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We need to talk about real numbers.

But first, we need to talk about probabilities of derived quantities
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Recap from Lecture 1 VNIRRT

Plausibility as a Measure [A.N. Kolmogorov. Grundbegriffe der Wahrscheinlichkeitsrechnung, 1933]

Definition (c-algebra, measurable sets & spaces)

Let © be a space of elementary events. Consider the power set 22, and let § € 2 be a set of subsets
of Q. Elements of § are called random events. If § satisfies the following properties, it is called a
c-algebra.

1. 03 I,
2. (ALBeF) = (A-B€g) .
3. (A1,A2,---es);»(uﬁ1A,es A nf;A,eg) ]

(thisimplies @ € §. If §is a o-algebra, its elements are called measurable sets, and (€2, §) is called a
measurable space (or Borel space).

If € is countable, then 2% is a o-algebra, and everything is easy.
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Recap from Lecture 1 VNIRRT

Plausibility as a Measure [A.N. Kolmogorov. Grundbegriffe der Wahrscheinlichkeitsrechnung, 1933

Definition (Measure & Probability Measure)

Let (€2, §) be a measurable space (aka. Borel space). A nonnegative real function P : § — Rq 4 (Ill.) is
called a measure if it satisfies the following properties:

1. P(@) =0
2. For any countable sequence {A; € §}i=1,..., of pairwise disjoint sets (4; N A; = @ if i # ), P
satisfies countable additivity (aka. o-additivity):

P (G A,) = i P(A). (V)
i=1 i=1

The measure P is called a probability measure if P(Q2) = 1. V.
(For probability measures, 1. is unnecessary). Then, (2, §, P) is called a probability space.
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A hole in our theory?

What about derived quantities?

A bent coin has probability f of coming up heads. The coin is tossed N times. What is the probability
distribution of the number of heads r?

X 1 ifith toss is heads
"0 else

» ForX = [Xi,...,Xy], we have Q@ = {0,1}".
» ButwhataboutR € [0,...,N] € N? It's not part of Q.
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Building new Probability Distributions from old ones UNIVERSTEAT

Random Variables

Definition (Measurable Functions, Random Variables)

Let (22, ) and (T, &) be two measurable spaces (i.e. spaces with o-algebras). A function X : @ —T'is
called measurable if X='(G) € & forall G € &. If there is, additionally, a probability measure P on
(Q, %), then X is called a random variable.

Definition (Distribution Measure)

Let X : Q —I" be a random variable. Then the distribution measure (or law) Py of X is defined for any
Gcrlas
Px(6) = P(X71(6)) = P({w | X(w) € G}).
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Example: the Binomial Distribution

statistics of accumulated Bernoulli experiments

A bent coin has probability f of coming up heads. The coin is tossed N times. What is the probability
distribution of the number of heads r?

X, 1 if i-th toss is heads
)0 else

N
PR=n= > JJrPcy= > f-Q=H"":=Pr[fN)

we{X|R=r} i=1 we{X|R=r}
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Example: the Binomial Distribution

s of accumulated Bernoulli experiments

A bent coin has probability f of coming up heads. The coin is tossed N times. What is the probability
distribution of the number of heads r?

X, 1 if i-th toss is heads
)0 else

N
PR=n= > JIrxo= > F-(0-N""=PC|fN)

we{X|R=r} i=1 we{X|R=r}

» original space: = {0; 1}" (countably finite)

» o-algebra: 2 (the power set)

» random variable R = ZL Xiel0,....,NJ==T CN.
» distribution (measure) / law of R: ..
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Example: the Binomial Distribution

statistics of accumulated Bernoulli experiments

F=1/3,N=10
0.25 ?
The distribution measure of R is ' °
P(r| f,N) = (# ways to choose r from N) - f"- (1 — AN~ 0.2 °
_ Nt N—r
= m (-1 = 0.15 - .
_ N r N—r |
_<r).f.(1_f) 0.1
Note: In the remainder of the course, will often abuse 5-107 )
notation by writing P(r) instead of P(R = r) (recall again ? ’
that P(X) # P(Y))) 0oL | ® o °
0 5 10

Prababilistic ML — P. Hennig, SS 2021 — Lecture 03: Continuous Variables — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 — slide 7 u


https://youtu.be/qp53qOOTaAI?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=851

EBERHARD KARLS

Now for the Real case ... e

some complications for continous spaces

in a countable space €, even 2% is a o-algebra.
But in continous spaces, such as £ = RRY, not all sets are measurable.
However, RY is a topological space

Definition (Topology)

Let © be a space and 7 be a collection of sets. We say 7 is a topology on Q if
Qerando er
any union of elements of T isin
any intersection of finitely many elements of 7 is in 7.

The elements of the topology 7 are called open sets. In the Euclidean vector space RY, the canonical
topology is that of all sets U that satisfy x € U:= 3¢ > 0: ((ly — x|l < &) = (y € U)).
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From topologies to o-algebras UTOKNGEN"

for topological spaces, it's easy to define o-algebras

Note that a topology is almost a o-algebra:

Definition (c-algebra, measurable sets & spaces)

Definition (Topology)

Let Q2 be a space of elementary events. Consider

the power set 2%, and let § 2% be a set of Let © be a space and 7 be a collection of sets. We
subsets of Q. Elements of §F are called random say 7 is a topology on  if

events. If § satisfies the following properties, it is Qerandoer

called a o-algebra.

any union of elements of 7 isin 7

1. Qes I any intersection of finitely many elements of
2. (ABeg)=>(A-Beg) . risinT.
3. (A1, Ay,-- €F) = The elements of the topology 7 are called open
UZAes A NSAET | sets. In the Euclidean vector space RY, the
(this implies @ € §. If §is a o-algebra, its canonical topology is that of all sets U that satisfy
elements are called measurable sets, and (€2, ) xeU:=F>0:((ly—x|l <e)=(yel)).

is called a measurable space (or Borel space).
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Standard settings

Definition (Borel algebra)

Let (2, 7) be a topological space. The Borel o-algebra is the o-algebra generated by r. That is by
taking 7 and completing it to include infinite intersections of elements from 7 and all complements in Q

to elements of .

In this lecture, we will almost exclusively consider (random) variables defined on discrete or
Euclidean spaces. In the latter case, the o-algebra will not be mentioned but assumed to be the

Borel o-algebra.

Consider (2, %) and (", ®). If both § and & are Borel o-algebras, then any continuous function X
is measurable (and can thus be used to define a random variable). This is because, for continuous
functions, pre-images of open sets are open sets.

Now that we can define (Borel) o-algebras on continous spaces, we can define probability distribution
measures. They might just be a bit unwieldy.
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» Random Variables allow us to define derived quantities from atomic events

» Borel o-algebras can be defined on all topological spaces, allowing us to define probabilities if the
elementary space is continuous.
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Probability Densities VNIRRT

a convenient way to write things

Definition (Probability Density Functions (pdf's))

Let B be the Borel o-algebra in RY. A probability measure P on (R?, 98) has a density pif p is a
non-negative (Borel) measurable function on RY satisfying, for all B € B

P(B):/Bp(x)dx::/Bp()ﬁ,...,xd)dm ... dXy

In other words: P has a density if P(B) can be written as an integral over B, for all B.
not all measures have densities (e.g. measures with point masses)
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Cumulative Distributions

Connecting probabilities to integration

Definition (Cumulative Distribution Function (CDF))

For probability measures P on (R, 98), the cumulative distribution function is the function

d
F(x) =P (H(xi < x;)) .

i=1

(In particular for the univariate case d = 1, we have F(x) = P ((—o0, X])).
If Fis sufficiently differentiable, then P has a density, given by

(X)—Ldl:
P _(9X1---8Xd

and, ford =1, ,
P(a <X <b)=F(b)—F(a) = / f(x) dx.
a
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Densities Satisfy the Laws of Probability Theory

are linear operators without proof

» For probability densities p on (R, B) we have

PE) Y 1= [ px)dx.
RY

> LetX = (X1,X;) € R? be arandom variable with density py on R?. Then the marginal densities of
X7 and X, are given by the sum rule

Px, (x1) :/pX(XWaXZ)de Px, (X2) = /PX(XW,Xz)dM
R JR

» The conditional density p(x7 | x,) (for p(x2) > 0) is given by the product rule

p(x1,%2)
X1 | %) =
P ) =0
» Bayes' Theorem holds:
x1) - p(xg | x
PO | Xg) = p(x1) -plxa | x1)

- fp()ﬁ) p(xg [ Xx7)dxq”
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A Graphical View
sketch

sk
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Change of Measure

e transformation law

Theorem (Change of Variable for Probability Density Functions)

Let X be a continuous random variable with PDF px(x) over ¢; < x < C,. And, let Y = u(X) be a
monotonic differentiable function with inverse X = v(Y). Then the PDF of Y is

dv(y) B

T =it -| 42

dx

py(y) = px(v(y)) -

Proof: foru’(X) > 0: ¥V dy = u(cy) <y < u(cy) = dy

Fr(y) = P(Y <y) = P(u(X) <)

o) = 2 vy

v(y)
Pw<m»/ymnm
dv(y)

dy
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EBERHARD

Change of Measure

e transformation law

Theorem (Change of Variable for Probability Density Functions)

Let X be a continuous random variable with PDF px(x) over ¢; < x < C,. And, let Y = u(X) be a
monotonic differentiable function with inverse X = v(Y). Then the PDF of Y is

dv(y) B

T =it -| 42

dx

py(y) = px(v(y)) -

Proof: foru/(X) < 0:V dy = u(cy) <y < u(cr) = dy
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Change of Measure UNIVERSITAT

sformation law

Theorem (Transformation Law, general)

Let X = (X1,...,Xy) have a joint density px. Let g : R? — R be continously differentiable and injective,
with non-vanishing Jacobian Jy. Then Y = g(X) has density

)= px(@'(y)) - |Jg_1(y)| if y is in the range of g,
PPV =10 otherwise.

The Jacobian Jg is the d x d matrix with
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» Probability Density Functions (pdf’s) distribute probability across continuous domains. UPLIJ\ﬁlENRcS’:[gQT
» they satisfy “the rules of probability”:

/de(x)dx:1

px, (x1) :/px(x17x2)dx2 sum rule
R
p(X'\aXZ)
X1 | X)) = roduct rule
P b2) = 6) ;
pix1 | Xxp) = pla) -plxz | x1) Bayes’ Theorem.

() - plxa | xq)dx

» Not every measure has a density, but all pdfs define measures

» Densities transform under continuously differentiable, injective functions g : x — y with
non-vanishing Jacobian as

I px(@'(y) - Mg= (v)| ifyisin the range of g,
Pry) = {O otherwise.
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An example

0 y famous argument

What is the probability 7 for a person to be wearing glasses?
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An example 'TLVI‘BIN(_.EN

y famous argument

What is the probability 7 for a person to be wearing glasses?

» model probability as random variable 7 ranging in [0, 1]
» X = person is wearing glasses
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An example 'TLVI‘BIN(_.ENT

What is the probability 7 for a person to be wearing glasses?

» model probability as random variable 7 ranging in [0, 1]
» X = person is wearing glasses
» Inference? Bayes' theorem!

_pX|m)p(m)  p(X| ) p(m)
PN =000 = Taid =) p(m) o
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An example

famous argument

What is the probability 7 for a person to be wearing glasses?

» model probability as random variable 7 ranging in [0, 1]
» X = person is wearing glasses
» Inference? Bayes' theorem!

pX|m)p(r)  p(X][m)p(r)
p(X) Jp(X| ) p(r) dm

p(m [ X) =

What is a good prior?
» uniform for 7 € [0, 1], i.e. p(w) = 1, zero elsewhere

Prababilistic ML — P. Hennig, SS 2021 — Lecture 03: Continuous Variables — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 — slide 19 u


https://youtu.be/qp53qOOTaAI?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=3303

An example

y famous argument

What is the probability 7 for a person to be wearing glasses?

» model probability as random variable 7 ranging in [0, 1]
» X = person is wearing glasses
» Inference? Bayes' theorem!

p(X|m)p(m) _ p(X|m)p(m)
p(X) [p(X|m) p(r) dn

p(m | X) =

What is a good prior?
» uniform for 7 € [0, 1], i.e. p(7) = 1, zero elsewhere
If we sample independently, what is the likelihood for a positive or a negative observation?
pX=1|m)=m; PX=0]m) =1~
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An example

ry famous argument

What is the probability 7 for a person to be wearing glasses?

» model probability as random variable 7 ranging in [0, 1]
» X = person is wearing glasses
» Inference? Bayes' theorem!

p(X | ) p(r) p(X | m) p(r)

P IX) ="=000 ~ TpiX|) p(m) d=

What is a good prior?
» uniform for 7 € [0, 1], i.e. p(w) = 1, zero elsewhere
If we sample independently, what is the likelihood for a positive or a negative observation?
pX=1|7)=m; pX=0|m)=1-m
What is the posterior after n positive, m negative observations?
(1 —m)™ 1 (1T —m)"

[m(1—mm-1dr  B(n+1,m+1)

p(m[n,m) =
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DEMO
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Let's be more careful with notation!
(but only once more, then we'll be sloppy)
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Example — inferring probabhility of wearing glasses (2)

Step 1: ( ruct o-algebra

Represent all unknowns as random variables (RVs)
» probability to wear glasses is represented by RV Y
» five observations are represented by RVs X1, Xy, X3, X4, Xs
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Example — inferring probabhility of wearing glasses (2)

Step 1: C ruct o-algebra

Represent all unknowns as random variables (RVs)

» probability to wear glasses is represented by RV Y

» five observations are represented by RVs X7, X7, X3, X4, Xs
Possible values of the RVs

» Ytakesvalues 7 € [0, 1]

> X1, Xy, X3, X4, X5 are binary, i.e. values 0 and 1
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Example — inferring probabhility of wearing glasses (2)

Step 1: C ruct o-algebra

Represent all unknowns as random variables (RVs)
» probability to wear glasses is represented by RV Y
» five observations are represented by RVs X1, Xy, X3, X4, Xs
Possible values of the RVs
> Ytakes values w € [0, 1]
> X1, Xy, X3, X4, X5 are binary, i.e. values 0 and 1
Graphical representation
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Represent all unknowns as random variables (RVs)
» probability to wear glasses is represented by RV Y
» five observations are represented by RVs X1, Xy, X3, X4, Xs
Possible values of the RVs
> Ytakes values w € [0, 1]
> X1, Xy, X3, X4, X5 are binary, i.e. values 0 and 1
Graphical representation Generative model and joint probability
» we abbreviate Y = ras«, Xi = x;as x;
» p(m) is the prior of Y, written fully p(Y = =)
> p(x;|m) is the likelihood of observation x;
» note that the likelihood is a function of 7
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Example — inferring probabhility of wearing glasses (3) INIVERSITA

Step 2: Define probability aking care of conditional independence

Probability of wearing glasses without observations

p(r|"nothing”) = p(m)
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Example — mferrmg probability of wearing glasses (3)

aking care of conditional independence

Probability of wearing glasses without observations
p(x|"nothing’) = p(r)

Probability of wearing glasses after one observation

R = 2 bt ()

Pirb) = Tt mpte)
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Example — inferring probability of wearing glasses (3) INIVERSITA

ce, taking care of conditional independence

Probability of wearing glasses without observations

p(x|nothing”) = p(r)
Probability of wearing glasses after one observation

p(xi|m)p(r)
[ p(x1|m)p(r) dm

Probabhility of wearing glasses after two observations

p(mlxy) = = 77" p(xa|m)p(m)

p(mlxr, x2) = Z5 ' p(xalxy, m)p(xr|m)p(m) = Z; ' p(Xa|m)p (x4 |m)p ()
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Probability of wearing glasses without observations

p(x|"nothing’) = p(r)
Probability of wearing glasses after one observation

plalmp(r)
Jp(a|m)p(x) dx

Probabhility of wearing glasses after two observations

p(mlxr) = "p(x1|m)p(m)

p(rlxi,x2) = Z; ' p(xalxa, m)p (1 [m)p () = Z; ' p(Xa|m)p (x4 [m)p ()
Probability of wearing glasses after five observations

5
p(m|x1, X, Xa, Xa, X5) = Z5 ! (HP(X/|7T)> p(m)
i=1
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Example — inferring probabhility of wearing glasses (4) INIVERSITAT

Step 3: Define analytic forms of generative model

What is the likelihood?

-~ n  forxy =1
p(X1|7r)—{ T—7m forx; =0
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E mple inferring probability of wearing glasses (4)

forms of gene model

What is the likelihood?

_ m  forxy =1
p(X1|7r)—{ 1—7 forx; =0

More helpful RVs:
» RV N for the number of observations being 1 (with values n)
» RV M for the number of observations being 0 (with values m)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 03: Continuous Variables — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 — slide 25 u


https://youtu.be/qp53qOOTaAI?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=4697

What is the likelihood?

B s forx; =1
p(mﬂ)_{ T—7 forx;=0

More helpful RVs:
» RV N for the number of observations being 1 (with values n)
» RV M for the number of observations being 0 (with values m)
Probability of wearing glasses after five observations

p(7|X1, X2, X3, X4, X5) (HP Xj|m) )

225 a"(1—m)"p(r)
:p(ﬂ-lnvm>
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Example — mferrmg probability of wearing glasses (5) INIVERSITA

Step 4: make utationally convenie Here: a conjugate prior

Posterior after seeing five observations:

p(aln,m) = Z5'x"(1 — m)"p(m)
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Example — mferrmg probability of wearing glasses (5)

'TUBIN(_.EN

Step 4: make utationally convenie Here: a conjugate prior

Posterior after seeing five observations:
p(ln,m) = Z5'x" (1 — m)"p(x)

What prior p(r) would make the calculations easy?
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Example — inferring probabhility of wearing glasses (5)

Step 4: make computationally convenient choices. Here: a conjugate prior

Posterior after seeing five observations:
p(xln,m) = Z5'x" (1 — m)"p(x)
What prior p(7) would make the calculations easy?
p(r) =Z7 1711 — )b with parameters a > 0,b > 0

the Beta distribution with parameter a and b
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Posterior after seeing five observations:

p(xln,m) = Z5'x" (1 — m)"p(x)
What prior p(r) would make the calculations easy?
p(r) =277 11 — m)> with parameters a > 0,b > 0
the Beta distribution with parameter a and b

Let's give the normalization factor Z of the beta distribution a name!

B(a,b) = /O1 11 —n)dr

the Beta function with parameters a and b
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EBERHARD KARLS

UNIVERSITAT
TUBINGEN

» Random Variables allow us to define derived quantities from atomic events

» Borel o-algebras can be defined on all topological spaces, allowing us to define probabilities if the
elementary space is continuous.
» Probability Density Functions (pdf's) distribute probability across continuous domains.

» they satisfy “the rules of probability” (integrate to one, sum rule, product rule, hence Bayes’ Theorem)
» Not every measure has a density, but all pdfs define measures
» Densities transform under continuously transformations

» Probabilistic inference can even be used to infer probabilities!
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