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1. Introduction

We live in a three-dimensional, complex world and throughout the day we are constantly exposed to

information about our versatile environment. How is it possible for us to live in and adapt to a con-

sistently changing environment?

How is the brain able to process large amounts of information in a systematic, logical and at the

same time non-linear way?

The visual cortex plays a vast role in our conscious perception of the visual world. Its underlying

mechanisms help us to get a vivid image of the surrounding world.

Because our two eyes are located at different lateral positions in the head, they send slightly differ-

ent two-dimensional images to our brain. These positional differences are called binocular dispari-

ties. Our brain measures these disparities to reconstruct depth perception, thus a three-dimensional

structure of the visual environment.

The mechanism in our brain that measures and uses binocular disparity is called stereopsis (Poggio

& Poggio, 1984).

Disparity-selective neurons, both binocular simple cells and complex cells, have been found in the

primary visual cortex (V1) of many mammals (Barlow, Blakemore & Pettigrew, 1967;  Hubel &

Wiesel, 1962). 

Simple cells are characterized as cells in V1, that respond to orientated edges and gratings. Their re-

ceptive fields are defined as confined regions of the visual field that contain clearly defined excita-

tory and inhibitory regions (Wolfe et al., 2009). They are active when light falls either in the center

of the field (gratings) or in the outer region (edge); the position of the light stimulus within the field

is very important for the activity of the neuron.

Contrary to simple cells, complex cells in V1 and V2 (secondary visual cortex), that also respond to

orientated edges and gratings, are not position-selective, meaning that they are also active when a

stimulus is positioned elsewhere, as long as it falls into their respective fields with a preferred orien-

tation. Thus their receptive fields don't have clearly defined excitatory and inhibitory regions.

Hubel and Wiesel (1962) proposed that complex cell fields are of higher-order and may be built up

by simpler fields.

As Information processing begins at early stages of the visual cortex, it gains greater specificity at

later stages, meaning that at higher levels, fewer cells are activated, but each is more selective and
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specific to stimuli (Barlow, 1972).

It is thus reasonable to assume that the visual cortex has employed an efficient strategy to make use

of the massive flow of information that is contained in natural images; such images show consistent

statistical properties that crucially differentiate them from random ones (Barlow, 1989). 

In the following it will be explained why receptive fields of simple cells in V1 are specifically well

suited to describe these properties and especially how they probably do it:

The spatial receptive fields of simple cells in mammalian primary visual cortex are characterized as

being localized, oriented and bandpass (Hubel & Wiesel, 1962; Olshausen & Field, 1996) and Field

(1987) has shown that these properties are well described as a result of producing sparse represen-

tations.

An input is represented sparsely when only a small number of cells, that convey meaningful infor-

mation (of the input), is active. The probability of producing a response is the same and equally dis-

tributed across all cells, however it is low for any given cell, thus sparse (Field, 1994).

In order to achieve a better  understanding on why the visual system might  work that way,  Ol-

shausen and Field have developed an unsupervised learning algorithm that produces receptive fields

that resemble those of simple cells. 

The underlying principle is called sparse coding: “information is represented by a relatively small

number of simultaneously active neurons out of a large population” (Figure 1; Olshausen & Field,

2004, S. 481). 
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Figure 1: Example of sparse coding. Cortical neurons use fewer

active units to represent information in images than neurons in the

retina or LGN (Filled circles denote active units;  unfilled circles

denote inactive neurons.) (From Olshausen, 2003).



Thus, Olshausen and Field's learning algorithm is focusing on remodeling the structure of natural

images, while efficiently using the redundancy in these images to minimize the dependence among

the outputs. Sparse coding groups redundant information together and allows only a few events to

meaningfully describe the image, i.e. the sparse code itself is highly redundant (Olshausen, 2003). 

The algorithm that finds a sparse code can be formulated as an optimization problem that minimizes

the following cost function: 

E=−[reconstruction error ]−λ[ sparsenessof a i]  

λ is a positive factor, it determines the importance of the second term relative to the first.

The first  term describes how to generate data from given images: let  us assume that an image

I ( x , y) can be described in terms of a linear superposition of its spatial features:

 I ( x)=∑
i

ai⋅ϕi(x)+ν(x)

ϕi  is a set of basis functions describing spatial features (in this model they are the equivalent to

neurons, that are activated for a given image). The coefficients a i tell us how much of each fea-

ture is contained in the image (the coefficients can be seen as an equivalent to the firing rate of neu-

rons). The variable ν denotes additional Gaussian noise. To make sure that the output provides a

complete representation of the visual scene, the number of outputs, i.e. the set of basis functions

ϕi should be larger than the dimensionality of the image, which is also often referred to as over-

completeness (Olshausen, 2003). First, this allows the image to be described in various ways; sec-

ond, it allows the basis functions (neurons) to only become active when the input pattern is close to

their preferred pattern (Olshausen & Field, 2004). Because, as mentioned above, what we want is a

meaningful representation of the input rather than actually reducing redundancy. 

After we have a set of all given features (and coefficients), the reconstruction error of a given image

is set by [reconstruction error ]=−∑
x , y

[I (x , y )−∑
i

ai⋅ϕi(x , y )]
2

where I ( x , y)  is the actual image and ∑
i

ai⋅ϕi(x , y ) is the reconstructed image. 

The second term determines the sparseness of the code for a given image. If activity is distributed

over many coefficients, the representation incurs a higher cost, compared to those representations in

which activity is carried by only a few coefficients. The cost function is defined by the sum of each
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coefficient's activity passed through a non-linear function S (x) :

[sparsenessof a i]=−∑
i

S (
ai
σ ) .

σ  is a scaling constant. For the non-linear function S (x ) , functions such as |x| , −e−x
2

or

log(1+x2) are good choices, in that they are most active among those coefficients, that are not

zero; the further the coefficients are away from zero, the higher is the cost function.  Learning is

achieved when the total cost function E=−[reconstruction error ]−λ[ sparsenessof a i] is mini-

mized, with regard to ai . ϕi then derives via gradient descent on E averaged over many im-

age presentations. Optimization is done by two alternating steps. First, in order to determine the co-

efficients a for a given image,  a is formulated by the equilibrium solution to the differential

equation:

ȧ i=b i−∑
j

C i j a j−
λ
σ S ' (ai) with bi=∑

x , y

ϕi( x , y) I ( x , y) and C i j=∑
x , y

ϕi(x , y )ϕ j(x , y ) .

Figure 2 gives an intuitive impression of how the equation is assembled and how each term contrib-

utes to finding those coefficients that maximally respond to a given image.
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Figure  2: Neuronal  implementation  of  sparse

optimization.  represents  the  input  image  that  is

multiplied with the basis function of each unit. −C i , j

is an inhibitory recurrent term. It is computed by the

activities of other coefficients that are weighted by the

overlap  of  their  basis  functions.  −S ' is  a  self-

inhibitory non-linear term, which contributes to sparse

representation in that it restrains coefficients to become

active. (From Olshausen, 2003).



Second, with the computed coefficients we have a learning rule that updates ϕ :

Δϕi( xm , yn)=η⟨a i [ I (xm , yn)− Î (xm , yn)]⟩ . 

Î  is the reconstructed image: Î ( x)=∑i
a i ϕi(xm , yn) ; η is the learning rate. 

With Olshausen and Field's learning algorithm it is indeed possible to find a sparse code for monoc-

ular natural images that develops receptive fields that resemble those of simple cells in V1 (Ol-

shausen & Field, 1996), in that the basis functions are spatially localized, oriented and bandpass.

In this study, we wanted to know what the output of the learning algorithm is when having binocu-

lar images as an input. We slightly modified parts of the algorithm in order to work with binocular

images. A patch from the left image and the corresponding patch from the right image was extracted

and concatenated horizontally.

To analyze the resulting receptive fields and how the disparity selectivity is generated, either by a

position-shift model or by a phase-shift model, we fitted the resulting basis functions with Gabor

functions. Simple-cells are generally well modeled by Gabor functions (Jones & Palmer, 1987). 

A two-dimensional Gabor function is a product of a Gaussian envelope and a sine wave. The posi-

tion-shift model can be represented in terms of a shift in the center location of the Gaussian (Figure

3 (a), the phase-shift model is modeled by the phases of the sine wave (Figure 3 (b)) (Tsao, Conway

& Livingstone, 2003).
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Figure  3: Two  binocular  receptive  fields

models.  (a)  Phase-parameter  based  model

(b)  Position-parameter  based  model.  The

dotted lines indicate the peak position of the

gaussian  envelope,  the  solid  lines  indicate

the  left  and  right  receptive  fields  profiles.

(from Zhu & Qian, 1996).



2. Methods

We employed MATLAB R2014b for all programs and figures. The computers we used had 64-Bit

versions  of  Windows  7  or  8  installed.  We  faced  problems  with  sparse  coding  and  fitting  the

resulting  basis  functions  with  Gabor  functions  when  using  32-bit  versions,  due  to  memory

limitations.

The  program  for  sparse  coding  was  provided  in  the  internet  (https://github.com/viirya/Sparse-

coding-with-GPU). This program is a combination of the improved and further developed versions

by Olshausen and Field (1996) and Honglak Lee (2007).

In order to get a working version of the given software, in the file 'l2ls_learn_basis_dual.m', line 34,

we had to change 'options = optimset('GradObj','on', 'Hessian','on', 'TolFun', 1e-7)' to 'options =

optimset('GradObj','on', 'Hessian','on','Algorithm','trust-region-reflective')', due to compatibility

problems in MATLAB versions (for further information see release notes MATLAB R2014a: New

default  algorithms  in  fmincon  and  quadprog  http://de.mathworks.com/help/optim/release-

notes.html).

For  some  individual  Gabor  fits  we  needed  to  tweak  the  number  of  iterations  in  the  file

'autoGaborSurf.m' in line 48, when MATLAB would freeze or take up too much memory.

Some values for each training sections remained the same: dimensionality of the patches (16 x 16

pixels), number of patches (5000), number of iterations (4000) and the batch size (1000).

2.1 Test run: Sparse Coding of monocular images

In order to confirm that the original program with the altered settings works, we ran a test with

original pictures from the download page, which are the same ones Olshausen and Field (1996)

used  in  their  experiment  (ten  natural  monocular  images,  512  x  512  pixels  each).  To  have

comparable results, the input was learned for 192 basis functions and we set the sparsity value equal

to the one of Olshausen and Field, that is beta = 0.14. 

2.2 Sparse Coding of stereo images with constant and natural disparities

The program for sparse coding needed to be slightly adjusted for our purposes. The part of the

program (getdata_imagearray.m) that  extracts  the patches of  the images was changed in that  it

extracts two corresponding patches of a binocular image. One patch of the left  images and the
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corresponding  patch  of  the  right  image  were  merged  together  by  simply  concatenating  both

horizontally and delivered to the sparse coding implementation in order to learn the bases.

2.2.1 Natural binocular images with constant disparities

We  downloaded  seven  natural  monocular  images  (PNG-files)  from  arbitrary  locations  on  the

internet.  They  served  as  a  basis  to  create  binocular  images  with  constant  disparities  in  eight

directions. Altogether we had a data set consisting of 56 binocular images based on 7 images (The

data set can be found on the supplementary CD). The binocular images were 2x 512 x 512 pixels.

The input was learned once for 49 basis function with sparsity value 50 and once for 196 basis

functions with sparsity value 15.

x -2 -1 1 2 0 2 4 0

y 2 1 1 0 2 2 0 4

    Table 1: The eight directions disparities in x- and y-direction applied to the seven pictures.

7

Figure  4: Natural  binocular  image  with  constant  disparities  x  =  0  and  y  =  4,  created  from

monocular images, downloaded from the Internet.



2.2.2 Natural stereo images with natural disparities

We downloaded  16  natural  stereo  images  (binocular  images)  with  natural  disparities  from the

internet. Some of the stereo images were GIF-files originally, therefore, we needed to tailor them. In

addition to that, we scaled the stereo images down to 256 x 128 pixels to avoid overlarge disparities

(see Discussion) (The data set can be found on the supplementary CD).

The input was learned once for 49 basis functions with sparsitiy value 50 and once for 196 basis

functions with sparsity value 15. 

2.3 Analysis

In order to analyze the data, we fitted the resulting receptive fields with Gabor functions to examine

position-shifts and phase-shifts.

The  program  that  fitted  the  Gabor  functions  was  downloaded  from  the  internet

(http://www.mathworks.com/matlabcentral/fileexchange/31485-auto-gaussian---gabor-fits).

There is a new link for opening the DRAM-Code in the file 'fetchMcmcPackages.m', line 11 has

been changed to 'http://helios.fmi.fi/~lainema/dram/dramcode.zip'.

We wrote  a  MATLAB script  (gaborFunction.m),  which  takes  a  matrix  with the  resulting  basis

functions (or receptive fields) and fits them with the Gabor function ('autoGaborSurf.m'). 
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Figure 5: Natural stereo image with natural disparities, downloaded from the Internet



Additionally, we calculated the cross correlation of the resulting basis functions to determine the

location of the optimal disparity at which the left and right image is best correlated.

3. Results

3.1 Test run: Sparse Coding of monocular images

As Figure 6 demonstrates, the resulting 192 basis functions match with the results Olshausen and

Field  (1996)  obtained.  Different  spatial  frequency  could  be  localized,  as  well  as  different

orientations, which are well described by Gabors functions.  
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Figure 6: The 192 learned basis functions with sparsity 0.14



3.2 Sparse Coding of binocular images with constant disparities with 49 and 196 basis

      functions

3.2.1 Natural binocular images with constant disparities and 49 basis functions 

Figure 7 shows the 49 learned basis functions.

As can be seen, the resulting basis functions are rather dotted than Gabor-like.

After  fitting  the  Gabor  functions  to  our  data  (Figure  8),  we  could  see  both,  phase-shifts  and

position-shifts.  Figure  9  shows  the  phase-shift  measured  in  pixel.  We  assume  that  the  sinus

functions of the left and right basis functions have the same frequency. This is never accurately the

case,  so  in  order  to  calculate  the  phase-shift  in  pixels  we  applied  the  mean  of  both  fitted

frequencies.

The position-shift is depicted in Figure 10. The mapped cross-correlation of the basis functions is

shown in Figure 11 and Figure 12 demonstrates in which location the corresponding patches are

best  correlated.  The  darker  the  dots,  the  more  dots  are  superimposed,  indicating  that  at  those

locations a lot of bases are sensitive for the same disparity. 

Figures 13 and 14 show the correlations of the cross-correlations and position-shifts in x- and y-

directions. The correlation for both is weak: r = 0.38. 
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Figure 7: The 49 learned basis functions for natural binocular images with

constant disparities.
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Figure 8: The 49 basis functions fitted with Gabor functions

Figure 9: Phase-shift of 49 Basis functions of

natural  binocular  images  with  constant

disparities in pixels.

Figure  10: Position-shift  of  49  basis

functions of natural binocular images with

constant disparities
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Figure 11: Heatmap of  the maximum Cross-

Correlation of the 49 basis functions (constant

disparities)

Figure 12: Maximum Cross-Correlation of the

49  basis  functions.  Please  note  that,  as

mentioned  above,  the  disparities  were

manipulated.

Figure 13: Correlation of the position-shift in

x-axis and cross-correlation of the x-axis (49

basis functions, constant disparities)

Figure 14: Correlation of the position-shift in y-

axis  and  cross-correlation  of  the  y-axis  (49

basis functions, constant disparities)



3.2.2 Natural binocular images with constant disparities and 196 basis functions 

Figure 15 demonstrates the 196 learned basis functions, the sparsity value was set to 15.

Dotted basis functions still remain here, however more Gabor-like basis functions can be found.
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Figure 15: The learned 196 basis  functions for  natural  binocular  images with constant

disparities



3.3 Sparse Coding of stereo images with natural disparities with 49 and 196 basis functions

3.3.1 Natural stereo images with natural disparities and 49 basis functions

Figure 16 shows the 49 learned basis functions. The sparsity value was set to 50.  Some of the

resulting basis functions show a Gabor-like form while most of them are rather elongated.

 

After  fitting  the  Gabor functions  to  our  data  (Figure  17),  we could  see  both,  phase-shifts  and

position-shifts.  Figure  18  shows  the  phase-shift  measured  in  pixel.  We  assume  that  the  sinus

functions of the left and right basis functions have the same frequency. This is never accurately the

case,  so  in  order  to  calculate  the  phase-shift  in  pixels  we  applied  the  mean  of  both  fitted

frequencies.

The position-shift is depicted in Figure 19. The mapped cross-correlation of the basis functions is

shown in Figure 20 and Figure 21 demonstrates in which location the corresponding patches are

best  correlated.  The  darker  the  dots,  the  more  dots  are  superimposed,  indicating  that  at  those

locations a lot of bases are sensitive for the same disparity. 

Figures 22 and 23 show the correlations of the cross-correlations and position-shifts in x- and y-

directions. The correlation for both is relatively high: r = 0.7906. 
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Figure 16: The 49 learned basis functions for natural binocular images with

natural disparities.
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Figure 17: The 49 basis functions fitted with Gabor functions

Figure 18: Phase-shift of 49 Basis functions of

stereo images with natural disparities in pixels.
Figure 19: Position-shift of 49 Basis functions

of stereo images with natural disparities
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Figure 20: Heatmap of the maximum Cross-

Correlation of the 49 basis functions (natural

disparities)

Figure 21: Maximum Cross-Correlation of the

49 basis functions (natural disparities).

Figure 22: Correlation of the position-shift in

x-axis  and cross-correlation of  the  x-axis  (49

basis functions, natural disparities)

Figure 23: Correlation of the position-shift in

y-axis and cross-correlation of the y-axis (49

basis functions, natural disparities)



3.3.2 Natural stereo images with natural disparities and 196 basis functions

Figure 24 shows the 196 learned basis functions, the sparsity value was set to 15.

Here we can  see  a  lot  of  Gabor-like  patches.  However,  in  a  lot  of  cases,  while  left  bases  are

responding in an either Gabor-like or elongated fashion, it looks like the corresponding (right) bases

do not respond at all, the bases remain gray or noisy.

After fitting the Gabor functions to our data (Figure 25), we can see both, phase-shifts and position-

shifts. Figure 26 shows the phase-shift measured in pixel. We assume that the sinus functions of the

left and right basis functions have the same frequency. This is never accurately the case, so in order

to calculate the phase-shift in pixels we applied the mean of both fitted frequencies.

Figure  27  shows  the  position-shift.  The  mapped  cross-correlation  of  the  basis  functions  is

demonstrated in Figure 28 and Figure 29 displays in which location the corresponding patches are

best correlated. As mentioned above, darker (superimposed) dots indicate that at those locations a

lot of bases are sensitive for the same disparity. 

Figure 30 and 31 show the correlations of the cross-correlations and position-shifts in x- and y-

directions. The correlation for both is mid-strong: r = 0.5343. 
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Figure  24:  The  learned  196  basis  functions  for  natural  stereo  images  with  natural

disparities
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Figure 25: The 196 basis functions fitted with Gabor functions

Figure 26: Phase-shift of 196 basis functions

of  stereo  images  with  natural  disparities  in

pixels.

Figure 27:  Position-shift of 196 basis functions

of stereo images with natural disparities
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Figure  28: Heatmap  of  the  maximum Cross-

Correlation of the 196 basis functions (natural

disparities)

Figure  29: Maximum Cross-Correlation  of  the

196 basis functions (natural disparities).

Figure 30: Correlation of the position-shift in

x-axis and cross-correlation of the x-axis (196

basis functions, natural disparities)

Figure 31: Correlation of the position-shift in

y-axis and cross-correlation of the y-axis (196

basis functions, natural disparities)



4. Discussion

In the present study a learning algorithm was used that finds a sparse code for natural binocular

images to develop binocular receptive fields (represented by basis functions). To analyze whether

the  disparity  selectivity  is  generated  by  a  position-shift  model  or  by a  phase-shift  model,  the

resulting basis functions were fitted with Gabor functions. As an additional and simpler test for the

location  of  the  optimally tuned  disparity  of  the  basis  functions,  we further  analyzed  the  cross

correlations of the left vs. the right base. In order to get a better understanding of how disparities are

coded we then correlated the maximum position of the cross correlation with the position-shift in x-

and y-direction.

Hubel  and  Wiesel  (1962)  conjectured  that  disparity  emerges  through  a  position-shift  of  the

monocular left and right receptive fields. On the contrary, Ohzawa, DeAngelis and Freeman (1990),

have suggested a phase-shift model to explain how disparity might be measured.

Nonetheless a number of scientists (e.g. Fleet, Wagner & Heeger, 1995; Prince, Cumming & Parker,

2002; Tsao et al.,  2003)  have shown that the position-shift-model and the phase-shift-model are

both common in binocular receptive fields. Fleet et al. (1995) presented a formal description and

analysis  on the contribution of both,  phase-shift  model and position-shift  model,  in a binocular

energy model. Prince et al. (2002) also concluded that both models are commonly represented in

binocular receptive fields. They found a large number of disparity-sensitive neurons in V1 of the

awake macaque by recording their responses to dynamic random dot stereograms and fitting the

neurons with one-dimensional Gabor functions. Tsao et al. (2003) tested disparity-tuned simple-

cells  in  alert  macaque,  that  were  fixating  a  random dot  stereogram.  They extracted  phase  and

position disparities by fitting a Gabor function to a single curve (an intercolar cross-correlogram) (A

correlogram is an image of a correlation). The cross-correlation of the left and right receptive fields

showed phase-shifts, position-shifts, as well as a hybrid of both.

Therefore,  we  also  expected  to  obtain  phase-  and  position-shifts  and  even  hybrids  of  both  in

binocular receptive fields by applying sparse coding. 

The 49 basis functions that learned randomly extracted corresponding patches from binocular im-

ages developed mostly dotted receptive fields when the disparities were set (constant disparities)

(Figure 8), but developed rather elongated receptive fields when disparities were naturally given in

the stereo images (natural disparities) (Figure 16).
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Whereas, the 196 basis functions that learned patches from binocular images with constant and nat-

ural disparities developed mostly Gabor-like receptive fields (Figure 15,24).

This leads to the assumption that more basis functions ensure a more thorough and complete de-

scription of the input that is being learned (Overcompleteness of the representation) (Olshausen,

2003, Field, 1994) (see Introduction and Limitations for further explanations).

By looking closely at the learned corresponding bases of stereo images with  constant disparities

(196 basis functions), one can differentiate between basis functions that indicate a phase-shift (Fig-

ure 32, left) and ones that emerge from a position-shift (Figure 32, middle), as well as basis func-

tions that contain both shifts (Figure B, right).

Despite  of  seeing  these  shifts  simply  by  looking  at  them,  the  fitted  parameters  of  the  Gabor

functions of the 49 learned basis functions clearly show that phase-shifts and position-shifts exist

(Figure 9, 10).

As  for  the  position-shift,  the  cross-correlation,  as  well  as  for  the  correlations  we  measured

disparities  in  a  range of ca.  -3.5 to  3.5 pixels,  which was expected because they resemble the

disparities we created for the input images that were learned (Figure 10, 11, 12).

The correlations of the cross-correlations and the position-shifts in x- and y-direction were quite

weak. One explanation could be that a combination of both, phase and position, is important to

ensure a high correlation with the cross-correlation. The Gaussian coarsely determines disparities,

whereas phase does it more subtly.

In the case of the 196 basis functions that learned stereo images with natural disparities, one basis

often showed response, while the corresponding basis remarkably often showed nothing (Figure

24).  Overlarge  disparities  could  be  the  reason  for  such  activity  pattern  (see Limitations);  as

mentioned in the methods, we already shrunk the images down to get results. Another explanation is

that the applied algorithm might develop a set of monocular Gabor-like receptive fields and at the

same time might find disparities.
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Figure  32: Examples  of  basis  functions  with

phase-shifts (left), position-shifts (middle) and

a hybrid of both (right).



Analyzed fitted  Gabor  functions  showed occurring  phase-  and  position-shifts  (Figures  26,  27),

which can directly be seen by plainly looking at the resulting 196 basis functions.

The correlations of the cross-correlation of the 49 basis functions and the position-shifts in x- and y-

direction  were  relatively  strong,  indicating  that  the  impact  of  a  phase-shift  might  have  been

relatively low, especially compared to the 196 basis functions, where the correlations were only

mid-strong. 

The given results account for the sufficiency of an algorithm that finds a sparse code for natural

binocular images with either constant or natural disparities. 

Limitations

Despite of these pleasing results,  this study faced some limitations, we want to address here:

1. We needed to vary the sparsity value because for some inputs it was either too small or too

big, which led the algorithm to not find the optimal sparse code. A not suitable sparsity value

could explain the noise obtained for a lot of patches. Even more iterations might help to get

rid of the noise. Aside from the sparsity value, the learning rate may also crucially contribute

to issues in finding the optimal sparse code, i.e. if it is too large.

2. The number of images may not have been sufficient as an input to exploit the full spectrum

of disparities existing in natural images and that can be detected by disparity-tuned cells. In

a small number of images, the cells might not find a large amount of similar disparities,

especially contemplating the fact that 5000 corresponding patches are extracted randomly.

3. When dealt with the natural binocular images with natural disparities that we downloaded

from the internet, we faced some issues regarding their size. Large images often contain

overlarge disparities that cannot be detected anymore, therefore they needed to be shrunken

down.

4. An  overcomplete  representation  was  not  given  (dimensionality  of  the  output  (basis

functions) is greater than the dimensionality of the input). 49 (and 196) basis functions are

by far  not  sufficient  to  meaningfully  represent  all  important  and  descriptive  properties

consisting in 5000 randomly extracted 16 x 16 patches. Therefore a complete representation

would here consist of at least 512 basis functions. 

5. We analyzed the sine wave and the Gaussian of the Gabor function separately and obtained

the  results  for  the  phase-  and  position-shifts.  Analyzing  the  phase-shift  relative  to  the

position-shift  might give a better  understanding on their  relationship and contribution to
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selectivity to disparity in disparity-tuned cells. 

6. In the analysis we shouldn't have included those bases, that only showed a fitted Gaussian,

because the sinus term didn't take any part in those fits.

The unsupervised learning algorithm was created by Olshausen and Field (1996) to find a sparse

code for natural images in order to develop receptive fields, which resemble those of simple cells in

V1.  One  might,  thus,  argue  that  sparse  coding  may not  be  ideally  suitable  for  stereo  images,

contemplating the fact that stereoptic depth perception is processed at  later stages of the visual

cortex,  i.e.  by  complex  cells  which  are  built  up  by  simple  cells  (Hubel  &  Wiesel,  1962).

Additionally, Ohzawa et al. (1990) found that complex cells are well suited as disparity detectors

because they are not sensitive to polarity and position as simple cells are. Even though Olshausen

and Field (1996) successfully showed how sparse coding develops monocular receptive fields, the

algorithm may not be sufficient for binocular images. However, we must not forget that information

about stereoptic depth vision, as well as any visual information, is perceived firstly by simple and

complex cells at early stages of the visual cortex. We know that the brain processes and filters

information  that  is  perceived  but  what  strategies  does  it  employ  and  why?  Therefore,  an

unsupervised learning algorithm with the principle of sparse coding, proposed by Olshausen and

Field (1994) is a great approach toward these questions. Especially because it takes into account the

statistical structure of natural images.

Barlow  (1989)  excellently  explained  that  unsupervised  or self-organized  learning algorithms

optimally extract characteristic features of the input data by learning its statistical regularities. The

brain  might  do  this  by effectively exploiting  redundant  information  that  is  contained in  visual

perception.  For a system that works independently and in a self-organizing manner,  it  is  rather

important  to  be  given  an  input  of  redundant  information  to  learn  the  most  characteristic  and

commonly  occurring  features  in  the  input.  Such  systems  are  highly  efficient  because  they

intrinsically and dynamically regulate themselves to produce the most optimal output.

Learning, regulating and adapting in a self-organizing learning system, such as the Hebb learning

rule, contributes to synaptic modification and therefore to the principle of synaptic plasticity in the

brain.

Indeed, the brain can be seen as a self-organizing system itself. Especially contemplating the fact

that supervised learning in the brain or in biological systems is rather uncommon (Dayan & Abbott,

2001).

It may also fascinatingly explain how the brain's underlying mechanisms are not isolated systems,
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but rather, they influence and support each other, merging to one system.  

Understanding why these systems act  as  they do could  help  us  to  have  a  better  and thorough

understanding of the brain itself.  In order to understand the brain we cannot just  focus on one

system,  for  instance,  the  visual  system.  Exploring  the  underlying  functions  helps  us  to  gain

important insights on how the system works and reacts. But the question on why they work that way

remains still  unclear.  Computational  methods,  as the ones we discussed above, allow us to  dig

deeper  into  this  matter.  They  are  based  on  mathematical  and  statistical  approaches,  tying  the

relationship between neuroscience and mathematics, statistics. 

Nevertheless we must not forget that computers are not by far like the brain and vice versa. For

instance, the computer works linearly and the brain non-linearly.  The Non-linearity of the brain

might make it difficult for scientists to develop algorithms that work in that manner. 

However,  in  the  computer  vision  field  (and  other  fields),  a  lot  of  scientists  have  managed  to

construct  algorithms  that  work  in  a  self-organizing  manner,  thus  not  under  supervision.  Their

approach is fundamentally important for further investigations on the human brain and specifically

on the human visual system. 
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