-

main, where there is also more flexibility on the

choice of the reconstructing kernel, as put forth in

Section 3. However, these operations have more in-

tuitive control in the Fourier domain; they may be

understood as a video signal equivalent of an equal-

izer (EQ) circuit, which is a staple component of

acoustic signal processing.

6 Limitations

Performing temporal pre-filtering by starting from

a super-sampled sequence comes at a cost. As

each sub-frame is exposed for a very short period

(< 2ms), the number of recorded photons is lim-

ited. The signal to noise ratio is weaker compared

to a single exposure for the entire frame. On the

other hand, techniques such as [1, 21] as well as our

own footage successfully show that after integration

of the recorded frame this effect is greatly reduced.

A limiting factor of our system is the available

bandwidth both when transferring the camera data

to the GPU which we only managed at 1000 ×
1024@500Hz compared to the maximum resolu-

tion of the camera (1280 × 1024) and on the GPU

when integrating into multiple output frames.

7 Conclusion

In this paper we have presented a computational

videography system that allows for freely control-

ling the shape of the temporal filter that is applied



Figure 10: A single frame of a video enhanced in

real-time with motion trails.

when recording an animation. The system exploits

the capabilities of a high speed camera augmented

with sufficient compute power, a configuration that

will become available in consumer cameras in the

near future.

We argue that in order to prevent severe tempo-

ral aliasing it is paramount to perform an integration

over the duration of several output frames, which re-

quires to accumulate each incoming frame to more

than one output frame, weighted by its relative po-

sition in the filter kernel.

In the accompanying video we demonstrated the

effectiveness of the proposed temporal filters, pro-

ducing artifact reduced videos as well as more ex-

pressive stills for stochastic motion events such as

water falls or flames. A user study would be needed

to objectively determine an optimal filter kernel.

Some of the filters could be approximated using

a video camera operating at standard frame rates

and a flash, the intensity of the latter being mod-

ulated over the duration of a frame. Our setup does

not necessitate casting any additional light into the

scene, and supports overlapping integration periods

natively. In addition, it is flexible enough to per-

form even more complicated processing on the in-

put frames in real-time, such as the simulated mo-

tion trails from [2], shown in Figure 10.

As our system allows to freely change and con-

trol the shape of the temporal filter during online

recording, it can not only be optimized for the tar-

get display characteristics, but can also contribute

an additional means of artistic expression. Thus, it

introduces a temporal equivalent of the bokeh – the

appearance change in photography caused by the

choice of the aperture shape – to videography.
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