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The Toolbox

Framework:∫
p(x1, x2) dx2 = p(x1) p(x1, x2) = p(x1 | x2)p(x2) p(x | y) = p(y | x)p(x)

p(y)

Modelling:
▶ graphical models
▶ Gaussian distributions
▶ Kernels
▶ Markov Chains
▶ Exponential Families / Conjugate Priors
▶ Factor Graphs & Message Passing

Computation:
▶ Monte Carlo
▶ Linear algebra / Gaussian inference
▶ maximum likelihood / MAP
▶ Laplace approximations
▶
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Factor Graphs
▶ are a tool to directly represent an entire computation in a formal language (which also includes the

functions in question themselves)
▶ both directed and undirected graphical models can be mapped onto factor graphs.

x0 · · · xi−1 xi xi+1 · · · xn
ψ0,1 ψ(i−1),i ψi,(i+1) ψ(n−1),n

Inference on Chains
▶ separates into local messages being sent forwards and backwards along the factor graph
▶ both the local marginals and the most-probable state can be inferred in this way
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Inference on Trees
Definition of Trees

Definition (Tree)

An undirected graph is a tree if there is one, and only one, path between any pair of nodes (such graphs
have no loops). A directed graph is a tree if there is only one node which has no parent (the root), and all
other nodes have only one parent. When such graphs are transformed into undirected graphs by
moralization, they remain a tree. A directed graph such that every pair of nodes is connected by one
and only one path is called a polytree. When transformed into an undirected graph, such graphs, in
general, acquire loops. But the corresponding factor graph is still a tree.
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The Sum-Product Algorithm
Inference on Trees [Exposition from Bishop, PRML, 2006]

fsF s
(x
,x

s)

x

µfs _ x(x)

▶ Consider a tree-structured factor graph over
x = [x1, . . . , xn] (if instead you have an undirected tree
or directed polytree, transform it first).

▶ Again, w.l.o.g. assume discrete variables for simplicity
(for continuous, replace sums by integrals).

▶ Pick any variable x ∈ x. Because the graph is a tree, we
can write

p(x) =
∏

s∈ne(x)

Fs(x, xs)

where ne(x) are the neighbors of x, and Fs is the
sub-graph of nodes xs other than x itself that are
connected to neighbor s (which is itself a tree!).

▶ Consider the marginal distribution p(x) =
∑
x\x

p(x)
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The Sum-Product Algorithm
Inference on Trees [Exposition from Bishop, PRML, 2006]

a1 · b1 + a1 · b2 + a2 · b1 + a2 · b2 = (a1 + a2) · (b1 + b2)
∑

i

∏
j

fij =
∏
j

∑
i

fij

fsF s
(x
,x

s)

x

µfs _ x(x)

p(x) =
∑
x\x

∏
s∈ne(x)

Fs(x, xs) =
∏

s∈ne(x)

(∑
xs

F(x, xs)

)
︸ ︷︷ ︸

=:µfs _ x(x)

=
∏

s∈ne(x)

µfs _ x(x)

The marginal p(x) is a product of incoming messages µfs _ x from the factors connected to x.
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The Sum-Product Algorithm
Inference on Trees [Exposition from Bishop, PRML, 2006]

fs

xm

xi

G i
(x

i,
x s

i)

x

µfs _ x(x)

µ
xm _

fs (xm )

▶ consider the sub-graph Fs(x, xs) and factorize that
sub-graph into further (tree-structured) sub-graphs

Fs(x, xs) = fs(x, x1, . . . , xm)G1(x1, xs1) · · ·Gm(xm, xsm)

▶ then we can write

µfs _ x(x) =
∑

x1,...,xm

fs(x, x1, . . . , xm)
∏

i∈ne(fs)\x

(∑
xsi

Gi(xi, xsi)

)
︸ ︷︷ ︸

=
∑

x1,...,xm

fs(x, x1, . . . , xm)
∏

i∈ne(fs)\x

µxi _ fs(xi)

To compute the factor-to-variable message µfs _ x(x), sum over the product of the factor and remaining
sub-graph-sums. The latter are themselves messages from the variables connected to fs.
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The Sum-Product Algorithm
Inference on Trees [Exposition from Bishop, PRML, 2006]

Fℓ(xi, xiℓ)

xi
fs

fL
...
...

fℓ

Gi(xi, xsi) =
∏

ℓ∈ne(xi)\fs

Fℓ(xi, xiℓ)

µxi _ fs(xi) =
∑
xsi

Gi(xi, xsi) =
∑
xsi

 ∏
ℓ∈ne(xi)\fs

Fℓ(xi, xiℓ)


=

∏
ℓ∈ne(xi)\fs

(∑
xiℓ

Fℓ(xi, xiℓ)

)

=
∏

ℓ∈ne(xi)\fs

µfℓ _ xi(xi)

To compute the variable-to-factor messageµxi _ fs(xi), take the product of all incoming factor-to-variable
messages. Repeat recursively, until reaching a leaf node.
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The Sum-Product Algorithm
Inference on Trees [Exposition from Bishop, PRML, 2006]

x
f

µx _ f(x) = 1

x
f

µf _ x(x) = f(x)

µx _ f(x) =
∏
∅

∑
∅

:= 1

µf _ x(x) =
∑
∅

f(x,∅)
∏
∅

:= f(x)

To initiate the messages at leaves of the graph, define them to be unit for variable leaves and identities
for factor leaves.
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The Sum-Product Algorithm
Summary

To compute the marginal p(x), treat it as the root of the tree, and do:
▶ start at leaf nodes.

▶ if leaf is factor f(x), initialize µf _ x(x) = f(x)
▶ if leaf is variable x, initialize µx _ f(x) = 1

▶ pass messages from the leaves towards the root x:

µfℓ _ xj =
∑
xℓj

fℓ(xj, xℓj)
∏

i∈{ℓj}=ne(fℓ)\xj

µxi _ fℓ(xi) µxj _ fℓ(xj) =
∏

i∈ne(xj)\fℓ

µfi _ xj(xj)

▶ at the root x, take product of all incoming messages (and normalize).
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The Sum-Product Algorithm
Summary

To compute the marginals p(x) of all variables, choose any xi as the root. Then,
▶ start at leaf nodes.

▶ if leaf is factor f(x), initialize µf _ x(x) = f(x)
▶ if leaf is variable x, initialize µx _ f(x) = 1

▶ pass messages from leaves towards root:

µfℓ _ xj =
∑
xℓj

fℓ(xj, xℓj)
∏

i∈{ℓj}=ne(fℓ)\xi

µxi _ fℓ(xi) µxj _ fℓ(xj) =
∏

i∈ne(xj)\fℓ

µfi _ xj(xj)

▶ once root has messages from all neighbors, pass messages from to root towards the leaves.
▶ once all nodes have received messages from all their neighbors, take product of all incoming

messages at all variables (and normalize).

Inference on the marginal of all variables in a tree-structured factor-graph is linear in graph size.
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Some Notes
Inference by message passing in graphs

▶ The two types of messages can be combined, phrasing the algorithm as message passing
between factor nodes only:

µfℓ _ xj =
∑
xℓj

fℓ(xj, xℓj)
∏

i∈ne(fℓ)\xj

µxi _ fℓ(xi)

µxj _ fℓ(xj) =
∏

i∈ne(xj)\fℓ

µfi _ xj(xj)

mfℓ _ fj(xj) =
∑

xℓ\(xℓ∩xj)

fℓ(xj, xℓ)
∏

i∈ne(fℓ)\ne(fj)

mfi _ fj(xℓ)
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Some Notes
Inference by message passing in graphs

▶ If one or more nodes xo in the graph are observed (xo = x̂o), just introduce factors
f(xoi ) = δ(xoi − x̂oi ) into the graph.

▶ This amounts to “clamping” the variables to their observed value
▶ Say x := [xo, xh]. Because p(xo, xh) ∝ p(xh | xo), the sum-product algorithm can thus be used to

compute posterior marginal distributions over the hidden variables xh.
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Some Notes
Inference by message passing in graphs

▶ There is a generalization from trees to general graphs, known as the junction tree algorithm. The
principal idea is to join sets of variables in the graph into larger maximal cliques until the resulting
graph is a tree. The exact process, however, requires care to ensure that every clique that is a
sub-set of another clique ends up in that clique. The resulting algorithm (like the sum-product
algorithm) has complexity exponential in the dimensionality of the largest variable in the graph,
and linear in the size of tree.

The computational cost of probabilistic inference on the marginal of a variable in a joint distribution is
exponential in the dimensionality of the maximal clique of the juntion tree, and linear in the size of the
junction tree. The junction tree algorithm is exact for any graph (it produces correct martginals), and
efficient in the sense that, given a graph, there does not in general (i.e. without using properties of the
functions instead of the graph) exist a more efficient algorithm.
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What if we don’t care about the marginal posteriors,
but about the joint distribution?

In general, it’s shape can be very complex, and exponentially hard to track (in the number of variables).
But remember from lecture 1 that storing themaximum of the distribution has linear complexity (just

write it down!).

How about computing that maximum?
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The Max-Product / Max-Sum Algorithm
Finding Most Probable Configurations [Exposition from Bishop, PRML, 2006]

▶ What if, instead of marginals p(xi) we want the jointly most probable state xmax = arg maxx p(x)?
▶ note that arg maxx p(x) ̸=

∏
arg maxxi p(xi):

0.6 0.4
x2 = 0 x2 = 1

0.7 x1 = 0 0.3 0.4
0.3 x1 = 1 0.3 0.0

▶ but max(ab, ac) = amax(b, c) and max(a+ b, a+ c) = a+max(b, c)! Also (cf. earlier lectures)

log
(
max

x
p(x)

)
= max

x
log p(x)

Thus, we can compute the most probable state xmax by taking the sum-product algorithm and replacing
all summations with maximizations (themax-product algorithm). We can further replace all products of
p with sums of log p (themax-sum algorithm). The only complication is that, if we also want to know the
arg max, we have to track it separately, using an additional data structure.
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The Max-Product Algorithm
Summary

To compute xmax, choose any xi as the root. Then,
▶ start at leaf nodes.

▶ if leaf is factor f(x), initialize µf _ x(x) = f(x)
▶ if leaf is variable x, initialize µx _ f(x) = 1

▶ pass messages from leaves towards root:

µfℓ _ xj(xj) = max
xℓj

fℓ(xj, xℓj)
∏

i∈{ℓj}=ne(fℓ)\xj

µxi _ fℓ(xi) µxj _ fℓ(xj) =
∏

i∈ne(xj)\fℓ

µfi _ xj(xj)

▶ additionally track indicator for identity of maximum (nb: This is a function of xj!)

ϕ(xj) = arg max
xℓj

fℓ(xj, xℓj)
∏

i∈ne(fℓ)\xj

µxi _ fℓ(xi)

▶ once root has messages from all neighbors, pass messages from to root towards the leaves. At
each factor node, set xmax

ℓj = ϕ(xj) (this is known as backtracking).
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The Max-Sum Algorithm
Summary

To compute xmax, choose any xi as the root. Then,
▶ start at leaf nodes.

▶ if leaf is factor f(x), initialize µf _ x(x) = log f(x)
▶ if leaf is variable x, initialize µx _ f(x) = 0

▶ pass messages from leaves towards root:

µfℓ _ xj(xj) = max
xℓj

log fℓ(xj, xℓj)+
∑

i∈{ℓj}=ne(fℓ)\xj

µxi _ fℓ(xi) µxj _ fℓ(xj) =
∑

i∈ne(xj)\fℓ

µfi _ xj(xj)

▶ additionally track indicator for identity of maximum (nb: This is a function of xj!)

ϕ(xj) = arg max
xℓj

log fℓ(xj, xℓj) +
∑

i∈ne(fℓ)\xj

µxi _ fℓ(xi)

▶ once root has messages from all neighbors, pass messages from to root towards the leaves. At
each factor node, set xmax

ℓj = ϕ(xj) (this is known as backtracking).
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Connection to Control / Reinforcement Learning
Inference by message passing in graphs

▶ Max-Sum is a case of dynamic programming (recursive simplification of optimization using
problem structure). The equation

µfℓ _ fj = max
xℓ\(xℓ∩xj)

log fℓ(xℓ) +
∑

i∈ne(fℓ)\ne(fj)

µfi _ fj(xj)


defines a Hamilton-Jacobi-Bellman equation
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Summary:
▶ Factor graphs provide graphical representation of joint probability distributions that is particularly

conducive to automated inference
▶ In factor graphs that are trees, all marginals can be computed in time linear in the graph size by

passing messages along the edges of the graph using the sum-product algorithm.
▶ Computation of each local marginal is exponential in the dimensionality of the node. Thus, in

general, the cost of inference is exponential in clique-size, linear in clique-number.
▶ An analogous algorithm, the max-sum algorithm, can be used to find the joint most probable state,

also in linear time.
▶ Both algorithms fundamentally rest on the distributive properties

a(b+ c) = ab+ ac max(ab, ac) = a ·max(b, c)

Message passing provides the general framework for managing computational complexity in probabilis-
tic generative models as far as it is caused by conditional independence. It does not, however, address
complexity arising from the algebraic form of continous probability distributions. We already saw that
exponential families address this latter issue. But not every distribution is an exponential family. A main
theme for the remainder will be how to project complicated joint distributions onto factor graphs of ex-
ponential families.
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