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Abstract
Measuring reflection properties of a 3D object involves capturing images for numerous viewing and lighting
directions. We present a method to select advantageous measurement directions based on analyzing the estimation
of the bi-directional reflectance distribution function (BRDF). The selected directions minimize the uncertainty
in the estimated parameters of the BRDF. As a result, few measurements suffice to produce models that describe
the reflectance behavior well. Moreover, the uncertainty measure can be computed fast on modern graphics cards
by exploiting their capability to render into a floating-point frame buffer. This forms the basis of an acquisition
planner capable of guiding experts and non-experts alike through the BRDF acquisition process. We demonstrate
that spatially varying reflection properties can be captured more efficiently for real-world applications using our
acquisition planner.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism Virtual Reality I.4.1 [Computer Vision]: Digitization and Image Capture, Reflectance

1. Introduction

In the field of 3D object acquisition progress has been made
both in the area of geometry and appearance acquisition.
Appearance or reflection properties are in most approaches
measured by capturing a number of samples of the BRDF
of the object. The samples are commonly acquired by a sen-
sor (a digital camera in our set-up) and a point-light source.
One pair of light source and camera position (called a view
collectively in the remainder of this paper) captures a single
reflectance sample for each point that is visible and lit.

A number of researchers have built special gantries to
perform a robot controlled dense sampling of the reflection
properties 8, 28, 10, 30. Others position the camera and the light
source manually 23, 25, 19, 20.

The basic question for both, the automatic and the man-
ual approach is: How to sample the reflection properties in
an efficient way? The acquisition of reflection properties
needs to be planned in order to measure efficiently, failing
to plan may result in insufficient data for the modeling task
or lead to highly redundant over-sampling. Measurement is

† This work was conducted at MPI Informatik.

Figure 1: Comparison of Spatially Varying BRDF Models.
The model 19 on the left contains holes in the BRDF due to
undersampling. The model on the right obtained from the
same number of views suggested by our planner samples the
surface evenly.

typically an involving task and efficiency in the process is of
paramount importance.

In this paper we present a method that assesses the uncer-
tainty in the parameters of a Lafortune model 16 (The under-
lying method is however also applicable to other paramet-
ric models and may be adapted to non-parametric models
as well.) Based on this uncertainty measure we develop an
acquisition planning algorithm that computes from where to
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sample next in order to minimize the uncertainty in the pa-
rameters, i.e., where to place the camera and the light source
with respect to a set of previously acquired views. For 3D
objects we have to evaluate and combine the predicted un-
certainty of each single surface point. A good set of views
will measure each point on the surface several times with
varied viewing and lighting directions sampling a highlight
at each point. The view planning is influenced by a num-
ber of further constraints including the 3D shape. The shape
limits the number of visible and lit surface points in a view.

One of the goals of acquisition planning is to perform
measurements efficiently. Time spent on the planning itself
therefore has to be reasonable. We compute the uncertainty
measure in modern graphics hardware with floating-point
frame buffers. The evaluation is performed directly on the
texture atlas of the object.

The measurement theory behind our approach is well es-
tablished in other fields; physicists and other natural sci-
entists apply it quite routinely to their measurement tasks.
Our contribution in this area is to adapt some of the natural
sciences’ measurement theory to the task of measuring the
BRDF for computer graphics. Our paper makes three main
contributions:

• the definition of a function to measure the reduction in
uncertainty added by one view (camera and light source
position),

• a view planning algorithm that combines this function
with geometric constraints imposed by a 3D object to pre-
dict the next best view for efficient measurement, and

• a hardware-accelerated implementation for evaluation of
the objective function directly on the texture atlas.

In the next section we discuss related work before we
present an overview over the acquisition planning and the
measurement process in Section 3.

2. Related Work

Work related to the automated acquisition of reflection prop-
erties of complete objects can be found in different fields
including computer graphics, computer vision, robotics and
visual metrology. We start our review with a brief summary
of work in computer vision, followed by a discussion of au-
tomatic scanning of 3D models including some theoretical
issues, and we conclude our review with work on BRDF ac-
quisition and representation in computer graphics.

The task of exploring unknown spatially-varying BRDF
of an object relates directly to viewpoint control in computer
vision, e.g., in minimizing uncertainty of 3D object repre-
sentations 45 and in scene exploration 15 Related to BRDF
acquisition are also visual metrology tasks which are re-
viewed by Tarabanis and Tsai 42. In metrology the planning
task is to position a sensor to satisfy some sensing quality
criterion, e.g., work by Cowan and Kovesi 6 and Mason and

Grün 26. The quality criterion of interest in our work is the
certainty in the acquired BRDF. We aim at achieving high
quality by choosing advantageous viewpoints of camera and
light source positions.

The placement of a camera relative to an object has been
planned for geometric model acquisition with a robotic fa-
cility 36, 17 and with an automated commercial scanner 33. In
practice, view planning is often started after an initial rough
acquisition of the object’s geometry from pre-set viewpoints,
as in the geometry model acquisition system by Reed and
Allen 36, 37. The task in this situation is to fill holes in the
existing model stemming from tight visibility restrictions.
Filling holes is an example where an automated planner can
be very beneficial.

The incremental Next Best View planning strategy of
Whaite and Ferrie 45 is closely related to ours. Their strategy
explores the geometry of a 3-D model with a priori unknown
shape. They apply a synthesis approach which is based on a
probabilistic model of an object’s geometry to be explored.
The approach minimizes uncertainty of a parametric object
model. Objects are represented by sets of superquadrics. Us-
ing an active sensing strategy a next view is selected. The se-
lected view minimizes the current uncertainty of the object
model. The algorithm is applied to explore the environment
of a robotic agent enabling object recognition and manipu-
lation.

An alternative approach to view planning is to delegate
the (computationally complex) task to a human but to pro-
vide real-time feedback. This has been demonstrated suc-
cessfully by Rusinkiewicz et al. 38 for geometry scanning of
objects. Planning the acquisition of reflectance properties in
this fashion is however impossible since humans can gen-
erally not reason about the four-dimensional BRDF on the
surface of complex objects in real-time.

In computational geometry, visibility in polygonal envi-
ronment is considered 5 with applications in geographical
data processing, security and military 22. Acquiring realis-
tic reflectance properties of a 3D object requires imaging its
complete surface. This completeness constraint restricts the
set of possible solutions in acquisition planning. Finding the
minimal set of views which cover the complete surface of an
object is a NP-hard problem 43. A planned set of views may
still fail in practice due to positioning or modeling errors and
off-line plans need to consider uncertainty to ensure cover-
age of the complete surface when actually executed 43, 40.

In computer graphics, the imaging of visible surfaces is
relevant in radiosity, ray-tracing, scene walk-throughs and
texturing of surfaces 41 as well as for image-based render-
ing 13, 4, 44. In the BRDF measurement and representation
field, quite a number of articles have been published but,
to the best of our knowledge, so far only Kay and Caelli 14

have investigated the dependency between measurement and
the qualtiy of the estimated BRDF. McAllister 30 computes
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Figure 2: View planning interacts with the entire pipeline of appearance measurements: An optimal view is proposed and
captured. Manual placement of camera and light source requires registration with the 3D object. Visibility and shadows are
computed and the data is resampled. From the resampled data of all views the BRDF parameters per cluster are updated which
again influence the planning of the next view.

the number of samples required to densely cover the hemi-
sphere above a point with a light source. Ramamoorthi and
Hanrahan 35 examine the problem of global inverse illumina-
tion within a signal processing framework. Existing BRDF
measurement approaches can be classified by the number of
images necessary and the generality of the estimated BRDF
model.

A family of methods measure reflectance properties by
performing a very dense sampling. Some of them are de-
signed for flat surface samples only 7, 30 while others can
deal with 3D objects 8, 27, 28, 29, 10. Since a dense sampling al-
lows to render directly from the measured data, the reflection
properties are unrestricted in those approaches. The quality
of the outcome when no BRDF model is fit mainly depends
on the sampling density.

A variety of techniques estimate the appearance of an ob-
ject from a sparse set of images. In many of these approaches
the specular part of the BRDF is restricted to be constant
over a small patch or even over the entire object. Measure-
ments in these approaches are typically performed either by
using a point light source 39, 25, 24, 31, 19, 20, 21 or by perform-
ing inverse global illumination 46, 11, 1, 35, 32. Lensch et al. 19, 20

and Li et al. 21 demonstrated how to estimate a varying spec-
ular part from a sparse set of views. In both approaches clus-
tering techniques are applied to the BRDF parameters over
the object’s surface. In this paper, we also follow a sparse
sampling approach but at the same time assuring the quality
of the model. The fully spatially varying model in our work
is identical to the one employed by Lensch et al. 20.

Next, we introduce our method which is able to select a
sparse set of measurements and ensures the quality of the
BRDF model at the same time.

3. Acquisition Loop

The measurement of reflection properties is executed as a
number of successive steps which are shown in Figure 2.
Prior to the acquisition of reflectance properties the 3D ge-
ometry of the object has to be acquired. The acquisition
starts with the planning of the first view. Each new view is
planned based on the current estimate of the BRDF parame-
ters and the visibility and shadowing constraints imposed by
the 3D geometry of the object.

In the second step the planned view is acquired. Next, the

view is registered with the 3D object 18, since the real cam-
era and light source position may deviate from the proposed
view. The recovered positions are used to determine the re-
gions of the object’s surface which are visible and lit. The
valid pixels are resampled into a texture atlas.

For the planning a coarse texture atlas is used to speed up
the process. Local viewing and lighting direction are com-
puted per pixel. From the resampled data a new set of BRDF
parameters is estimated. As the number of measurements for
a single point are too few to obtain credible BRDF parame-
ters, clusters of points are used to fit the parameters. Points
can be clustered either based on their diffuse color or using
the method by Lensch et al. 20. The estimated spatially vary-
ing BRDF parameters are then used in the next execution of
the planning step.

After the capturing process is complete, all measurement
data is resampled again using a high resolution texture atlas
and a final spatially varying reflection model is estimated.

Planning is performed by minimization of an objective
function that takes into account the previously acquired data,
the geometry of the object and the currently estimated BRDF
parameters. The objective function is based on co-variance
matrices as an uncertainty measure. The co-variance matri-
ces are compact and summarize all necessary information
about the views acquired so far. Their storage cost and the
computation time of planning algorithm is constant and in-
dependent of the number of acquired views. In particular, we
do not have to store each local viewing and lighting direction
per pixel for each measurement.

In the next section we detail the relationship between the
co-variance matrix and measurement uncertainty with an ob-
ject consisting of a single pixel as a tutorial example.

4. One-Pixel Objects

Measuring the BRDF of a single point on an object is al-
ready a task which involves some effort. It is necessary to
understand how measurements of the reflectance of a sin-
gle pixel influence the reliability of parameters of the BRDF
model we are going to fit. We briefly summarize background
material on parameter estimation and measurement theory
related to our fitting approach. We conclude that not all pos-
sible measurements contribute in the same way to the quality
of the fitted model parameters.
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For the purpose of the discussion in this and the next sec-
tion, the prior information I for our measurement task is that
we would like to estimate a Lafortune model fr with one
isotropic specular lobe (see Equation 1) for an object con-
sisting of one-pixel.

fr(β;ω) = ρd +(cxωix ωox + cyωiy ωoy + czωiz ωoz)
N (1)

where ρd denotes the diffuse reflectance, N the exponent of
the specular lobe, cx, cy and cz the weighting coefficients of
the dot product between ωi and ωo; ωi is the incident light
direction and ωo the exitant lighting direction. In the follow-
ing, we denote these parameters collectively as β. The model
M(β,ω) calculates the reflectance for a given ωi and ωo (col-
lectively ω). Equation 2 shows the standard regression prob-
lem for m measurements with an additive error term ε re-
sulting in m reflectance samples Rm. For the purpose of this
discussion, we assume that the error terms are independent
and identically distributed (iid) samples from a distribution
centered at 0.

Rm = M(β,ωm)+ εm (2)

A principled approach to solve this model fitting task is by
employing Bayes theorem

P(M|DI) =
P(M|I)P(D|M)

P(D|I)
.

Bayes theorem describes how to obtain the posterior prob-
ability distribution of the reflectance model P(M|DI). It
depends on our prior belief of possible model parameters
P(M|I), the measurement or predictive probability of a mea-
surement P(D|I) with acquired data D and our model of
the measurement process P(D|M) which here is Equation 2.
Measurements are a principled way to change one’s prior
beliefs. If the observations provide strong evidence, the data
term dominates while with a lack of evidence the prior re-
mains unchanged. The certainty in the model is described
by the full distribution P(M|I). The distribution is in the di-
mensions of the model and requires a summary for interpre-
tation. The most probable parameter value and confidence
intervals are common summaries. (See, e.g., Bretthorst 2 or
Hastie et al. 12 for a more complete introduction to Bayesian
model estimation).

An approach to find the most probable model is minimiza-
tion. The sum of squared errors

Q = ∑
m

(Rm −M(β,ωm))2 (3)

is the most common error measure to minimize. This er-
ror measure coincides with the most probable model in the
Bayesian approach given the model is linear in the parame-
ters β, the noise ε in the measurements is Gaussian and our
prior beliefs are uninformative (flat priors) 12. Under these
circumstances, the uncertainty in the most probable model
parameters depend linearly on the co-variance matrix CoV.
The co-variance matrix CoV is the inverse of the Hessian
matrix H with entries Hi, j = ∂2Q

∂βi∂β j
(see Appendix A for the

derivatives). The singular values σ of the co-variance matrix
define the length of the major axes of the hyperellipsoid of
a given Q. In linear models this hypervolume bounded by
the hyperellipsoid for a given quadratic error measure Q is
directly related to the posterior probability.

In the non-linear Lafortune reflectance model the simple
relationship between the least-squares residual Q and the un-
certainty in the parameters does not hold. The most popular
way to proceed is to employ a non-linear least-square solver
to minimize Q but analyze the fit with the co-variance ma-
trix CoV. The co-variance matrix is only strictly valid for
linear models, however, employing CoV is justifiable if Q is
well approximated by a quadratic near the minimum 34. We
performed some Monte-Carlo bootstrap analysis 9, 3 in order
to confirm the validity of the linear approximation when fit-
ting the non-linear Lafortune model. We do not report the
details here but in summary, our conclusion is that the non-
linearity of the Lafortune reflectance model prevents us from
stating confidence intervals based on the linear approxima-
tion. However, the co-variance matrix is a good indicator of
parameter uncertainty and if we would like to obtain mea-
surements in a way such that we are most confident in the
estimated parameters, minimizing the co-variance matrix is
a sensible strategy. This conclusion is also consistent with
the reasoning of Whaite and Ferrie 45. The co-variance ma-
trix of the Lafortune model depends only on the chosen in-
cident and exitant light direction given a fixed estimate β̂. A
recipe of how to choose the light and viewing directions for
the one-pixel object is described in the next section.

5. Uncertainty Minimization

The uncertainty in the estimated parameters for a set of
views is minimum if the co-variance matrix is minimal. If
we are exploring unknown reflectance properties, we only
learn our model parameters as we acquire new views, gain-
ing information incrementally. The certainty gain of a view
is therefore the reduction in the co-variance matrix from the
previous view to the current one and hence, the objective
function

F = ‖CoV(β̂v,ω1,...,v)‖−‖CoV(β̂v,ω1,...,v+1)‖. (4)

We would like to maximize the certainty gain, i.e., we have
to maximize F . A greedy strategy selects after each view v
the one which maximizes the expected gain of the next view
v + 1. This greedy strategy is optimal in the linear case with
fixed estimates β̂ because then the co-variance is indepen-
dent of the order of views. In our scenario this approximation
becomes more appropriate as the certainty in the estimates
increases.

The selection strategy must also deal with a rank-
degenerate Hessian matrix H during the views v = 1 . . .L,
where L is the number of parameters in the Lafortune model
fr, in our case L = 4. These initial views have to be chosen
in order to arrive at a small ||CoV|| after view v = L. While
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||CoV|| = ∞ for v < L, we can calculate the Pseudo-Inverse
of the Hessian matrix instead. Figure 3(a) shows the singu-
lar values σk of the pseudo-inverse which approximately in-
crease exponentially with k. We maximize the information
gain based on this pseudo co-variance until the Hessian ma-
trix reaches full rank. The gain can be considered infinite
with each rank gained, i.e, a choice of F(k ≤ L) = In f −σk
suggests itself. We illustrate this strategy in Figure 3 for
the one-pixel object. (We pick In f = 109 and the parame-
ters β = (ρd = 0.3,Ns = 10,cx = cy = −0.8,cz = 0.8) for
the Lafortune model (Equation 1)). A better continuation of
the objective function towards the first view can be obtained
with F(k ≤ L) = 10L−k ∗ (In f −σk) which is shown in Fig-
ure 3(b). The difference in the two considered choices is only
of importance in multi-pixel objects when the information
gain at one pixel has to be compared to the information gain
at another pixel. Under these circumstances, the exponen-
tially increasing function will strongly favour low rank up-
dates over high rank updates.
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Figure 3: Objective Function F for Infinite Co-Variance.
The singular values σk of the CoV show an exponential in-
crease with k. Figure 3(b) shows two choices for F when
k ≤ L: F(k ≤ L) = 10L−k ∗ (In f − σk) in red and F(k ≤
L) = In f −σk (In f = 109) in blue.

5.1. Maximization

The task of view planning is to maximize the objective func-
tion F in Equation 4. Our observation is that the objective
function is partially smooth depending on the visibility of a
given view. Globally, it can have many discontinuities due
to shadows and visibility. In order to maximize the objective
function we apply a two-step procedure with randomization:

• Search for the best pair of initial positions of camera and
light source on a discretized sphere. Randomize the ori-
entation of the discretization before each new view.

• Use a local continuous optimizer to improve the discrete
solution found.

The random rotation of the sphere discretization improves
the discrete search, eventually evaluating all views. This pro-
cedure allows us to use a coarse discretization in the discrete

search achieving acceptable coverage at least over multiple
views.

We have tested two downhill non-gradient-based optimiz-
ers: the Simplex method and Powell’s method with non-
gradient based linear search 34. The Simplex method is ini-
tialized with the starting value of the discrete search plus ran-
dom points within its neighborhood. Although both methods
may converge to local maxima, we still achieve good results
due to the discrete initialization. In Figure 4, we show the
norm of the co-variance matrix achieved by maximizing F
in Equation 4 with both, the Simplex and Powell’s method.
We have observed that Powell’s method requires typically
less function evaluations but achieves slightly worse results
than the Simplex method. Figure 4 also compare the behav-
ior of the optimization with the 2−norm ||CoV||2 versus
the Frobenius norm ||CoV||Frob. The difference is negligi-
ble due to the exponential rate of decay in the size of the
singular values of the co-variance matrix. Besides planning
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Figure 4: Norm of the Co-Variance Matrix during Optimiza-
tion. Green ||CoV||2 and red ||CoV||Frob are obtained with
Powell’s method, while blue ||CoV||2 and cyan ||CoV||Frob
are obtained by the simplex method. The optimization is ap-
plied to the one-pixel object.

the next best view, the objective function can be employed
to determine when to stop acquiring more views. Observe
that the norm decays roughly exponentially as the number
of samples of the one-pixel object increases. It indicates that
one can stop the optimization after the gain in confidence is
below a pre-defined threshold.

6. Multi-Pixel Objects

We are now generalizing our insights from the one-pixel ob-
ject to 3D objects. The reflectance of real-world 3D objects
cannot be modeled with sufficient accuracy by a single point.
The complete surface area of a 3D object is not visible from
any single given camera and light source position. Thus, the
geometric shape influences the objective function and plays
an important role in the uncertainty minimization.

6.1. Homogeneous vs. Spatially Varying BRDFs

Calculation of model uncertainty for a real 3D object re-
quires the computation of the the Hessian matrices Hi con-
sidering all previous measurements at each point i on the

c© The Eurographics Association and Blackwell Publishers 2003.



Lensch et al. / Planned Sampling of Spatially Varying BRDFs

(a) Object (b) Texture (c) Lit Atlas (d) ∂ f/∂ρ (e) ∂ f/∂Cxy (f) ∂ f/∂Cz (g) ∂ f/∂N

Figure 5: Texture Atlas. Lighting and the derivatives of an isotropic Lafortune BRDF (see Appendix A) are computed in a
texture atlas.

surface. Assuming all points on the surface have identical
reflectance then the overall co-variance matrix of all surface
points is ‖CoV‖Homogenous = ‖(∑i Hi)

−1 ‖. In this norm
there is no relationship between samples and surface loca-
tion. It does not ensure an even sampling of the surface and
thus is only applicable if the object’s surface consists of a
single homogeneous material without the slightest spatial
variation.

‖CoV‖ob j = ∑
i
‖H−1

i ‖. (5)

An approach more applicable to real-world 3D objects is to
treat each surface point individually, assuming a different
BRDF for each pixel. The uncertainty measure in this case is
Equation 5. This uncertainty measure can only be decreased
by imaging each surface point repeatedly. This is required if
the goal of the measurement process is to model each surface
point with a different BRDF but as well if surface points are
eventually to be clustered and represented by a smaller set
of BRDFs.

6.2. Real-World Constraints

While performing a real measurement one has to take into
account a number of additional constraints. The planning al-
gorithm must prevent placement of light source and camera
at the same location. In order to achieve this, we simply set
the objective function to zero in these cases. Furthermore,
the reliability of collected samples is not independent of the
viewing angles for real measurements. Samples at grazing
angles are typically hard to measure since the registration
of the 3D object with the 2D image is not be perfect. We
follow the approach by Lafortune et al. 16 and weight the in-
fluence of each sample by the cosine of the angle between
the surface normal and the viewing direction and between
the normal and the lighting direction. The weight is set to
zero for all points where one of the angles is larger than 80
degrees.

7. Implementation

We have defined the objective function F in Section 5 and
constraints in the previous section. Here, we detail the im-
plementation of an efficient optimization which results in

a usable view planning algorithm. The view planning has
to simulate the next view in order to evaluate the objective
function. We calculate the norm of the co-variance matri-
ces for each point on the surface. This computation has to
be very efficient since it is executed several hundred times
during one step of the optimization. We achieve this effi-
ciency by exploiting newly available graphics hardware with
floating-point precision frame buffers.

7.1. Texture Atlas

Since all quantities need to be computed for all surface
points we represent the object’s surface by a texture atlas
(see Figure 5(b)). We construct the texture atlas from the 3D
mesh. All subsequent calculations are performed directly on
the texture atlas. Using a vertex program it is very easy to
perform calculations on the texture atlas: the final vertex po-
sition is set to the texture coordinates of the vertex while the
original vertex position is used for other computations, e.g.
lighting and shadowing.

7.2. Visibility and Shadows

The texture atlas shows all points on the object’s surface at
the same time, but the derivatives may only be computed
for those points which are visible and lit for a given view.
We accomplish this by first computing two depth maps of
the 3D object, one depth map for the camera view and one
from the view of the light source. As in traditional shadow
mapping the point is visible and lit if the transformed pixel
has the same or smaller depth than the corresponding points
in the depth maps. Figure 5(c) shows the resulting texture
atlas of all visible and lit points of the corresponding view
Figure 5(a)).

7.3. Derivatives and Matrix Norms

Given the 3D mesh and some BRDF Parameters we setup
a fragment program which computes the derivatives of the
BRDF model with respect to its parameters for the valid tex-
els on the graphics board (see Figure 5(d)– 5(g)). We take
the spatially varying parameters obtained by the clustering
into account. The calculated derivatives are then downloaded
from a floating-point frame buffer to main memory. Hessian
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Figure 6: Comparison of Planner and Human Expert. First and third rows show results with the planner, while results obtained
by the human expert are shown in the second and forth row. (Images shown are after every 3rd view.) Notice how the planner
selects samples to cover the object’s surface evenly. The human expert acquires redundant samples of some surface areas (front)
while other areas remain undersampled (back and bottom). The images show log(‖CoV‖) color-coded in matlab jet style. Blue
means high confidence in the estimated BRDF parameters while the uncertainty increases towards red. Black regions have not
been updated to full rank so far.

matrices for the current view are calculated and added to the
accumulated Hessian matrices of previous views. The result
is inverted using singular value decomposition to obtain the
norms of the co-variance matrices. The final value of the ob-

Task ∂ f/∂β Download H SVD Total

Time
[s]

0.119 0.477 0.021 0.523 1.138

Table 1: Time consumed for computing the derivatives, to
download the results to main memory, to add to the Hessian
matrices and to perform the remaining calculations (SVD)
in software in order to evaluate the objective function of one
view on a 512x512 texture atlas. Note that on average only
one fourth of the 147444 valid pixels were visible and lit.

jective function is then computed as the sum of the objective
functions of each pixel. All software computations are done
only at those pixels in the texture atlas which are visible and
lit. A total of approximately 440 evaluations of the objective
function are performed in the optimization of one view.

Table 7.3 lists how much time is spend for each of the
computation steps. A considerable amount of time is un-
fortunately consumed by downloading the frame buffer. To
save bandwidth we currently use a monochromatic isotropic
Lafortune BRDF model with one lobe (4 parameters) for the

view planning. The method can however be easily extended
to work with more complex or multi-lobe models.

8. Measurement Results

We compare the views selected by our method to the views
selected by a human expert prior to our method. The 3D ob-
ject for which the spatially varying BRDF is acquired, are
the angels shown in Figure 1. The reflectance model of the

Rank # Pixels # Pixels σ̄L−k+1 σ̄L−k+1

k Planner Expert Planner Expert

0 10 857 - -
1 300 2013 0.06587 0.04482
2 1755 973 2.3804 0.9823
3 1412 583 39.170 75.075
4 5767 4818 745.16 2308.94

Table 2: Comparison of ‖CoV‖ Obtained by Planner and
Human Expert after 27 views. Shown are the singular values
averaged over all pixels. The planner acquired more pixel
with higher rank and higher confidence. (Note the consider-
ably smaller singular value in the last row).

angels has previously been captured with a set of 27 views
(not shown). Figure 9 shows the images acquired with our
planner. The planner selects camera and light source posi-
tion in order to collect samples of each surface point under
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various angles. A comparison of the resulting uncertainty
log(‖CoV‖) shows that the planner covers the surface of the
object quite evenly (see Figure 6). The human expert sam-
ples the front of the model frequently but misses areas on
the rear, bottom and sides of the model (see Figure 1). The
even sampling with our planner is even more appearant by
studying the smallest singular value σ1 of the CoV in Fig-
ure 8. The average singular values are compared in Table 2.
The planner increases the rank of the CoV per pixel evenly.
Table 2 shows that after 27 views the CoV has reached full
rank at 62.4% of pixels. The lower rank (pseudo) CoV have
already mostly gained rank 2 or 3. The CoV obtained by
the human expert are mainly either, rank 4 (52.1%) or still
rank 1 and rank 0 (unobserved). Additionally, the norms
‖CoV‖ with high rank are considerably larger than the num-
ber obtained with the planner, i.e., the measurements result
in higher uncertainty.

Highlights have to be observed in order to update the rank
of one pixel beyond rank 1 because three of the derivatives
evaluate to nearly zero for non-highlight directions (Ap-
pendix A and Figure 5). For a human it is hard to keep track
of the observed highlight areas and to reason on how to place
the camera and the light source in order to observe a high-
light at a specific surface region. The planner automatically
considers this by maximizing the proposed objective func-
tion (see Figure 9).

The objective function evaluated after each view is shown
in Figure 7. The series with the planner has been contin-
ued in simulation to 50 views. Note, that while local minima
are encountered by the planner, it successfully reduces the
error measure in each step and the steps decrease approx-
imately exponentially as expected. (Note, that log(Fob j) in
Equation 5 is a difference and the numbers have to be ac-
cumulated for absolute values.) The optimization per view

10 20 30 40 50
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10
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16

# Views

lo
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F
)

Figure 7: Objective Function for Angel Acquisition. The red
curve is obtained with the uncertainty minimization planner
while the blue dashed curve is the objective function evalu-
ated for the series taken by a human expert.

took less than 2 minutes, computed on a 2.4GHz Pentium
PC with an ATI Radeon 9700. The computations were car-
ried out on a texture atlas with resolution 128x128. This time
is constant and does not depend on the number of previously

Figure 8: Smallest Singular Value: Comparison of Planner
and Human Expert. Top row show results with the planner,
while the bottom row shows results obtained by the human
expert. Notice how the planner selects samples to cover the
object’s surface evenly. The human expert acquires redun-
dant samples of some surface areas (front) while other ar-
eas remain unobserved (back and bottom). The images show
log(‖σ1‖) after 27 views color-coded in matlab jet style.

seen views, since the information is accumulated in the per-
pixel Hessian matrix H.

In summary, the planner helps to sample the angels’ sur-
face more evenly resulting in higher certainty in the BRDF
parameters. The number of views (27) is generally too low
for being able to judge the fit of BRDF parameters at each
pixel. The results however are visually already quite pleasing
over the entire surface (Figure 1). The simulation suggests
that after 48 views on more than 90% of the surface the CoV
would reach full rank. Over 90% of the surface have already
been imaged once after 5 views (> 99% after 10 views) in
the actual measurements. The actual capturing process has
been slightly slowed down by the planning but mainly be-
cause view registration has to be performed during acqui-
sition when using the planner. The registration also revealed
that some additional cues would be very helpful in setting up
camera and light source. A low quality real-time registration
algorithm would integrate nicely into the planner.

9. Conclusion

We have presented a novel method to analyze and plan the
acquisition of realistic reflection models of 3D objects. Cen-
tral part of the method is a measure of uncertainty which
allows one to assess the quality of the sampling so far and
to select from where to view the object. This uncertainty
measure can be evaluated efficiently in graphics hardware
with floating point precision and has been integrated into a
view planner for BRDF acquisition. The performance of the
planner compares favorably to the view selection by a hu-
man expert. It is extremely hard for humans to reason about
the 4D BRDF on the surface of 3D objects. Consequently,
it is very difficult for them to select good camera and light
source positions in order to obtain a high-quality reflectance
model. Our view planning algorithm can assist experts and
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Figure 9: Views Planned for the Angels. Our algorithm positions both the camera and the light source to minimize BRDF
uncertainty. As a result a highlight is observed at each surface point.

enables novices to measure the BRDF of 3D objects. Auto-
matic measurements acquiring densely sampled BRDFs may
also benefit from this method since the same quality can be
achieved with less planned views. Since the automatic setup
does not require a registration step acquisition of one view
and planning of the next may be run in parallel.

Appendix A: Hessian Matrix

The Hessian matrix for Lafortune model (Equation 1) is given by
the following equation:

∂2Q

∂β2
= −2

(

∂L

∂β

)T ∂L

∂β
. (6)

The derivatives ∂L
∂β of the single specular lobe Lafortune model are

∂L/∂ρd = 1 ,

∂L

∂cxy
= (cxyωix ωox + cxyωiy ωoy + czωiz ωoz )

N−1N(ωix ωox + ωiy ωoy ),

∂L

∂cz
= (cxyωix ωox + cxyωiy ωoy + czωiz ωoz )

N−1N(ωiz ωoz ),and

∂L

∂N
= (cxyωix ωox + cxyωiy ωoy + czωiz ωoz )

NN ·

log(cxyωix ωox + cxyωiy ωoy + czωiz ωoz ).
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