
Modeling the duration of word-final S in English with
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Abstract

Recent research on the acoustic realization of affixes has revealed differences
between phonologically homophonous affixes, for example the different kinds of
final [s] and [z] in English (Plag et al. 2017, Zimmermann 2016). Such results
are unexpected and unaccounted for in widely-accepted post-Bloomfieldian item-
and-arrangement models (Hockett, 1954), which separate lexical and post-lexical
phonology, and in models which interpret phonetic effects as consequences of dif-
ferent prosodic structure. This paper demonstrates that the differences in duration
of English final S as a function of the morphological function it expresses (non-
morphemic, plural, third person singular, genitive, genitive plural, cliticized has,
and cliticized is) can be approximated by considering the support for these mor-
phological functions from the words’ sublexical and collocational properties. We
estimated this support using naive discriminative learning, and replicated previous
results for English vowels (Tucker et al., 2019) indicating that segment duration is
lengthened under higher functional certainty, but shortened under functional uncer-
tainty. We discuss the implications of these results, obtained with a wide learning
network that eschews representations for morphemes and exponents, for models in
theoretical morphology as well as for models of lexical processing.

1 Introduction

1

Many studies have shown that the phonetic realization of words may depend on the
morphological structure of the word. For example, Kemps et al. (2005a,b) and Blazej and
Cohen-Goldberg (2015) showed that free and bound variants of a stem differ acoustically
and that listeners make use of such phonetic cues in speech perception. Paradigmatic
probability has been demonstrated to influence the duration of linking elements in Dutch
compounds (Kuperman et al. 2007) and the dispersion of vowels in Russian verbal suffixes
(Cohen 2015). Syntagmatic probability influences the duration of the regular plural suffix
in English (Rose 2017), and the duration of third person singular -s in English is subject
to both syntagmatic and paradigmatic probabilities (Cohen, 2014a). Some studies have

1Acknowledgements and supplemenatry material to be added after acceptance of the paper for pub-
lication.
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found that the phonetic properties of segments vary according to the strength of the
morphological boundary they are adjacent to (e.g. Smith et al. 2012, Lee-Kim et al. 2013),
others provided evidence that the duration of affixes is dependent on the segmentability
of the affix (e.g. Hay 2007, Plag et al. 2017).

Several studies have investigated phonologically homophonous affixes, with quite un-
expected results. Ben Hedia and Plag (2017) found that the nasal consonant of the
locative prefix im- (as in import, implant) is shorter than the one in words with negative
in- (impossible, impotent). Plag et al. (2017) investigated multi-functional word-final
[s] and [z] in conversational North American English, using a rather small sample from
the Buckeye Corpus with manual phonetic annotation (Pitt et al., 2007). Their data
showed robust differences in the acoustic durations of seven kinds of final [s] and [z]
(non-morphemic, plural, third person singular, genitive, genitive plural, clitizied has, and
cliticized is). Basically the same patterns of durational differences hold for New Zealand
English, as shown in a study based on a very large sample with automatic phonetic an-
notation from the Quakebox Corpus (Zimmermann 2016a). Seyfarth et al. (2018) also
found differences in stem and suffix durations in English S-inflected words (e.g. frees,
laps) compared to their simplex phonologically homophonous counterparts (e.g. freeze,
lapse).

All of these recent findings challenge traditional models of phonology-morphology
interaction and of speech production which postulate that phonetic processing does not
have access to morphological information (e.g. Chomsky and Halle 1968, Kiparsky 1982,
Levelt and Wheeldon 1994, Levelt et al. 1999).

In this paper, we concentrate on word final [s] and [z] (from now on S) in English
and address the question of how the differences between the different types of word-final
S observed by Plag and colleagues and by Zimmermann can be explained (Plag et al.,
2017, Zimmermann, 2016a). Plag et al. (2017) discuss a number of possible explanations
for their findings, none of which were found to be satisfactory.

It is well-known from many studies that various (conditional) probabilities predict
aspects of the speech signal (e.g. Bybee 2001, Jurafsky et al. 2001a,b, Bell et al. 2003,
Pluymaekers et al. 2005b,a, Bell et al. 2009, Torreira and Ernestus 2009). In the case of
final S, however, the usual measures of experience (lexical frequency, transitional phoneme
probability, neighborhood density, bigram frequency, etc.) do not appear to account for
the differences in S duration. As reported by Plag et al. (2017), inclusion of these measures
in regression models does not render superfluous the factor distinguishing between the
different functions realized with S.

In this paper, we follow up on a study by Tucker et al. (2019) which made use of näıve
discriminative learning to predict the acoustic duration of the stem vowels of English reg-
ular and irregular verbs. Naive discriminative learning uses wide learning networks to
study the consequences of error-driven learning for language and language processing.
These networks make it possible to study in detail the ‘discriminative capability’ of lin-
guistic cues, i.e. how well morphological functions such as realized with the English S
exponent are discriminated by sublexical and collocational features.

The study of Tucker et al. (2019) calls attention to two opposing forces shaping the
duration of verbs’ stem vowels. When sublexical and collocational features supported
strongly and directly a verbs’ tense, this verb’s vowel has a longer duration for the
majority of data points. Conversely, when features support different semantic functions,
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vowel duration is reduced. In what follows, we investigate whether the findings of Tucker
et al. generalize and also contribute to clarifying the variation in the duration of S as a
function of the morphological function it realizes.

To do so, we proceed as follows. We begin with a more detailed introduction to the
duration of S. We then proceed with a corpus study of S in the full Buckeye, extending
and replicating the results of the original Plag et al. (2017) study. This is followed
by an introduction to naive discriminative learning and specific NDL measures such as
activation or activation diversity that we use to predict the duration of S. Application of
these measures to the Buckeye data shows that indeed these measures provide improved
prediction accuracy. We conclude with a discussion of the theoretical implications of this
result, which is non-trivial as it is obtained with a computational model that eschews form
units such as morphemes or exponents and instead estimates discriminative capability
directly from low-level form features.

2 Final S in English

Homophony has attracted considerable attention in recent years as a testbed for theories
of the mental lexicon. Research on lexemes has shown that homophonous lexemes show
striking phonetic differences (e.g. Gahl 2008, Drager 2011). Gahl (2008) investigated the
acoustic realization of 223 supposedly homophonous word pairs such as time and thyme
and found that, quite consistently, the more frequent members of the pairs, e.g. time, are
significantly shorter than the corresponding less frequent ones, e.g. thyme (see Lohmann
(2018b) for a replication and Lohmann (2018a) for a replication with homophonous noun-
verb pairs). This can be taken as evidence that two homophonous lexemes cannot be
represented exclusively by one identical phonological form with information on their com-
bined frequency, but that the individual frequencies must be stored with the respective
lemmas and have an effect on their articulation. Similarly, Drager (2011) found that the
different functions of like go together with different acoustic properties. Whether like
is used as an adverbial, as a verb, as a discourse particle, or as a quotative lexeme has
an effect on several phonetic parameters, i.e. the ratio of the duration of /l/ to vowel
duration, on the pitch level and on the degree of monophthongization of the vowel /aI/.
These fine differences indicate that homophony of two or more lemmas at the phonetic
level may not exist (see Podlubny et al., 2015: for a replication in Canadian English).

Similar findings seem to hold for stems or affixes. Thus, Smith et al. (2012) found
acoustic differences (in durational and amplitude measurements) between morphemic and
non-morphemic initial mis- and dis- (as in, e.g., distasteful vs. distinctive). Kemps et al.
(2005b) provided evidence that free and bound variants of a base (e.g. help without
a suffix as against help in helper) differ acoustically, even if no morpho-phonological
alternations apply, and that Dutch and English listeners make use of such phonetic cues
in speech perception (see also Kemps et al. 2005a).

The homophony of morphemic sounds and their non-morphemic counterparts in En-
glish have also been investigated for some time. In particular, there are some previous
studies available that have investigated the phenomenon that is the topic of the present
paper: word-final S in English.2

2There have also been some studies of English word-final /t/ and /d/ (Losiewicz 1992, Zimmermann
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One early study of S is Walsh and Parker (1983). Walsh and Parker (1983) tested
plural /s/ against non-morphemic /s/ in a reading experiment and found that the plural
S had longer mean durations than non-morphemic S. The authors did not use a statistical
test, nor did they use a multivariate statistical analysis with pertinent lexical and phonetic
covariates. A reanalysis of the data set using mixed effect regression and additional
covariates carried out by the second author of the present study showed that the data do
not bear out the effects that the authors claimed they did (Plag, 2014).

In a more recent study, Song et al. (2013) found a significant difference between plural,
which is 7ms longer, and non-morphemic /z/ in utterance-final position, but not in non-
final position. Song et al.’s study is based on conversational speech, but their data set
is very restricted (only monosyllables, only nine different word types). Furthermore, the
set of covariates taken into account was small and potential variability in voicing was
not included in the analysis. Furthermore, Song et al.’s data is child-directed speech,
which has been shown to differ from inter-adult speech in various ways (see, for example,
Foulkes et al. 2005 for an overview and discussion).

Addressing some of the problems of earlier work, Plag and colleagues investigated final
S in a sample of 644 English words (segmented manually) with conversational speech data
from the Buckeye speech corpus (Plag et al., 2017). They measured the absolute duration
of S in non-morphemic /s/ and /z/, and of six different English /s/ and /z/ morphemes
(plural, genitive, genitive plural, and 3rd person singular, as well as cliticized forms of
has and is), as well as their relative duration (i.e. the ratio of S duration and whole word
duration). As the present study is primarily geared towards explaining the findings of
that study, we will look at them in more detail.

The authors used regression models that predicted the absolute or relative duration of
S based on the type of morpheme and a number of covariates that are known to influence
segmental durations, such as local speech rate, stem duration, base frequency, number
of previous mentions, bigram frequency, neighborhood density, the number of consonants
in the rhyme before the final S, the voicing of S, the following phonetic context, and the
position of the word in the utterance.

In general, there are fewer significant contrasts between the different morphological
categories for voiced than for unvoiced realizations of S, which is partly due to lack of sta-
tistical power (the voiced subset is quite small) and partly due to the fact that the voiced
instances are usually shorter, which makes it more difficult to find significant differences.
Still, there are four significant contrasts for voiced realizations: 3rd person singular [z] is
shorter than plural, genitive and genitive-plural [z], and plural [z] is significantly longer
than the voiced is clitic.

For unvoiced S, there are 10 significant contrasts (out of 21 possible possible pair-wise
contrasts). In this subset, non-morphemic S is longer than all types of morphemic S.
The two suffixes (plural and 3rd person singular) are shorter than non-morphemic S, but
longer than the two clitics of has and is. The clitics are significantly shorter than 3rd

2016b, Seyfarth et al. 2018). These studies have mostly failed to find any significant difference between
the duration of past tense /t/ and /d/ and non-morphemic /t/ and /d/. Losiewicz claims to have
found a significant difference, but a reanalysis of her data using a mixed effects regression and pertinent
covariates shows a null effect for past tense versus non-morphemic /t/ and /d/. Zimmermann (2016)
finds a significant contrast between the duration of the clitics of would and had, and one between would
and non-morphemic /d/.

4



person singular S and plural S.
With relative durations, there are even more significant contrasts (eight for /z/ and

twelve for /s/), patterning similarly to the absolute duration differences, i.e. contrasts
between plural and the rest for voiced realizations, and between non-morphemic, suffixal
and clitic S for unvoiced realizations.

In another study of conversational speech, Zimmermann (2016a) found phonetic effects
in New Zealand English that are very similar to those of Plag et al. (2017). The same
durational contrasts were found, plus a few more. Zimmermann’s results were based on a
very large sample of over 6900 automatically segmented words from the Quakebox Corpus
(Walsh et al., 2013).

In a recent experimental study, Seyfarth et al. (2018) investigated homophone pairs
and found suffixal [s] and [z] to be longer than non-morphemic [s] and [z] in otherwise
homophonous monosyllabic word pairs. This contradicts the findings from the conver-
sational speech data, and it is unclear how this difference arises. Plag and colleagues
used natural speech data, Seyfarth and colleagues made-up dialogues in an experiment.
Plag and colleagues sampled words across the board, Seyfarth and colleagues investigated
differences between actual homophones. While using homophones may control for the
influence of contextual phonetic parameters, it may also introduce unclear variation since
the processing of homophones may differ from that of non-homophones. Furthermore,
Seyfarth and colleagues did not properly distinguish between different kinds of morphemic
S, with unclear consequences for the results. 16 out of the 26 words with morphemic S
involved plurals, 10 involved 3sg S. 20 out of the 26 stimuli pairs had final [z], and not
[s]. This means that the majority of the morphemic stimuli were voiced plurals. Inter-
estingly, both Plag et al. (2017) and Zimmermann (2016b) find that voiced plural S is
indeed significantly longer than non-morphemic voiced S, which is actually in line with
Seyfart et al.’s results for this constellation of voicing and morphemic status.

In summary, both Plag et al. (2017) and Zimmermann (2016b) have found rather
complex patterns of durational differences between different types of S in conversational
speech. The findings are robust across corpora and across varieties. In their theoretical
discussion, the authors show that no extant theory can account for these facts. Strictly
feed-forward models of speech production (such as Levelt et al. 1999) or theoretical models
of morphology-phonology interaction (e.g. Kiparsky 1982, Bermúdez-Otero 2018) rely on
the distinction of lexical vs. post-lexical phonology and phonetics, and they exclude the
possibility that the morphemic status of a sound influences its phonetic realization since
this information is not available at the articulation stage.

Prosodic phonology (e.g. Nespor and Vogel 2007) is a theory in which prosodic con-
stituency can lead to phonetic effects (see, for example, Keating 2006, Bergmann 2015).
While it can account for some of the differences between homophonous morphemes with
different morphological functions (e.g. durational differences between the free and bound
variants of a stem Kemps et al. 2005b), it cannot explain all of them. Importantly,
this approach is unable to explain the patterning of the contrasts we find for final S in
English.3

3The existing prosodic phonological literature on final S in English (e.g. Goad 1998, Goad et al.
2003) posits three different kinds of prosodic configurations in which final S may occur. However, these
configurations, and the predictions that may follow from them, do not match the patterns of acoustic
duration differences found in the data. See Plag et al. (2017:210) for more detailed discussion.

5



It is presently unclear how the observed differences in the duration of word-final
S can be accounted for. In this paper, we investigate whether these differences can be
understood as a consequence of error-driven learning of words’ segmental and collocational
properties. In order to do so, we first extend Plag et al. (2017) original study, which was
based on a small and manually segmented sample from the Buckeye corpus, to the full
Buckeye corpus (Pitt et al., 2007). After replicating the differences in S duration, we
introduce naive discriminative learning, and train a wide learning network on the Buckeye
corpus. Three measures derived from the resulting network are found to be predictive
for S duration, and improve on a statistical model that includes a factor for the different
functions that can be realized with S. We conclude with a discussion of the implications
of our modeling results for theoretical morphology and models of lexical processing.

3 Replication of Plag et al.

Plag et al. (2017) based their investigation on a sample from the Buckeye corpus (Pitt
et al., 2007). The Buckeye Corpus is a corpus of conversational speech containing the
recordings from 40 speakers in Columbus, Ohio, speaking freely with an interviewer
(stratified on age and gender: 20 female, 20 male, 20 old, 20 young). The style of speech
is unmonitored casual speech. The corpus provides orthographic transcriptions as well as
wide and narrow time-aligned phonetic transcriptions at the word and segment level. We
redid the analysis of Plag et al. (2017) on the full Buckeye corpus, using the segmentations
that this corpus makes available.

We extracted all words which end in [s] or [z], resulting in a total of 28928 S segments.
Table 1 shows the number of tokens depending on morphological function and voicing in-
vestigated in the replication. Extraction was based on the narrow phonetic transcription.
Information about the grammatical status of a given S instance was coded automatically
on the basis of the part-of-speech information of the target word and the following word
as provided in the corpus.

Table 1: Number of S tokens in each morphological function split by voicing for the
replication study.

voiced unvoiced
s 1470 10141
3rdSg 832 2846
GEN 42 180
has/is 622 5133
PL-GEN 0 12
plural 1367 6095

For this substantially larger dataset, a Box-Cox analysis indicated that a logarithmic
transformation of S duration would make the data more normal distribution-like. The
predictor of interest is the morphological function that the S exponent realizes (Expo-
nentFor), with levels non-morphemic, 3rdsg, gen, has/is, pl-gen, plural, and
non-morphemic as reference level. Unlike Plag et al. (2017), we collapsed the has and
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is clitics into one class, as it is not possible to differentiate between the two by means of
automatic pre-processing.

Following Plag et al. (2017), we included several predictors as controls. A factor
Voicing (with levels voiced and unvoiced) was implemented indicating whenever a
periodic pitch pulse was present in more than 75 percent of the duration of the segment. A
factor MannerFollowing coded for the manner of articulation of the segment following
S (levels absent, approximant, fricative, nasal, plosive, vowel). Random
intercepts for speaker and word were also included. A factor Cluster with levels
1, 2 and 3 was included to control for the number of consonants in the coda, where 1
equals to a vowel-S sequence. Two covariates were included, the local speech rate and
the duration of the base word. Speaking rate was calculated by dividing the number
of syllables in a phrase by the duration of that phrase. As in the Plag et al. (2017)
study, base word duration was strongly correlated with word frequency (Spearman-rank
correlation r = -0.69), and to avoid collinearity in the tested data, frequency was not
included as predictor (see Tomaschek et al. 2018b for effects of collinearity in regression
analyses). We used linear mixed-effect regression as implemented in the lme4 package
(version: 1.1-12 Bates et al., 2015), using treatment coding for all factors.

Table 2: Coefficients and associated statistics for the mixed-effects model fit to the
log-transformed duration of S, using the full Buckeye corpus.

Estimate Std. Error df t value
Intercept -1.52 0.02 148.39 -69.93
ExponentFor = 3rdSg -0.10 0.02 1372.72 -5.65
ExponentFor = GEN -0.15 0.03 5647.45 -5.46
ExponentFor = has/is -0.15 0.02 1416.32 -7.33
ExponentFor = PL-GEN -0.12 0.11 5778.72 -1.08
ExponentFor = plural -0.10 0.01 1380.73 -8.98
Voicing = unvoiced 0.23 0.01 28924.37 35.66
Cluster = 2 -0.19 0.01 5778.52 -26.03
Cluster = 3 -0.29 0.01 6103.94 -19.73
MannerFollowing = app -0.31 0.01 28822.04 -37.63
MannerFollowing = fri -0.52 0.01 28900.28 -71.39
MannerFollowing = nas -0.47 0.01 28872.42 -31.94
MannerFollowing = plo -0.51 0.01 28906.19 -72.46
MannerFollowing = vow -0.43 0.01 28909.55 -62.94
LocalSpeechRate -0.08 0.00 28837.16 -38.43
BaseDuration 0.19 0.01 16193.21 32.88

Table 2 presents the estimates of the coefficients of the model and the corresponding
standard errors and t-values. In order to establish which morphological functions differed
in mean durations we tested all pair-wise contrasts between the different types of S using
the difflsmeans function from the lmerTest package (Kuznetsova et al., 2014).

Compared to monomorphemic words ending with S, S duration was shorter when S
realized plural, 3rdSg, GEN, has/is. Plag et al. (2017) observed a difference as well
for genitive plurals, but for the full Buckeye this contrast was not supported. Furthermore,
as in the study of Plag et al. (2017), the S was articulated with shorter duration when
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realizing has or is compared to when it realizes plurals or the third person singular. Plag
et al. (2017) observed an interaction of ExponentFor by Voicing, but this interaction
did not replicate for the enlarged dataset. The differences between the present analysis
and that of Plag et al. (2017) have two possible sources. First, Plag et al. (2017) manually
inspected all data points and curated the automatic annotations and segmentations where
necessary. By contrast, we followed the annotations and segmentations provided by
the Buckeye corpus, which are also generally manually corrected on the basis of forced
alignments. It is unclear at what level of carefulness the original manual corrections of
the Buckeye corpus were performed. In addition, whereas misalignment tends to be very
consistent and systematic in forced aligners, human annotators can be biased by their
own expectations and create different kinds of variations in the annotation (Ernestus and
Baayen, 2011). Therefore, there is no way to know which annotation can be stronger
relied on, especially for phones with gradual transitions such as sonorants. Second, by
considering the full corpus, the present analysis is possibly somewhat more robust against
spurious small-sample effects. For instance, in the dataset of Plag et al. (2017), there
were only 81 voiced S tokens, as opposed to 563 voiceless S tokens. Table 3 summarizes a
comparison of the significant contrasts for unvoiced S in Plag et al. (2017)’s small sample
with those found in the full corpus used here. Apart from one contrast, all contrasts are
significant in both data sets.

S PL 3RDSG GEN HAS/IS PL-GEN

S yes yes yes yes no
PL yes
3RDSG yes
GEN
HAS/IS
PL-GEN

Table 3: Significant contrasts for unvoiced S in Plag et al. (2017)’s small sample and the
present replication study (see table 2). ‘Yes’, indicates an effect found in both studies,
‘no’ indicates an effect found only in the small sample, for α = 0.05 (under Tukey’s HSD).

Two things are important to note. First, the main finding of Plag et al. (2017) is the
difference in duration between unvoiced non-morphemic S (longest), clitic S and suffix S
(shortest). This difference is also found in the larger data set with automatic annotation.
Second, while in the Plag et al. (2017) data set there was a significant interaction between
voicing and morpheme type, this interaction is no longer present in the larger data set.

To summarize, we have replicated Plag et al. (2017)’s main findings for a much larger
data set derived from the same speech corpus. However, we still lack an explanation for
the durational patterns observed. In the next following sections, we will provide such an
explanation, arguing that durational variation in word-final S is chiefly influenced by how
strongly the final S is associated with its morphological function as a result of learning.
This association strength will be derived from a naive discriminative learning network,
as explained in the next section.
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4 Naive Discriminative Learning

4.1 General overview

Naive discriminative learning (NDL) is a computational modeling framework that is
grounded in simple but powerful principles of discrimination learning (Ramscar and
Yarlett, 2007, Ramscar et al., 2010, Baayen et al., 2011, Rescorla, 1988). The general cog-
nitive mechanisms assumed in this theory have been shown to be able to model a number
of important effects observed in animal learning and human learning, for example the
blocking effect (Kamin 1969) and the feature-label ordering effect (Ramscar et al. 2010).
NDL has recently been extended to language learning and language usage, and several
studies have shown that it can successfully model different morphological phenomena
and their effects onto human behavior, e.g. reaction times in experiments investigating
morphological processing (e.g. Baayen et al. 2011, Blevins et al. 2016, see Plag 2018:
section 2.7.7 for an introduction).

Discriminative learning theory rests on the central assumption that learning results
from exposure to informative relations among events in the environment. Humans (and
other organisms) use these relations, or ‘associations’, to build cognitive representations
of their environments. Crucially, these associations (and the resulting representations)
are constantly updated on the basis of new experiences. Formally speaking, the associ-
ations are built between features (henceforth cues) and classes or categories (henceforth
outcomes) that co-occur in events in which the learner is predicting the outcomes from the
cues. The association between cues and outcomes is computed mathematically using the
so-called Rescorla-Wagner equations (Rescorla and Wagner, 1972, Wagner and Rescorla,
1972, Rescorla, 1988: see Appendix A for a technical description). The equations work
in such a way that the association strength or ‘weight’ of an association between a cue
and an outcome increases with every time that this cue and outcome co-occur. Impor-
tantly, this association weight decreases whenever the cue occurs without the outcome
being present in a learning event. During learning, weights are continuously recalibrated.
At any stage of learning, the association weight between a cue and an outcome can be
conceptualized as the support which that specific cue can provide for that specific out-
come given the other cues and outcomes which had been encountered during the learning
history.

Let us look at an example of how our understanding of the world is constantly mod-
ulated by the matches and mismatches between our past experiences and what we actu-
ally observe. Our example is a phenomenon known as ‘anti-priming’ found by Marsolek
(2008). He presented speakers with sequences of two pictures, and asked these speakers
to say the name of the second picture. The critical manipulation was implemented in
the first picture, which could be either similar to some extent to the target picture (e.g.,
grand piano, followed by table), or unrelated (e.g., orange followed by table). In contrast
to typical priming findings, Marsolek observed that speakers responded more quickly for
unrelated pairs compared to related pairs. This ‘anti-priming’ – caused by prior presenta-
tion of a related picture – follows straightforwardly from the learning rule of Rescorla and
Wagner (1972). The weights of visual features (i.e. the cues) that are shared by grand
piano and table, such as having legs and a large flat surface, are strengthened for grand
piano but weakened for table when the picture of the grand piano is presented. Slower
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response times in this case of anti-priming are a direct consequence of critical features
losing strength to table compared to cases in which a visually unrelated prime, such as
an orange, had been presented.

Taking a morphological example, the association of the phonological string /aIz/ with
a causative meaning (‘make’) in English would be strengthened each time a listener
encounters the word modernize, and weakened each time the listener hears the words size
or eyes. The association strengths resulting from such experiences influence language
processing in both production and comprehension.

Technically, the mathematical engine of NDL, i.e. the Rescorla-Wagner equations,
is an optimized computational implementation of error-driven discrimination learning.
This engine can be viewed as implementing ‘incremental regression’ (for a nearly iden-
tical algorithm from physics see Widrow and Hoff (1960) and for a Bayesian optimized
algorithm, Kalman (1960)). NDL was first applied to large corpus data and used to study
chronometric measures of lexical processing by Baayen et al. (2011). An extension of the
learning algorithm is reported in Sering et al. (2018b). Implementations are available
both for R (Shaoul et al., 2014) and Python (Sering et al., 2018a).

Once a network has been trained, it provides different measures that represent different
aspects of the association strength between cues and outcomes. These measures may
subsequently be used as predictors of human responses (e.g. response times in lexical
decision experiments). In the present study, we will use three NDL measures to predict
the acoustic duration of S in regression analyses.

Other approaches to learning are available, for instance the Bayesian model presented
in Kleinschmidt and Jaeger (2015). Where ndl comes into its own, compared to models
based in probability theory, is when there are thousands or tens of thousands of dif-
ferent features (cues) that have to be learned to discriminate equally large numbers of
classes (outcomes). Cues compete for outcomes in often unforeseeable ways reminiscent
of chaotic systems, which is why it is a truly daunting challenge to capture the dynam-
ics of such systems with probabilities defined over hand-crafted hierarchies of units (i.e.
with probabilistic statistics). Errors at lower levels of the hierarchy tend to propagate
to higher levels, and render the performance of such models less than optimal. This is
why in computational linguistics, there is a strong movement in the direction of end-to-
end models which by-pass the engineering by hand of intermediate representations using
neural networks. NDL adopts this end-to-end approach. In contrast to approaches in
machine learning, however, NDL does not use any hidden layers. Rather, it makes use
of the simplest possible network architecture, with just one input layer and one output
layer.

NDL thus offers a simple method for assessing the consequences of discrimination
learning that has hardly any free parameters (namely, only a learning rate, typically set
to 0.001, and the maximum amount of learning λ, set to 1.0). Consequently, once the
representations for the input and output layers of the network have been defined, and
learning rate and λ have been set, its performance is determined completely by the corpus
on which it is trained.

NDL also differs from standard applications of neural networks in machine learning
in that it uses very large numbers of input and output features. We therefore refer to the
NDL networks as ‘wide learning’ networks. The weights of these networks are updated
incrementally by applying the learning rule of Rescorla and Wagner to so-called learning
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events. Learning events are defined as moments in learning time at which a set of cues and
a set of outcomes are evaluated jointly. Association weights between cues and outcomes
are strengthened for those outcomes that were correctly predicted, and weakened for all
other outcomes. For technical details, see Milin et al. (2017b) and Sering et al. (2018b),
for a simple introductory implementation see Plag (2018:, section 7.4.4).

This approach to simulate language learning has proved useful for, e.g., modeling
child language acquisition (Ramscar et al., 2010, 2011, 2013a,b), for disentangling lin-
guistic maturation from cognitive decline over the lifespan (Ramscar et al., 2014, 2017),
for predicting reaction times in the visual lexical decision task (Baayen et al., 2011, Milin
et al., 2017b) and self-paced reading (Milin et al., 2017a), as well as for auditory compre-
hension (Baayen et al., 2016b, Arnold et al., 2017). The computational model developed
by Arnold et al. (2017) is based on a wide learning network that has features derived
automatically from the speech signal as input. This model outperformed off-the-shelf
deep learning models on single-word recognition, and shows hardly any degradation in
performance when presented with speech in noise (see also Shafaei Bajestan and Baayen,
2018).

By adopting an end-to-end approach with wide learning, naive discriminative learn-
ing approaches morphology, the study of words’ forms and meanings, from a very dif-
ferent perspective than the standard post-Bloomfieldian hierarchical calculus based on
phonemes, morphemes, and words. The relation between form and meaning is addressed
directly, without intervening layers of representations. In what follows, we will make use
of wide learning networks primarily as a convenient tool from machine learning. In the
discussion section, we will briefly return to the question of the implications of successful
end-to-end learning for morphological theory.

4.2 From NDL to phonetic durations

The present study follows up on Tucker et al. (2019), who used ndl measures to predict
the durations of stem vowels of regular and irregular verbs in English in the Buckeye
corpus. Their ndl wide learning network had diphones as cues, and as outcomes both
content lexemes (or more specifically, pointers to the meanings of content words) and
morphological functions (such as plural or clitic has). In what follows, we refer to these
pointers to meanings/functions as lexomes (see Milin et al., 2017b: for detailed discus-
sion). Tucker et al. observed that prediction accuracy of statistical models fit to vowel
duration improved substantially when classical predictors such as frequency of occurrence
and neighborhood density were replaced by predictors grounded in naive discriminative
learning.

Following their lead, we implemented a network that has morphological function lex-
omes as outcomes, but restricted these to those that are implicated with English word-
final S: clitic, genitive plural, genitive singular, plural noun, singular
noun, third person verb, verb, verb participle, past-tense verb, and other
(such as adverbs). The number of morphological functions is larger than that examined
in the original Plag et al. (2017) study, as we also include S that is word-final in past
tense or past participle forms as a result of reduction (e.g., in pass for passed). Voicing
of S was based on the phonetic transcription provided by the Buckeye corpus.

The findings by Tucker et al. (2019) indicate that speakers have to balance opposing
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forces during articulation, one that seeks to lengthen parts of the signal in the presence of
strong bottom-up support and one that seeks to shorten them in case of high uncertainty.
To parameterize these forces, we derived three different measures from the NDL wide
learning network which are used as predictors of S duration: the S lexomes’ activations,
their priors, and their activation diversities. Table 4 provides an example for a simple
ndl network where the diphone cues for the word form ‘dogs’ are associated with, among
others, the lexome of the morphological function plural. We will discuss each measure
in turn.

Table 4: The table illustrates a cue-to-outcome network with a set of cues C with k cues
c and a set of lexome outcomes O with n outcomes o. We illustrate the calculation of ndl
measures for the lexome of the morphological function plural as an outcome, located in
the second column, and its associated cue set CΩ = ld dO Og gz zb, located in rows 3
to 7. Each i-th cue c is associated with each j-th outcome o by a weight wi,j, representing
their connection strength, where i = 1, 2, . . . , k and j = 1, 2, . . . , n. Summed weights for
CΩ afferent to oj give the j-th activation a. The cues in c1, c2 represent any kind of cues
that might occur in the first and second row.

o1 {plural} 2 . . . on

c1 w1,1 w1,2 . . . w1,n

c2 w2,1 w2,2 . . . w2,n

ld w3,1 w3,2 . . . w3,n

dO w4,1 w4,2 . . . w4,n

Og w5,1 w5,2 . . . w5,n

gz w6,1 w6,2 . . . w6,n

zb w7,1 w7,2 . . . w7,n

. . . . . . . . . . . . . . .
ck wk,1 wk,2 . . . wk,n

a1 a2 . . . an

A lexome’s activation represents the bottom-up support for that lexome given the
cues in the input. The activation for a given lexome is obtained simply by summation
of the weights on the connections from those cues that are instantiated in the input to
that outcome (equivalent to the weights marked in red in Table 4). Hence, activation
represents a measure of the cumulative evidence in the input.

A lexome’s prior is a measure of an outcome’s baseline activation, calculated by the
sum of all absolute weights pertinent to the lexome outcome (equivalent to the weights in
the column marked in light grey in Table 4)4 The prior can be understood as a measure
of network entrenchment. It is an ndl measure that is independent of a particular input
to the network; rather it captures a priori availability which results from learning and
typically corresponds to frequency of occurrence.

Finally, a lexome’s activation diversity is a measure of the extent to which the input
makes contact with the lexicon. Activation diversity is the sum of the absolute activations
pertinent from a cue set to all lexome outcomes (equivalent to the activations located in
the bottom row highlighted in dark grey in Table 4). One can think of this measure as
quantifying the extent to which the cues in the input perturb the state of the lexicon. If

4Technically, the sum of the absolute values of a vector is the L1-norm. It is related to the L2-
norm, which is the Euclidean distance. For example, the Euclidean distance for the vector (-3, -4) is 5
(by Pythagoras), but the L1-norm is 7, the distance traveled from the origin to the point (-3,-4) when
movement is possible only along the horizontal axis or along the vertical axis.
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the cues were to support only the targeted outcome, leaving all other outcomes completely
unaffected, then the perturbation of the lexicon would be relatively small. However, in
reality, learning is seldom this crisp and clear-cut, and the states of outcomes other than
the targeted ones are almost always affected as well. In summary, the more the lexicon
as a whole is perturbed, the greater the uncertainty about the targeted lexomes will be.

Tucker et al. (2019) observed that vowel duration decreased with activation diversity.
When uncertainty about the targeted outcome increases, acoustic durations decrease
(see also for further examples of shortening under uncertainty Kuperman et al. (2007)
and Cohen (2014a)). Arnold et al. (2017) performed an auditory experiment in which
subjects had to indicate whether they could identify the words presented to them. These
words were randomly selected from the GECO corpus (Schweitzer and Lewandowski,
2013). Arnold et al. observed that words with low activation diversity (i.e., with short
vectors that hardly penetrate lexical space) were quickly rejected, whereas words with
large activation diversity (i.e., with long vectors that reach deep into lexical space) were
more likely to be identified, but at the cost of longer response times.

Tucker et al. (2019) also observed that prediction accuracy decreases when instead
of using the diphones in the transcription of what speakers actually said, the diphones
in the dictionary forms are used. We therefore worked with diphones derived from the
actual speech. However, we considered a broader range of features as cues.

Several studies that made use of discriminative learning actually worked with two
networks, one network predicting lexomes from form cues, resulting in form-to-lexome
networks, and the other predicting lexome outcomes from lexome cues, creating lexome-
to-lexome networks (Baayen et al., 2016b, Milin et al., 2017a,b, Baayen et al., 2016a).
Lexome-to-lexome networks stand in the tradition of distributional semantics (Landauer
and Dumais, 1997, Lund and Burgess, 1996a, Shaoul and Westbury, 2010a, Mikolov et al.,
2013). The row vectors of the weight matrix of lexome-to-lexome networks of ndl specify,
for each lexome, the association strengths of that lexome with the full set of lexomes.
These association strengths can be interpreted as gauging collocational strengths. In the
present study, we do not work with a separate lexome-to-lexome network. Rather, we
used a joint network that contains both, lexomes and their diphones as cues and mor-
phological functions as outcomes5.

5Depending on the task for which the semantic vectors – in the terminology of computational linguis-
tics, semantic vectors are called ‘word embeddings’ – are used, the association strength of a lexome with
itself can be either left as is in the vector, or set to zero (see Baayen et al., 2019: for detailed discus-
sion). Similarity between semantic vectors is typically evaluated with the cosine similarity measure or
the Pearson correlation between vectors. Just as for form-to-lexome networks, activations, priors, and
activation diversity measures can be calculated for lexome-to-lexome networks. The lexomes that we
use as cues or outcomes are labels for semantic vectors – in the framework of programming, specifically
data structures, labels are called ‘pointers’ to semantic networks. Since semantic vectors define points
in a high-dimensional collocational space, the lexomes of an ndl network are simply identifiers for these
points. Baayen et al. (2019) updated this approach by presenting a computational model in which the
lexomic pointers of ndl are replaced by semantic vectors.
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4.3 Cue-to-outcome structure

Let us now turn to the actual modeling procedures that we employed, and the evaluation
of these models that led us to focus on inflectional lexomes as outcomes.

As a general strategy, we wanted to explore various constellations of cues and out-
comes. We also considered the possibility that S duration might be co-determined by the
lexomes in a word’s immediate context. Therefore, just as in models for distributional se-
mantics, such as presented by Lund and Burgess (1996b), Shaoul and Westbury (2010b),
and Mikolov et al. (2013), we placed an n-word window around a given target word, and
restricted cues and outcomes to features within this window. By varying window size
between zero and maximally two to the left or the right of the target word, and the
specific features selected for cues and outcomes, we obtained a total of 38 ndl networks.

We created diphone cues on the basis of an entire phrase. This procedure created
transition cues between words. A sequence such as ‘dogs bark’ gives the diphone cues dO
Og gz zb bA Ar rk with zb as the transition cue.

Table 5 illustrates several different choices for cues and outcomes, given the phrase
the small dogs bark at the cat, where dogs is the pivotal word carrying S. Examples 1,
2 and 5 illustrate models in which lexomes are outcomes, examples 3–4 have diphones
as outcomes. Example 1 has only diphones as cues, this model is a standard form-
to-lexome network following the approach originally taken by Baayen et al. (2011) and
Tucker et al. (2019). Example 2 has lexomes as cues and lexomes as outcomes, this is
a standard lexome-to-lexome network (see Baayen et al., 2016a, Milin et al., 2017b: for
applications of such networks for modeling reaction times). Model 3 seeks to predict
diphones from lexomes. Model 4 complements the lexome cues with diphone cues. Model
5 also combines lexomes and diphones as cues, but these are used to predict lexomic
outcomes. Importantly, these lexomes include the inflectional lexomes that are realized
with S in English. The pertinent lexome in the present example is the one for plural
number (plural). Note that model 5 allows us to test the hypothesis that the support
for plural is obtained not only from a word’s diphones, but also from its collocates.

Table 5: Possible cue-outcome configurations for the phrase the small dogs bark at the
cat using a 5-word window centered on dogs.

Cues Outcomes
1 T@ @s sm m6 6l ld dO Og gz zb ba ar rk k@ @t dogs dog plural
2 the small dogs bark at dogs dog plural
3 the small dogs bark at ld dO Og gz zb

4 the small dogs bark at
T@ @s sm m6 6l ld dO Og gz zb ba ar rk k@ @t ld dO Og gz zb

5 the small dogs bark at
T@ @s sm m6 6l ld dO Og gz zb ba ar rk k@ @t dogs dog plural

Models were trained by moving a given word window across the whole of the Buckeye
corpus6. The window was moved across the corpus such that each word token was in the

6The corpus contains 286.982 words. The learning rate αβ was set to 0.001 and λ was set to 1.0;
these are the default settings, and these parameters were never changed. The lexome for morphological
function of words without final S was marked as ‘others’.

14



center of the window once. Consequently, a given S word will have occurred in each of
the positions in the window. Each window provided a learning event at which prediction
accuracy was evaluated and connection weights were recalibrated.

A wide variatey of selections of cues and outcomes was investigated with the aim of
obtaining insight into which combinations of cues and outcomes, under a discriminative
learning regime, best predict S duration. Models with lexomes as outcomes, specifically
those for the morphological functions of the S (clitic, genitive plural, genitive
singular, plural noun, singular noun, third person verb, verb, verb par-
ticiple, past-tense verb, and other) address the possibility that it is the learnability
of the inflectional lexomes that drives the acoustic duration of S. Models that take di-
phones as outcomes address the hypothesis that it is the learnability of diphones (i.e., of
context-sensitive phones) that is at issue.

In classical models of speech production, e.g. Levelt et al. (1999)’s weaver model
and the model of Dell (1986), the flow of processing goes from conceptualization to
articulation. Against this background, models in which lexomes are predicted instead
of being predictors are unexpected. Nevertheless, there are three reasons why it makes
sense to include such models in our survey.

First, for a survey, it is important to consider a wide range of possible combinations,
including ones that are at first sight counter-intuitive. This is essential for allowing data
to inform theory.

The second reason is technical in nature: ndl makes the simplifying assumption
that each outcome can be modeled independently from all other outcomes. It is this
assumption that motivates why ndl is referred to as naive discriminative learning. For
discriminative learning to take place, multiple cues are required for a given outcome,
so that over learning time it can become clear, due to cue competition, which cues are
informative and which are uninformative. Informative cues obtain larger association
strengths, uninformative cues obtain association strengths close to zero. If the learnability
of inflectional lexomes is what drives S duration, then the ndl network must include
inflectional lexomes as outcomes. If we were to take these inflectional lexomes as cues
and use them to predict a diphone such as gz as outcome, the network would only learn
the relative frequencies with which the inflectional lexomes are paired with gz in the
corpus (cf. Ramscar et al., 2010).

Third, any production system must have some form of feedback control so that the
sensory consequences of speaking can be evaluated properly. Without such feedback,
which comprises sensory feedback from the articulators as well as proprioceptive feedback
from hearing one’s own speech, learning cannot take place (see Hickok, 2014: for detailed
discussion). For error-driven learning to be at all possible, distinct articulatory and
acoustic targets must be set up before articulation, against which the feedback from
the articulatory and auditory systems can be compared. In what follows, the diphone
outcomes are a crude approximation of the speaker’s acoustic targets, and the connections
from the diphones to the lexomes are part of the speech control loop. For a computational
model providing a more detailed proposal for resonance between the production and
comprehension systems, see Baayen et al. (2019).
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4.4 Ndl measures as predictors

Having trained the 38 networks, we then analyzed their performance using random forests
(as implemented in the party package for R), focusing on the variable importance of the
ndl measures derived from these networks. The optimal network that emerged from this
analysis is the one with a 5-word window and the structure of example 5 in Table 5.
Critical lexomes, i.e. morphological functions, were predicted from all lexomes and their
diphones within a 5-word window centered on the target word. Given the literature on
conditional probabilities for upcoming (or preceding) information, such as the probability
of the current word given the next word (Jurafsky et al., 2000, Pluymaekers et al., 2005b,
Tremblay et al., 2011, Bell et al., 2009), we included in our survey of cue and outcome
structures windows of size three, with the target word in either first or second position.
The corresponding networks lacked precision compared to the above network trained on
learning events of five words7. The latter network is also sensitive to co-occurrence of
the target word with the preceding and upcoming word, but it is sensitive as well to
co-occurrence with words further back and further ahead in time.

In the light of the literature on boundary strength and its consequences for lexical
processing (Seidenberg, 1987, Weingarten et al., 2004, Hay, 2002, 2003, Hay and Baayen,
2002, Baayen et al., 2016b, 2019), we considered separately the activation and activation
diversity calculated for the diphone straddling the boundary between stem and S on the
one hand, and the activation and activation diversity calculated from all other remaining
cues (lexomes and diphones). This resulted in a total of 5 ndl measures as predictors of
S duration:

1. PriorMorph: the prior for weights from a cue set to a word’s inflectional lexome.

2. ActFromBoundaryDiphone: the activation of an inflectional lexome by the
boundary diphone.

3. ActFromRemainingCues: the activation of an inflectional lexome by all other
(lexome and diphone) cues.

4. ActDivFromBoundaryDiphone: the activation diversity calculated over the
vector of activations over all inflectional lexomes of S, given the boundary diphone
as cue.

5. ActDivFromRemainingCues: the activation diversity, again calculated over the
vector of activations of all inflectional lexomes, but now using the remaining cues
in the learning event.

7For instance, we compared statistical models using the ndl measures derived from the model with
a five-word window as predictors for S duration with statistical models with ndl measures derived
from models using three-word windows, with the target word either at the left or at the right position.
Statistical models with measures derived from the NDL networks based on three-word windows performed
worse, with larger ML-scores (+ 23.31 / +83.16) than the statistical model based on the network models
trained with a five-word window. We also tested the performance of a statistical model based on an
NDL network trained with a five-word window, but using only the diphones but not the words. The
resulting statistical model yielded a higher ML-score as well (+ 160.16). These three alternative mixed
models had as many degrees of freedom as the five-word model (31), hence all these alternative models
underperformed in terms of goodness of fit.
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There are nine values that PriorMorph can assume, one value for each of the nine
inflectional lexomes that we distinguished (clitic, genitive plural, genitive singu-
lar, plural noun, singular noun, third person verb, verb, verb participle,
past-tense verb, and other). The boundary diphone will usually differ from word
to word depending on the stem-final consonant and the specific realization of the S. For
any specific boundary diphone, there are again nine possible values of ActFromBound-
aryDiphone and ActDivFromBoundaryDiphone, one for each inflectional lexome.
For a given target word, e.g., dogs, we consider the activation and activation diversity,
given [gz] as cue, for the corresponding inflectional outcome, here noun plural. The
values of ActFromRemainingCues and ActDivFromRemainingCues depend on
the words that happen to be in the moving window, and hence their values vary from
token to token. In this way, each target word was associated with five measures for its
inflectional lexome.

Although the prior, activation, and activation diversity measures have been found to
be useful across many studies, there is considerable uncertainty about how they might
predict the duration of English S.

With respect to PriorMorph, the general strong correlation of ndl priors with
word frequency would suggest, given the many studies reporting durational shortening
for increasing frequency (see, e.g., Zipf, 1929, Jurafsky et al., 2001a, Bell et al., 2003, Gahl,
2008), that a greater PriorMorph correlates with shorter S. However, recent findings
emerging from production studies using electromagnetic articulography suggest that a
higher prior (or frequency of occurrence) might predict increased rather than decreased
S duration: Tomaschek et al. (2018c) observed that, other things being equal, greater
frequency enables speakers to execute articulatory gestures with more finesse, in parallel
to the general finding that motor skills improve with practice. It is also possible that
PriorMorph will not be predictive at all, as Tucker et al. (2019) did not observe an
effect of the prior for stem vowel duration.

For the activation measures (ActFromBoundaryDiphone and ActFromRemain-
ingCues), our expectation is that a greater activation will afford durational lengthening.
Arnold et al. (2017) observed, using an auditory word identification task, that a greater
activation corresponded to higher recognition scores. Since a higher signal to noise ratio
is expected to give rise to improved recognition rates, the prediction follows for English S
that when the activation is higher, there must be more signal compared to noise, and this
higher signal to noise ratio is, for a fricative such as S, likely to be realized by lengthening.
This is indeed what Tucker et al. (2019) observed for vowel duration in regular verbs: As
activation increased, the duration of the stem vowel increased likewise.

Turning to the activation diversity measure, here Tucker et al. (2019) observed a
strong effect, with larger activation diversity predicting shorter duration. This result fits
well with the finding of Arnold et al. (2017) that in auditory word identification, words
with a low activation diversity elicited fast negative responses, whereas words with higher
activation diversity had higher recognition scores that came with longer decision times.
In fact, the activation diversity measure can be understood as a measure of lexicality:
a low lexicality is an index of noise, whereas a high lexicality indicates that the speech
signal is making contact with possibly many different words. The other side of the same
coin is that discriminating the target lexome in a densely populated subspace of the
lexicon takes more time. For speech production, Tucker et al. (2019) argued that when
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lexicality is high, the system is in a state of greater uncertainty as many lexomes are co-
activated with the targeted outcome. Importantly, if some part of the signal, e.g., English
S, contributes to greater uncertainty, it is disadvantageous for both listener and speaker
to extend its duration. All that extending its duration accomplishes is that uncertainty
is maintained for a longer period of time. It makes more sense to reduce the duration of
those parts of the signal that do not contribute to discriminating the targeted outcome
from its competitors. These considerations led us to expect a negative correlation between
activation diversity and S duration.

5 Results

We analyzed the log-transformed duration of S with a generalized additive mixed model
(GAMM, Wood, 2006, 2011) with random intercepts for speaker and word. In addition
to the five measures derived from the ndl network, we controlled for the manner of
the preceding and following segment by means of two factors, one for the preceding
segment, one for the following segment (each with levels approximant, fricative,
nasal, plosive, vowel and absent). We included the average speaking rate of the
speaker (IndividualSpeakingRate) and the local speaking rate (LocalSpeaking-
Rate) as control covariates.

In a number of cases, the s-bearing word would be located in a phrase final position
and the last diphone cue would be s# or z#. These cues resulted in strong outliers in
the ndl measures, which is why these words were excluded from analysis. A total of
27091 tokens was investigated with ndl measures, Table 6 shows the number of tokens
depending on function and voicing.

Table 6: Number of S tokens in each morphological function split by voicing investigated
with NDL measures.

voiced unvoiced
clitic 1469 3812
genitive plural 7 6
genitive singular 81 31
plural noun 3841 2115
singular noun 224 1749
third person verb 2326 968
verb 1367 6095
verb participle 72 88
past-tense verb 2177 463
other 2947 4299

The model we report here is the result of exploratory data analysis in which the
initial model included all control predictors and the random effect factors, but no ndl
measures. We then added in ndl measures step by step, testing for non-linearities and
interactions. Model criticism of the resulting generalized additive mixed model (GAMM)
revealed that the residuals deviated from normality. This was corrected for by refitting
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the model with a GAMM that assumes that the scaled residuals follow a t-distribution
(Wood et al., 2016). The scaled t-distribution adds two further parameters to the model,
a scaling parameter σ (estimated at 6.18) and a parameter for the degrees of freedom ν
of the t-distribution (estimated at 0.29). Thus, for the present data, the residual error is
characterized by ε/6.18 ∼ t(0.29). Table 7 and Figures 1–3 are based on this model.

As the present model is the result of exploratory data analysis, the p-values in Table 7,
which all provide strong support for model terms with ndl measures as predictors, cannot
be interpreted as the long-run probability of false positives. One might apply a stringent
Bonferroni correction, and we note here that the large t-values for ndl model terms easily
survive a correction for 1,000 or even 10,000 tests. However, we prefer to interpret the
p-values simply as a measure of surprise and an informal point measure of the relative
degree of uncertainty about the parameter estimates.

Figure 1 presents the partial effect of PriorMorph. Larger priors go together with
longer durations. This effect levels off slightly for larger priors. Apparently, inflectional
lexomes with a stronger baseline activation tend to be articulated with longer durations.
The 95% confidence interval (or more precisely, as GAMMs are empirical Bayes, the 95%
credible interval) is narrow, especially for predictor values between 5 and 25, where most
of the data points are concentrated.

Recall that PriorMorph has nine different values, one for each inflectional function
of S. It is noteworthy that when we replace PriorMorph by a factor with the nine
morphological functions as its levels, the model fit decreases (by 10 ML-score units)
while at the same time the number of parameters increases by 7. The ndl prior for the
inflectional functions, just by itself, already provides more precision for predicting the
duration of English S. Further precision is gained by also considering the activation and
activation diversity measures.
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Figure 1: Partial effect of PriorMorph in the GAMM fit to S duration, with 95%
confidence (credible) interval.
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Table 7: Summary of parametric and smooth terms in the generalized additive mixed
model fit to the log-transformed acoustic duration of S as pronounced in the Buckeye
corpus. The reference level for preceding and following manner of articulation is ”absent”.

A. parametric coefficients Estimate Std. Error t-value p-value
Intercept -2.9179 0.2294 -12.7173 < 0.0001
preceding = fricative -0.0962 0.0299 -3.2151 0.0013
preceding = nasal -0.1335 0.0233 -5.7229 < 0.0001
preceding = plosive -0.1869 0.0150 -12.4229 < 0.0001
preceding = vowel 0.0106 0.0144 0.7318 0.4643
following = approximant 0.2839 0.1470 1.9315 0.0534
following = fricative 0.1036 0.1470 0.7048 0.4809
following = nasal 0.1089 0.1474 0.7390 0.4599
following = plosive 0.0850 0.1469 0.5785 0.5629
following = vowel 0.1310 0.1469 0.8919 0.3725
LocalSpeakingRate -0.0463 0.0211 -2.1874 0.0287
IndividualSpeakingRate 2.3873 0.6633 3.5990 0.0003
B. smooth terms edf Ref.df F-value p-value
te(ActFromBoundaryDiphone,
ActDivFromBoundaryDiphone) 14.4458 16.9557 548.4375 < 0.0001
te(ActFromRemainingCues,
ActDivFromRemainingCues,
LocalSpeakingRate) 24.7081 32.1035 170.9787 < 0.0001
s(PriorMorph) 2.0235 2.3027 84.2267 < 0.0001
Random intercepts speaker 37.1278 38.0000 2118.9174 < 0.0001
Random intercepts word 458.5028 2280.0000 2190.5616 < 0.0001
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Figure 2: Partial effect in the GAMM fit to log-transformed S duration of the activation
and activation diversity of the boundary diphone. In the right plot, deeper shades of blue
indicate shorter acoustic durations, warmer shades of yellow denote longer durations.
The left plot presents contour lines with 1SE confidence bands.

Figure 2 presents the partial effect of the interaction of ActFromBoundaryDi-
phone and ActDivFromBoundaryDiphone, which we modeled with a tensor prod-
uct smooth. The left panel presents the contour lines with 1SE confidence intervals; the
right panel shows the corresponding contour plot in color to facilitate interpretation, with
darker shades of blue indicating shorter S, and warmer yellow colors denoting longer S.
The narrow confidence bands in the left panel indicate that there are real gradients in
this regression surface, except for the upper left corner of the plotting region. For all
activation values, we find that as the activation diversity increases, S duration decreases.
Conversely, for most values of activation diversity, increasing the activation leads to larger
S duration. Shortest S durations are found for larger (but not the largest) values of acti-
vation, and for activation diversities exceeding 0.2. The two boundary measures interact
insofar as S duration is strongly reduced for high DivLastDiphone in spite of high
ActLastDiphone, as can be seen by the lake-like blue dip in the upper right quad-
rant of the plot. While smaller activation – and consequently reduced support – for the
morphological function of S should result in shorter S, it seems as though greater cer-
tainty about the morphological function counterbalances the trend, resulting in longer S
(bottom left quadrant of the plot).
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Figure 3: Tensor product smooth for the three-way interaction of ActFromRemain-
ingCues by ActDivFromRemainingCues by local speaking rate. The regression
surface for the two activation measures is shown for deciles 0.1, 0.3, 0.5, 0.7, and 0.9 of
local speaking rate. Deeper shades of blue indicate shorter acoustic durations, warmer
shades of yellow denote longer durations.

Figure 3 visualizes the three-way interaction of ActFromRemainingCues by Act-
DivFromRemainingCues by local speaking rate 8 The successive panels of Figure 3
present the odd deciles of local speaking rate (0.1, 0.3, 0.5, 0.7 and 0.9). The regression
surface slowly morphs from one with long durations for high ActDivFromRemain-
ingCues (left panel) to a surface with long durations only in the lower right corner. The
general pattern for ActDivFromRemainingCues is that S duration decreases as Act-
DivFromRemainingCues increases. For the lowest two deciles of local speech rate, this
effect is absent for high values of ActFromRemainingCues. For ActFromRemain-
ingCues, we find that for lower values of ActDivFromRemainingCues durations
increase with activation. For higher activation diversities, this effect is U-shaped. The
interaction pattern between the two ndl measures mirrors the one found in Figure 2.

8Software for plotting confidence bands for these complex interactions is not available.
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6 Discussion

6.1 Summary of the present results

Plag et al. (2017) reported that there are significant differences in the duration of English S
as a function of the inflectional function realized by this exponent (see also Zimmermann,
2016a, Seyfarth et al., 2018). Plag et al. (2017) observed that these differences in acoustic
duration challenge the dominant current theories of morphology. These theories, which
have their roots in post-Bloomfieldian American structuralism, hold that the relation
between form and meaning in complex words is best understood in terms of a calculus
in which rules operate on bound and free morphemes as well as on phonological units
such as syllables and feet. However, neither the units of this theory, nor configurations
of these units, nor the rules operating on these units or ensembles thereof, can explain
the observed differences in the duration of English S in an insightful way.

The present study explored whether the different durations of S can be understood
as following from the extent to which words’ phonological and collocational properties
can discriminate between the inflectional functions expressed by the S. We quantified the
discriminability of these inflectional functions with three measures derived from a wide
learning discrimination network that was trained on the entire Buckeye corpus. The input
features (cues) for this network were words’ lexomes in a five word window centered on
the S-bearing word and the diphones in the phonological forms of these lexomes. The
classes to be predicted from these cues (the outcomes) were the inflectional functions
(inflectional lexomes) of the S.

Three measures derived from the network were predictive for the duration of S. A
greater activation of a word’s inflectional lexome (i.e., greater bottom-up support) pre-
dicted longer durations. A higher lexomic prior (i.e., a higher baseline activation or
equivalently, a higher degree of entrenchment in the network) also predicted longer dura-
tions. Apparently, both the support for a word’s morphological function that is provided
by that word’s form and its collocational patterning, as well as the a priori baseline sup-
port for the word that accumulates over the course of learning, give rise to a prolonged
acoustic signal. In other words, stronger support, both long-term and short-term, for a
morphological function leads to an enhanced signal.

This finding dovetails well with lengthening of interfixes in Dutch, enhancement of
English suffixes when they are paradigmatically more probable, and enhancement of
vowels in Russian in proportion to paradigmatic support (Kuperman et al., 2007, Cohen,
2014a,b, 2015). Signal enhancement as a function of activation also replicates the findings
of Tucker et al. (2019) for the stem vowel of regular verbs in the Buckeye corpus.

The study by Tucker et al. (2019) reported an opposing force on the duration of verbs’
stem vowels: the activation diversity. Activation diversity is a measure of lexicality. It
assumes high values when the cues in the input are linked to many different outcomes.
In such a case, the outcome is located in a dense lexico-semantic subspace and it is more
difficult to discriminate the targeted outcome from its competitors. For auditory compre-
hension, we thus find that processing is slowed when activation diversity is high (Arnold
et al., 2017). The flip side of the same coin is that in speech production, prolonging part
of the acoustic signal, such as S, is dysfunctional when this signal increases the discrimi-
nation problem. A signal that is not discriminable cannot be made more discriminable by
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prolonging it. Prolongation will result only in lengthening a state of uncertainty, instead
of contributing to resolving it. Importantly, a large activation diversity is dysfunctional
not only for the listener, but also for the speaker. The auditory image that the speaker
projects and aims to realize through articulation (Hickok, 2014) feeds back through the
control loop to the semantic system. As a consequence, aspects of the speech signal that
are problematic for the listener will also be problematic for the speaker.

Considered together, the three ndl measures indicate that the speaker has to balance
two opposing forces. One force seeks to lengthen parts of the signal in the presence of
strong bottom-up support and long-term expectations. The other force seeks to shorten
parts of the signal that increase uncertainty. The ndl measures enable us to probe
these forces. More importantly, our model illustrates that these two forces interact in an
unexpected way. In case one force creates extreme uncertainty about the morphological
function of S, the other force is able to reduce this uncertainty and S durations turn out
to be long.

The framework of naive discriminative learning accepts that the language system is
to some degree ‘chaotic’. Just as in weather systems, a butterfly flapping its wings in the
Amazon is claimed to be able to start a chain of events that cause a rainstorm in London
(Lorenz, 1972), the cues that co-occur across learning events with cues that go together
with a target word, can co-determine the discriminability of that target word; see Mulder
et al. (2014) for an interpretation of the secondary family size effect along these lines.

Thus, the approach presented in the current study – training of an ndl network that
learns to discriminate linguistic outcomes on the basis of sublexical and collocational
properties and deriving ndl measures from this network to predict the acoustic proper-
ties of a linguistic item – can be be adopted to investigate similar phenomena in other
languages. For example, we are currently investigating how the different inflectional and
derivational functions of final /s/ and final schwa in Dutch affects their acoustic durations.
The approach allows one to investigate the lexical structure of not only morphological
functions, but maybe even semantic contrasts. Given the present results, as well as those
by Tucker et al. (2019), this approach is very promising.

6.2 Consequences for morphological theory

The question remains whether this ‘chaotic’ explanation of non-random variation in S
duration improves on an explanation that simply posits that different morphological func-
tions have different consequences for S duration? Rephrased statistically, does prediction
accuracy increase when we replace a model with a factor for morphological function (with
9 levels) with a model in which this factor is replaced with ndl measures? When we re-
place the factor inflection type by just the ndl prior, a numeric variable with 9 distinct
values, model fit indeed improves, while at the same time model complexity decreases. In-
stead of needing 8 parameters for inflectional function, only a single parameter (the slope
of the regression line) suffices. When the linearity assumption for the prior is relaxed,
the required effective degrees of freedom is still well below 8.

What are the consequences of our findings for morphological theory and theories of
speech production? First consider morphological theory. Here, we are confronted with
a range of different approaches that rest on very different assumptions about the struc-
ture of words. Two major approaches are relevant in the context of the S problem. On
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the one hand, we have post-Bloomfieldian item-and-arrangement theories (IAA, Hockett,
1954) and generative offshoots thereof building on Chomsky and Halle (1968). On the
other hand, we have realizational theories such as word and paradigm morphology (WP)
(Blevins, 2006). Both WP and IAA address how inflectional functions such as number
and tense are expressed in speech. IAA posits that this expression is mediated by mor-
phemes, i.e., the minimal units of a language that combine form and meaning. WP, on
the other hand, rejects the usefulness of the morpheme as theoretical construct (see also
Matthews, 1974, Beard, 1977, Aronoff, 1994, Blevins, 2003). Instead of constructing a
calculus for building words out of morphemes, WP focuses on the paradigmatic rela-
tions between words, and holds that morphological systematicities are driven by certain
paradigm-internal mechanisms, for example proportional analogy. Naive discriminative
learning provides a computational modeling framework that is deeply influenced by WP
morphology, and the measures derived from the model can be understood as gauging
aspects of proportional analogies. The specific implementation proposed in this study of
English S extends proportional analogy by including “collocational analogy” along with
phonological analogy. For detailed discussion of proportional analogy and discriminative
learning, see Baayen et al. (2019).

It is less clear whether the present findings are compatible with IAA. Explanations
within IAA can attribute an effect to representations for units, to configurations of such
units as well as to the combinatorial rules that give rise to these configurations. Plag
et al. (2017) showed that the observed differences in the durations of English S cannot
be explained in this way. However, IAA can assign conditional probabilities to units
and configurations of units, and link the likelihood of an effect to such probabilities (see,
among others Jurafsky et al., 2000, Aylett and Turk, 2004, Gahl, 2008, Bell et al., 2009,
Tremblay and Tucker, 2011, Cohen Priva, 2015, Kleinschmidt and Jaeger, 2015). We
cannot rule out that probabilities for inflectional functions that are properly conditioned
on collocational and phonological distributional patterns will also predict the duration
of English S. In the light of previous studies (Milin et al., 2017b, Tucker et al., 2019),
however, we anticipate that such measures will underperform compared to discriminative
measures. We note here that if measures such as, for instance, the probability of a
genitive plural conditioned on the two preceding and following words, are indeed found
to be effective predictors of S duration, this would imply that the fine-tuning of the
duration of S takes place after morphemes have been assembled into phrases. In other
words, any fine-tuning of this kind must, within the generative framework, take place
post-lexically.

6.3 Implications for speech production

Having outlined the implications of our findings for theoretical morphology, we next
consider their implications for models of speech production. The literature on speech
production is dominated by two models, those of Dell (1986) and Levelt et al. (1999).
Both models take the framework of IAA as given, and propose mechanisms for assembling
from morphemes and phonemes the form representations posited to drive articulation.

Dell’s interactive activation model is set up in such a way that the activation of
morphemes can be influenced by other words in the phrase. The paradigmatic effect of
activation diversity, which we calculated for all inflectional functions that can be realized
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as S, however, cannot be captured by this model, as in most phrases only one, perhaps
two of these inflectional functions are relevant. It is also unclear how effects of the ndl
prior might be accounted for, as the model does not implement baseline activation levels.
Furthermore, the activation measure in our learning model integrates evidence from all
words in the 5-word window to the S, whereas in Dell’s model inflectional morphemes
receive activation only from an inflectional concept node.

The weaver model by Levelt et al. implements a strictly modular architecture,
with a lemma layer separating morphemes from concepts. In this model, selection of
the stem is handled by hard-wired links between lemmas’ word forms one layer down
in the model’s hierarchy. The selection of a specific inflectional morpheme is driven by
diacritical features associated with a word’s lemma. Whether an inflectional suffix is
selected depends on whether its corresponding diacritical feature is flagged as active.
Since weaver explains frequency effects at the word form level, it might be possible
to interpret the inflectional priors from the ndl network as the resting activation levels
of the inflectional morphemes in weaver’s form stratum. However, since the weaver
model is not a learning model, each of the nine values of the ndl prior unavoidably
become free parameters of the model. Furthermore, the way the priors are estimated in
our ndl model, namely, by evaluating entrenchment across all diphones and even the
words in the immediate context, is completely at odds with weaver’s modular design.
Since weaver’s design precludes the possibility of neighborhood similarity effects — a
prediction that has been shown to be incorrect (Vitevitch, 2002, Vitevitch and Stamer,
2006, Vitevitch, 2008, Scarborough, 2004) — it is unlikely that this model can be adapted
to integrate discriminative information across the full lexicon.

After all, we are predicting the amounts of support for inflectional diacritics, and
one could imagine that our effects could be captured by some decision process selecting
the proper diacritic that then drives standard weaver production. In fact, the positive
correlations of prior and activation with S duration run counter to the predictions of
information theoretic accounts and probabilistic theories building on IAA models, ac-
cording to which words and segments are realized shorter the less informative they are
(Aylett and Turk, 2004, Jaeger, 2010, Cohen Priva, 2015). However, our results dovetail
well with the Paradigmatic Signal Enhancement Hypothesis (Kuperman et al., 2007),
which holds that the more probable an exponent is in a given paradigm, the longer it will
be articulated (see also Ernestus and Baayen (2006) and Cohen (2014a)). Kuperman et
al. observed that the duration of an interfix in Dutch compounds was proportional to its
probability within the left constituent family of the compound. For English S, it is the
set of inflectional lexomes that S realises that constitute the paradigm within which both
support and uncertainty are evaluated.

6.4 NDL as a computational tool of speech production

This survey leaves us with the question of how to understand ndl as a computational
model, and especially its status as a computational model of speech production. After
all, the network that we have found to predict S duration best represents the comprehen-
sion part of an internal production-comprehension-production feedback loop. To answer
this question, we first note that ndl is a computational tool, very similar to multiple
regression (Evert and Arppe, 2015, Sering et al., 2018b), which helps us trace the con-
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sequences of low-level, implicit statistical learning. It affords prediction precision that is
not available to hand-crafted architectures such as found in the models of Dell and Levelt
and colleagues. Second, because ndl is a computational tool, it does not provide a full
model of either comprehension or production. Nevertheless, applied to English S, this
tool informs us that, surprisingly, it is the comprehension part of the feedback loop that
appears to be crucial for understanding the variance in S duration. Furthermore, if the
way in which the model is set up, with lexomic and phonological cues jointly predicting
inflectional lexomes, is on the right track, this challenges separation of processes into
lexical and post-lexical. The reason is that during learning, phonological and lexomic
cues are in competition in a fundamentally non-modular way.

A more complete, and unavoidably more modular, model for the mental lexicon that
integrates comprehension and production was recently proposed by Baayen et al. (2018)
and Baayen et al. (2019). Their model, Linear Discriminative Learning, comprises several
interacting networks, with modality-specific numeric vectors for words’ forms and with
semantic vectors that replace the lexomic pointers that stand in for words’ meanings in
Naive Discriminative Learning. For inflected words, these semantic vectors are obtained
by summing the semantic vectors of the lexomes realized in that word. Thus, the seman-
tic vector for dogs,

−−→
dogs, is

−→
dog +

−−→
dogs. The production part of the ldl model first maps

a word’s semantic vector onto a numeric vector representing that word’s form, using a
straightforward linear transformation (i.e., a two-layer linear network). The lengths of
words’ form vectors is equal to the number of different n-phones known to the model,
and the values in these vectors specify the degree to which the different n-phones are sup-
ported by the words’ semantic vectors. Once a form vector has been obtained, the model
calculates the set of ordered sequences of overlapping n-phones (e.g., #do+dog+ogz+gz#)
that are best supported by the form vector. For each of the resulting candidates for pro-
duction, the model than calculates how well these candidates succeed in realizing the
intended meaning when presented to the model’s comprehension network. The pertinent
calculations again make use of a linear transformation, but now one that maps form vec-
tors onto semantic vectors. The candidate with the semantic vector closest to that of the
original semantic vector targeted for production is selected for articulation. Thus, in this
model, there is an explicit feedback loop from form to meaning. Measures based on this
model that are expected to be predictive for S duration are the amount of support from
the semantics for the pertinent n-phones, the angles and distances between the semantic
vectors of inflectional lexomes, and the angles or distances between these inflectional vec-
tors and the semantic vectors generated by the feedback loop. We leave exploration of
such measures for further research, given that ndl provides simple yet effective measures
gauging the support of form for meaning.9

6.5 Conclusion

We conclude with placing the present findings in a broader perspective. Speakers tend
to smooth articulatory gestures across junctures, resulting in a variety of forms of assim-

9We note here that neither ndl nor ldl provide fully-specified, “mechanical” models. In particular,
the mechanisms that are responsible for selection processes are not implemented. As a consequence, we
have to rely on generalized additive models to chart the details of the interplay of the network support
and decision processes.
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ilation. Simplification of articulatory gestures can give rise to substantial reduction of
spoken words compared to dictionary norms (Ernestus, 2000, Johnson, 2004, Ernestus
et al., 2002, Arnold et al., 2017). How exactly words are realized in speech depends on
the interplay of many factors, including audience design (Lindblom, 1990), minimization
of effort (Zipf, 1949), information density management (Aylett and Turk, 2004, Jaeger,
2010, Bell et al., 2009), articulatory proficiency (Tomaschek et al., 2018c,a, 2019), speech
rhythm (Ernestus and Smith, 2018), and paradigmatic enhancement (Kuperman et al.,
2007, Cohen, 2014a). To this list, the present study adds “discrimination management”
for inflectional functions (see also Tucker et al., 2019). When an exponent such as S
provides strong support for the targeted inflectional lexome (gauged by ndl activations
and priors), it is articulated with longer duration. When S fails as discriminative cue,
and instead creates uncertainty about the intended inflectional function, its duration is
decreased. Energy is not invested in a signal that creates confusion instead of clarity.

The current study shows that the discriminative capability of single segments as well
as parts of the speech signal affect its acoustic characteristics. Discriminative capability
is similar to what Wedel et al. (2013b) call ‘functional load’, i.e. the number of words
a single segment discriminates. Using counts of minimal pairs, Wedel and colleagues
have shown that a high functional load inhibits the loss of phonological contrasts (see
also Wedel et al., 2013a). Hall et al. (2018) further argue that phonetic segments get
enhanced when there is a risk to misidentify one word as another one (e.g. the [p]
in pill is longer than in pipe because it has to be contrasted more strongly from bill,
whereas there is no *bipe). This argumentation is consistent with our findings. A greater
activation for a morphological function indicates that the cues in the context of the S-
bearing word contrast the morphological function very well from other morphological
functions. A lower activation diversity indicates that the morphological function can be
well contrast on the basis of the contextual cues in the signal. In both cases we observe
an enhancement of the signal, namely lengthening.

The measures derived from naive discriminative learning offer the researcher new
tools that probe language structure at a much more fine-grained level than is possible
with minimal pairs. Thanks to these tools, we can now begin to further improve our
understanding of how discriminative capability modulates segment duration.
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A NDL: Rescorla-Wagner equations

Technically, the Rescorla-Wagner equations are closely related to the perceptron (Rosen-
blatt, 1962) and adaptive learning in electrical engineering (Widrow and Hoff, 1960). The
Rescorla-Wagner equations estimate the association strength, henceforth weights W , be-
tween input units C, with C ∈ ck, k = 1, 2, ..., K, henceforth cues, and a set of output
units O, with O ∈ on, n = 1, 2, ..., N , henceforth outcomes.

During learning, each outcome Oj is defined by a set of cues, henceforth cue set CSΩ.
Usually, q equals j. Since j also represents the position of O in the weight matrix, we
use q as a pointer to the associated Oj.

The size of the weight matrix increases incrementally during learning whenever new
subsets of cues and outcomes are encountered. After training, the Rescorla-Wagner net-
work will be defined by a K ×N weight matrix, where K represents the total number of
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unique cues encountered during learning and N represents the total number of encoun-
tered unique outcomes during learning.

At a given learning event Lt, t = 1, 2, ..., T , weights are adapted on the connections
from the inputs present during the learning event t, henceforth the cues Ct(Ct ⊆ C), to
all of the outcomes O1,...,t that have been encountered at least once during any of the
learning events 1, 2, ..., t− 1. The outcomes present at learning event Lt are denoted by
Ot(Ot ⊆ O). The weight between cue ci and outcome oj at the end of the learning event
t is given by

w
(t)
ij = w

(t−1)
ij + ∆w

(t−1)
ij , (1)

∆wt−1
ij is calculated by the Rescorla-Wagner equations:

∆w
(t−1)
ij =


a) 0 if ci /∈ ct,
b) αiβj

(
λ−

∑
m I[cm∈Ct]w

(t−1)
mj

)
if ci ∈ Ct ∧ oj ∈ Oj,

c) αiβj

(
0−

∑
m I[cm∈Ct]w

(t−1)
mj

)
if ci ∈ Ct ∧ oj /∈ Oj ∧ oj ∈ O1,...,t−1,

d) 0 otherwise.
(2)

The Rescorla-Wagner equations define four conditions which define adaptation strength
∆w

(t−1)
ij on the efferent weights in learning event t. The maximum learnability, λ, was

set to 1.0 in all our calculations, while cue and outcome salience, αi and βj, were set to
0.1. The four conditions in equation 2 define the following states:

1. if the i-th cue is not an element of the active cues Ct during the event Lt, ∆w
(t−1)
ij

equals to zero and none of its efferent weights are adapted.

2. If the i-th cue is an element of the active cues in a learning event Ct, the connection
to oj is strengthened if oj is also present in the event t by subtracting the sum of the
weights across all cues in Ct from λ. As a result, ∆wt−1

ij is inversely proportional
to the number of present cues. I is the indicator operator, which evaluates to 1 if
its argument in square brackets is true, and to zero otherwise. m indexes the cues
in Ct.

3. If oj is not present, but has been encountered during some previous learning event,
the strength of the connection between ci weight and oj is reduced by subtracting the
sum of the weights across all cues in Ct from 0. As a result, ∆wt−1

ij is proportional
to the number of present cues.

4. If none of the three above conditions is true, ∆w
(t−1)
ij equals to zero. This is espe-

cially the case when an outcome is encountered which was not present in any of the
previous learning events.
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