
Probabilistic Machine Learning
Lecture 27
Revision

Philipp Hennig
27 July 2021

Faculty of Science
Department of Computer Science
Chair for the Methods of Machine Learning

date content Ex # date content Ex

1 20.04. Introduction 1 14 09.06. Generalized Linear Models
2 21.04. Reasoning under Uncertainty 15 15.06. Exponential Families 8
3 27.04. Continuous Variables 2 16 16.06. Graphical Models
4 28.04. Monte Carlo 17 22.06. Factor Graphs 9
5 04.05. Markov Chain Monte Carlo 3 18 23.06. The Sum-Product Algorithm
6 05.05. Gaussian Distributions 19 29.06. Example: Modelling Topics 10
7 11.05. Parametric Regression 4 20 30.06. Mixture Models
8 12.05. Learning Representations 21 06.07. EM 11
9 18.05. Gaussian Processes 5 22 07.07. Variational Inference

10 19.05. Understanding Kernels 23 13.07. Tuning Inference Algorithms 12
11 26.05. Gauss-Markov Models 24 14.07. Kernel Topic Models
12 25.05. An Example for GP Regression 6 25 20.07. Outlook

13 08.06. GP Classification 7 26 21.07. Revision

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 1

The Toolbox

Framework:∫
p(x1, x2) dx2 = p(x1) p(x1, x2) = p(x1 | x2)p(x2) p(x | y) = p(y | x)p(x)

p(y)

Modelling:

▶ graphical models
▶ Gaussian distributions
▶ (deep) learnt representations
▶ Kernels
▶ Markov Chains
▶ Exponential Families / Conjugate Priors
▶ Factor Graphs & Message Passing

Computation:

▶ Monte Carlo
▶ Linear algebra / Gaussian inference
▶ maximum likelihood / MAP
▶ Laplace approximations
▶ EM / variational approximations

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 2

The Rules of Probability:
▶ the Sum Rule:

P(A) = P(A, B) + P(A,¬B)

▶ the Product Rule:
P(A, B) = P(A | B) · P(B) = P(B | A) · P(A)

▶ Bayes’ Theorem:

P(A | B) = P(B | A)P(A)
P(B)

=
P(B | A)P(A)

P(B, A) + P(B,¬A)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 3

Bayes’ Theorem
Inverting Probabilities

P(X | D)︸ ︷︷ ︸
posterior for X given D

=

prior for X︷︸︸︷
P(X) ·

likelihood for X︷ ︸︸ ︷
P(D | X)

P(D)︸︷︷︸
evidence for the model

=
P(X) · P(D | X)∑
x∈X

P(D | x)P(x)

Bayes’ Theorem tells us how to update the belief in a hypothesis X when observing data D.

▶ P(D | X) is the likelihood of X, but the (conditional) probability for D (given X)
▶ themodel is the entire thing — prior and likelihood
▶ despite the name, the prior is not necessarily what you know before seeing the data, but the

marginal distribution P(X) =
∑

d∈D P(X, d) under all possible data.
Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 4

Plausible Reasoning
Bayesian inference formalizes common sense Material by Stefan Harmeling

A = “it will begin to rain by 6pm”
B = “the sky will become cloudy before 6pm”

A ⇒ B
if A is true, the B is true

Assume: if A is true, then B is true (A ⇒ B)
A is true thus B is true (modus ponens)
B is false thus A is false (modus tollens)
B is true thus A becomes more plausible
A is false thus B becomes less plausible

if A is true, B becomes more plausible (P(B | A) > P(B))
A is true thus B becomes more plausible
B is false thus A becomes less plausible
B is true thus A becomes more plausible
A is false thus B becomes less plausible

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 5

Computational Difficulties of Probability Theory
Uncertainty is a global notion

▶ The joint distribution of n = 26 propositional variables A, B, . . . , Z has 2n free parameters

[1] P(A, B, . . . , Z) = . . .

[2] P(¬A, B, . . . , Z) = . . .

[3] P(A,¬B, . . . , Z) = . . .

...
...

[67 108 863] P(¬A,¬B, . . . , Z) = . . .

[67 108 864] P(¬A,¬B, . . . ,¬Z) = 1−
∑

P(. . .)

▶ requires not just large memory, but computing marginals like P(A) is also very expensive
▶ nb: just committing to a single guess is much (exponentially in n) cheaper
▶ can we specify the joint distribution with fewer numbers?

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 6

Conditional Independence
Chiefly a computational concept [Example: Stefan Harmeling]

Definition (conditional independence)

Two variables A and B are conditionally independent given variable C, if and only if their conditional
distribution factorizes,

P(A, B|C) = P(A|C) P(B|C)

In that case we have P(A|B, C) = P(A|C), i.e. in light of information C, B provides no (further) information
about A. Notation: A ⊥⊥ B | C

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 7

Parameter Counting
a simple example [adapted from Pearl, 1988 / MacKay, 2003 §21]

A A = the alarm was triggered

E E = there was an earthquake

B B = there was a break-in

R R = an announcement is made on the radio

Joint probability distribution has 24 − 1 = 15 = 8+ 4+ 2+ 1 parameters

P(A, E, B, R) = P(A | R, E, B) · P(R | E, B) · P(E | B) · P(B).

Removing irrelevant conditions (domain knowledge!) reduces to 8 = 4+ 2+ 1+ 1 parameters:

P(A, E, B, R) = P(A | E, B) · P(R | E) · P(E) · P(B)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 8

A Graphical Representation
Our first Bayesian network. [adapted from Pearl, 1988 / MacKay, 2003 §21]

P(A, E, B, R) = P(A | E, B) · P(R | E) · P(E) · P(B)

R

E

A

B
A = the alarm was triggered
E = there was an earthquake
B = there was a break-in
R = an announcement is made on the radio

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 9

The Toolbox

Framework:∫
p(x1, x2) dx2 = p(x1) p(x1, x2) = p(x1 | x2)p(x2) p(x | y) = p(y | x)p(x)

p(y)

Modelling:
▶ graphical models

▶ Gaussian distributions
▶ (deep) learnt representations
▶ Kernels
▶ Markov Chains
▶ Exponential Families / Conjugate Priors
▶ Factor Graphs & Message Passing

Computation:

▶ Monte Carlo
▶ Linear algebra / Gaussian inference
▶ maximum likelihood / MAP
▶ Laplace approximations
▶ EM / variational approximations

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 10

Constructing Directed Graphs
Conditional Independence Affects Computational Complexity

Joint probability distribution has
24 − 1 = 15 = 8+ 4+ 2+ 1 parameters

p(A, E, B, R) = p(A | R, E, B) · p(R | E, B) · p(E | B) · p(B)

Removing irrelevant conditions (domain knowledge!) reduces
to 8 = 4+ 2+ 1+ 1 parameters:

p(A, E, B, R) = p(A | E, B) · p(R | E) · p(E) · p(B)

R

E

A

B

Procedural construction of directed
graphical model
1. For each variable in the joint

distribution, draw a circle
2. For each term p(x1, . . . | y1, . . .) in

the factorized joint distribution,
draw an arrow from every parent
(right side) node yi to every child
(left side) node xi.

3. fill in all observed variables
(variables on which we want to
condition).

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 11

Every Probability Distribution is a DAG
It’s just not always a helpful concept

By the Product Rule, every joint can be factorized into a (dense) DAG.

p(A, E, B, R) = p(A | E, B, R)·p(R | E, B)·p(E | B)·p(B)

R

E

A

B
A = the alarm was triggered
E = there was an earthquake
B = there was a break-in
R = an announcement is made on the radio

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 12

Every Probability Distribution is a DAG
It’s just not always a helpful concept

The direction of the arrows is not a causal statement.

p(A, E, B, R) = p(B | A, E, R)·p(E | A, R)·p(R | A)·p(A)

R

E

A

B
A = the alarm was triggered
E = there was an earthquake
B = there was a break-in
R = an announcement is made on the radio

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 12

Every Probability Distribution is a DAG
It’s just not always a helpful concept

But the representation is particularly interesting when it reveals independence.

p(A, E, B, R) = p(A | E, B) · p(R | E) · p(E) · p(B)

R

E

A

B
A = the alarm was triggered
E = there was an earthquake
B = there was a break-in
R = an announcement is made on the radio

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 12

Directed Graphs are an Imperfect Representation
The Graph for Two Coins and a Bell example by Stefan Harmeling

P(A = 1) = 0.5 P(C = 1 | A = 1, B = 1) = 1 P(C = 1 | A = 1, B = 0) = 0
P(B = 1) = 0.5 P(C = 1 | A = 0, B = 1) = 0 P(C = 1 | A = 0, B = 0) = 1

These CPTs imply P(A|B) = P(A), P(B|C) = P(B) and P(C|A) = P(C) and P(C | B) = P(C).

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 13

Directed Graphs are an Imperfect Representation
The Graph for Two Coins and a Bell example by Stefan Harmeling

P(A = 1) = 0.5 P(C = 1 | A = 1, B = 1) = 1 P(C = 1 | A = 1, B = 0) = 0
P(B = 1) = 0.5 P(C = 1 | A = 0, B = 1) = 0 P(C = 1 | A = 0, B = 0) = 1

These CPTs imply P(A|B) = P(A), P(B|C) = P(B) and P(C|A) = P(C) and P(C | B) = P(C).

We thus have three factorizations:
1. P(A, B, C) = P(C|A, B) · P(A|B) · P(B) = P(C|A, B) · P(A) · P(B)
2. P(A, B, C) = P(A|B, C) · P(B|C) · P(C) = P(A|B, C) · P(B) · P(C)
3. P(A, B, C) = P(B|C, A) · P(C|A) · P(A) = P(B|C, A) · P(C) · P(A)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 13

Directed Graphs are an Imperfect Representation
The Graph for Two Coins and a Bell example by Stefan Harmeling

P(A = 1) = 0.5 P(C = 1 | A = 1, B = 1) = 1 P(C = 1 | A = 1, B = 0) = 0
P(B = 1) = 0.5 P(C = 1 | A = 0, B = 1) = 0 P(C = 1 | A = 0, B = 0) = 1

These CPTs imply P(A|B) = P(A), P(B|C) = P(B) and P(C|A) = P(C) and P(C | B) = P(C).

We thus have three factorizations:
1. P(A, B, C) = P(C|A, B) · P(A|B) · P(B) = P(C|A, B) · P(A) · P(B)
2. P(A, B, C) = P(A|B, C) · P(B|C) · P(C) = P(A|B, C) · P(B) · P(C)
3. P(A, B, C) = P(B|C, A) · P(C|A) · P(A) = P(B|C, A) · P(C) · P(A)

Each corresponds to a graph. Note that each can only express some of the independencies:

C

A B

C

BA A B

C

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 13

d-separation
A Generalization of the Atomic Structures above [J. Pearl, Probabilistic Reasoning in Intelligent Systems 1988]

A ⊥⊥ B | CA

C

B A ⊥⊥ B | CA

C

B A ̸⊥⊥ B | CA

C

B

Theorem (d-separation, Pearl, 1988. Formulation taken from Bishop, 2006)

Consider a general directed acyclic graph, in which A, B, C are nonintersecting sets of nodes whose union
may be smaller than the complete graph. To ascertain whether A ⊥⊥ B | C, consider all possible paths
(connections along lines in the graph, regardless of the direction) from any node in A to any node in B.
Any such path is considered blocked if it includes a node such that either
▶ the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in C, or
▶ the arrows meet head-to-head at the node, and neither the node, nor any of its descendants is in C.

If all paths are blocked, then A is said to be d-separated from B by C, and A ⊥⊥ B | C.

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 14

Undirected Graphical Models
aka. Markov Random Fields [example from Bishop, PRML, 2006]

x1

x2

x3

x4

x5

x6

x7

x8

A S B

Definition (Markov Random Field)

An undirected Graph G = (V, E) is a set V of nodes
and edges E. An undirected graph G and a set of
random variables X = {Xv}v∈V is a Markov
Random Field if, for any subsets A, B ⊂ V and a
separating set S (i.e. a set such that every path
from A to B passes through S), XA ⊥⊥ XB | XS.

The above definition is known as the global Markov
property. It implies the weaker pairwise Markov
property: Any two nodes u, v that do not share an
edge are conditionally independent given all other
variables: Xu ⊥⊥ Xv | XV\{u,v}.

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 15

https://youtu.be/BosZK5E_q70?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=2694

Undirected Graphical Models
aka. Markov Random Fields [example from Bishop, PRML, 2006]

x1

x2

x3

x4

x5

x6

x7

x8

A S B

Definition (Markov Random Field)

An undirected Graph G = (V, E) is a set V of nodes
and edges E. An undirected graph G and a set of
random variables X = {Xv}v∈V is a Markov
Random Field if, for any subsets A, B ⊂ V and a
separating set S (i.e. a set such that every path
from A to B passes through S), XA ⊥⊥ XB | XS.

The above definition is known as the global Markov
property. It implies the weaker pairwise Markov
property: Any two nodes u, v that do not share an
edge are conditionally independent given all other
variables: Xu ⊥⊥ Xv | XV\{u,v}.

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 15

https://youtu.be/BosZK5E_q70?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=2757

Potentials
the price of dropping direction from edges [derivation adapted from Bishop, PRML, 2016]

Any distribution p(x) that satisfies the conditional independence structures of the graph G can be
written as a factorization over all cliques, and thus also just over all maximal cliques (since any clique is
part of at least one maximal clique).

p(x) =
1
Z
∏
c∈C

ψc(xc) (⋆)

▶ in directed graphs, each factor p(xch | xpa) had to be a probability distribution of the children (but
not of the parents!). But in MRFs there is no distinction between parents and children. So we only
know that each potential function ψc(xc) ≥ 0. For simplicity, we will restrict ψc(xc) > 0.

▶ The normalization constant Z is the partition function

Z :=

∫∑
x

∏
c∈C

ψc(xc).

Because of the loss of structure from directed to undirected graphs, we have to explicitly compute
Z. This can be NP-hard, and is the primary downside of MRFs. (e.g. consider n discrete variables
with k states each, then computing Zmay require summing kn terms).

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 16

Borrowing Continuity from Topology
Standard settings

Definition (Borel algebra)

Let (Ω, τ) be a topological space. The Borel σ-algebra is the σ-algebra generated by τ . That is by
taking τ and completing it to include infinite intersections of elements from τ and all complements in Ω
to elements of τ .

Definition (Probability Density Functions (pdf’s))

LetB be the Borel σ-algebra in Rd. A probability measure P on (Rd,B) has a density p if p is a
non-negative (Borel) measurable function on Rd satisfying, for all B ∈ B

P(B) =
∫
B
p(x) dx =:

∫
B
p(x1, . . . , xd) dx1 . . . dxd

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 17

Densities Satisfy the Laws of Probability Theory
because integrals are linear operators without proof. Cf. Matthias Hein’s lecture

▶ For probability densities p on (Rd,B) we have

P(E) (IV)
= 1 =

∫
Rd

p(x) dx.

▶ Let X = (X1, X2) ∈ R2 be a random variable with density pX on R2. Then themarginal densities of
X1 and X2 are given by the sum rule

pX1(x1) =
∫
R
pX(x1, x2) dx2, pX2(x2) =

∫
R
pX(x1, x2) dx1

▶ The conditional density p(x1 | x2) (for p(x2) > 0) is given by the product rule

p(x1 | x2) =
p(x1, x2)
p(x2)

▶ Bayes’ Theorem holds:

p(x1 | x2) =
p(x1) · p(x2 | x1)∫
p(x1) · p(x2 | x1) dx1

.

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 18

Change of Measure
The transformation law

Theorem (Transformation Law, general)

Let X = (X1, . . . , Xd) have a joint density pX. Let g : Rd _Rd be continously differentiable and injective,
with non-vanishing Jacobian Jg. Then Y = g(X) has density

pY(y) =

{
pX(g−1(y)) · |Jg−1(y)| if y is in the range of g,
0 otherwise.

The Jacobian Jg is the d× dmatrix with

[Jg(x)]ij =
∂gi(x)
∂xj

.

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 19

The Toolbox

Framework:∫
p(x1, x2) dx2 = p(x1) p(x1, x2) = p(x1 | x2)p(x2) p(x | y) = p(y | x)p(x)

p(y)

Modelling:
▶ graphical models

▶ Gaussian distributions
▶ (deep) learnt representations
▶ Kernels

▶ Markov Chains

▶ Exponential Families / Conjugate Priors
▶ Factor Graphs & Message Passing

Computation:
▶ Monte Carlo

▶ Linear algebra / Gaussian inference
▶ maximum likelihood / MAP
▶ Laplace approximations
▶ EM / variational approximations

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 20

F :=

∫
f(x)p(x) dx ≈ 1

N

N∑
i=1

f(xi) =: F̂ if xi ∼ p

Ep(F̂) = F varp(F̂) =
varp(f)

N

▶ Random numbers can be used to estimate integrals _ Monte Carlo algorithms
▶ although the concept of randomness is fundamentally unsound, Monte Carlo algorithms are

competitive in high dimensional problems (primarily because the advantages of the alternatives
degrade rapidly with dimensionality)

▶ direct sampling is not possible in general. Practical MC algorithms only use the unnormalized
density p̃ in

p(x) =
p̃(x)
Z

▶ but even this is not easy, because independent sampling requires access to global structure

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 21

The Metropolis-Hastings∗ Method
∗ Authorship controversial. Likely inventors: M. Rosenbluth, A. Rosenbluth & E. Teller, 1953

we want to find representers (samples) of p̃(x)
▶ given current sample xt
▶ draw proposal x′ ∼ q(x′ | xt) (for example, q(x′ | xt) = N (x′; xt, σ2))
▶ evaluate

a =
p̃(x′)
p̃(xt)

q(xt | x′)
q(x′ | xt)

▶ if a ≥ 1, accept: xt+1 ^ x′

▶ else
▶ accept with probability a: xt+1 ^ x′
▶ stay with probability 1− a: xt+1 ^ xt

Usually, assume symmetry q(xt | x′) = q(x′ | xt) (the Metropolis method)
▶ no rejection. Every sample counts!
▶ like optimization, but with a chance to move downhill

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 22

Metropolis-Hastings performs a (biased) random walk
hence diffusesO(s1/2)

−2 0 2

−2

0

2 Rule of Thumb: [MacKay, (29.32)]
▶ Metropolis-Hastings, in its basic form, performs a

random walk, so that the time (number of steps) to draw
an independent sample scales like (L/ε)2, where L is the
largest, ε the smallest length-scale of the distribution

▶ Algorithms that try to correct this behaviour include, for
example
▶ Gibbs-sampling (drawing exact along the axes)
▶ Hamiltonian MC (higher-order dynamics to create

smooth exploration

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 23

The Toolbox

Framework:∫
p(x1, x2) dx2 = p(x1) p(x1, x2) = p(x1 | x2)p(x2) p(x | y) = p(y | x)p(x)

p(y)

Modelling:
▶ graphical models
▶ Gaussian distributions
▶ (deep) learnt representations
▶ Kernels
▶ Markov Chains

▶ Exponential Families / Conjugate Priors
▶ Factor Graphs & Message Passing

Computation:
▶ Monte Carlo
▶ Linear algebra / Gaussian inference
▶ maximum likelihood / MAP
▶ Laplace approximations

▶ EM / variational approximations

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 24

Gaussians provide the linear algebra of inference
if all joints are Gaussian and all observations are linear, all posteriors are Gaussian

▶ products of Gaussians are Gaussians

N (x; a, A)N (x; b, B)
= N (x; c, C)N (a; b, A+ B)

C := (A−1 + B−1)−1 c := C(A−1a+ B−1b)

▶ linear projections of Gaussians are Gaussians

p(z) = N (z;µ,Σ)
⇒ p(Az) = N (Az, Aµ, AΣA⊺)

▶ marginals of Gaussians are Gaussians∫
N

[(
x
y

)
;

(
µx

µy

)
,

(
Σxx Σxy

Σyx Σyy

)]
dy = N (x;µx,Σxx)

▶ (linear) conditionals of Gaussians are Gaussians

p(x | y) = p(x, y)
p(y)

= N
(
x;µx +ΣxyΣ

−1
yy (y− µy),Σxx − ΣxyΣ

−1
yy Σyx

)
Bayesian inference becomes linear algebra

If p(x) = N (x;µ,Σ) and p(y | x) = N (y; A⊺x+ b,Λ), then

p(B⊺x+ c | y) = N [B⊺x+ c; B⊺µ+ c+ B⊺ΣA(A⊺ΣA+ Λ)−1(y− A⊺µ− b), B⊺ΣB− B⊺ΣA(A⊺ΣA+ Λ)−1A⊺ΣB]

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 25

f(x) = w1 + w2x = ϕ⊺
xw

ϕx :=

[
1
x

]

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 26

Learning a Function, with Gaussian algebra
example: Gaussian features

ϕ(x) =
[
e− 1

2 (x−8)2 e− 1
2 (x−7)2 e− 1

2 (x−6)2 . . .
]⊺

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 27

Learning a Function, with Gaussian algebra
example: Gaussian features

ϕ(x) =
[
e− 1

2 (x−8)2 e− 1
2 (x−7)2 e− 1

2 (x−6)2 . . .
]⊺

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 27

It’s all just (painful) linear algebra!
Gaussian Inference on a linear function

prior p(w) = N (w;µ,Σ) ⇒ p(f) = N (fx;ϕ⊺x µ, ϕxΣϕx)

likelihood p(y | w, ϕX) = N (y;ϕ⊺Xw, σ
2I) = N (y; fX, σ2I)

posterior on w p(w | y, ϕX) = N (w;µ+ΣϕX(ϕ
⊺
XΣϕX + σ2I)−1(y− ϕ⊺Xµ),

Σ− ΣϕX(ϕ
⊺
XΣϕX + σ2I)−1ϕ⊺XΣ)

= N
(
w; (Σ−1 + σ−2ϕ⊺XϕX)

−1
(
Σ−1µ+ σ−2ϕXy

)
,

(Σ−1 + σ−2ϕ⊺XϕX)
−1
)

posterior on f p(fx | y, ϕX) = N (fx;ϕ⊺x µ+ ϕ⊺x ΣϕX(ϕ
⊺
XΣϕX + σ2I)−1(y− ϕ⊺Xµ),

ϕ⊺x Σϕx − ϕ⊺x ΣϕX(ϕ
⊺
XΣϕX + σ2I)−1ϕ⊺XΣϕx)

N
(
fx;ϕx(Σ

−1 + σ−2ϕ⊺XϕX)
−1
(
Σ−1µ+ σ−2ϕXy

)
,

ϕx(Σ
−1 + σ−2ϕ⊺XϕX)

−1ϕ⊺x
)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 28

Hierarchical Bayesian Inference
Bayesian model adaptation

p(f | y, x,θ) = p(y | f, x,θ)p(f |,θ)∫
p(y | f, x,θ)p(f |,θ) df

=
p(y | f, x,θ)p(f |,θ)

p(y | x,θ)

▶ Model parameters like θ are also known as hyper-parameters.
▶ This is largely a computational, practical distinction:

data are observed _ condition
variables are the things we care about _ full probabilistic treatment

parameters are the things we have to deal with to get the model right _ integrate out
hyper-parameters are the top-level, too expensive to properly infer _ fit

Themodel evidence in Bayes’ Theorem is the (marginal) likelihood for the model. So we would like

p(θ | y) = p(y | θ)p(θ)∫
p(y | θ′)p(θ′) dθ′

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 29

https://youtu.be/Zb0K_S5JJU4?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=770

Hierarchical Bayesian Inference
Bayesian model adaptation

p(f | y, x,θ) = p(y | f, x,θ)p(f |,θ)∫
p(y | f, x,θ)p(f |,θ) df

=
p(y | f, x,θ)p(f |,θ)

p(y | x,θ)

▶ For Gaussians, die evidence has analytic form:

N (y;ϕθX
⊺w,Λ)︸ ︷︷ ︸

p(y|f,x,θ)

· N (w, µ,Σ)︸ ︷︷ ︸
p(f)

= N (w;mθ
post, Vθpost)︸ ︷︷ ︸

p(f|y,x,θ)

·N (y;ϕθX
⊺
µ, ϕθX

⊺
ΣϕθX + Λ)︸ ︷︷ ︸

p(y|θ,x)

▶ BUT: It’s not a linear function of θ, so analytic Gaussian inference is not available!

Computational complexity is the principal challenge of probabilistic reasoning.

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 29

https://youtu.be/Zb0K_S5JJU4?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=1142

ML / MAP in Practice
Finding the “best fit” θ in Gaussian models [e.g. DJC MacKay, The evidence framework applied to classification networks, 1992]

θ̂ = arg max
θ

p(y | x,θ) = arg max
θ

∫
p(y | f, x,θ)p(f |,θ) df

= arg max
θ

N (y; ϕθX
⊺
µ, ϕθX

⊺
ΣϕθX + Λ)

= arg max
θ

logN (y; ϕθX
⊺
µ, ϕθX

⊺
ΣϕθX + Λ)

= arg min
θ

− logN (y; ϕθX
⊺
µ, ϕθX

⊺
ΣϕθX + Λ)

= arg min
θ

1
2

(y− ϕθX
⊺
µ)⊺

(
ϕθX

⊺
ΣϕθX + Λ

)−1
(y− ϕθX

⊺
µ)︸ ︷︷ ︸

square error

+ log
∣∣∣ϕθX ⊺ΣϕθX + Λ

∣∣∣︸ ︷︷ ︸
model complexity / Occam factor

+
N
2
log 2π

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 30

The Connection to Deep Learning
Representation Learning

x

y

[ϕx]1 [ϕx]2 [ϕx]3 [ϕx]4 [ϕx]5 [ϕx]6 [ϕx]7 [ϕx]8 [ϕx]9

w1

θ1

w2

θ2

w3

θ3

w4

θ4

w5

θ5

w6

θ6

w7

θ7

w8

θ8

w9

θ9

features

weights

parameters

input

output

A linear Gaussian regressor is a single hidden layer neural network, with quadratic output loss, and fixed
input layer. Hyperparameter-fitting corresponds to training the input layer. The usual way to train such
network, however, does not include the Occam factor.

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 31

What are we actually doing with those features?
let’s look at that algebra again

p(fx | y, ϕX) = N (fx;ϕ⊺x µ+ ϕ⊺x ΣϕX(ϕ
⊺
XΣϕX + σ2I)−1(y− ϕ⊺Xµ),

ϕ⊺x Σϕx − ϕ⊺x ΣϕX(ϕ
⊺
XΣϕX + σ2I)−1ϕ⊺XΣϕx)

= N (fx;mx + kxX(kXX + σ2I)−1(y−mX),

kxx− kxX(kXX + σ2I)−1kXx)

using the abstraction / encapsulation

mx:= ϕ⊺x µ m : X_R mean function
kab:= ϕ⊺aΣϕb k : X× X_R covariance function, aka. kernel

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 32

The Kernel Trick
kernelization and Gaussian processes

Definition (kernel)

k : X× X_R is a (Mercer / positive definite) kernel if, for any finite collection X = [x1, . . . , xN], the
matrix kXX ∈ RN×N with [kXX]ij = k(xi, xj) is positive semidefinite.

def kernel (f) : λ (a,b) -> [[f(a[i],b[j]) for j=1:length(b)] for i=1:length(a)]
actually, in python:

def kernel (f) : return lambda a,b : np.array([[np.float64(f(a[i],b[j])) for j in range(b.size)] for i in range(a.size)])

Definition
Let µ : X_R be any function, k : X× X_R be a Mercer kernel. A Gaussian process
p(f) = GP(f;µ, k) is a probability distribution over the function f : X_R, such that every finite
restriction to function values fX := [fx1 , . . . , fxN] is a Gaussian distribution p(fX) = N (fX;µX, kXX).

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 33

Gaussian Processes
▶ Sometimes it is possible to consider infinitely many features at once, by extending from a sum to

an integral. This requires some regularity assumption about the features’ locations, shape, etc.
▶ The resulting nonparametric model is known as a Gaussian process
▶ Inference in GPs is tractable (though at polynomial costO(N3) in the number N of datapoints)
▶ There is no unique kernel. In fact, there are quite a few! E.g.

k(a, b) = exp(−(a− b)2) Gaussian / Square Exponential / RBF kernel
k(a, b) = min(a− t0, b− t0) Wiener process

k(a, b) =
1
3
min3(a− t0, b− t0) cubic spline kernel

+
1
2
|a− b| ·min2(a− t0, b− t0)

k(a, b) =
2
π
sin−1

(
2a⊺b√

(1+ 2a⊺a)(1+ 2b⊺b)

)
Neural Network kernel (Williams, 1998)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 34

Making New Kernels from Old
the space of kernels is large

Theorem:
Let X,Y be index sets and ϕ : Y_X . If k1, k2 : X× X_R are Mercer kernels, then the following
functions are also Mercer kernels (up to minor regularity assumptions)
▶ α · k1(a, b) for α ∈ R+ (proof: trivial)
▶ k1(ϕ(c), ϕ(d)) for c, d ∈ Y (proof: by Mercer’s theorem, next lecture)
▶ k1(a, b) + k2(a, b) (proof: trivial)
▶ k1(a, b) · k2(a, b) Schur product theorem

(proof involved. E.g. Bapat, 1997. Million, 2007)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 35

▶ Gaussian process regression is closely related to kernel ridge regression.
▶ the posterior mean is the kernel ridge / regularized kernel least-squares estimate in the RKHSHk.

m(x) = kxX(kXX + σ2I)−1y = arg min
f∈Hk

∥y− fX∥2 + ∥f∥2
Hk

▶ the posterior variance (expected square error) is the worst-case square error for bounded-norm RKHS
elements.

v(x) = kxx − kxX(kXX)−1kXx = arg max
f∈Hk,∥f∥Hk

≤1
∥f(x)− m(x)∥2

▶ Similar connections apply for most kernel methods.
▶ GPs are quite powerful: They can learn any function in the RKHS (a large, generally

infinite-dimensional space!)
▶ GPs are quite limited: If f ̸∈ Hk, they may converge very (e.g. exponentially) slowly to the truth.
▶ But if we are willing to be cautious enough (e.g. with a rough kernel whose RKHS is a Sobolev

space of low order), then polynomial rates are achievable. (Unfortunately, exponentially slow in the
dimensionality of the input space)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 36

Gaussian Regression is a Powerful Tool for Everyday Use!
(c) P. Hennig, 2007–2013

2010 2011 2012 2013

m
as

s
[kg

]

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 37

Gaussian Regression is a Powerful Tool for Everyday Use!
(c) P. Hennig, 2007–2013

2010 2011 2012 2013

running gorging gorgingdieting gym veg

m
as

s
[kg

]

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 37

The Toolbox

Framework:∫
p(x1, x2) dx2 = p(x1) p(x1, x2) = p(x1 | x2)p(x2) p(x | y) = p(y | x)p(x)

p(y)

Modelling:
▶ graphical models
▶ Gaussian distributions
▶ (deep) learnt representations
▶ Kernels
▶ Markov Chains

▶ Exponential Families / Conjugate Priors
▶ Factor Graphs & Message Passing

Computation:
▶ Monte Carlo
▶ Linear algebra / Gaussian inference
▶ maximum likelihood / MAP
▶ Laplace approximations

▶ EM / variational approximations

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 38

Graphical View: Parametric Model
Conditional independence of data given model weights

p(f) = GP(f; 0,Φ⊺
XΣΦX) p



f1
f2
f3
f4


∣∣∣∣∣∣∣∣w
 =

∏
i

δ(fi − ϕ⊺i w) p(y | f) =
∏
i

N (yi; fi, σ2)

f(x1) f(x2) f(x3) f(x4)

w

ϕ1 ϕ2 ϕ3 ϕ4

y1 y2 y3 y4

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 39

Nonparametric Model
Fully connected graph

p(f) = GP(f; 0, k) p



f1
f2
f3
f4


 = N

0,


K−1
11 K−1

12 K−1
13 K−1

14
K−1
22 K−1

23 K−1
24

K−1
33 K−1

34
K−1
44


−1 p(y | f) =

∏
i

N (yi; fi, σ2)

f(x1) f(x2) f(x3) f(x4)
K−1
12

K−1
13

K−1
14

K−1
23

K−1
24

K−1
34

y1 y2 y3 y4

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 40

Markov Chains
Processes with a “local memory”

p(f) = GP(f; 0, k) p



f1
f2
f3
f4


 = N

0,


K−1
11 K−1

12 0 0
K−1
12 K−1

22 K−1
23 0

0 K−1
23 K−1

33 K−1
34

0 0 K−1
34 K−1

44


−1 p(y | f) =

∏
i

N (yi; fi, σ2)

f(x1) f(x2) f(x3) f(x4)K−1
12 K−1

23 K−1
34

y1 y2 y3 y4

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 41

Time Series:
▶ Markov Chains formalize the notion of a stochastic process with a local finite memory
▶ Inference over Markov Chains separates into three operations, that can be performed in linear time:

Filtering: O(T)

predict: p(xt | Y0:t−1) =

∫
p(xt | xt−1)p(xt−1 | Y0:t−1) dxt−1 (Chapman-Kolmogorov Eq.)

update: p(xt | Y0:t) =
p(yt | xt)p(xt | Y0:t−1)

p(yt)

Smoothing: O(T)

smooth: p(xt | Y) = p(xt | Y0:t)

∫
p(xt+1 | xt)

p(xt+1 | Y)
p(xt+1 | Y0:t)

dxt+1

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 42

Time Series:
▶ Markov Chains formalize the notion of a stochastic process with a local finite memory
▶ Inference over Markov Chains separates into three operations, that can be performed in linear time.
▶ If all relationships are linear and Gaussian,

p(x(ti) | x(ti−1)) = N (xi; Axi−1,Q) p(yt | xt) = N (yt;Hxt, R)

then inference is analytic and given by the Kalman Filter and the Rauch-Tung-Striebel Smoother:

(Kalman) Filter:

p(xt) = N (xt;m−
t , P−t) with

m−
t = Amt−1 predictive mean

P−t = APt−1A
⊺
+ Q predictive covariance

p(xt | yt) = N (xt;mt, Pt) with

zt = yt − Hm−
t innovation residual

St = HP−t H⊺
+ R innovation covariance

Kt = P−t H⊺S−1 Kalman gain

mt = m−
t + Kzt estimation mean

Pt = (I − KH)P−t estimation covariance

(Rauch Tung Striebel) Smoother:

p(xt | Y) = N (xt;ms
t , P

s
t) with

Gt = PtA⊺(P−t+1)
−1 RTS gain

ms
t = mt + Gt(ms

t+1 − m−
t+1) smoothed mean

Ps
t = Pt + Gt(Ps

t+1 − P−t+1)G
⊺ smoothed covariance

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 43

Classification vs. Regression
Two types of supervised learning problems

Regression:

Given supervised data (special case d = 1: univariate regression)

(X, Y) := (xi, yi)i=1,...,n with xi ∈ X, yi ∈ Rd

find function f : X_Rd such that f “models” Y ≈ f(X).

Classification:
Given supervised data (special case d = 2: binary classification)

(X, Y) := (xi, ci)i=1,...,n with xi ∈ X, ci ∈ {1, . . . , d}

find probability π : X_Ud (Ud = {p ∈ [0, 1]d :
∑d

i=1 pi = 1}) such that π “models” yi ∼ πxi .

Regression predicts a function, classification predicts a probability.

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 44

A Gaussian Process model for Classification
Logistic Regression

p(f) = GP(f;m, k)

p(y | fx) = σ(yfx) =

{
σ(f) if y = 1
1− σ(f) if y = −1

using σ(x) = 1− σ(−x).

The problem: The posterior is not Gaussian!

p(fX | Y) =
p(Y | fX)p(fX)

p(Y)
=

N (fX;m, k)
∏n

i=1 σ(yifxi)∫
N (fX;m, k)

∏n
i=1 σ(yifxi) dfX

log p(fX | Y) = −1
2
f⊺X k

−1
XX fX +

n∑
i=1

logσ(yifxi) + const.

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 45

Logistic Regression is non-analytic
We’ll have to break out the toolbox

f1

f 2

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 46

Logistic Regression is non-analytic
We’ll have to break out the toolbox

f1

f 2

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 46

Logistic Regression is non-analytic
We’ll have to break out the toolbox

f1

f 2

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 46

The Laplace Approximation
A local Gaussian approximation Pierre Simon M. de Laplace, 1814

f1

f 2

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 47

The Laplace Approximation
formally

▶ Consider a probability distribution p(θ) (may be a posterior p(θ | D) or something else)
▶ find a (local) maximum of p(θ) or (equivalently) log p(θ)

θ̂ = arg max log p(θ) ⇒ ∇ log p(θ̂) = 0

▶ perform second order Taylor expansion around θ = θ̂ + δ in log space

log p(δ) = log p(θ̂) +
1
2
δ⊺

∇∇⊺ log p(θ̂)︸ ︷︷ ︸
=:Ψ

 δ +O(δ3)

▶ define the Laplace approximation q to p

q(θ) = N (θ; θ̂,−Ψ−1)

▶ Note that, if p(θ) = N (θ;m,Σ), then p(θ) = q(θ)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 48

Generalized Linear Models
▶ extend the idea discussed for classification in the previous lecture to general link functions. That

is, non-Gaussian likelihoods of general form.
▶ a simple (approximate) probabilistic version can be constructed by analogously extending the

Laplace approximation from the previous lecture
▶ note that, for arbitrary link functions, the Laplace approximation may well be quite bad

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 49

A recent example
count data data: Robert Koch Institut, 22 May 2020

0 20 40 60 80 100 120 140

0

2,000

4,000

days since outbreak

ne
w

ca
se

s

p(y | fT) = N (y; fT, σ2I) p(f) = GP(f; 0, k)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 50

A recent example
count data data: Robert Koch Institut, 22 May 2020

0 20 40 60 80 100 120 140
−2

0

2

4

days since outbreak

lo
g 1

0
(n
ew

ca
se

s)

p(y | fT) = N (y; exp(fT), σ2I) ≈ q(y | fT) = N (log y; fT, σ2 diag(1/y)) because
∂ log p(y | fT)

∂fT

∣∣∣∣
fT=f̂T

= 0 ⇒ f̂T = log y and
∂2 log p(y | fT)

∂2fT

∣∣∣∣
ft=f̂T

=
y2

σ2

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 50

Be Bayesian, even in Deep Learning!
Laplace approximations for deep nets

▶ A strong point estimate doesn’t matter if it’s uncertain
▶ replace p(y = 1 | x) = σ(fW(x)) with the marginal

p(y = 1 | x) =
∫
σ(fW(x)) p(W | y) dW

▶ approximate posterior on W by Laplace as

p(W | y) ≈ N (W;W∗,−(∇∇⊺J(W))−1) =: N (W;W∗,Ψ)

▶ and on f by linearizing with G(x) = dfW∗ (x)
dW as fW(x) ≈ fW∗(x) + G(x)(W−W∗), thus

p(fW(x)) =
∫

p(f | W)p(W) dW ≈ N (f(x); fW∗(x),G(x)ΨG(x)⊺) =: N (f(x);m(x), v(x))

▶ and approximate the marginal (MacKay, 1992) as

p(y = 1 | x) ≈ σ

(
m(x)√

1+ π/8 v(x)

)
.

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 51

Problem solved (asymptotically)!
Kristiadi et al. 2020 https://arxiv.org/abs/2002.10118

Theorem (Kristiadi et al., 2020)

Let fW : Rn _R be a binary ReLU classification network
parametrized by W ∈ Rp with p ≥ n, and letN (W|W∗,Ψ) be
the approximate posterior. Then for any input x ∈ Rn, there
exists an α > 0 such that for any δ ≥ α, the confidence
σ(|z(δx)|) is bounded from above by the limit
limδ _∞ σ(|z(δx)|). Furthermore,

lim
δ _∞

σ(|z(δx)|) ≤ σ

(
|u|

smin (J)
√
π/8λmin(Ψ)

)
,

where u ∈ Rn is a vector depending only on W and the n× p
matrix J := ∂u

∂W

∣∣
W∗ is the Jacobian of u w.r.t. W at W∗.

x1

x 2

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 52

The Toolbox

Framework:∫
p(x1, x2) dx2 = p(x1) p(x1, x2) = p(x1 | x2)p(x2) p(x | y) = p(y | x)p(x)

p(y)

Modelling:
▶ graphical models
▶ Gaussian distributions
▶ (deep) learnt representations
▶ Kernels
▶ Markov Chains
▶ Exponential Families / Conjugate Priors
▶ Factor Graphs & Message Passing

Computation:
▶ Monte Carlo
▶ Linear algebra / Gaussian inference
▶ maximum likelihood / MAP
▶ Laplace approximations

▶ EM / variational approximations

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 53

Conjugate Priors and Exponential Families
datatypes for inference

Definition (Conjugate Prior)

Let D and x be a data-set and a variable to be inferred, respectively, connected by the likelihood
p(D | x) = ℓ(D; x). A conjugate prior to ℓ for x is a probability measure with pdf p(x) = π(x; θ) of
functional form π, such that

p(x | D) = ℓ(D; x)π(x; θ)∫
ℓ(D; x)π(x; θ) dx

= π(x; θ′).

That is, such that the posterior arising from ℓ is of the same functional form as the prior, with updated
parameters.

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 54

Conjugate Priors and Exponential Families
datatypes for inference

Definition (Exponential Family, simplified form)

Consider a random variable X taking values x ∈ X ⊂ Rn. A probability distribution for X with pdf of the
functional form

pw(x) = h(x) exp [ϕ(x)⊺w− log Z(w)] =
h(x)
Z(w)

eϕ(x)
⊺w = p(x | w)

is called an exponential family of probability measures. The function ϕ : X_Rd is called the
sufficient statistics. The parameters w ∈ Rd are the natural parameters of pw. The normalization
constant Z(w) : Rd _R is the partition function. The function h(x) : X_R+ is the base measure.

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 54

A Family Meeting
incomplete list of exponential families

Name sufficient stats domain use case

Bernoulli ϕ(x) = [x] X = {0; 1} coin toss
Poisson ϕ(x) = [x] X = R+ emails per day
Laplace ϕ(x) = [1, x]⊺ X = R floods

Helmert (χ2) ϕ(x) = [x,− log x] X = R variances
Dirichlet ϕ(x) = [log x] X = R+ class probabilities
Euler (Γ) ϕ(x) = [x, log x] X = R+ variances
Wishart ϕ(X) = [X, log |X|] X = {X ∈ RN×N | v⊺Xv ≥ 0∀v ∈ RN} covariances
Gauss ϕ(X) = [X, XX⊺] X = RN functions

Boltzmann ϕ(X) = [X, triag(XX⊺)] X = {0; 1}N thermodynamics

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 55

Full Bayesian Regression on Distributions!
Fitting distributions with exponential families

▶ Given [xi]i=1,...,n with xi ∼ p(x), assume

p(x) ≈ pw(x | w) = exp(ϕ(x)⊺w−log Z(w)) and pF(w | α, ν) = exp(w⊺α−ν log Z(w)−log F(α, ν))

▶ compute the posterior on w, using the conjugate prior

p(w | x, α, ν) =
∏n

i=1 pw(xi | w)pF(w | α, ν)∫
p(x | w)p(w | α, ν) dx

= pF

(
w | α+

∑
i

ϕ(xi), ν + n

)

▶ note that∇∇pF(w | α, ν)|w∗=arg max p(w|α,ν) = −νp(w∗ | α, ν)∇w∇⊺
w log Z(w∗)

▶ In the limit n_∞, posterior concentrates at w∗ with

∇w log Z(w∗) =
α

n
+

1
n

n∑
i=1

ϕ(xi) = Ep(ϕ(x)) thus pw(x | w∗) = arg min
w

DKL(p(x)∥pw(x | w))

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 56

The Toolbox

Framework:∫
p(x1, x2) dx2 = p(x1) p(x1, x2) = p(x1 | x2)p(x2) p(x | y) = p(y | x)p(x)

p(y)

Modelling:
▶ graphical models
▶ Gaussian distributions
▶ (deep) learnt representations
▶ Kernels
▶ Markov Chains
▶ Exponential Families / Conjugate Priors
▶ Factor Graphs & Message Passing

Computation:
▶ Monte Carlo
▶ Linear algebra / Gaussian inference
▶ maximum likelihood / MAP
▶ Laplace approximations
▶ EM / variational approximations

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 57

Maximum Likelihood?
unfortunately, not always an analytic option

wdicdiπd θk
αd βk

i = [1, . . . , Id]
d = [1, . . . , D]

k = [1, . . . , K]

p(C,Π,Θ,W) =

(D∏
d=1

D(πd;αd)

)
︸ ︷︷ ︸

p(Π|α)

·

(D∏
d=1

Id∏
i=1

(∏K
k=1 π

cdik
dk

))
︸ ︷︷ ︸

p(C|Π)

·

(D∏
d=1

Id∏
i=1

(∏K
k=1 θ

cdik
kwdi

))
︸ ︷︷ ︸

p(W|C,Θ)

·

(K∏
k=1

D(θk;βk)

)
︸ ︷︷ ︸

p(Θ|β)

p(W | Π,Θ) =
∑
d,i,k

(D∏
d=1

Id∏
i=1

K∏
k=1

πdkθkwdi

)
log p(W | Π,Θ) = log

∑
(. . .) ̸=

∑
log (. . .)

Maximizing the likelihood forΘ,Π is difficult because it does not factorize along documents or words.

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 58

The EM algorithm:
▶ to find maximum likelihood (or MAP) estimate for a model involving a latent variable

θ∗ = arg max
θ

[log p(x | θ)] = arg max
θ

[
log
(∫

p(x, z | θ) dz
)]

▶ Initialize θ0, then iterate between
E Compute p(z | x, θold), thereby setting DKL(q∥p(z | x, θ) = 0
M Set θnew to the Maximize the Expectation Lower Bound

/ minimize the Variational Free Energy

θnew = arg max
θ

L(q, θ) = arg max
θ

∫
q(z) log

(
p(x, z | θ)

q(z)

)
dz

▶ Check for convergence of either the log likelihood, or θ.

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 59

The EM algorithm:
▶ to find maximum likelihood (or MAP) estimate for a model involving a latent variable

θ∗ = arg max
θ

[log p(x | θ)] = arg max
θ

[
log
(∫

p(x, z | θ) dz
)]

▶ Initialize θ0, then iterate between
E Compute p(z | x, θold), thereby setting DKL(q∥p(z | x, θ) = 0
M Set θnew to the Maximize the Expectation Lower Bound / minimize the Variational Free Energy

θnew = arg max
θ

L(q, θ) = arg max
θ

∫
q(z) log

(
p(x, z | θ)

q(z)

)
dz

▶ Check for convergence of either the log likelihood, or θ.

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 59

EM maximizes the ELBO / minimizes Free Energy
a more general view

log p(x | θ) = L(q, θ) + DKL(q∥p(z | x, θ))

L(q, θ) =
∫

q(z) log
(
p(x, z | θ)

q(z)

)
dz

DKL(q∥p(z | x, θ)) = −
∫

q(z) log
(
p(z | x, θ)

q(z)

)
dz

E -step: q(z) = p(z | x, θold), thus DKL(q∥p(z | x, θi)) = 0
M -step: Maximize ELBO

θnew = arg max
θ

∫
q(z) log p(x, z | θ) dz

= arg max
θ

L(q, θ) +
∫

q(z) log q(z) dz

log p(x | θ)

DKL(q∥p(z | x, θ))

L(q, θ)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 60

EM maximizes the ELBO / minimizes Free Energy
a more general view

log p(x | θ) = L(q, θ) + DKL(q∥p(z | x, θ))

L(q, θ) =
∫

q(z) log
(
p(x, z | θ)

q(z)

)
dz

DKL(q∥p(z | x, θ)) = −
∫

q(z) log
(
p(z | x, θ)

q(z)

)
dz

E -step: q(z) = p(z | x, θold), thus DKL(q∥p(z | x, θi)) = 0

M -step: Maximize ELBO

θnew = arg max
θ

∫
q(z) log p(x, z | θ) dz

= arg max
θ

L(q, θ) +
∫

q(z) log q(z) dz

log p(x | θ)L(q, θ) =

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 60

EM maximizes the ELBO / minimizes Free Energy
a more general view

log p(x | θ) = L(q, θ) + DKL(q∥p(z | x, θ))

L(q, θ) =
∫

q(z) log
(
p(x, z | θ)

q(z)

)
dz

DKL(q∥p(z | x, θ)) = −
∫

q(z) log
(
p(z | x, θ)

q(z)

)
dz

E -step: q(z) = p(z | x, θold), thus DKL(q∥p(z | x, θi)) = 0
M -step: Maximize ELBO

θnew = arg max
θ

∫
q(z) log p(x, z | θ) dz

= arg max
θ

L(q, θ) +
∫

q(z) log q(z) dz

log p(x | θnew)

DKL(q∥p(z | x, θnew))

L(q, θnew)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 60

Variational Inference
▶ is a general framework to construct approximating probability distributions q(z) to non-analytic

posterior distributions p(z | x) by minimizing the functional

q∗ = arg min
q∈Q

DKL(q(z)∥p(z | x)) = arg max
q∈Q

L(q)

▶ the beauty is that we get to choose q, so one can nearly always find a tractable approximation.
▶ If we impose the mean field approximation q(z) =

∏
i q(zi), get

log q∗j (zj) = Eq,i ̸=j(log p(x, z)) + const..

▶ for Exponential Family p things are particularly simple: we only need the expectation under q of
the sufficient statistics.

Variational Inference is an extremely flexible and powerful approximation method. Its downside is that
constructing the bound and update equations can be tedious. For a quick test, variational inference is
often not a good idea. But for a deployed product, it can be the most powerful tool in the box.

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 61

The Toolbox

Framework:∫
p(x1, x2) dx2 = p(x1) p(x1, x2) = p(x1 | x2)p(x2) p(x | y) = p(y | x)p(x)

p(y)

Modelling:
▶ graphical models
▶ Gaussian distributions
▶ (deep) learnt representations
▶ Kernels
▶ Markov Chains
▶ Exponential Families / Conjugate Priors
▶ Factor Graphs & Message Passing

Computation:
▶ Monte Carlo
▶ Linear algebra / Gaussian inference
▶ maximum likelihood / MAP
▶ Laplace approximations
▶ EM / variational approximations

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 62

Designing a probabilistic machine learning method:
1. get the data

1.1 try to collect as much meta-data as possible
2. build the model

2.1 identify quantities and datastructures; assign names
2.2 design a generative process (graphical model)
2.3 assign (conditional) distributions to factors/arrows (use exponential families!)

3. design the algorithm
3.1 consider conditional independence
3.2 try standard methods for early experiments
3.3 run unit-tests and sanity-checks
3.4 identify bottlenecks, find customized approximations and refinements

Packaged solutions can give great first solutions, fast.
Building a tailormade solution requires creativity and mathematical stamina.

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 63

Life's most important problems are, for the most
part, problems of probability.

Pierre-Simon, marquis de Laplace (1749-1827)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 27: Revision — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 64

	anm1:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

