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Abstract

This bachelor's thesis presents an algorithm that can be used by an agent such as a
mobile robot to explore and navigate 3D environments. A topological representa-
tion  of  the  environment  is  obtained  by integrating  SURF-features,  which  are
salient points of interest detected by a monocular camera, with weak metric odom-
etry data to create a complex graph encoding locations and their relative positions.
The agent can then use the graph to plan routes through the environment by calcu-
lating the shortest path between two points on the graph. The algorithm is imple-
mented  and  tested  on  a  hand-held  tablet  computer  supplying  both  image  and
odometry data. The algorithm's code is available on the CD provided with the
physical copy of this work, as well as downloadable at: 
https://www.dropbox.com/sh/b5co89gwawdzwhx/AAByoHXZKDpU-Km-
mZTCMM6ema?dl=0 
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1.  Introduction

For more than 40 years now, autonomous navigation of mobile robots has been a
central research subject in robotics and artificial intelligence. A popular method to
“teach” a robot where it can and cannot move, is designating an area by placing
easily recognizable markers: lawnmower robots for example usually navigate the
lawn by following metal rails or respecting borders set by metal bars embedded in
the ground. These robots are of course highly location-bound; and to create uni-
versally applicable robots, placing metal bars in every possible location is neither
a feasible (if even possible) solution, nor is it needed: humans for example, are
able to navigate most environments perfectly fine, simply by relying on visual and
haptic information. Similarly, methods that can be used by robots to explore, rep-
resent and navigate environments based on sensor feedback, can be created. Robot
navigation strategies generally consist of the following steps [13]:

1. Sensing the environment.
2. Building an environmental representation.
3. Locating itself with respect to the environment.
4. Planning and executing efficient routes in the environment.

Steps one and two are usually referred to as  mapping, step three as  localization
and step four as pathfinding. The steps are of course not independent: for an accu-
rate localization step, an accurate representation of the environment is needed; But
to create an accurate representation of the environment, exact localization of the
robot is extremely advantageous.  Being able to run these two processes at  the
same time is the core of the problem known as  Simultaneous Localization And
Mapping (SLAM). The problem was allegedly established at the 1986 IEEE Ro-
botics and Automation Conference in San Francisco, California; the term itself
was coined in 1995. Since its first proposal, SLAM has been a major driving force
behind robot navigation. If a robot is to successfully learn an environment, solving
the issues presented by the SLAM problem is a necessity, irrespective of the high-
er-level processes, plans and goals otherwise used in the navigation algorithm [4]
[14].
In the last three decades, SLAM has seen many different theoretical and practical
solutions, which have been successfully implemented for and tested in ground-,
underwater-,  and air-based navigation tasks [4].  With the development  of ever
faster computation devices even once thought insurmountable problems such as
high-resolution, high-speed and high frequency real-time SLAM have since been
achieved, for example in the recent high-level solution ORB-SLAM by Mur-Artal
et al. [11]. 
But there is no single “best” solution to SLAM. Rather, many different solutions,
each with their own advantages and drawbacks, have been proposed throughout
the years. The maybe most significant way, in which SLAM solutions usually dif-
fer from one another, is how the representation of the robot's environment, the
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map, is handled. Many different ways for mapping have been proposed, one of
which is for instance the creation of maps from the information gained by measur-
ing the distance to landmarks or markings around the robot. Some landmark-based
maps are able to model distances extremely accurately based on a global coordi-
nate system, others simply sort detected landmarks and obstacles into large-spaced
grids. To create landmark- or grid-based maps, 3D information of the environment
is required, which can for example be obtained by relying on multiple cameras in
a stereo setup: knowledge about distance to different points in space is gained by
comparing the difference in viewpoint of partially overlapping images, or by us-
ing specialized distance sensors such as sonar or laser range finding. Basing algo-
rithms  around  visual  information  is  especially  attractive,  because  cameras  are
ubiquitously available and much cheaper than other distance measuring methods. 
In 1983, even before SLAM was solidified as an underlying problem, Moravec
[19] presented a robot that was able to navigate around obstacles using depth in-
formation gained by a stereo-vision setup. The setup consisted of a single monoc-
ular camera mounted on a slider on a mobile, remote-controlled vehicle. By mov-
ing the camera laterally along the slider while taking snapshots of the scene in
front of the robot, a disparity field containing depth information about the scene
could be created from the multiple slight differences in view angle.  Using the
depth information, an obstacle avoidance route for the robot could then be detect-
ed and planned. While the system proved to be quite successful, it was held back
by a lack of computing power: one single step of the avoidance path, which con-
sisted of a long pause and then a short movement of around one meter, took 10 to
15 minutes to calculate and execute.
Moravec's system was later picked up and improved upon in the vision system
FIDO. The stereo slider system and disparity field were used to extract features
from the environment. By correlating the features, obstacles could be assigned 3D
coordinates, which were successively used to place the obstacles in a two by two
meter occupancy grid map. A robot was then able to navigate the mapped environ-
ment by planning a route through the unoccupied cells of the map [22]. A similar
approach by Jennings and Murray [20] instead used a trinocular stereo vision sys-
tem to create the occupancy grid map.
However, while occupancy grid maps provide a simple representation of obstacles
in an environment, their accuracy directly depends on the chosen grid size; by re-
ducing the size, the map is able to accommodate for obstacles of different orienta-
tions and sizes more accurately, but the computing power required for mapping
and navigation also greatly increases. Additionally, the validity of the grid is in-
creasingly dependent on the accuracy of the information provided by the robot's
sensors. Little et al. [21] combined an otccupancy map with sparse corner features
extracted  from trinocular  stereo  vision  as  stable  orientation  points.  In  this  ap-
proach, the feature information was only used to match successive frames to sup-
plement the occupancy grid map. In a later approach, Little et al. [14] expanded
upon the idea to use prominent features to facilitate mapping and localization: dis-
tinctive and robust interest points were detected in and extracted from each scene
by relying on the image patch detector SIFT (Scale Invariant Feature Transform)
by Lowe [7][32]. A reliable 3D grid map was then created by accurately localizing
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Figure 1. (Heavily simplified) renditions of different map types, all showing the same room, which
is depicted in the upper left image. The upper right image shows a Cartesian grid map, with accu-
rately mapped obstacle distances relative to the global coordinate system. The lower left image
shows an occupancy grid map, which partitions the room into a coarse global grid. The spaces of
the grid are then occupied to various degrees (red patches) by obstacles, and can or can not be tra -
versed. The lower right image shows a topological map: the room is represented as a graph, with
nodes being certain locations. The edges could possibly hold distance information such as “3m
from door to desk”, or movement instructions such as “move right for two seconds to reach the
potted plant from the chair.” Because of their loose structure, self localization can be quite difficult
in topological maps.

each feature in space. Features as a means of localization and mapping enjoy a
wide range of application, such as robust camera viewpoint localization and envi-
ronment estimation for augmented reality [10], or extracting motion from image
flow [23].
Instead of relying on grids, a completely different approach to mapping can be
found in the use of topological maps: a topological map is usually a graph consist-
ing of nodes corresponding to points or landmarks in space. The edges and nodes
of the graph can then for example encode metric information between different
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points in space1, or contain directional or behavioral information needed to reach
each point. There are numerous ways on how to approach the creation of a topo-
logical map, such as what constitutes a node or how to handle possible sensor un-
certainties [22]. As topological maps are usually much less defined and less metri-
cally accurate than their grid-based counterparts, they allow for much faster map
operations such as pathfinding, but determining the robot's position relative to the
map is much more difficult. For a quick comparison of map types, see Fig.1.

There have of course been approaches that combine the accuracy and complexity
of fine grid-based mapping with the simplicity and efficiency of topological map-
ping: Thrun [18][34] described an algorithm that first created a grid-based map by
integrating data from different sources such as vision- or sonar-based sensors. The
grid-based map was then partitioned intelligently into critical regions, from which
a topological map was created. Finally, both the topological and grid-based map
were used to quickly calculate routes for a robot to enable it to navigate a mul-
ti-room environment: route planning was done on the topological map, described
as several orders of magnitude faster than similar calculations on a grid-based
map. The grid-based map was then used for accurate control and motion fine-tun-
ing. Their technology found usage in the University of Bonn's entry RHINO for
the 1994 AAAI mobile robot competition, where it managed to win the second
price in the “office-cleanup”-category. Later, during a six-day testing period in the
museum Deutsches Museum Bonn, RHINO was also used to successfully interact
with and guide a large number of visitors while being able to safely navigating
dense crowds [35]. The robot's sensor capabilities were additionally enhanced by
sensors, and it was able to move at speeds of around 35 cm/s in dense crowds, and
up to 80 cm/s otherwise, which resulted in an overall traveled distance of over
18,5 km during the six days.  RHINO was however supplied with a hand-con-
structed map of the museum, as it would have been unable to navigate as accurate-
ly with a self-created map (if even able to map such a large area) [18][35]. Self-
mapping was later realized in the museum tour-guide robot MINERVA, which
was able to map and navigate an environment by taking pictures of the ceiling
with a directed camera, and then creating a mosaic-like map from the different im-
ages [36].

A major problem of all map types, but especially topological maps, is detecting if
a node or location have been visited before. This problem is known as the  loop
closing problem: after a robot has completed a loop motion, it should be able to
recognize the place as already visited, instead of creating an ever larger map. But
caution needs to be taken: if a loop is mistakenly detected and closed, for example
if two distant but similar locations are falsely detected as the same, the entire map,
or at least navigation, can be compromised: a route planned over the falsely closed
loop can obviously not be navigated. Different solutions on how to detect and
close loops exist of course, such as comparing the entire map with itself every few
steps, and closing a loop if two matching places are found [15].

1 Topological maps containing metric information are often referred to as topo-metric maps [1]. 
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There are yet other approaches to map building, such as the one detailed in the
work of Harris and Pike [14]: the proposed algorithm worked by moving a camera
along a path, during which corner features were detected in the image sequence.
From the change in the feature's position on the camera image, localization of
both camera and features in space could be derived in near real-time. The System
is described as accurate for short- and medium-length distances, but because the
camera's motion and perceived 3D environment were consistent in error. At long
distances, the actual position could possibly deviate substantially from the one de-
rived from the camera images. This problem is usually referred to as drift.  Also,
the system did not try to close loops in any way.
Smith et al. [25] detailed how to update an uncertain map once more accurate in-
formation  becomes  available;  all  correlations  of  the  localization  and  mapping
problems are united in a single state vector and covariance matrix, which is then
updated sequentially by an extended Kalman filter (EKF). A Kalman filter is an
optimal estimate for linear system models that contain some amounts of uncertain-
ty in both the measurement and transition systems. To also estimate optimally for
nonlinear systems, techniques from calculus such as Taylor series expansions are
used to linearize a model respective to a certain working point.  The nonlinear
equivalent to the Kalman filter is the EKF.
In the late 1990s computing power reached the point where it became feasible to
practically test solutions based on the work of Smith et al.: the EKF approach to
the SLAM problem was implemented and subsequently proven in multiple differ-
ent robot systems, and demonstrated the importance of maintaining estimate cor-
relations. This solidified EKF as the core estimation technique in many SLAM so-
lutions, generalizing the problem as a Bayesian probability problem [9].
A major downside of EKF based solutions is the management of large-scale maps,
as with growing map size the EKF's computational complexity rises and accuracy
decreases due to the linearization operations employed by the filter. To solve this
issue, various strategies, such as splitting the map into multiple sub-maps, have
been implemented. Especially when coupled with highly accurate distance sensing
methods like laser range finding or sonar, maps of impressive sizes can be created,
as for example shown by Gutmann and Konolige [27] or Bosse et al. [26] where
globally consistent maps of large indoor environment were created, some with a
path length of over 2 km. Loops in these environments were closed by comparing
parts of the generated maps, and connecting similar-looking ends. This process
can be sped up by only comparing small sub-maps at a time, a common method to
simplify loop closing [15]. Using faster alternatives to the EKF, successful map-
ping and localizing in large outdoor areas has also become possible [16].
Navigation approaches do not necessarily need to rely on landmarks, features, or
other reference points and their distance measurements: instead, model-based ap-
proaches, where the environment is compared to an internal 3D model, let a robot
navigate the environment. In the work by Kosaka and Kak [2] for example, a geo-
metrical model of the environment is assumed, and landmarks in the model are
matched to landmarks extracted from a monocular camera image. Using the un-
certainties created by matching the real environment with the estimated model,
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correlation is established. Then, a Kalman filter is used to calculate the position
and pose of the robot. In a similar approach, Kak et al. [28] implemented and test-
ed a system that used models of the environment constructed in a CAD program
which were then compared to visual data obtained by a robot's camera. Addition-
ally, the robot used odometry data to calculate its position. When the difference
between model and camera images passed a certain threshold, the robot position
was updated and the odometry data corrected.
Approaches that use a-priori-models have very low computation costs compared
to map-creating approaches, but because the environment needs to be known in
advance, they can obviously not be used to let robots navigate unknown environ-
ments.

The approaches presented all rely on distance measurements to map their environ-
ment,  either  by utilizing  stereo  discrepancies,  odometry,  or  depth  information
gained by laser range finders or sonar. Most algorithms rely on 3D measurements
of the environment for navigation and scene modeling. However, there have also
been approaches that obtain depth information by making assumptions regarding
the  3D  environment,  based  only  on  monocular  camera  setups.  In  a  work  of
Lebègue and Aggarwal [24], for example, a system that was able to navigate in-
door areas and create a CAD model of them by using continually updated orienta-
tion data of objects, was presented. Orientation data of different objects was ob-
tained by extracting line segments from a monocular wide-angle image, and then
adding the segments to a CAD model: the line segments were considered edges of
surface patches, which were then used to estimate objects  in the environment.
Crucially, their algorithm assumed that each object in an indoor scene can be rep-
resented by linear segments oriented in a relatively limited set of directions. The
algorithm then tried to recover these line segments over subsequent frames to so-
lidify their position in the CAD model and increase its accuracy. One of the key
advantages of the algorithm was its ability to easily detect doors or similar pass-
able openings, as they are usually large empty spaces framed by orthogonal lines.
However, because the view angle of the robot was still quite limited, even with the
use of a wide-angle lens, it needed to keep a certain distance to its environment to
detect the line segments and was thus for example unable to navigate and map
tight passages [13][24].

Yet  another  way to map and navigate  the  environment,  using only monocular
imaging is not found in robotics and SLAM approaches, but biology: in their 1987
paper, Cartwright and Collett [6] describe how bees can navigate from their hive
to a food source using snapshots of the environment taken at the hive and food
sources. By comparing its current view to a snapshot, the bee can then home in on
the food source or hive, which means traveling in the direction that reduces the
difference between current view and snapshot. For this to work consistently, the
snapshot and current view filter close objects, because they hold few to no envi-
ronmental information (a blade of grass, for example, passes the bee much faster
than a distant tree). Once sufficiently homed in on the target location, the bee then
switches to a snapshot containing close landmark information to accurately locate
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the target food source or hive. Contrary to robot navigation tasks, for its naviga-
tion, the bee does not need any metrical distance information of its environment at
all. Similarly, ants recognize familiar routes, and are able to home in on the routes
if they are displaced or get lost.  Baddeley et al. [8] present a robot navigation
method which uses holistic route representations as its map; a robot was able to
find, recognize and follow familiar routes and home in on them if displaced. 
Another example from biology is the ability of humans to learn a route or environ-
ment simply by being shown pictures of the route or environment, without relying
on any metrical data. This has led to the idea of a so-called view graph as an un-
derlying topological navigation and mapping structure. A view graph is a graph
consisting of different views of an environment as the graph's nodes, for example
a  bee's  snapshots  or  the  route  pictures  presented  to  a  human;  and non-metric
movement or directional information on how to reach one view from another as
the graph's edges [29].
This serves as a basis for work by Franz et al. [5] where a robot was able to navi-
gate an environment without any metric data at all: by using a single monocular
camera facing a conical mirror, 360° panorama snapshots were obtained at differ-
ent locations. The panorama snapshots were then inserted into a graph, and the ro-
bot was able to navigate between neighboring viewpoints simply by homing in to
a nearby snapshot. To decide when a new snapshot should be inserted into the
graph, and when a nearby snapshot was reached, simple difference threshold func-
tions were used. While the algorithm worked well in their experimental condi-
tions, Franz et al. also described some practical limitations of their work: because
their method did not use any metrical information, only locations and views re-
sulting in non-ambiguous snapshots could be used for the graph, as the algorithm
had no way to differentiate between two different matching locations, which could
for example result in false loop closing. One way to reduce or eliminate this prob-
lem, other than including metric information, would for example be to increase
resolution and contrast of the panorama snapshots to accommodate for more pos-
sible views.
In a later work by Hübner and Mallot [3], the view graph based algorithm was ex-
panded by adding weak metrical data, the robot's odometry, to the graph's edges to
create globally consistent maps, which could then be used for route planning and
following. Errors in the odometry were compensated by additionally relying on a
homing algorithm. Similar to the work before, a new snapshot was added to the
graph when it was sufficiently different from all other snapshots. However, using
a threshold strategy for deciding when to add a new snapshot caused the following
problem: while a new snapshot was rarely taken in the middle of wide open spa-
ces where differences between close viewpoints were low, the algorithm added a
lot of snapshots when in close proximity to an obstacle, because the view would
greatly change between each movement step.

Based on these concepts, in the following, an algorithm is described, that is able to
create a view graph of an environment, and to constantly update the graph with
new location- and threshold-independent snapshots, only using a regular monocu-
lar camera and weak odometry data. This is achieved by selecting microsnapshots,
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multiple small points of interest or features, in each scene, rather than using entire
(panoramic) images. The features are then connected to a graph by their relative
distances, as obtained by odometry data. Finally, the graph can be used to calcu-
late routes through the mapped environment by utilizing a path searching algo-
rithm. The algorithm is not implemented or tested on a robot. Instead, the explo-
ration is simulated by manually moving around a tablet computer, which is able to
supply both the camera image and odometry through motion sensors. In section 2,
a more detailed explanation of the algorithm, as well as the setup used, is given.
section 3 describes the feature detection by giving an in-depth explanation of the
used SURF feature detector. View graph creation and pathfinding using Dijkstra's
shortest path algorithm is detailed further in section 4. Various short experiments
concluded to test the algorithm are described in section 5. Lastly, in section 6, the
algorithm's issues and shortcomings as well as possible solutions are discussed,
and the work is concluded.

2.  Setup

To guide an agent through space using visual information, the visual information
constantly needs to be mapped to the space the agent moves in. Every time the
agent moves, both the visual information and the position of the agent in space
need to be updated. Instead of simply mapping an entire scene to a certain point in
space, multiple points of interest are detected by the SURF feature detector (see
section 3) in each scene, and connected to each other by their relative distances,
creating the nodes and edges of a constantly growing view graph. The environ-
ment is explored using a tablet computer held and moved around by a human,
rather than a mobile robot equipped with a camera. Similar to a robot's odometry
feedback, weak distance data is gained by the tablet computer's motion sensors.
Finally, the algorithm is able to calculate a route from the current location to a
specified target location by finding the shortest path between two features in the
view graph using the Dijkstra shortest path search algorithm (see section 4). Ex-
perimentally, only rotational movements could be tested and verified, as the tablet
computer's  accelerometer  failed  to  provide  sufficiently  accurate  translational
movement data.
The  algorithm was  developed  and  tested  on  a  desktop  computer  running  the
Microsoft Windows 10 operating system, equipped with a quad-core Intel i5-6500
CPU (4 x 3.2 GHz), a Nvidia GeForce GTX 750 Ti GPU, and 8 GB of RAM. Im-
ages  were  taken  by  Dell  Venue  11  Pro  5130  tablet  computer,  running  the
Microsoft  Windows 8.1 operating system, equipped with an Intel  Atom Z3770
CPU (1.46 GHz), 2 GB of RAM, and a 8 megapixels camera filming at 24 frames
per second. To reduce bandwidth usage, the images were resized to 640x480 pix-
els, set to grayscale, and then converted into a lossless JPEG format, which result-
ed in a size of about 110.000 bytes per image. The image data was then sent to the
desktop computer over WLAN using the UDP data transfer protocol, which the
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desktop computer then received on a separate thread. Due to the nature of WLAN
and the UDP, image data was sometimes corrupted or not received at all. These
cases were detected and the algorithm simply skipped the corrupted or missing
images.
The field of view of the tablet computer's camera covered 60° horizontally and
40° vertically, which equals to around 0.1° per pixel at the chosen resolution. Ad-
ditionally, the tablet computer was equipped with both  accelerometer and gyrom-
eter sensors. However, due to insufficient accuracy, only the gyrometer data was
used to localize points in space. Although the images were taken at 24 frames per
second, due to computational restraints, the actual mapping and pathfinding algo-
rithms only ran at frequencies of around 12 Hz to 14 Hz.
The algorithm was programmed in C++; image manipulations and feature extrac-
tion were implemented using the OpenCV computer vision library and its imple-
mentation of the SURF feature detector [37]. The view graph and graph opera-
tions such as Dijkstra's shortest path algorithm use the LEMON Graph Library
[38]. Multithreaded WLAN data transfer of camera images and sensor readings is
achieved by relying on the Boost.Asio library [39].

3.  Feature detection

To create a view graph, rather than taking a snapshot of the full scene at certain
points in time or when a differentiation threshold is met (e.g. in [3][5]), multiple
different microsnapshots are extracted each time the scene updates. The micro-
snapshots are not arbitrarily chosen parts of the image, but distinctive points of in-
terest, or features. The most important property of these features is their repeata-
bility: the algorithm needs to be able to find and extract the same features over
multiple images of the same scene, even under (slightly) different viewing condi-
tions such as variations in lighting or perspective, small changes to rotation of the
viewing angle, or distance to the same scene.
There are multiple different approaches to finding and extracting features: a popu-
lar approach for 3D reconstruction of a scene is for example the use of corner and
edge detectors [31]. However, while a corner detector can match a distinctive set
of edges and corners to each scene, corner features alone are often not very dis-
tinctive from each other, and particularly lack robustness to viewing angle. A more
useful approach is found in image patch feature detectors. Feature detectors such
as SIFT by Lowe [7][32], or SURF (Speeded-Up Robust Features) by Bay et al.
[30] find interest points based on mathematical transformations of the image, and
then use a patch of a certain size around each interest point as a distinctive de-
scriptor. More recently, even faster and more distinctive and robust feature detec-
tors such as the ORB feature detector, which is described as an order of magnitude
faster than both SIFT and SURF, have been developed [11]. 

In this bachelor's thesis, the SURF method by Bay et al. [30] is used for feature
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detection, as a C++ implementation for both SIFT and SURF is readily available
in the OpenCV computer vision library [37], and it is both computationally faster
and more robust against white noise than SIFT. In the following segment, a brief
description of the SURF algorithm is given2.

The full feature detection process contains three steps (of which the first two are
described in 3.1 and 3.2, respectively): First, repeatable interest points need to be
detected. Then, each interest point is described by a description vector containing
information about its close neighborhood. Finally, the features are matched with
each other to find out if a detected feature is new and needs to be added to the
view graph, or is already part of it. The matching step works by comparing the de-
scription vectors of two features, and calculating their difference, for instance by
calculating their Euclidean distance. As the dimensionality of the description vec-
tor directly impacts calculation time, a shorter description vector is preferable, al-
beit less descriptive.

3.1  SURF interest point localization

To gain complex features that are still robust against commonly occurring defor-
mations, both detectors and descriptors are chosen to be scale and in-plane rota-
tion invariant. Image skewing, anisotropic scaling and other perspective effects
are assumed to be second-order effects that are (at least partially) covered by the
overall robustness of the descriptor. The SURF method ignores color information
completely, which allows for faster computation and slightly increases robustness
against illumination changes.
Interest points are detected by using a very basic Hessian-matrix approximation
over the image. For the approximations, the image is transformed into its integral
image, as integral images allow for fast time-constant calculation of image inten-
sity over any upright, rectangular area, such as convolution filters. The entry of an
integral image IΣ(x) at a location x = (x, y)T represents the sum of all pixels in the
input image I within a rectangular region formed by the origin and x.

The interest points are precisely detected as small blobs at locations where the de-
terminant of the Hessian matrix is maximal. Given a point x = (x,  y) the Hessian
matrix H(x, σ) in x at scale σ is defined as follows:

2 The description of the SURF feature detector given in this section is a brief summary of the de-
scription given in the original SURF paper by Bay et al. [30]. All images and formulas used in
this section are also reproduced from the same paper.
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Lxx(x,  σ)  is the convolution of the Gaussian second order derivative  (δ² /  δx²)g(σ)
with the image I in point x, and similarly for Lxy(x, σ) and Lyy(x, σ). The second or-
der Gaussian derivatives are not actually calculated, but rather approximated using
box filters (Fig. 2) and can be evaluated at very low computational cost using  in-
tegral images. 

Figure 2. Left to right: The Gaussian second order partial derivative in y- (Lyy) and xy-direc-
tion (Lxy), and their approximations in  y- (Dyy) and  xy-direction. (Dxy). The grey regions are
equal to zero.

The approximation results in only minor accuracy loss at substantial computation
time increases. The 9x9 box filters in Fig. 2 are approximations of a Gaussian
with σ = 1.2 and represent the highest spatial resolution for interest point blob de-
tection. The box filters are denoted by Dxx, Dxy, and Dyy,, respectively. They are in-
tentionally kept as simple as possible to further increase computation speed. The
determinant is calculated as follows:

ω is theoretically a relative weight calculated off of the filter responses to balance
the expression for the Hessian matrix' determinant. This is needed for energy con-
servation between the actual Gaussian kernels and their approximations. The actu-
al ω used in the SURF algorithm is kept constant at 0.9.
The determinant gives the interest point blob response strength for location  x in
the image I. The response strength is then stored in a blob response map, and the
process is repeated over different scales. Usually, different scales are implemented
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using an image pyramid, where an image is repeatedly smoothed with a Gaussian
and then sub-sampled to achieve higher scales; the integral images used in SURF
however allow for Gauss smoothing of any size on the original image: instead of
down-sampling the image size, the different scales are analyzed by up-scaling the
filter size, which brings various advantages such as fast computation speed and no
aliasing due to down-sampling. The smallest scale is the 9x9 box filter (σ = 1.2)
presented in Figure 2, and the next scale pyramid layers are obtained by filtering
the image with progressively larger filters. The different response maps that are
gained by this filtering method are then united in a so-called  octave. An octave
represents a total scaling factor of two, with each octave being subdivided into a
constant number of scale levels.
The sizes of the different filters that make up an octave's scale level are dependent
on the box filter shape: because the relative sizes are kept intact, the next possible
scaling level after a 9x9 filter is a 6 pixels increase to a 15x15 filter, for example
(Fig.  3).  The next  two filter  size levels of this  smallest  octave are 21x21 and
27x27 pixel.  While  the  octave's  scaling  factor  of  two is  already reached (and
passed) at 21x21 pixel, the largest filter size is used to create some overlap be-
tween neighboring scale levels. For each successively larger octave, the filter size
increase is doubled (from 6 to 12 to 24 to 48 etc.). The intervals, at witch the in-
terest points are sampled are also doubled with each octave to reduce computation
time. Because the sampling of scales is quite crude even at the smallest filter size
(9x9 to 15x15 is an increase of 1.7), a second finer scale sampling is repeated on
the same image after its size has been doubled via linear interpolation.

Figure 3. Filters Dyy (left) and Dxy (right) for the scale levels 9x9 and 15x15, respectively. The
length of the dark lobe in the Dyy filter can only be increased by an even amount of pixels in
order to guarantee the presence of a central pixel.

3.2  SURF descriptor extraction

The interest points found in 3.1 are now each assigned a descriptor vector. The de-
scriptor  specifies  the  distribution  of  image intensity within  the  interest  point's
neighborhood. The intensity information is gained via the use of so-called Haar
wavelet filters (Fig. 4) in x and y directions. The entire description vector is con-
stituted of 64 dimensions.
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Figure 4. Haar wavelet filters to compute the
responses in x (left) and y (right), respectively.
The dark part has a weight of -1, the light part
+1.

Because the SURF algorithm is supposed to be rotation invariant, the first step of
descriptor extraction consists of assigning each feature a reproducible orientation:
in a radius of 6 s around each interest point, with s being the scale level at which
the interest point was detected, Haar wavelets with size 4 s are used to calculate in
x and  y direction. Afterwards, the responses are weighted with a Gaussian (σ  =
2 s) centered at the interest point. The different responses are then represented as
points in space. By summing up the response strengths with a sliding window of
size π/3, a local orientation vector can be calculated (Fig. 5).

Figure  5.  Orientation  assignment:  a  sliding
orientation  window of  size  π/3  detects  the
dominant orientation of the Gaussian weight-
ed Haar wavelet  responses at every sample
point within a circular neighborhood around
the interest point.

The  second  step  of  descriptor  extraction  consists  of  constructing  a  20 s large
square region around the interest point, which is aligned to the just selected orien-
tation vector. This region is then split up into smaller 4x4 square sub-regions, in
each of which Haar wavelet responses are calculated at 5x5 regularly spaced sam-
ple points. The responses are calculated in horizontal (dx) and vertical (dy) direc-
tion respective to the interest point's orientation (Fig. 5). Wavelet responses are
also weighted with a centered Gaussian (σ = 3.3 s) to further increase robustness
against  deformation  and  localization  errors.  Additionally,  to  gain  information
about the polarity of the intensity changes, the sum of absolute response values,
|dx| and |dy|, is also extracted. The sums over dx, dy, |dx| and |dy| are each a single
entry in the description vector, which, for 4x4 sub-regions, results in a 4x4x4 = 64
dimensional description vector.
An interest point and its descriptor make up a feature. Features detected in a scene
can now be matched by comparing their description vectors, for example by cal-
culating the Euclidean distance between them. If the distance is shorter than a cer-
tain threshold, the feature can be considered the same.
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4.  Graph creation

4.1  Feature insertion

In the algorithm presented in this bachelor's thesis, the SURF feature detector is
used to extract a number of features in each scene. As the algorithm is supposed to
run in real-time or near real-time, feature detection (and graph calculation) is done
at around 12 Hz - 14 Hz. Even on a resolution of 640x480 pixels (the image size
used), SURF feature detection is able to find over 300 features in a single frame.
This would mean that over 3600 features would need to be calculated, matched to
each other, and matched to old features every second – thankfully, SURF and its
C++ implementation  of  the  OpenCV library  [37]  allow  for  multiple  different
strategies to increase computation speed. 
The first, and probably most significant, speed increase is achieved by skipping
SURF's interest point orientation calculation. For horizontal exploration of an en-
vironment, feature rotation invariance is actually not needed (as the environment
is not explored at strong rolling angles, sideways or upside-down). Thus, each fea-
ture can be assumed to be upright, which allows for skipping of a major part of the
descriptor extraction calculation to greatly increase computation speed. Skipping
the orientation step is a feature already implemented in the original SURF algo-
rithm, called SURF-U (upright) [30]. Note that upright SURF features are still ro-
bust against rotations up to +/- 15°.
Furthermore, because less features mean faster follow-up calculations, the number
of detected features is reduced by two methods: for one, it is possible to increase
the threshold an interest point needs to pass in the Hessian matrix to be considered
a feature. Depending on the threshold chosen, the amount of features detected in
each scene is tremendously reduced. 
The amount of features is then further reduced by filtering out “bad” features,
such as features that “flicker” because the algorithm fails to find them in consecu-
tive frames: the features are filtered by comparing the currently detected features
to the features detected in the two preceding frames to one another. Only features
that can be detected in all three frames are considered further by the algorithm.
This method however somewhat limits the maximum speed the camera can be
moved, as no features are detected at all if the image changes too quickly, for ex-
ample during fast movements. The motion blurring occurring during fast move-
ments might also prevent many features from being detected3. Additionally, to fur-
ther reduce feature number, the SURF octaves are set to the low number of three;
this  causes the detector to find features at  less different scales, and also limits
scale invariance. This is an acceptable trade-off, because scale invariance is not
particularly important (or even wanted, see section 6.3). While without these cor-
rections around 200 to 300 features are found in each image, the number drops to
a more manageable 20 to 40 features per frame after filtering (Fig. 6). Finally, a

3 As SURF features are supposed to offer some robustness against blurring, this never seemed to
cause major problems during testing.
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hard cap of  50 is  set  as  the maximum amount  of  features  considered in  each
frame, but this number was rarely reached during testing.

Figure 6. Features detected in a scene are
marked by a black circle. The black line in
the circle shows the feature's orientation,
which is the same for every feature, as the
orientation calculation step is skipped.

4.2  Graph connection

The 20 to 40 features detected in each frame are first matched with the features al-
ready in the view graph. If no match is found, the feature is considered a new fea-
ture, and is added to the view graph by connecting it to seven randomly chosen
old features, which were detected in the preceding frame and are currently not vis-
ible. As the graph is directed, each connection contains two edges, one from the
old to the new feature, and one from the new to the old one. The number of con-
nections is limited in order to reduce the number of edges added to the view graph
in each step, to increase computation speed. The number seven was chosen as it
proved high enough to not arbitrarily disconnect the graph4, while usually still be-
ing substantially lower than the maximum number of connections that would oc-
cur if each feature was connected to all features in the frame before.
If two features are found matching, the newly detected feature is usually consid-
ered to already be part of the graph, and no new feature is added. The old feature
is then also connected to up to seven features in the preceding frame, which re-
sults in automatic loop closing. A fatal problem that could possibly occur during
feature detection and matching is that two features, that are actually in different
places, are considered the same: if the matching new feature was falsely consid-
ered old, a false loop would be closed. This could then compromise the entire
graph, and especially the pathfinding using Dijkstra's shortest path algorithm (sec-
tion 4), as this falsely closed loop would represent a shortest connection between
two possibly extremely distant locations. To prevent this from happening, each
time a matching feature pair is found, the features close to them (the other current-
ly detected features for the new feature, and the in the graph directly neighboring

4 This is extremely unlikely to happen. On average, over 200 connections are made between two
different  frames.  During  testing,  the  graph  only ever  disconnected  if  multiple  consecutive
frames were skipped due to data transfer corruption, or when the camera was moved extremely
fast or abrupt. Even then, connection can be re-established by scanning the same area again.
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features for the old feature) are also compared. Only if a percentage of features
higher than a certain threshold is also found matching, the features are ultimately
considered the same. The algorithm is biased towards falsely detecting an old fea-
ture as new, rather than falsely detecting a new feature as old, as the latter can
possibly  have  catastrophic  consequences.  Loops  are  still  highly  likely  to  be
closed: because a number of features are detected each scene, even if the majority
are detected wrongly as new in a situation where a loop should be closed, a single
feature can be enough to close the loop for graph searching and pathfinding pur-
poses. While testing, a similarity threshold of 50 % (more than half of the features
close to two feature must match for it to be considered the same) seemed to pro-
duce good results.

Figure 7. Schematic graph connection, from
top to bottom: first picture: in the first frame,
two features (blue) are detected, but not con-
nected, as they are both concurrently visible.
Second picture: as soon as the camera moves
to the right, the dark blue feature and a newly
detected one are connected to the old feature
which  is  not  in  the  camera's  field  of  view
anymore. Again, no connection is made be-
tween the two concurrently visible features.
Third picture: finally, the new feature can be
connected to the dark blue one, as it left the
camera's field of view.

The view graph's edges are created by connecting all currently visible features to
the preceding frame's features, except the ones that are visible in both frames.
Features visible in both frames do not cause addition of new edges to the graph in
order to limit graph growth while the camera is not moving5 (Fig. 7). The (rota-
tional) distance between the two features, meaning the rotation needed to move
the camera from one feature to the other, is then calculated by their relative posi-
tion in the image and the difference in viewpoint between the two frames. The dif-
ference in viewpoint is inferred from the rotational velocity (in degrees per sec-
ond) received from the tablet computer's gyrometer: both yaw distance dz (rotation
in horizontal direction) and pitch distance dy (rotation in vertical direction) are ob-
tained by multiplying the respective rotational velocity  vz and  vy with the time  t

5 Even while not moving, new edges are still occasionally added to the graph because of 
“flickering” features that are for example only detected every other frame.
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passed since the last frame in seconds. Thus yaw distance in degree is obtained by
dz = vz x t , and pitch distance by dy = vy x t respectively.
Rolling distance (rotation along the view axis) is neglected by the algorithm, as it
is not needed for exploration, and also allows for use of the much faster upright
SURF features, as they do not need to be rotation invariant.
The distance obtained by the calculations describes the rotation from the old fea-
ture to the new one. Because path finding needs to be able to work in both direc-
tions, and the rotations are not absolute, a second edge describing the inverse rota-
tion from the new to the old node is created. If an edge between two nodes already
exists, it is not created a second time, but the value of the edge is instead updated
with the average between the old and new value.
In theory, adding linear translational distances to the view graph would work ana-
logous. In fact, edges are still added if the tablet computer is only moved in a line
without rotating it. However, as the sensor data obtained by the tablet computer's
accelerometer is not even sufficiently accurate to calculate only the translation di-
rection testing was difficult during experimentation.

4.3  Dijkstra's algorithm

The navigation algorithm presented in this work is not only able to map the envi-
ronment by using features extracted from multiple different viewpoints, but also
able to calculate routes for navigation of the mapped environment by finding the
shortest path from the current scene to a user-selected target feature in the view
graph. As both the view graph and perspective change, in each frame, the route is
fully recalculated; at the graph sizes tested (2000 - 4000 nodes), the calculation
had no major impact on the overall computation time6. The shortest path is found
by using the algorithm known as Dijkstra Shortest Path Search (SPS), or simply
Dijkstra's algorithm, which was first described by Dijkstra in 1959 [33]. Dijkstra's
algorithm was specifically chosen because of its readily available implementation
in the used LEMON code library [38].
Dijkstra's algorithm7 is an algorithm able to find the shortest path between two
nodes  P and  Q in a connected, directed graph with non-negative edge weights.
Rather than attempting to “explore” the graph towards the destination, it does this
by iteratively calculating the shortest distance between the source node P and all
other nodes in the graph, expanding outwards from the source until the target node
has been reached. The strategy is based on the fact that if R is a node on the short-
est path from P to  Q, knowledge of the latter implies knowledge of the shortest
distance from P to  R. The algorithm stops if the shortest distance to  Q has been

6 There still are different ways to reduce the computation time, if so desired: For example only
calculating a route every other (or more) frames, or only re-calculating parts of a route. If the
graph becomes large enough that route calculation slows down noticeably, different algorithms
or graph managing strategies, such as splitting the graph into sub-graphs, could be employed
(see also section 6).

7 The explanation of  Dijkstra's  algorithm given in the following is an adaption of  Dijkstra's
original description in [33].
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found, or if the shortest distance to all connected nodes has been calculated (in
which case no path from P to Q exists) (Fig. 8).

Figure 8. Dijkstra's algorithm makes no attempt to directly search a path from the starting node
(red) towards the target node (blue). Instead, the only factor considered in determining which node
to choose next, is a node's proximity to the source. The algorithm slowly expands outwards (the
more yellow a node, the further away it is from the source) until the destination is reached. De-
pending on the graph's topology, the process can be quite time consuming: in the example above
for instance, the entire graph has to be searched before the shortest path is found.

Initially, a starting node P, called source, needs to be selected. The distance of a
node R is the distance from the source node P to R. Each node is then assigned8

their currently known shortest distance da, which is set to zero for P and to infinity
for all other nodes in the graph (to represent that the shortest distance is not yet
known);  the  algorithm will  update  these  distances  with  every  step.  Then,  the
source node is selected as current node, the node which is considered for distance
calculation in each step of the algorithm. All nodes (including the source node) are
marked as unvisited, and put into the set of unvisited nodes.

1. Calculate a tentative distance dt between the source node and each of the
current node's unvisited neighbors by summing up the current node's as-
signed distance da and the distance between the current node and its neigh-
bors. Compare the tentative distance dt calculated for each node to its cur-
rently assigned distance da. If dt is smaller than da, set da to dt. Otherwise,
the old  da is kept. After all neighboring nodes of the current node have
been checked, the node is marked visited and removed from the set of un-
visited nodes. The shortest path to this node is known, and it will not be
considered by the algorithm any further.

2. If the target node Q has been marked visited and removed from the set of
unvisited nodes, the shortest distance to  Q (its assigned distance  da) has
been found and the algorithm can stop. Similarly, if the set of unvisited
nodes is empty,  the algorithm also stops,  as the shortest  distance to all
nodes in the graph has been calculated.

3. Select the node with the smallest  da from the set of unvisited nodes, and
set it to the new current node. Then return to step 1.

8 In  Dijkstra's  original  description,  rather  than  marking  nodes  or  assigning  values  to  them,
instead a set of shortest known distances exists, which starts out empty and is then slowly filled
by the algorithm.
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Once distance calculation is finished, if a shortest distance to Q has been found,
the shortest path can then be determined by moving backwards through the graph
from Q to P by selecting the neighboring node with the smallest da in each step.
An agent could now use this path to navigate the environment by following the
movement directions encoded by each edge. If, for example, the path describes a
rotation of a certain angle to reach a target view, it can be reached by following
the rotations specified by the path one after another (Fig. 9). The total distance to
the target can also quickly be inferred by treating the graph's edges like multi-di-
mensional vectors and summing them up; the length of the resulting vector is the
total  distance to the target.  Additionally,  the vector also represents the shortest
possible distance between source and target, a straight line. While not implement-
ed in this  algorithm, vector addition could possibly allow for finding of faster
routes and shortcuts – although the algorithm would then need a method to detect
if factors such as obstacles prevent the shorter route from being taken.

Figure 9. Mock-up: an environment is explored by rotating a camera around 180° to the right (dark
blue path). The environment is mapped by adding features detected in the camera's field of view
(bright blue area) to a topological graph (gray). Using Dijkstra's algorithm, the shortest path (red)
is then calculated from the current position (yellow) to a target node (white). While the path found
is much shorter than for example backtracking the exploration path, it is not the shortest possible
movement (which would be a straight rotation along 0° elevation). Note that the field of view of an
actual camera may cover a much larger area than the here depicted 30° x 20°. 
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5.  Testing and Experimentation

The  presented  algorithm was  tested  under  a  multitude  of  different  conditions,
which can be roughly summarized in three different experiments:

In the first experiment, the algorithm was tested by placing the tablet computer on
a pivot joint allowing for horizontal rotation and featuring a degree display. The
tablet computer was manually rotated while calculating a path to a target feature;
the rotational distance between the current view and the target feature returned by
the algorithm was then compared to the rotational distance on the pivot joint's de-
gree display. Additionally, the algorithm's ability to close loops was tested by ro-
tating the tablet computer over more than 360°. The algorithm was both able to re-
turn accurate distance measurements, and close the loop after a full rotation. The
loop closing was verified by the shortest path returned: while a target feature situ-
ated at a location close to the exploration's start would result in a longer path the
further the tablet computer was rotated, the algorithm would immediately switch
to a path describing the shorter rotation into the opposite direction as soon as a full
rotation was finished (Fig. 10).

Figure 10. Left: the explored and mapped environment (black), target feature (blue), current posi-
tion (red dot) and shortest path towards the target (red line). Middle: as exploration is continued in
a clockwise circle, the length of the shortest possible path towards the target increases. Right: as
soon as a full rotation has been completed, a loop is closed, and a much shorter path towards the
target can be taken.

In a second series of experiments, the tablet computer was held by a person and
rotated both in horizontal and vertical direction. While this method did not allow
for accurate verification of the returned rotational distance, the information re-
turned by the algorithm still seemed accurate at easily verifiable angles such as
90° or 180° 9 for horizontal angles. While vertical rotation by itself also produced
good results, some (expected) issues occurred when mixing both horizontal and
vertical rotations. For one, the algorithm was not able to close a loop by rotating

9 Because the distance between features is dependent on their relative position in the camera im-
age, and the rotation angle covered by the field of view changes if the camera is rotated in a
larger circle, drift occurs in the calculated distance data. As this only minorly impacted the dis-
tances at tested rotation ranges, no correction was done.
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the tablet computer 180° in horizontal, and then 180° in vertical direction, as fea-
ture rotation is deliberately ignored by the algorithm, and the upside-down known
features were simply detected as new. Because roll rotations around the view axis
were also ignored, it was also possible to deliberately “cheat” the system, for ex-
ample by moving the tablet computer 90° upward, then rotating it 90° around the
view angle, and finally moving it 90° downward again to simulate a 90° rotation
in horizontal direction. The algorithm would however assume that the tablet com-
puter was not rotated horizontally at all, but simply moved up and down. The al-
gorithm was not expected to solve these issues – it is supposed to mainly model
exploration of a horizontal environment with some variation in elevation.

The third set of experiments focused on the algorithm's ability to map translations:
while no translation distances are detected when the tablet computer is moved lin-
early, new edges are still added as the scene changes. The distances represented by
the edges are then described by their rotational distance, which is simply zero or
close to zero for translations. As such, the algorithm is able to calculate routes us-
ing translations as normal, but their correctness is difficult to ascertain. 
In one series of experiments, the camera was rotated a certain angle (e.g. 180°)
away from the target feature, and then linearly moved to a different location, cre-
ating a translation edge. If rotated at the new location, the distance angle towards
the target feature would never drop below the distance at which the tablet comput-
er was moved away from the first location, because the only possible path towards
the target feature included the translation edge (Fig. 11). As soon as the tablet
computer was moved back to the original location, loops were closed, and a short-
er path could be found again. 

Figure  11.  The environment  is  ex-
plored by first rotating the camera in
a semicircle,  then moving it to an-
other location, where rotational ex-
ploration  is  continued  (black  line).
The rotational  distance towards the
target  feature  (blue)  increases  be-
yond 360° on the second circle,  as
the  only possible  path  back  to  the
target must include the translational
movement.

Issues occurred however, if many features of the original location were visible
from the second location, for example if the locations were close or directly next
to each other: because SURF features are scale-invariant and robust against shifts
in the viewing angle, and translation data to verify locations was not available, the
algorithm would wrongly assume its current position as the same as the original
location, possibly falsely closing loops, which would then result in an incorrect
route calculation.
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6.  Discussion

6.1  Summary

In this bachelor's thesis, a method to learn maps of an environment, as commonly
used for  robot  navigation  tasks,  using  only monocular  visual  information  and
weak metrical data derived from a rotation sensor, was presented. Maps were cre-
ated by extracting so-called features, prominent points of interest, from images
taken in different locations. The features were then used to create a graph, with the
nodes being the features, and the edges the distances between the features, as ob-
tained from the rotation sensor, creating a topological map of the environment. Fi-
nally, a route to traverse the map could be calculated by finding the shortest path
between two feature nodes in the graph. The algorithm was employed and tested
on a two-device-setup consisting of  a  computationally weaker  tablet  computer
equipped with a camera and motion sensors, and a more powerful desktop com-
puter to handle the calculation steps. 

While the algorithm was both able to successfully map and find navigable routes
in an environment, it was somewhat limited by various factors, most prominently
the inability to map translational movement. In the following, various issues and
limits the algorithm encountered, as well as possible solutions, are discussed.

6.2  Translational movement

The original plan for the algorithm included both translation and rotation as possi-
ble movements, albeit always separated into either translation or rotation to skip
complications caused by curve calculations. However, the tablet computer's ac-
celerometer, the sensor used to detect linear accelerations, provided insufficient
data10. Movement detection from optical flow was briefly considered, but not im-
plemented due to the limited time frame provided for work on a bachelor's thesis.
Linear movement detection would be less of an issue if the algorithm was used to
navigate an actual robot, as the robot's odometry could have been used.
Both the gyrometer data used in this bachelor's thesis, and the odometry data that
could possibly be gained from a robot, need to be consistent for the algorithm to
work: errors in scale, for example consistently measuring 10° as 9°, 20° as 18°
and so on, can simply be corrected by multiplication, but if the offset is drifting
wildly each time a distance is measured, for example 10° as 9° one time, and 10°
as 15° another time, the graph's structure may become very inconsistent. In the al-
gorithm, wrong measurements are somewhat remediated by taking the average of
two measured distances if an edge is detected again, but this only helps as long as

10 Distances calculated from linear acceleration are very susceptible to drift in the first place, as
the acceleration needs to be integrated twice. Rotational distance on the other hand is gained
from integrating rotational velocity only once, and is as such much more reliable. 
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the differences measured are small,  or the same environment is explored many
times. Additionally,  because sensor data is received over WLAN using UDP, a
small chance that the data may be corrupted into completely different numbers ex-
ists11. If constructing a graph based on bad sensor data is to be avoided at all costs,
it would also be possible to create a graph using no metrical data at all – simple
directions could suffice for route calculation: the first direction specified by the
shortest path is followed until the target location is reached. The direction changes
slowly over time, as the route is calculated fully in each step, and the agent moves
closer to the target location. Because some movements needed to close in on the
target location might be very short and exact, this method is somewhat difficult to
precisely verify by humans, but it could easily be implemented to navigate a ro-
bot. Unfortunately, a complete lack of metrical data makes exploration (and result-
ing graph creation) more difficult: locations close to one another are easily con-
founded, as many matches are found between the features detected in both loca-
tions, and they cannot be further differentiated by metrical data (see section 5,
third set of experiments).

6.3  Feature detection

Confounding of close locations probably occurs especially because of the proper-
ties of SURF features: during forward motions, for example, matching features are
quickly detected because of the SURF features' scale invariance. It is possible to
reduce scale invariance by reducing the number of octaves used by the SURF fil-
ters. However, if both rotation and scale invariance, the distinctive qualities of
SURF features, are ignored, and robustness to changes in view angle may also not
be wanted, it might prove advantageous for the algorithm to use a different, sim-
pler, and possibly faster method for feature detection. A detector using less Gauss-
ian smoothing for noise reduction, or the method described by Gálvez-López and
Tardós [12] which uses much faster to compute, rotation and scale invariant FAST
features with BRIEF descriptors, while still being able to detect and close loops as
efficiently as methods using SURF features, may be preferable.
For the presented algorithm, SURF features were mainly chosen thanks to their
readily available C++ implementation, and no other methods or feature detection
were considered due to time constraints.
Furthermore, while the features can be used both to map and navigate an environ-
ment, they cannot be used for obstacle avoidance, as the distance towards the fea-
tures is not measured in any way. Thus, if the algorithm was to be implemented
for robot navigation, the robot would need to be equipped with a separate obstacle
avoidance system, such as short-range infrared sensors.
The fact remains that the presented algorithm is computationally resource inten-
sive, especially during the feature detection and matching steps. While the code
was not optimized heavily, and the hardware used (see section 2) was able to run

11 This chance is much smaller than image corruption, as the sensor data consists of a single dou-
ble (8 Byte). It is much more likely that the entire double is lost during packet loss, in which
case the algorithm simply uses the last available sensor data.

29



the algorithm in real-time, it remains to be seen if the algorithm could be imple-
mented in a small-scale autonomous mobile robot without wireless connection to
a more powerful computer – the tablet computer used for testing was for example
unable to process the SURF feature extraction in real-time, even if the image reso-
lution was reduced further.

6.4  Graph management and pathfinding

During testing, the graph usually grew to sizes from 2000 to 4000 features after a
few minutes, mainly depending on the speed the environment was scanned with
(faster speed means less features due to camera blurring and the employed three-
frame-comparison filter), and how much of the environment was scanned. After
an horizontal 360° circle was scanned, graph growth slowed down, as most fea-
tures detected were already part of the graph. The computation speed of neither
feature matching nor Dijkstra-pathfinding seemed to be negatively impacted by
the found graph sizes. However, if an entire environment was to be gradually ex-
plored (if the algorithm was used by a robot for example), instead of just relying
on single points, the graph would quickly grow to much larger sizes. It is easily
imaginable that at some point, the graph would grow too large to still allow for re-
al-time or near real-time feature matching and pathfinding. Fortunately, there are
different strategies that can be employed to deal with large graphs, such as the
partition of the graph into multiple smaller sub-graphs: 
Imagine the environment to be two separate rooms connected by a single door. In-
stead of a big graph covering both rooms, two smaller sub-graphs, one for each
room, could be used. Feature matching and pathfinding could then only use the
sub-graph of the current room, which would lead to a substantial increase in com-
putation speed. This approach however poses some problems: during mapping,
the algorithm would for instance somehow have to be able to detect that a new
room had been entered, and creation of a new sub-graph could be started. Addi-
tionally, if the exploring agent moved back from the second into the first room
without noticing, the automatic loop closing would fail, as the features would only
be compared to the second room's sub-graph12. The sub-graphs' loop closing prob-
lem could be remediated by comparing the entire sub-graphs to one another. To
keep up fast computation speeds, this comparison could be spaced out to regular
intervals, say every sixty frames. Similarly, the feature matching step could great-
ly be sped up by only comparing the newly detected features to close features in
the graph rather than the full  graph, and again using full-graph comparison to
close loops at regularly spaced intervals.

Another possible strategy to reduce graph size is node deletion. Certain nodes in a
graph are possibly only detected and added once, and then never found again – a
moving obstacle, such as a person moving through the scene would not show up

12 Doors and similar openings could for example be detected by integrating the algorithm with the
line-segment-based approach proposed by Lebègue and Aggarwal [24] (described in section 1).
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in successive scans of the same location. While the nodes gained from the person
are never found again, they still take up space in the graph (and thus have an im-
pact on computation speeds). Similarly, there could be nodes that are simply never
rediscovered due to factors such as camera errors, illumination changes, or per-
spective. But how can these “superfluous” nodes be detected and subsequently
deleted? One answer is found in graph- or edge-weighting: if, for example, the
same features and the edges connecting them are found multiple times, the edges
could be assigned a weight. Each time the edge would be found, its weight would
increase, and more importantly,  the weight of all other edges connected to the
same feature node would decrease. At some point of repeatedly mapping the same
location, certain edges (such as those connecting to a feature that was only found
once) would have a very low weight. An edge having a weight lower than a cer-
tain threshold could then simply be deleted form the graph. Finally,  if  a node
would lose its connection to the graph in that way, it could be removed. This strat-
egy would also allow a graph to “unlearn” faulty or unreliable information about
the environment.
Instead of outright feature node deletion, the nodes and edges could also simply
be rendered inactive, for example by marking them a certain way, or moving them
to a set of inactive edges and nodes (or an inactive sub-graph). The inactive nodes
could then, similar to the sub-graph strategies, be compared to the active nodes in
spaced  intervals,  and  possibly  be  reactivated.  Inactivation  instead  of  deletion
would for example prevent the graph from disconnecting large parts by deleting a
crucial connecting node or edge, simply because that exact node has not been vis-
ited for a while.

Graph weighting could additionally be used to increase pathfinding speeds: a of-
ten chosen and traveled route could be assigned additional weight. A route as-
signed more weight could preferably be chosen by a pathfinding algorithm, albeit
not Dijkstra's algorithm: Dijkstra's algorithm calculates the distance to all nodes in
the graph, based on proximity to the source node (Fig. 11), irrespectively of any
weights assigned to the graph.
Rather than using Dijkstra's algorithm, different pathfinding algorithms like the
A* algorithm [17] (or any of its more recent variations), which utilizes heuristics
such as  exploration  in  target  node direction,  or  where  to  continue pathfinding
when an obstacle is detected, could be used to both efficiently use the set weights
and find a path (although possibly not the shortest) in much faster time.
Even if graph weighting or a different pathfinding algorithm are not employed,
there are still ways to speed up the Dijkstra pathfinding process: by starting the
path search from both the source node and backwards from the target node and
meeting halfway, calculating distances to large parts of the graph can possibly be
skipped.
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6.5  Conclusion

In  this  bachelor's  thesis,  a  proof  of  concept  of  a  view-based  navigation  and
pathfinding algorithm relying on a topological map created from salient points of
interest and weak metrical data, was presented. The algorithm has been proven to
work, albeit with some severe limitations; due to the methods employed, such as
only relying on rotational data, the algorithm had various failings such as being
unable to distinct between close locations. Multiple solutions and suggestions for
possible improvements have been made; additionally, the code itself can possibly
be optimized and improved in all areas. Many improvements could simply not be
implemented due to the limited time constraints set for work on a bachelor's the-
sis. The next step, as well as a possible solution to many problems, would be the
implementation and testing of the algorithm on an actual robot – the author re-
mains hopeful that the findings of this work will be useful in future endeavors re-
garding robot navigation.
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