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We need to talk about real numbers.

But first, we need to talk about probabilities of derived quantities
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Recap from Lecture 1
Plausibility as a Measure [A.N. Kolmogorov. Grundbegriffe der Wahrscheinlichkeitsrechnung, 1933]

Definition (σ-algebra, measurable sets & spaces)

Let Ω be a space of elementary events. Consider the power set 2Ω, and let F ⊂ 2Ω be a set of subsets
of Ω. Elements of F are called random events. If F satisfies the following properties, it is called a
σ-algebra.
1. Ω ∈ F II.
2. (A, B ∈ F) ⇒ (A− B ∈ F) I.

3. (A1, A2, · · · ∈ F) ⇒
(⋃N

i=1 Ai ∈ F ∧
⋂∞

i=1 Ai ∈ F
)

I.

(this implies∅ ∈ F. If F is a σ-algebra, its elements are called measurable sets, and (Ω,F) is called a
measurable space (or Borel space).

If Ω is countable, then 2Ω is a σ-algebra, and everything is easy.
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Recap from Lecture 1
Plausibility as a Measure [A.N. Kolmogorov. Grundbegriffe der Wahrscheinlichkeitsrechnung, 1933]

Definition (Measure & Probability Measure)

Let (Ω,F) be a measurable space (aka. Borel space). A nonnegative real function P : F_R0,+ (III.) is
called a measure if it satisfies the following properties:
1. P(∅) = 0
2. For any countable sequence {Ai ∈ F}i=1,..., of pairwise disjoint sets (Ai ∩ Aj = ∅ if i 6= j), P

satisfies countable additivity (aka. σ-additivity):

P

(∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai). (V.)

The measure P is called a probability measure if P(Ω) = 1. IV.
(For probability measures, 1. is unnecessary). Then, (Ω,F, P) is called a probability space.
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A hole in our theory?
What about derived quantities?

A bent coin has probability f of coming up heads. The coin is tossed N times. What is the probability
distribution of the number of heads r?

R

X1 X2 . . . XN−1 XN

R :=
∑N

i=1 XiXi :=

{
1 if i-th toss is heads
0 else

▶ For X = [X1, . . . , XN], we have Ω = {0, 1}N.
▶ But what about R ∈ [0, . . . ,N] ⊂ N? It’s not part of Ω.
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Building new Probability Distributions from old ones
Random Variables

Definition (Measurable Functions, Random Variables)

Let (Ω,F) and (Γ,G) be two measurable spaces (i.e. spaces with σ-algebras). A function X : Ω_Γ is
called measurable if X−1(G) ∈ F for all G ∈ G. If there is, additionally, a probability measure P on
(Ω,F), then X is called a random variable.

Definition (Distribution Measure)

Let X : Ω_Γ be a random variable. Then the distribution measure (or law) PX of X is defined for any
G ⊂ Γ as

PX(G) = P(X−1(G)) = P({ω | X(ω) ∈ G}).
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Example: the Binomial Distribution
statistics of accumulated Bernoulli experiments

A bent coin has probability f of coming up heads. The coin is tossed N times. What is the probability
distribution of the number of heads r?

R

X1 X2 . . . XN−1 XN

R :=
∑N

i=1 XiXi :=

{
1 if i-th toss is heads
0 else

P(R = r) =
∑

ω∈{X|R=r}

N∏
i=1

P(Xi) =
∑

ω∈{X|R=r}

f r · (1− f)N−r := P(r | f,N)
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Example: the Binomial Distribution
statistics of accumulated Bernoulli experiments

A bent coin has probability f of coming up heads. The coin is tossed N times. What is the probability
distribution of the number of heads r?

R

X1 X2 . . . XN−1 XN

R :=
∑N

i=1 XiXi :=

{
1 if i-th toss is heads
0 else

P(R = r) =
∑

ω∈{X|R=r}

N∏
i=1

P(Xi) =
∑

ω∈{X|R=r}

f r · (1− f)N−r := P(r | f,N)

▶ original space: Ω = {0; 1}N (countably finite)
▶ σ-algebra: 2Ω (the power set)
▶ random variable R =

∑N
i=1 Xi ∈ [0, . . . ,N] =: Γ ⊂ N.

▶ distribution (measure) / law of R: …
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Example: the Binomial Distribution
statistics of accumulated Bernoulli experiments

The distribution measure of R is

P(r | f,N) = (# ways to choose r from N) · f r · (1− f)N−r

=
N!

(N− r)! · r!
· f r · (1− f)N−r

=

(
N
r

)
· f r · (1− f)N−r

Note: In the remainder of the course, will often abuse
notation by writing P(r) instead of P(R = r) (recall again
that P(X) 6= P(Y)!)
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Now for the Real case …
some complications for continous spaces

▶ in a countable space Ω, even 2Ω is a σ-algebra.
▶ But in continous spaces, such as Ω = Rd, not all sets are measurable.
▶ However, Rd is a topological space

Definition (Topology)

Let Ω be a space and τ be a collection of sets. We say τ is a topology on Ω if
▶ Ω ∈ τ , and∅ ∈ τ

▶ any union of elements of τ is in τ
▶ any intersection of finitely many elements of τ is in τ .

The elements of the topology τ are called open sets. In the Euclidean vector space Rd, the canonical
topology is that of all sets U that satisfy x ∈ U :⇒ ∃ε > 0 : ((‖y− x‖ < ε) ⇒ (y ∈ U)).
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From topologies to σ-algebras
for topological spaces, it’s easy to define σ-algebras

Note that a topology is almost a σ-algebra:

Definition (σ-algebra, measurable sets & spaces)

Let Ω be a space of elementary events. Consider
the power set 2Ω, and let F ⊂ 2Ω be a set of
subsets of Ω. Elements of F are called random
events. If F satisfies the following properties, it is
called a σ-algebra.
1. Ω ∈ F II.
2. (A, B ∈ F) ⇒ (A− B ∈ F) I.
3. (A1, A2, · · · ∈ F) ⇒

(
⋃∞

i=1 Ai ∈ F ∧
⋂∞

i=1 Ai ∈ F) I.
(this implies∅ ∈ F. If F is a σ-algebra, its
elements are called measurable sets, and (Ω,F)
is called a measurable space (or Borel space).

Definition (Topology)

Let Ω be a space and τ be a collection of sets. We
say τ is a topology on Ω if
▶ Ω ∈ τ , and∅ ∈ τ

▶ any union of elements of τ is in τ
▶ any intersection of finitely many elements of

τ is in τ .
The elements of the topology τ are called open
sets. In the Euclidean vector space Rd, the
canonical topology is that of all sets U that satisfy
x ∈ U :⇒ ∃ε > 0 : ((‖y− x‖ < ε) ⇒ (y ∈ U)).
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Almost done!
Standard settings

Definition (Borel algebra)

Let (Ω, τ) be a topological space. The Borel σ-algebra is the σ-algebra generated by τ . That is by
taking τ and completing it to include infinite intersections of elements from τ and all complements in Ω
to elements of τ .

▶ In this lecture, we will almost exclusively consider (random) variables defined on discrete or
Euclidean spaces. In the latter case, the σ-algebra will not be mentioned but assumed to be the
Borel σ-algebra.

▶ Consider (Ω,F) and (Γ,G). If both F andG are Borel σ-algebras, then any continuous function X
is measurable (and can thus be used to define a random variable). This is because, for continuous
functions, pre-images of open sets are open sets.

Now that we can define (Borel) σ-algebras on continous spaces, we can define probability distribution
measures. They might just be a bit unwieldy.
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▶ Random Variables allow us to define derived quantities from atomic events
▶ Borel σ-algebras can be defined on all topological spaces, allowing us to define probabilities if the

elementary space is continuous.
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Probability Densities
a convenient way to write things down

Definition (Probability Density Functions (pdf’s))

LetB be the Borel σ-algebra in Rd. A probability measure P on (Rd,B) has a density p if p is a
non-negative (Borel) measurable function on Rd satisfying, for all B ∈ B

P(B) =
∫
B
p(x) dx =:

∫
B
p(x1, . . . , xd) dx1 . . . dxd

▶ In other words: P has a density if P(B) can be written as an integral over B, for all B.
▶ not all measures have densities (e.g. measures with point masses)
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Cumulative Distributions
Connecting probabilities to integration

Definition (Cumulative Distribution Function (CDF))

For probability measures P on (Rd,B), the cumulative distribution function is the function

F(x) = P

( d∏
i=1

(Xi < xi)

)
.

(In particular for the univariate case d = 1, we have F(x) = P ((−∞, x])).
If F is sufficiently differentiable, then P has a density, given by

p(x) =
∂dF

∂x1 · · · ∂xd

∣∣∣∣
x
.

and, for d = 1,

P(a ≤ X < b) = F(b)− F(a) =
∫ b

a
f(x) dx.
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Densities Satisfy the Laws of Probability Theory
because integrals are linear operators without proof. Cf. Matthias Hein’s lecture

▶ For probability densities p on (Rd,B) we have

P(E) (IV)
= 1 =

∫
Rd

p(x) dx.

▶ Let X = (X1, X2) ∈ R2 be a random variable with density pX on R2. Then themarginal densities of
X1 and X2 are given by the sum rule

pX1(x1) =
∫
R
pX(x1, x2) dx2, pX2(x2) =

∫
R
pX(x1, x2) dx1

▶ The conditional density p(x1 | x2) (for p(x2) > 0) is given by the product rule

p(x1 | x2) =
p(x1, x2)
p(x2)

▶ Bayes’ Theorem holds:

p(x1 | x2) =
p(x1) · p(x2 | x1)∫
p(x1) · p(x2 | x1) dx1

.
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Change of Measure
The transformation law

Theorem (Change of Variable for Probability Density Functions)

Let X be a continuous random variable with PDF pX(x) over c1 < x < c2. And, let Y = u(X) be a
monotonic differentiable function with inverse X = v(Y). Then the PDF of Y is

pY(y) = pX(v(y)) ·
∣∣∣∣dv(y)dy

∣∣∣∣ = pX(v(y)) ·
∣∣∣∣du(x)dx

∣∣∣∣−1

.

Proof: for u′(X) > 0: ∀ d1 = u(c1) < y < u(c2) = d2

FY(y) = P(Y ≤ y) = P(u(X) ≤ y) = P(X ≤ v(y)) =
∫ v(y)

c1
p(x) dx

pY(y) =
dFY(y)
dy

= pX(v(y)) ·
dv(y)
dy

= pX(v(y)) ·
∣∣∣∣dv(y)dy

∣∣∣∣
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Change of Measure
The transformation law

Theorem (Change of Variable for Probability Density Functions)

Let X be a continuous random variable with PDF pX(x) over c1 < x < c2. And, let Y = u(X) be a
monotonic differentiable function with inverse X = v(Y). Then the PDF of Y is

pY(y) = pX(v(y)) ·
∣∣∣∣dv(y)dy

∣∣∣∣ = pX(v(y)) ·
∣∣∣∣du(x)dx

∣∣∣∣−1

.

Proof: for u′(X) < 0: ∀ d2 = u(c2) < y < u(c1) = d1

FY(y) = P(Y ≤ y) = P(u(X) ≤ y) = P(X ≥ v(y)) = 1− P(X ≤ v(y)) = 1−
∫ v(y)

c1
p(x) dx

pY(y) =
dFY(y)
dy

= −pX(v(y)) ·
dv(y)
dy

= pX(v(y)) ·
∣∣∣∣dv(y)dy

∣∣∣∣
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Change of Measure
The transformation law

Theorem (Transformation Law, general)

Let X = (X1, . . . , Xd) have a joint density pX. Let g : Rd _Rd be continously differentiable and injective,
with non-vanishing Jacobian Jg. Then Y = g(X) has density

pY(y) =

{
pX(g−1(y)) · |Jg−1(y)| if y is in the range of g,
0 otherwise.

The Jacobian Jg is the d× dmatrix with

[Jg(x)]ij =
∂gi(x)
∂xj

.
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▶ Probability Density Functions (pdf’s) distribute probability across continuous domains.
▶ they satisfy “the rules of probability”:∫

Rd
p(x) dx = 1

pX1(x1) =
∫
R
pX(x1, x2) dx2 sum rule

p(x1 | x2) =
p(x1, x2)
p(x2)

product rule

p(x1 | x2) =
p(x1) · p(x2 | x1)∫
p(x1) · p(x2 | x1) dx1

Bayes’ Theorem.

▶ Not every measure has a density, but all pdfs define measures
▶ Densities transform under continuously differentiable, injective functions g : x 7→ y with

non-vanishing Jacobian as

pY(y) =

{
pX(g−1(y)) · |Jg−1(y)| if y is in the range of g,
0 otherwise.
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An example
Based on a very famous argument

What is the probability π for a person to be wearing glasses?

▶ model probability as random variable π ranging in [0, 1]
▶ X = person is wearing glasses
▶ Inference? Bayes’ theorem!

p(π | X) = p(X | π) p(π)
p(X)

=
p(X | π) p(π)∫
p(X | π) p(π) dπ

▶ uniform for π ∈ [0, 1], i.e. p(π) = 1, zero elsewhere
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An example
Based on a very famous argument

What is the probability π for a person to be wearing glasses?

▶ model probability as random variable π ranging in [0, 1]
▶ X = person is wearing glasses

▶ Inference? Bayes’ theorem!

p(π | X) = p(X | π) p(π)
p(X)

=
p(X | π) p(π)∫
p(X | π) p(π) dπ

▶ uniform for π ∈ [0, 1], i.e. p(π) = 1, zero elsewhere

Probabilistic ML — P. Hennig, SS 2021 — Lecture 03: Continuous Variables — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 — slide 19

https://youtu.be/qp53qOOTaAI?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=3183


An example
Based on a very famous argument

What is the probability π for a person to be wearing glasses?

▶ model probability as random variable π ranging in [0, 1]
▶ X = person is wearing glasses
▶ Inference? Bayes’ theorem!

p(π | X) = p(X | π) p(π)
p(X)

=
p(X | π) p(π)∫
p(X | π) p(π) dπ

▶ uniform for π ∈ [0, 1], i.e. p(π) = 1, zero elsewhere
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An example
Based on a very famous argument

What is the probability π for a person to be wearing glasses?

▶ model probability as random variable π ranging in [0, 1]
▶ X = person is wearing glasses
▶ Inference? Bayes’ theorem!

p(π | X) = p(X | π) p(π)
p(X)

=
p(X | π) p(π)∫
p(X | π) p(π) dπ

What is a good prior?
▶ uniform for π ∈ [0, 1], i.e. p(π) = 1, zero elsewhere
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An example
Based on a very famous argument

What is the probability π for a person to be wearing glasses?

▶ model probability as random variable π ranging in [0, 1]
▶ X = person is wearing glasses
▶ Inference? Bayes’ theorem!

p(π | X) = p(X | π) p(π)
p(X)

=
p(X | π) p(π)∫
p(X | π) p(π) dπ

What is a good prior?
▶ uniform for π ∈ [0, 1], i.e. p(π) = 1, zero elsewhere

If we sample independently, what is the likelihood for a positive or a negative observation?
p(X = 1 | π) = π; p(X = 0 | π) = 1− π
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An example
Based on a very famous argument

What is the probability π for a person to be wearing glasses?

▶ model probability as random variable π ranging in [0, 1]
▶ X = person is wearing glasses
▶ Inference? Bayes’ theorem!

p(π | X) = p(X | π) p(π)
p(X)

=
p(X | π) p(π)∫
p(X | π) p(π) dπ

What is a good prior?
▶ uniform for π ∈ [0, 1], i.e. p(π) = 1, zero elsewhere

If we sample independently, what is the likelihood for a positive or a negative observation?
p(X = 1 | π) = π; p(X = 0 | π) = 1− π

What is the posterior after n positive, m negative observations?
p(π | n,m) =

πn(1− π)m · 1∫
πn(1− π)m · 1 dπ

=
πn(1− π)m

B(n+ 1,m+ 1)
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DEMO
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La probabilité de la plupart des événemens simples, est inconnue; en la considérant à
priori, elle nous paraît susceptible de toutes les valeurs comprises entre zéro et l'unité;
mais sie l'on a observé un résultat composé de plusieurs de ces événemens, la manière
dont ils y entrent, rend quelques-unes de ces valeurs plus probables que les autres. Ainsi
à mesure que les résultat observé se compose par le développement des événemens sim-
ples, leur vraie possibilité se fait de plus en plus connaître, et il devient de plus en plus
probable qu'elle tombe dans des limites qui se reserrant sans cesse, finiraient par coïn-
cider, si le nombre des événemens simples devenait infini.

Pierre-Simon, marquis de Laplace (1749-1827).
Theorie Analytique des Probabilités, 1814, p. 363

Translated by a Deep Network, assisted by a human
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The probability of most simple events is unknown. Considering it a priori, it seems
susceptible to all values between zero and unity. But if one has observed a result com-
posed of several of these events, the way they enter them makes some of these values
more probable than the others. Thus, as the observed results are composed by the de-
velopment of simple events, their real possibility becomes more and more known, and
it becomes more and more probable that it falls within limits that constantly tighten,
would end up coinciding if the number of simple events became infinite.

Pierre-Simon, marquis de Laplace (1749-1827).
Theorie Analytique des Probabilités, 1814, p. 363

Translated by a Deep Network, assisted by a human
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Let’s be more careful with notation!
(but only once more, then we’ll be sloppy)
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Example — inferring probability of wearing glasses (2)
Step 1: Construct σ-algebra

Represent all unknowns as random variables (RVs)
▶ probability to wear glasses is represented by RV Y
▶ five observations are represented by RVs X1, X2, X3, X4, X5

▶ we abbreviate Y = π as π, Xi = xi as xi
▶ p(π) is the prior of Y, written fully p(Y = π)

▶ p(xi|π) is the likelihood of observation xi
▶ note that the likelihood is a function of π
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Example — inferring probability of wearing glasses (2)
Step 1: Construct σ-algebra

Represent all unknowns as random variables (RVs)
▶ probability to wear glasses is represented by RV Y
▶ five observations are represented by RVs X1, X2, X3, X4, X5

Possible values of the RVs
▶ Y takes values π ∈ [0, 1]
▶ X1, X2, X3, X4, X5 are binary, i.e. values 0 and 1

▶ we abbreviate Y = π as π, Xi = xi as xi
▶ p(π) is the prior of Y, written fully p(Y = π)

▶ p(xi|π) is the likelihood of observation xi
▶ note that the likelihood is a function of π

Probabilistic ML — P. Hennig, SS 2021 — Lecture 03: Continuous Variables — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 — slide 23

https://youtu.be/qp53qOOTaAI?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=4202


Example — inferring probability of wearing glasses (2)
Step 1: Construct σ-algebra

Represent all unknowns as random variables (RVs)
▶ probability to wear glasses is represented by RV Y
▶ five observations are represented by RVs X1, X2, X3, X4, X5

Possible values of the RVs
▶ Y takes values π ∈ [0, 1]
▶ X1, X2, X3, X4, X5 are binary, i.e. values 0 and 1

Graphical representation

Y

X1 X2 X3 X4 X5

▶ we abbreviate Y = π as π, Xi = xi as xi
▶ p(π) is the prior of Y, written fully p(Y = π)

▶ p(xi|π) is the likelihood of observation xi
▶ note that the likelihood is a function of π
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Example — inferring probability of wearing glasses (2)
Step 1: Construct σ-algebra

Represent all unknowns as random variables (RVs)
▶ probability to wear glasses is represented by RV Y
▶ five observations are represented by RVs X1, X2, X3, X4, X5

Possible values of the RVs
▶ Y takes values π ∈ [0, 1]
▶ X1, X2, X3, X4, X5 are binary, i.e. values 0 and 1

Graphical representation

Y

X1 X2 X3 X4 X5

Generative model and joint probability
▶ we abbreviate Y = π as π, Xi = xi as xi
▶ p(π) is the prior of Y, written fully p(Y = π)

▶ p(xi|π) is the likelihood of observation xi
▶ note that the likelihood is a function of π
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Example — inferring probability of wearing glasses (3)
Step 2: Define probability space, taking care of conditional independence

Probability of wearing glasses without observations

p(π|“nothing”) = p(π)
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Example — inferring probability of wearing glasses (3)
Step 2: Define probability space, taking care of conditional independence

Probability of wearing glasses without observations

p(π|“nothing”) = p(π)

Probability of wearing glasses after one observation

p(π|x1) =
p(x1|π)p(π)∫
p(x1|π)p(π) dπ

= Z−1
1 p(x1|π)p(π)
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Example — inferring probability of wearing glasses (3)
Step 2: Define probability space, taking care of conditional independence

Probability of wearing glasses without observations

p(π|“nothing”) = p(π)

Probability of wearing glasses after one observation

p(π|x1) =
p(x1|π)p(π)∫
p(x1|π)p(π) dπ

= Z−1
1 p(x1|π)p(π)

Probability of wearing glasses after two observations

p(π|x1, x2) = Z−1
2 p(x2|x1, π)p(x1|π)p(π) = Z−1

2 p(x2|π)p(x1|π)p(π)
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Example — inferring probability of wearing glasses (3)
Step 2: Define probability space, taking care of conditional independence

Probability of wearing glasses without observations

p(π|“nothing”) = p(π)

Probability of wearing glasses after one observation

p(π|x1) =
p(x1|π)p(π)∫
p(x1|π)p(π) dπ

= Z−1
1 p(x1|π)p(π)

Probability of wearing glasses after two observations

p(π|x1, x2) = Z−1
2 p(x2|x1, π)p(x1|π)p(π) = Z−1

2 p(x2|π)p(x1|π)p(π)

…
Probability of wearing glasses after five observations

p(π|x1, x2, x3, x4, x5) = Z−1
5

( 5∏
i=1

p(xi|π)

)
p(π)
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Example — inferring probability of wearing glasses (4)
Step 3: Define analytic forms of generative model

What is the likelihood?

p(x1|π) =
{

π for x1 = 1
1− π for x1 = 0
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Example — inferring probability of wearing glasses (4)
Step 3: Define analytic forms of generative model

What is the likelihood?

p(x1|π) =
{

π for x1 = 1
1− π for x1 = 0

More helpful RVs:
▶ RV N for the number of observations being 1 (with values n)
▶ RV M for the number of observations being 0 (with values m)
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Example — inferring probability of wearing glasses (4)
Step 3: Define analytic forms of generative model

What is the likelihood?

p(x1|π) =
{

π for x1 = 1
1− π for x1 = 0

More helpful RVs:
▶ RV N for the number of observations being 1 (with values n)
▶ RV M for the number of observations being 0 (with values m)

Probability of wearing glasses after five observations

p(π|x1, x2, x3, x4, x5) = Z−1
5

( 5∏
i=1

p(xi|π)

)
p(π)

= Z−1
5 πn(1− π)mp(π)

= p(π|n,m)
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Example — inferring probability of wearing glasses (5)
Step 4: make computationally convenient choices. Here: a conjugate prior

Posterior after seeing five observations:

p(π|n,m) = Z−1
5 πn(1− π)mp(π)
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Example — inferring probability of wearing glasses (5)
Step 4: make computationally convenient choices. Here: a conjugate prior

Posterior after seeing five observations:

p(π|n,m) = Z−1
5 πn(1− π)mp(π)

What prior p(π) would make the calculations easy?
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Example — inferring probability of wearing glasses (5)
Step 4: make computationally convenient choices. Here: a conjugate prior

Posterior after seeing five observations:

p(π|n,m) = Z−1
5 πn(1− π)mp(π)

What prior p(π) would make the calculations easy?

p(π) = Z−1πa−1(1− π)b−1 with parameters a > 0, b > 0

the Beta distribution with parameter a and b
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Example — inferring probability of wearing glasses (5)
Step 4: make computationally convenient choices. Here: a conjugate prior

Posterior after seeing five observations:

p(π|n,m) = Z−1
5 πn(1− π)mp(π)

What prior p(π) would make the calculations easy?

p(π) = Z−1πa−1(1− π)b−1 with parameters a > 0, b > 0

the Beta distribution with parameter a and b

Let’s give the normalization factor Z of the beta distribution a name!

B(a, b) =
∫ 1

0
πa−1(1− π)b−1dπ

the Beta function with parameters a and b
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Quand les valeurs de x, considérées indépendamment du résultat observé, ne sont pas
également possibles; en nommant z la fonction de x qui exprime leur probabilité; il est
facile de voir, par ce qui a été dit dans le premier chaptire de ce Livre, qu'en changeant
dans la formule (1), y dans y · z, on aura la probabilité que la valeur de x est comprise
dans les limites x = θ and x = θ′. Cela revient à supposer toutes les valeurs de x égale-
ment possible à priori, et à considérer le résultat observé, comme étant formé de deux
résultats indépendans, dont les probabilités sont y et z. On peut donc ramener ainsi
tous les case à celui ou l'on suppose à priori, avant l'événement, une égal possibilité aux
différentes valeurs de x, et par cette raison, nous adopterons cette hypothèse dans ce qui
va suivre.

Pierre-Simon, marquis de Laplace (1749-1827).
Theorie Analytique des Probabilités, 1814, p. 364

Translated by a Deep Network, assisted by a human
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When the values of x, considered independently of the observed result, are not equally
possible; if we name z the function of x which expresses their probability; it is easy to
see, by what has been said in the first chapter of this Book, that by changing in formula
(1), y in y · z, we will have the probability that the value of x is within the limits x = θ
and x = θ′. This amounts to assuming all the values of x equally possible a priori, and
to considering the observed result as being formed by two independent results, whose
probabilities are y and z. We can thus reduce all the cases to the one where we assume
a priori, before the event, an equal possibility to the different values of x, and by this
reason, we will adopt this hypothesis in what follows.

Pierre-Simon, marquis de Laplace (1749-1827).
Theorie Analytique des Probabilités, 1814, p. 364

Translated by a Deep Network, assisted by a human
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▶ Random Variables allow us to define derived quantities from atomic events
▶ Borel σ-algebras can be defined on all topological spaces, allowing us to define probabilities if the

elementary space is continuous.
▶ Probability Density Functions (pdf’s) distribute probability across continuous domains.

▶ they satisfy “the rules of probability” (integrate to one, sum rule, product rule, hence Bayes’ Theorem)
▶ Not every measure has a density, but all pdfs define measures
▶ Densities transform under continuously transformations

▶ Probabilistic inference can even be used to infer probabilities!
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